mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
Compare commits
12 Commits
akshaya-a-
...
azureml-sd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0514eee64b | ||
|
|
4b6e34fdc0 | ||
|
|
e01216d85b | ||
|
|
b00f75edd8 | ||
|
|
06aba388c6 | ||
|
|
3018461dfc | ||
|
|
0d91f2d697 | ||
|
|
a14cb635f0 | ||
|
|
88f6a966cc | ||
|
|
4f76a844c6 | ||
|
|
c1573ff949 | ||
|
|
d1b18b3771 |
12
README.md
12
README.md
@@ -7,10 +7,13 @@ and maintaining the complete data science workflow from the cloud.
|
||||
|
||||

|
||||
|
||||
## How to use and navigate the example notebooks?
|
||||
|
||||
You can set up you own Python environment or use Azure Notebooks with Azure ML SDK pre-installed. Read [these instructions](./NBSETUP.md) to set up your environment and clone the example notebooks.
|
||||
## Quick installation
|
||||
```sh
|
||||
pip install azureml-sdk
|
||||
```
|
||||
Read more detailed instructions on [how to set up your environment](./NBSETUP.md).
|
||||
|
||||
## How to navigate and use the example notebooks?
|
||||
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
|
||||
|
||||
If you want to...
|
||||
@@ -52,5 +55,4 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
|
||||
Visit following repos to see projects contributed by Azure ML users:
|
||||
|
||||
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
|
||||
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
|
||||
|
||||
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
|
||||
@@ -96,7 +96,7 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.0.6 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.0.10 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -373,4 +373,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
}
|
||||
|
||||
409
contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb
Normal file
409
contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb
Normal file
@@ -0,0 +1,409 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# NVIDIA RAPIDS in Azure Machine Learning"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The [RAPIDS](https://www.developer.nvidia.com/rapids) suite of software libraries from NVIDIA enables the execution of end-to-end data science and analytics pipelines entirely on GPUs. In many machine learning projects, a significant portion of the model training time is spent in setting up the data; this stage of the process is known as Extraction, Transformation and Loading, or ETL. By using the DataFrame API for ETL and GPU-capable ML algorithms in RAPIDS, data preparation and training models can be done in GPU-accelerated end-to-end pipelines without incurring serialization costs between the pipeline stages. This notebook demonstrates how to use NVIDIA RAPIDS to prepare data and train model in Azure.\n",
|
||||
" \n",
|
||||
"In this notebook, we will do the following:\n",
|
||||
" \n",
|
||||
"* Create an Azure Machine Learning Workspace\n",
|
||||
"* Create an AMLCompute target\n",
|
||||
"* Use a script to process our data and train a model\n",
|
||||
"* Obtain the data required to run this sample\n",
|
||||
"* Create an AML run configuration to launch a machine learning job\n",
|
||||
"* Run the script to prepare data for training and train the model\n",
|
||||
" \n",
|
||||
"Prerequisites:\n",
|
||||
"* An Azure subscription to create a Machine Learning Workspace\n",
|
||||
"* Familiarity with the Azure ML SDK (refer to [notebook samples](https://github.com/Azure/MachineLearningNotebooks))\n",
|
||||
"* A Jupyter notebook environment with Azure Machine Learning SDK installed. Refer to instructions to [setup the environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Verify if Azure ML SDK is installed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"from azureml.widgets import RunDetails"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Azure ML Workspace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following step is optional if you already have a workspace. If you want to use an existing workspace, then\n",
|
||||
"skip this workspace creation step and move on to the next step to load the workspace.\n",
|
||||
" \n",
|
||||
"<font color='red'>Important</font>: in the code cell below, be sure to set the correct values for the subscription_id, \n",
|
||||
"resource_group, workspace_name, region before executing this code cell."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<subscription_id>\")\n",
|
||||
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<resource_group>\")\n",
|
||||
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<workspace_name>\")\n",
|
||||
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"<region>\")\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(workspace_name, subscription_id=subscription_id, resource_group=resource_group, location=workspace_region)\n",
|
||||
"\n",
|
||||
"# write config to a local directory for future use\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load existing Workspace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"# if a locally-saved configuration file for the workspace is not available, use the following to load workspace\n",
|
||||
"# ws = Workspace(subscription_id=subscription_id, resource_group=resource_group, workspace_name=workspace_name)\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
|
||||
"\n",
|
||||
"scripts_folder = \"scripts_folder\"\n",
|
||||
"\n",
|
||||
"if not os.path.isdir(scripts_folder):\n",
|
||||
" os.mkdir(scripts_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AML Compute Target"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Because NVIDIA RAPIDS requires P40 or V100 GPUs, the user needs to specify compute targets from one of [NC_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview) virtual machine types in Azure; these are the families of virtual machines in Azure that are provisioned with these GPUs.\n",
|
||||
" \n",
|
||||
"Pick one of the supported VM SKUs based on the number of GPUs you want to use for ETL and training in RAPIDS.\n",
|
||||
" \n",
|
||||
"The script in this notebook is implemented for single-machine scenarios. An example supporting multiple nodes will be published later."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpu_cluster_name = \"gpucluster\"\n",
|
||||
"\n",
|
||||
"if gpu_cluster_name in ws.compute_targets:\n",
|
||||
" gpu_cluster = ws.compute_targets[gpu_cluster_name]\n",
|
||||
" if gpu_cluster and type(gpu_cluster) is AmlCompute:\n",
|
||||
" print('found compute target. just use it. ' + gpu_cluster_name)\n",
|
||||
"else:\n",
|
||||
" print(\"creating new cluster\")\n",
|
||||
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
|
||||
" gpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Script to process data and train model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The _process_data.py_ script used in the step below is a slightly modified implementation of [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# copy process_data.py into the script folder\n",
|
||||
"import shutil\n",
|
||||
"shutil.copy('./process_data.py', os.path.join(scripts_folder, 'process_data.py'))\n",
|
||||
"\n",
|
||||
"with open(os.path.join(scripts_folder, './process_data.py'), 'r') as process_data_script:\n",
|
||||
" print(process_data_script.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Data required to run this sample"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This sample uses [Fannie Mae\u00e2\u20ac\u2122s Single-Family Loan Performance Data](http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html). Refer to the 'Available mortgage datasets' section in [instructions](https://rapidsai.github.io/demos/datasets/mortgage-data) to get sample data.\n",
|
||||
"\n",
|
||||
"Once you obtain access to the data, you will need to make this data available in an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data), for use in this sample."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<font color='red'>Important</font>: The following step assumes the data is uploaded to the Workspace's default data store under a folder named 'mortgagedata2000_01'. Note that uploading data to the Workspace's default data store is not necessary and the data can be referenced from any datastore, e.g., from Azure Blob or File service, once it is added as a datastore to the workspace. The path_on_datastore parameter needs to be updated, depending on where the data is available. The directory where the data is available should have the following folder structure, as the process_data.py script expects this directory structure:\n",
|
||||
"* _<data directory>_/acq\n",
|
||||
"* _<data directory>_/perf\n",
|
||||
"* _names.csv_\n",
|
||||
"\n",
|
||||
"The 'acq' and 'perf' refer to directories containing data files. The _<data directory>_ is the path specified in _path_on_datastore_ parameter in the step below."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ds = ws.get_default_datastore()\n",
|
||||
"\n",
|
||||
"# download and uncompress data in a local directory before uploading to data store\n",
|
||||
"# directory specified in src_dir parameter below should have the acq, perf directories with data and names.csv file\n",
|
||||
"# ds.upload(src_dir='<local directory that has data>', target_path='mortgagedata2000_01', overwrite=True, show_progress=True)\n",
|
||||
"\n",
|
||||
"# data already uploaded to the datastore\n",
|
||||
"data_ref = DataReference(data_reference_name='data', datastore=ds, path_on_datastore='mortgagedata2000_01')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AML run configuration to launch a machine learning job"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"AML allows the option of using existing Docker images with prebuilt conda environments. The following step use an existing image from [Docker Hub](https://hub.docker.com/r/rapidsai/rapidsai/)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run_config = RunConfiguration()\n",
|
||||
"run_config.framework = 'python'\n",
|
||||
"run_config.environment.python.user_managed_dependencies = True\n",
|
||||
"# use conda environment named 'rapids' available in the Docker image\n",
|
||||
"# this conda environment does not include azureml-defaults package that is required for using AML functionality like metrics tracking, model management etc.\n",
|
||||
"run_config.environment.python.interpreter_path = '/conda/envs/rapids/bin/python'\n",
|
||||
"run_config.target = gpu_cluster_name\n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"run_config.environment.docker.gpu_support = True\n",
|
||||
"# if registry is not mentioned the image is pulled from Docker Hub\n",
|
||||
"run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2_ubuntu16.04_root\"\n",
|
||||
"run_config.environment.spark.precache_packages = False\n",
|
||||
"run_config.data_references={'data':data_ref.to_config()}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Wrapper function to submit Azure Machine Learning experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# parameter cpu_predictor indicates if training should be done on CPU. If set to true, GPUs are used *only* for ETL and *not* for training\n",
|
||||
"# parameter num_gpu indicates number of GPUs to use among the GPUs available in the VM for ETL and if cpu_predictor is false, for training as well \n",
|
||||
"def run_rapids_experiment(cpu_training, gpu_count):\n",
|
||||
" # any value between 1-4 is allowed here depending the type of VMs available in gpu_cluster\n",
|
||||
" if gpu_count not in [1, 2, 3, 4]:\n",
|
||||
" raise Exception('Value specified for the number of GPUs to use {0} is invalid'.format(gpu_count))\n",
|
||||
"\n",
|
||||
" # following data partition mapping is empirical (specific to GPUs used and current data partitioning scheme) and may need to be tweaked\n",
|
||||
" gpu_count_data_partition_mapping = {1: 2, 2: 4, 3: 5, 4: 7}\n",
|
||||
" part_count = gpu_count_data_partition_mapping[gpu_count]\n",
|
||||
"\n",
|
||||
" end_year = 2000\n",
|
||||
" if gpu_count > 2:\n",
|
||||
" end_year = 2001 # use more data with more GPUs\n",
|
||||
"\n",
|
||||
" src = ScriptRunConfig(source_directory=scripts_folder, \n",
|
||||
" script='process_data.py', \n",
|
||||
" arguments = ['--num_gpu', gpu_count, '--data_dir', str(data_ref),\n",
|
||||
" '--part_count', part_count, '--end_year', end_year,\n",
|
||||
" '--cpu_predictor', cpu_training\n",
|
||||
" ],\n",
|
||||
" run_config=run_config\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" exp = Experiment(ws, 'rapidstest')\n",
|
||||
" run = exp.submit(config=src)\n",
|
||||
" RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit experiment (ETL & training on GPU)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cpu_predictor = False\n",
|
||||
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
|
||||
"num_gpu = 1 \n",
|
||||
"# train using CPU, use GPU for both ETL and training\n",
|
||||
"run_rapids_experiment(cpu_predictor, num_gpu)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit experiment (ETL on GPU, training on CPU)\n",
|
||||
"\n",
|
||||
"To observe performance difference between GPU-accelerated RAPIDS based training with CPU-only training, set 'cpu_predictor' predictor to 'True' and rerun the experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cpu_predictor = True\n",
|
||||
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
|
||||
"num_gpu = 1\n",
|
||||
"# train using CPU, use GPU for ETL\n",
|
||||
"run_rapids_experiment(cpu_predictor, num_gpu)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Delete cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# delete the cluster\n",
|
||||
"# gpu_cluster.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "ksivas"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
500
contrib/RAPIDS/process_data.py
Normal file
500
contrib/RAPIDS/process_data.py
Normal file
@@ -0,0 +1,500 @@
|
||||
# License Info: https://github.com/rapidsai/notebooks/blob/master/LICENSE
|
||||
import numpy as np
|
||||
import datetime
|
||||
import dask_xgboost as dxgb_gpu
|
||||
import dask
|
||||
import dask_cudf
|
||||
from dask.delayed import delayed
|
||||
from dask.distributed import Client, wait
|
||||
import xgboost as xgb
|
||||
import cudf
|
||||
from cudf.dataframe import DataFrame
|
||||
from collections import OrderedDict
|
||||
import gc
|
||||
from glob import glob
|
||||
import os
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser("rapidssample")
|
||||
parser.add_argument("--data_dir", type=str, help="location of data")
|
||||
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
|
||||
parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
|
||||
parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
|
||||
parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
|
||||
parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
|
||||
args = parser.parse_args()
|
||||
data_dir = args.data_dir
|
||||
num_gpu = args.num_gpu
|
||||
part_count = args.part_count
|
||||
end_year = args.end_year
|
||||
cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')
|
||||
|
||||
print('data_dir = {0}'.format(data_dir))
|
||||
print('num_gpu = {0}'.format(num_gpu))
|
||||
print('part_count = {0}'.format(part_count))
|
||||
part_count = part_count + 1 # adding one because the usage below is not inclusive
|
||||
print('end_year = {0}'.format(end_year))
|
||||
print('cpu_predictor = {0}'.format(cpu_predictor))
|
||||
|
||||
import subprocess
|
||||
|
||||
cmd = "hostname --all-ip-addresses"
|
||||
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
|
||||
output, error = process.communicate()
|
||||
IPADDR = str(output.decode()).split()[0]
|
||||
print('IPADDR is {0}'.format(IPADDR))
|
||||
|
||||
cmd = "/rapids/notebooks/utils/dask-setup.sh 0"
|
||||
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
|
||||
output, error = process.communicate()
|
||||
|
||||
cmd = "/rapids/notebooks/utils/dask-setup.sh rapids " + str(num_gpu) + " 8786 8787 8790 " + str(IPADDR) + " MASTER"
|
||||
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
|
||||
output, error = process.communicate()
|
||||
|
||||
print(output.decode())
|
||||
|
||||
import dask
|
||||
from dask.delayed import delayed
|
||||
from dask.distributed import Client, wait
|
||||
|
||||
_client = IPADDR + str(":8786")
|
||||
|
||||
client = dask.distributed.Client(_client)
|
||||
|
||||
def initialize_rmm_pool():
|
||||
from librmm_cffi import librmm_config as rmm_cfg
|
||||
|
||||
rmm_cfg.use_pool_allocator = True
|
||||
#rmm_cfg.initial_pool_size = 2<<30 # set to 2GiB. Default is 1/2 total GPU memory
|
||||
import cudf
|
||||
return cudf._gdf.rmm_initialize()
|
||||
|
||||
def initialize_rmm_no_pool():
|
||||
from librmm_cffi import librmm_config as rmm_cfg
|
||||
|
||||
rmm_cfg.use_pool_allocator = False
|
||||
import cudf
|
||||
return cudf._gdf.rmm_initialize()
|
||||
|
||||
def run_dask_task(func, **kwargs):
|
||||
task = func(**kwargs)
|
||||
return task
|
||||
|
||||
def process_quarter_gpu(year=2000, quarter=1, perf_file=""):
|
||||
ml_arrays = run_dask_task(delayed(run_gpu_workflow),
|
||||
quarter=quarter,
|
||||
year=year,
|
||||
perf_file=perf_file)
|
||||
return client.compute(ml_arrays,
|
||||
optimize_graph=False,
|
||||
fifo_timeout="0ms"
|
||||
)
|
||||
|
||||
def null_workaround(df, **kwargs):
|
||||
for column, data_type in df.dtypes.items():
|
||||
if str(data_type) == "category":
|
||||
df[column] = df[column].astype('int32').fillna(-1)
|
||||
if str(data_type) in ['int8', 'int16', 'int32', 'int64', 'float32', 'float64']:
|
||||
df[column] = df[column].fillna(-1)
|
||||
return df
|
||||
|
||||
def run_gpu_workflow(quarter=1, year=2000, perf_file="", **kwargs):
|
||||
names = gpu_load_names()
|
||||
acq_gdf = gpu_load_acquisition_csv(acquisition_path= acq_data_path + "/Acquisition_"
|
||||
+ str(year) + "Q" + str(quarter) + ".txt")
|
||||
acq_gdf = acq_gdf.merge(names, how='left', on=['seller_name'])
|
||||
acq_gdf.drop_column('seller_name')
|
||||
acq_gdf['seller_name'] = acq_gdf['new']
|
||||
acq_gdf.drop_column('new')
|
||||
perf_df_tmp = gpu_load_performance_csv(perf_file)
|
||||
gdf = perf_df_tmp
|
||||
everdf = create_ever_features(gdf)
|
||||
delinq_merge = create_delinq_features(gdf)
|
||||
everdf = join_ever_delinq_features(everdf, delinq_merge)
|
||||
del(delinq_merge)
|
||||
joined_df = create_joined_df(gdf, everdf)
|
||||
testdf = create_12_mon_features(joined_df)
|
||||
joined_df = combine_joined_12_mon(joined_df, testdf)
|
||||
del(testdf)
|
||||
perf_df = final_performance_delinquency(gdf, joined_df)
|
||||
del(gdf, joined_df)
|
||||
final_gdf = join_perf_acq_gdfs(perf_df, acq_gdf)
|
||||
del(perf_df)
|
||||
del(acq_gdf)
|
||||
final_gdf = last_mile_cleaning(final_gdf)
|
||||
return final_gdf
|
||||
|
||||
def gpu_load_performance_csv(performance_path, **kwargs):
|
||||
""" Loads performance data
|
||||
|
||||
Returns
|
||||
-------
|
||||
GPU DataFrame
|
||||
"""
|
||||
|
||||
cols = [
|
||||
"loan_id", "monthly_reporting_period", "servicer", "interest_rate", "current_actual_upb",
|
||||
"loan_age", "remaining_months_to_legal_maturity", "adj_remaining_months_to_maturity",
|
||||
"maturity_date", "msa", "current_loan_delinquency_status", "mod_flag", "zero_balance_code",
|
||||
"zero_balance_effective_date", "last_paid_installment_date", "foreclosed_after",
|
||||
"disposition_date", "foreclosure_costs", "prop_preservation_and_repair_costs",
|
||||
"asset_recovery_costs", "misc_holding_expenses", "holding_taxes", "net_sale_proceeds",
|
||||
"credit_enhancement_proceeds", "repurchase_make_whole_proceeds", "other_foreclosure_proceeds",
|
||||
"non_interest_bearing_upb", "principal_forgiveness_upb", "repurchase_make_whole_proceeds_flag",
|
||||
"foreclosure_principal_write_off_amount", "servicing_activity_indicator"
|
||||
]
|
||||
|
||||
dtypes = OrderedDict([
|
||||
("loan_id", "int64"),
|
||||
("monthly_reporting_period", "date"),
|
||||
("servicer", "category"),
|
||||
("interest_rate", "float64"),
|
||||
("current_actual_upb", "float64"),
|
||||
("loan_age", "float64"),
|
||||
("remaining_months_to_legal_maturity", "float64"),
|
||||
("adj_remaining_months_to_maturity", "float64"),
|
||||
("maturity_date", "date"),
|
||||
("msa", "float64"),
|
||||
("current_loan_delinquency_status", "int32"),
|
||||
("mod_flag", "category"),
|
||||
("zero_balance_code", "category"),
|
||||
("zero_balance_effective_date", "date"),
|
||||
("last_paid_installment_date", "date"),
|
||||
("foreclosed_after", "date"),
|
||||
("disposition_date", "date"),
|
||||
("foreclosure_costs", "float64"),
|
||||
("prop_preservation_and_repair_costs", "float64"),
|
||||
("asset_recovery_costs", "float64"),
|
||||
("misc_holding_expenses", "float64"),
|
||||
("holding_taxes", "float64"),
|
||||
("net_sale_proceeds", "float64"),
|
||||
("credit_enhancement_proceeds", "float64"),
|
||||
("repurchase_make_whole_proceeds", "float64"),
|
||||
("other_foreclosure_proceeds", "float64"),
|
||||
("non_interest_bearing_upb", "float64"),
|
||||
("principal_forgiveness_upb", "float64"),
|
||||
("repurchase_make_whole_proceeds_flag", "category"),
|
||||
("foreclosure_principal_write_off_amount", "float64"),
|
||||
("servicing_activity_indicator", "category")
|
||||
])
|
||||
|
||||
print(performance_path)
|
||||
|
||||
return cudf.read_csv(performance_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
|
||||
|
||||
def gpu_load_acquisition_csv(acquisition_path, **kwargs):
|
||||
""" Loads acquisition data
|
||||
|
||||
Returns
|
||||
-------
|
||||
GPU DataFrame
|
||||
"""
|
||||
|
||||
cols = [
|
||||
'loan_id', 'orig_channel', 'seller_name', 'orig_interest_rate', 'orig_upb', 'orig_loan_term',
|
||||
'orig_date', 'first_pay_date', 'orig_ltv', 'orig_cltv', 'num_borrowers', 'dti', 'borrower_credit_score',
|
||||
'first_home_buyer', 'loan_purpose', 'property_type', 'num_units', 'occupancy_status', 'property_state',
|
||||
'zip', 'mortgage_insurance_percent', 'product_type', 'coborrow_credit_score', 'mortgage_insurance_type',
|
||||
'relocation_mortgage_indicator'
|
||||
]
|
||||
|
||||
dtypes = OrderedDict([
|
||||
("loan_id", "int64"),
|
||||
("orig_channel", "category"),
|
||||
("seller_name", "category"),
|
||||
("orig_interest_rate", "float64"),
|
||||
("orig_upb", "int64"),
|
||||
("orig_loan_term", "int64"),
|
||||
("orig_date", "date"),
|
||||
("first_pay_date", "date"),
|
||||
("orig_ltv", "float64"),
|
||||
("orig_cltv", "float64"),
|
||||
("num_borrowers", "float64"),
|
||||
("dti", "float64"),
|
||||
("borrower_credit_score", "float64"),
|
||||
("first_home_buyer", "category"),
|
||||
("loan_purpose", "category"),
|
||||
("property_type", "category"),
|
||||
("num_units", "int64"),
|
||||
("occupancy_status", "category"),
|
||||
("property_state", "category"),
|
||||
("zip", "int64"),
|
||||
("mortgage_insurance_percent", "float64"),
|
||||
("product_type", "category"),
|
||||
("coborrow_credit_score", "float64"),
|
||||
("mortgage_insurance_type", "float64"),
|
||||
("relocation_mortgage_indicator", "category")
|
||||
])
|
||||
|
||||
print(acquisition_path)
|
||||
|
||||
return cudf.read_csv(acquisition_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
|
||||
|
||||
def gpu_load_names(**kwargs):
|
||||
""" Loads names used for renaming the banks
|
||||
|
||||
Returns
|
||||
-------
|
||||
GPU DataFrame
|
||||
"""
|
||||
|
||||
cols = [
|
||||
'seller_name', 'new'
|
||||
]
|
||||
|
||||
dtypes = OrderedDict([
|
||||
("seller_name", "category"),
|
||||
("new", "category"),
|
||||
])
|
||||
|
||||
return cudf.read_csv(col_names_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
|
||||
|
||||
def create_ever_features(gdf, **kwargs):
|
||||
everdf = gdf[['loan_id', 'current_loan_delinquency_status']]
|
||||
everdf = everdf.groupby('loan_id', method='hash').max()
|
||||
del(gdf)
|
||||
everdf['ever_30'] = (everdf['max_current_loan_delinquency_status'] >= 1).astype('int8')
|
||||
everdf['ever_90'] = (everdf['max_current_loan_delinquency_status'] >= 3).astype('int8')
|
||||
everdf['ever_180'] = (everdf['max_current_loan_delinquency_status'] >= 6).astype('int8')
|
||||
everdf.drop_column('max_current_loan_delinquency_status')
|
||||
return everdf
|
||||
|
||||
def create_delinq_features(gdf, **kwargs):
|
||||
delinq_gdf = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status']]
|
||||
del(gdf)
|
||||
delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
|
||||
delinq_30['delinquency_30'] = delinq_30['min_monthly_reporting_period']
|
||||
delinq_30.drop_column('min_monthly_reporting_period')
|
||||
delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
|
||||
delinq_90['delinquency_90'] = delinq_90['min_monthly_reporting_period']
|
||||
delinq_90.drop_column('min_monthly_reporting_period')
|
||||
delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
|
||||
delinq_180['delinquency_180'] = delinq_180['min_monthly_reporting_period']
|
||||
delinq_180.drop_column('min_monthly_reporting_period')
|
||||
del(delinq_gdf)
|
||||
delinq_merge = delinq_30.merge(delinq_90, how='left', on=['loan_id'], type='hash')
|
||||
delinq_merge['delinquency_90'] = delinq_merge['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
|
||||
delinq_merge = delinq_merge.merge(delinq_180, how='left', on=['loan_id'], type='hash')
|
||||
delinq_merge['delinquency_180'] = delinq_merge['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
|
||||
del(delinq_30)
|
||||
del(delinq_90)
|
||||
del(delinq_180)
|
||||
return delinq_merge
|
||||
|
||||
def join_ever_delinq_features(everdf_tmp, delinq_merge, **kwargs):
|
||||
everdf = everdf_tmp.merge(delinq_merge, on=['loan_id'], how='left', type='hash')
|
||||
del(everdf_tmp)
|
||||
del(delinq_merge)
|
||||
everdf['delinquency_30'] = everdf['delinquency_30'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
|
||||
everdf['delinquency_90'] = everdf['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
|
||||
everdf['delinquency_180'] = everdf['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
|
||||
return everdf
|
||||
|
||||
def create_joined_df(gdf, everdf, **kwargs):
|
||||
test = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status', 'current_actual_upb']]
|
||||
del(gdf)
|
||||
test['timestamp'] = test['monthly_reporting_period']
|
||||
test.drop_column('monthly_reporting_period')
|
||||
test['timestamp_month'] = test['timestamp'].dt.month
|
||||
test['timestamp_year'] = test['timestamp'].dt.year
|
||||
test['delinquency_12'] = test['current_loan_delinquency_status']
|
||||
test.drop_column('current_loan_delinquency_status')
|
||||
test['upb_12'] = test['current_actual_upb']
|
||||
test.drop_column('current_actual_upb')
|
||||
test['upb_12'] = test['upb_12'].fillna(999999999)
|
||||
test['delinquency_12'] = test['delinquency_12'].fillna(-1)
|
||||
|
||||
joined_df = test.merge(everdf, how='left', on=['loan_id'], type='hash')
|
||||
del(everdf)
|
||||
del(test)
|
||||
|
||||
joined_df['ever_30'] = joined_df['ever_30'].fillna(-1)
|
||||
joined_df['ever_90'] = joined_df['ever_90'].fillna(-1)
|
||||
joined_df['ever_180'] = joined_df['ever_180'].fillna(-1)
|
||||
joined_df['delinquency_30'] = joined_df['delinquency_30'].fillna(-1)
|
||||
joined_df['delinquency_90'] = joined_df['delinquency_90'].fillna(-1)
|
||||
joined_df['delinquency_180'] = joined_df['delinquency_180'].fillna(-1)
|
||||
|
||||
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int32')
|
||||
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int32')
|
||||
|
||||
return joined_df
|
||||
|
||||
def create_12_mon_features(joined_df, **kwargs):
|
||||
testdfs = []
|
||||
n_months = 12
|
||||
for y in range(1, n_months + 1):
|
||||
tmpdf = joined_df[['loan_id', 'timestamp_year', 'timestamp_month', 'delinquency_12', 'upb_12']]
|
||||
tmpdf['josh_months'] = tmpdf['timestamp_year'] * 12 + tmpdf['timestamp_month']
|
||||
tmpdf['josh_mody_n'] = ((tmpdf['josh_months'].astype('float64') - 24000 - y) / 12).floor()
|
||||
tmpdf = tmpdf.groupby(['loan_id', 'josh_mody_n'], method='hash').agg({'delinquency_12': 'max','upb_12': 'min'})
|
||||
tmpdf['delinquency_12'] = (tmpdf['max_delinquency_12']>3).astype('int32')
|
||||
tmpdf['delinquency_12'] +=(tmpdf['min_upb_12']==0).astype('int32')
|
||||
tmpdf.drop_column('max_delinquency_12')
|
||||
tmpdf['upb_12'] = tmpdf['min_upb_12']
|
||||
tmpdf.drop_column('min_upb_12')
|
||||
tmpdf['timestamp_year'] = (((tmpdf['josh_mody_n'] * n_months) + 24000 + (y - 1)) / 12).floor().astype('int16')
|
||||
tmpdf['timestamp_month'] = np.int8(y)
|
||||
tmpdf.drop_column('josh_mody_n')
|
||||
testdfs.append(tmpdf)
|
||||
del(tmpdf)
|
||||
del(joined_df)
|
||||
|
||||
return cudf.concat(testdfs)
|
||||
|
||||
def combine_joined_12_mon(joined_df, testdf, **kwargs):
|
||||
joined_df.drop_column('delinquency_12')
|
||||
joined_df.drop_column('upb_12')
|
||||
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int16')
|
||||
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int8')
|
||||
return joined_df.merge(testdf, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
|
||||
|
||||
def final_performance_delinquency(gdf, joined_df, **kwargs):
|
||||
merged = null_workaround(gdf)
|
||||
joined_df = null_workaround(joined_df)
|
||||
merged['timestamp_month'] = merged['monthly_reporting_period'].dt.month
|
||||
merged['timestamp_month'] = merged['timestamp_month'].astype('int8')
|
||||
merged['timestamp_year'] = merged['monthly_reporting_period'].dt.year
|
||||
merged['timestamp_year'] = merged['timestamp_year'].astype('int16')
|
||||
merged = merged.merge(joined_df, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
|
||||
merged.drop_column('timestamp_year')
|
||||
merged.drop_column('timestamp_month')
|
||||
return merged
|
||||
|
||||
def join_perf_acq_gdfs(perf, acq, **kwargs):
|
||||
perf = null_workaround(perf)
|
||||
acq = null_workaround(acq)
|
||||
return perf.merge(acq, how='left', on=['loan_id'], type='hash')
|
||||
|
||||
def last_mile_cleaning(df, **kwargs):
|
||||
drop_list = [
|
||||
'loan_id', 'orig_date', 'first_pay_date', 'seller_name',
|
||||
'monthly_reporting_period', 'last_paid_installment_date', 'maturity_date', 'ever_30', 'ever_90', 'ever_180',
|
||||
'delinquency_30', 'delinquency_90', 'delinquency_180', 'upb_12',
|
||||
'zero_balance_effective_date','foreclosed_after', 'disposition_date','timestamp'
|
||||
]
|
||||
for column in drop_list:
|
||||
df.drop_column(column)
|
||||
for col, dtype in df.dtypes.iteritems():
|
||||
if str(dtype)=='category':
|
||||
df[col] = df[col].cat.codes
|
||||
df[col] = df[col].astype('float32')
|
||||
df['delinquency_12'] = df['delinquency_12'] > 0
|
||||
df['delinquency_12'] = df['delinquency_12'].fillna(False).astype('int32')
|
||||
for column in df.columns:
|
||||
df[column] = df[column].fillna(-1)
|
||||
return df.to_arrow(index=False)
|
||||
|
||||
|
||||
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
|
||||
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
|
||||
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
|
||||
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
|
||||
start_year = 2000
|
||||
#end_year = 2000 # end_year is inclusive -- converted to parameter
|
||||
#part_count = 2 # the number of data files to train against -- converted to parameter
|
||||
|
||||
client.run(initialize_rmm_pool)
|
||||
|
||||
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
|
||||
# This can be optimized to avoid calculating the dropped features.
|
||||
print("Reading ...")
|
||||
t1 = datetime.datetime.now()
|
||||
gpu_dfs = []
|
||||
gpu_time = 0
|
||||
quarter = 1
|
||||
year = start_year
|
||||
count = 0
|
||||
while year <= end_year:
|
||||
for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
|
||||
if count < part_count:
|
||||
gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
|
||||
count += 1
|
||||
print('file: {0}'.format(file))
|
||||
print('count: {0}'.format(count))
|
||||
quarter += 1
|
||||
if quarter == 5:
|
||||
year += 1
|
||||
quarter = 1
|
||||
|
||||
wait(gpu_dfs)
|
||||
t2 = datetime.datetime.now()
|
||||
print("Reading time ...")
|
||||
print(t2-t1)
|
||||
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
|
||||
|
||||
client.run(cudf._gdf.rmm_finalize)
|
||||
client.run(initialize_rmm_no_pool)
|
||||
|
||||
dxgb_gpu_params = {
|
||||
'nround': 100,
|
||||
'max_depth': 8,
|
||||
'max_leaves': 2**8,
|
||||
'alpha': 0.9,
|
||||
'eta': 0.1,
|
||||
'gamma': 0.1,
|
||||
'learning_rate': 0.1,
|
||||
'subsample': 1,
|
||||
'reg_lambda': 1,
|
||||
'scale_pos_weight': 2,
|
||||
'min_child_weight': 30,
|
||||
'tree_method': 'gpu_hist',
|
||||
'n_gpus': 1,
|
||||
'distributed_dask': True,
|
||||
'loss': 'ls',
|
||||
'objective': 'gpu:reg:linear',
|
||||
'max_features': 'auto',
|
||||
'criterion': 'friedman_mse',
|
||||
'grow_policy': 'lossguide',
|
||||
'verbose': True
|
||||
}
|
||||
|
||||
if cpu_predictor:
|
||||
print('Training using CPUs')
|
||||
dxgb_gpu_params['predictor'] = 'cpu_predictor'
|
||||
dxgb_gpu_params['tree_method'] = 'hist'
|
||||
dxgb_gpu_params['objective'] = 'reg:linear'
|
||||
|
||||
else:
|
||||
print('Training using GPUs')
|
||||
|
||||
print('Training parameters are {0}'.format(dxgb_gpu_params))
|
||||
|
||||
gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
|
||||
|
||||
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
|
||||
|
||||
wait(gpu_dfs)
|
||||
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
|
||||
new_map = {}
|
||||
for key, value in tmp_map:
|
||||
if value not in new_map:
|
||||
new_map[value] = [key]
|
||||
else:
|
||||
new_map[value].append(key)
|
||||
|
||||
del(tmp_map)
|
||||
gpu_dfs = []
|
||||
for list_delayed in new_map.values():
|
||||
gpu_dfs.append(delayed(cudf.concat)(list_delayed))
|
||||
|
||||
del(new_map)
|
||||
gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
|
||||
gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
|
||||
gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
|
||||
gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
|
||||
|
||||
gc.collect()
|
||||
labels = None
|
||||
|
||||
print('str(gpu_dfs) is {0}'.format(str(gpu_dfs)))
|
||||
|
||||
wait(gpu_dfs)
|
||||
t1 = datetime.datetime.now()
|
||||
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
|
||||
t2 = datetime.datetime.now()
|
||||
print("Training time ...")
|
||||
print(t2-t1)
|
||||
print('str(bst) is {0}'.format(str(bst)))
|
||||
print('Exiting script')
|
||||
@@ -1,6 +1,7 @@
|
||||
@echo off
|
||||
set conda_env_name=%1
|
||||
set automl_env_file=%2
|
||||
set options=%3
|
||||
set PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
|
||||
@@ -32,10 +33,12 @@ echo.
|
||||
echo ***************************************
|
||||
echo * AutoML setup completed successfully *
|
||||
echo ***************************************
|
||||
echo.
|
||||
echo Starting jupyter notebook - please run the configuration notebook
|
||||
echo.
|
||||
jupyter notebook --log-level=50 --notebook-dir='..\..'
|
||||
IF NOT "%options%"=="nolaunch" (
|
||||
echo.
|
||||
echo Starting jupyter notebook - please run the configuration notebook
|
||||
echo.
|
||||
jupyter notebook --log-level=50 --notebook-dir='..\..'
|
||||
)
|
||||
|
||||
goto End
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
CONDA_ENV_NAME=$1
|
||||
AUTOML_ENV_FILE=$2
|
||||
OPTIONS=$3
|
||||
PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
if [ "$CONDA_ENV_NAME" == "" ]
|
||||
@@ -34,10 +35,13 @@ else
|
||||
echo "***************************************" &&
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
if [ "$OPTIONS" != "nolaunch" ]
|
||||
then
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
CONDA_ENV_NAME=$1
|
||||
AUTOML_ENV_FILE=$2
|
||||
OPTIONS=$3
|
||||
PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
if [ "$CONDA_ENV_NAME" == "" ]
|
||||
@@ -36,10 +37,13 @@ else
|
||||
echo "***************************************" &&
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
if [ "$OPTIONS" != "nolaunch" ]
|
||||
then
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
|
||||
@@ -44,9 +44,31 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
|
||||
"## Setup\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To use the *forecasting* task in AutoML, you need to have the **azuremlftk** package installed in your environment. The following cell tests whether this package is installed locally and, if not, gives you instructions for installing it. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" import ftk\n",
|
||||
" print('Using FTK version ' + ftk.__version__)\n",
|
||||
"except ImportError:\n",
|
||||
" print(\"Unable to import forecasting package. This notebook does not work without this package.\\n\"\n",
|
||||
" + \"Please open a command prompt and run `pip install azuremlftk` to install the package. \\n\"\n",
|
||||
" + \"Make sure you install the package into AutoML's Python environment.\\n\\n\"\n",
|
||||
" + \"For instance, if AutoML is installed in a conda environment called `python36`, run:\\n\"\n",
|
||||
" + \"> activate python36\\n> pip install azuremlftk\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -71,6 +93,13 @@
|
||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -368,7 +397,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -45,9 +45,31 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To use the *forecasting* task in AutoML, you need to have the **azuremlftk** package installed in your environment. The following cell tests whether this package is installed locally and, if not, gives you instructions for installing it."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" import ftk\n",
|
||||
" print('Using FTK version ' + ftk.__version__)\n",
|
||||
"except ImportError:\n",
|
||||
" print(\"Unable to import forecasting package. This notebook does not work without this package.\\n\"\n",
|
||||
" + \"Please open a command prompt and run `pip install azuremlftk` to install the package. \\n\"\n",
|
||||
" + \"Make sure you install the package into AutoML's Python environment.\\n\\n\"\n",
|
||||
" + \"For instance, if AutoML is installed in a conda environment called `python36`, run:\\n\"\n",
|
||||
" + \"> activate python36\\n> pip install azuremlftk\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -71,6 +93,13 @@
|
||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -404,7 +433,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -150,7 +150,7 @@
|
||||
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
|
||||
" dsvm_compute.wait_for_completion(show_output = True)\n",
|
||||
" print(\"Waiting one minute for ssh to be accessible\")\n",
|
||||
" time.sleep(60) # Wait for ssh to be accessible"
|
||||
" time.sleep(90) # Wait for ssh to be accessible"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -10,52 +10,7 @@ In this section, you will find sample notebooks on how to use Azure Machine Lear
|
||||
- Every run (including the best run) is available as a pipeline, which you can tune further if needed.
|
||||
- The model trained using Azure Databricks can be registered in Azure ML SDK workspace and then deployed to Azure managed compute (ACI or AKS) using the Azure Machine learning SDK.
|
||||
|
||||
|
||||
**Create Azure Databricks Cluster:**
|
||||
|
||||
Select New Cluster and fill in following detail:
|
||||
- Cluster name: _yourclustername_
|
||||
- Databricks Runtime: Any **non ML** runtime (non ML 4.x, 5.x)
|
||||
- Python version: **3**
|
||||
- Workers: 2 or higher.
|
||||
|
||||
These settings are only for using Automated Machine Learning on Databricks.
|
||||
- Max. number of **concurrent iterations** in Automated ML settings is **<=** to the number of **worker nodes** in your Databricks cluster.
|
||||
- Worker node VM types: **Memory optimized VM** preferred.
|
||||
- Uncheck _Enable Autoscaling_
|
||||
|
||||
|
||||
It will take few minutes to create the cluster. Please ensure that the cluster state is running before proceeding further.
|
||||
|
||||
**Install Azure ML SDK without Automated ML capability on your Azure Databricks cluster**
|
||||
|
||||
- Select Import library
|
||||
|
||||
- Source: Upload Python Egg or PyPI
|
||||
|
||||
- PyPi Name: **azureml-sdk[databricks]**
|
||||
|
||||
**Install Azure ML with Automated ML SDK on your Azure Databricks cluster**
|
||||
|
||||
- Select Import library
|
||||
|
||||
- Source: Upload Python Egg or PyPI
|
||||
|
||||
- PyPi Name: **azureml-sdk[automl_databricks]**
|
||||
|
||||
**For installation with or without Automated ML**
|
||||
|
||||
- Click Install Library
|
||||
|
||||
- Do not select _Attach automatically to all clusters_. In case you selected this earlier, please go to your Home folder and deselect it.
|
||||
|
||||
- Select the check box _Attach_ next to your cluster name
|
||||
|
||||
(More details on how to attach and detach libs are here - [https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster](https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster) )
|
||||
|
||||
- Ensure that there are no errors until Status changes to _Attached_. It may take a couple of minutes.
|
||||
|
||||
**Note** - If you have an old SDK version, please deselect it from cluster’s installed libs > move to trash. Install the new SDK verdion and restart the cluster. If there is an issue after this, please detach and reattach your cluster.
|
||||
Please follow our [Azure doc](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#azure-databricks) to install the sdk in your Azure Databricks cluster before trying any of the sample notebooks.
|
||||
|
||||
**Single file** -
|
||||
The following archive contains all the sample notebooks. You can the run notebooks after importing [DBC](Databricks_AMLSDK_1-4_6.dbc) in your Databricks workspace instead of downloading individually.
|
||||
|
||||
@@ -38,13 +38,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace, Run\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"from azureml.core.image import Image\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"from azureml.core.webservice import AksWebservice\n",
|
||||
"import azureml.core\n",
|
||||
"import json\n",
|
||||
"print(azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
@@ -247,7 +245,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
" [1,28,13,45,54,6,57,8,8,10], \n",
|
||||
@@ -401,7 +398,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
" [1,28,13,45,54,6,57,8,8,10], \n",
|
||||
@@ -413,7 +409,7 @@
|
||||
" prediction = aks_service.run(input_data=test_sample)\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -469,7 +465,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "marthalc"
|
||||
"name": "jocier"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
@@ -487,7 +483,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
"version": "3.6.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -37,12 +37,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace, Run\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"from azureml.core.image import Image\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"print(azureml.core.VERSION)"
|
||||
]
|
||||
@@ -51,8 +48,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Set up your configuration and create a workspace\n",
|
||||
"Follow Notebook 00 instructions to do this.\n"
|
||||
"## 2. Set up your configuration and create a workspace"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -277,9 +273,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"```python \n",
|
||||
" %%time\n",
|
||||
@@ -451,7 +445,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "marthalc"
|
||||
"name": "jocier"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
@@ -469,7 +463,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
"version": "3.6.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -409,7 +409,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "onnx"
|
||||
"name": "viswamy"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
@@ -427,7 +427,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.6"
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -197,7 +197,6 @@
|
||||
"source": [
|
||||
"# for images and plots in this notebook\n",
|
||||
"import matplotlib.pyplot as plt \n",
|
||||
"from IPython.display import Image\n",
|
||||
"\n",
|
||||
"# display images inline\n",
|
||||
"%matplotlib inline"
|
||||
@@ -481,8 +480,8 @@
|
||||
" \n",
|
||||
" emotion_keys = list(emotion_table.keys())\n",
|
||||
" emotions = []\n",
|
||||
" for i in range(N):\n",
|
||||
" emotions.append(emotion_keys[classes[i]])\n",
|
||||
" for c in range(N):\n",
|
||||
" emotions.append(emotion_keys[classes[c]])\n",
|
||||
" return emotions\n",
|
||||
"\n",
|
||||
"def softmax(x):\n",
|
||||
@@ -534,9 +533,9 @@
|
||||
"# read in 3 testing images from .pb files\n",
|
||||
"test_data_size = 3\n",
|
||||
"\n",
|
||||
"for i in np.arange(test_data_size):\n",
|
||||
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(i), 'input_0.pb')\n",
|
||||
" output_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(i), 'output_0.pb')\n",
|
||||
"for num in np.arange(test_data_size):\n",
|
||||
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(num), 'input_0.pb')\n",
|
||||
" output_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(num), 'output_0.pb')\n",
|
||||
" \n",
|
||||
" # convert protobuf tensors to np arrays using the TensorProto reader from ONNX\n",
|
||||
" tensor = onnx.TensorProto()\n",
|
||||
@@ -671,19 +670,19 @@
|
||||
" \"\"\"Convert the input image into grayscale\"\"\"\n",
|
||||
" return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])\n",
|
||||
"\n",
|
||||
"def resize_img(img):\n",
|
||||
" \"\"\"Resize image to MNIST model input dimensions\"\"\"\n",
|
||||
" img = cv2.resize(img, dsize=(64, 64), interpolation=cv2.INTER_AREA)\n",
|
||||
" img.resize((1, 1, 64, 64))\n",
|
||||
" return img\n",
|
||||
"def resize_img(img_to_resize):\n",
|
||||
" \"\"\"Resize image to FER+ model input dimensions\"\"\"\n",
|
||||
" r_img = cv2.resize(img_to_resize, dsize=(64, 64), interpolation=cv2.INTER_AREA)\n",
|
||||
" r_img.resize((1, 1, 64, 64))\n",
|
||||
" return r_img\n",
|
||||
"\n",
|
||||
"def preprocess(img):\n",
|
||||
"def preprocess(img_to_preprocess):\n",
|
||||
" \"\"\"Resize input images and convert them to grayscale.\"\"\"\n",
|
||||
" if img.shape == (64, 64):\n",
|
||||
" img.resize((1, 1, 64, 64))\n",
|
||||
" return img\n",
|
||||
" if img_to_preprocess.shape == (64, 64):\n",
|
||||
" img_to_preprocess.resize((1, 1, 64, 64))\n",
|
||||
" return img_to_preprocess\n",
|
||||
" \n",
|
||||
" grayscale = rgb2gray(img)\n",
|
||||
" grayscale = rgb2gray(img_to_preprocess)\n",
|
||||
" processed_img = resize_img(grayscale)\n",
|
||||
" return processed_img"
|
||||
]
|
||||
@@ -732,7 +731,7 @@
|
||||
" r = json.loads(aci_service.run(input_data))\n",
|
||||
" result = r['result'][0]\n",
|
||||
" time_ms = np.round(r['time_in_sec'][0] * 1000, 2)\n",
|
||||
" except Exception as e:\n",
|
||||
" except KeyError as e:\n",
|
||||
" print(str(e))\n",
|
||||
"\n",
|
||||
" plt.figure(figsize = (16, 6))\n",
|
||||
@@ -800,7 +799,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"msauthor": "vinitra.swamy"
|
||||
},
|
||||
|
||||
@@ -621,19 +621,19 @@
|
||||
" \"\"\"Convert the input image into grayscale\"\"\"\n",
|
||||
" return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])\n",
|
||||
"\n",
|
||||
"def resize_img(img):\n",
|
||||
"def resize_img(img_to_resize):\n",
|
||||
" \"\"\"Resize image to MNIST model input dimensions\"\"\"\n",
|
||||
" img = cv2.resize(img, dsize=(28, 28), interpolation=cv2.INTER_AREA)\n",
|
||||
" img.resize((1, 1, 28, 28))\n",
|
||||
" return img\n",
|
||||
" r_img = cv2.resize(img_to_resize, dsize=(28, 28), interpolation=cv2.INTER_AREA)\n",
|
||||
" r_img.resize((1, 1, 28, 28))\n",
|
||||
" return r_img\n",
|
||||
"\n",
|
||||
"def preprocess(img):\n",
|
||||
"def preprocess(img_to_preprocess):\n",
|
||||
" \"\"\"Resize input images and convert them to grayscale.\"\"\"\n",
|
||||
" if img.shape == (28, 28):\n",
|
||||
" img.resize((1, 1, 28, 28))\n",
|
||||
" return img\n",
|
||||
" if img_to_preprocess.shape == (28, 28):\n",
|
||||
" img_to_preprocess.resize((1, 1, 28, 28))\n",
|
||||
" return img_to_preprocess\n",
|
||||
" \n",
|
||||
" grayscale = rgb2gray(img)\n",
|
||||
" grayscale = rgb2gray(img_to_preprocess)\n",
|
||||
" processed_img = resize_img(grayscale)\n",
|
||||
" return processed_img"
|
||||
]
|
||||
@@ -681,7 +681,7 @@
|
||||
" r = aci_service.run(input_data)\n",
|
||||
" result = r['result']\n",
|
||||
" time_ms = np.round(r['time_in_sec'] * 1000, 2)\n",
|
||||
" except Exception as e:\n",
|
||||
" except KeyError as e:\n",
|
||||
" print(str(e))\n",
|
||||
"\n",
|
||||
" plt.figure(figsize = (16, 6))\n",
|
||||
|
||||
@@ -393,7 +393,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "onnx"
|
||||
"name": "viswamy"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
@@ -411,7 +411,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.6"
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -241,7 +241,8 @@
|
||||
" description = \"Image with ridge regression model\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"myimage1\",\n",
|
||||
" # this is the model object \n",
|
||||
" # this is the model object. note you can pass in 0-n models via this list-type parameter\n",
|
||||
" # in case you need to reference multiple models, or none at all, in your scoring script.\n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)"
|
||||
|
||||
@@ -35,16 +35,12 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.compute import ComputeTarget, DatabricksCompute, DataFactoryCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget, DataFactoryCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import AdlaStep\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.data.sql_data_reference import SqlDataReference\n",
|
||||
"from azureml.core import attach_legacy_compute_target\n",
|
||||
"from azureml.data.stored_procedure_parameter import StoredProcedureParameter, StoredProcedureParameterType\n",
|
||||
"from azureml.pipeline.steps import DataTransferStep\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
@@ -98,8 +94,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from msrest.exceptions import HttpOperationError\n",
|
||||
"\n",
|
||||
"workspace = ws.name\n",
|
||||
"datastore_name='MyAdlsDatastore'\n",
|
||||
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
|
||||
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
|
||||
@@ -111,7 +107,7 @@
|
||||
"try:\n",
|
||||
" adls_datastore = Datastore.get(ws, datastore_name)\n",
|
||||
" print(\"found datastore with name: %s\" % datastore_name)\n",
|
||||
"except:\n",
|
||||
"except HttpOperationError:\n",
|
||||
" adls_datastore = Datastore.register_azure_data_lake(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=datastore_name,\n",
|
||||
@@ -133,7 +129,7 @@
|
||||
"try:\n",
|
||||
" blob_datastore = Datastore.get(ws, blob_datastore_name)\n",
|
||||
" print(\"found blob datastore with name: %s\" % blob_datastore_name)\n",
|
||||
"except:\n",
|
||||
"except HttpOperationError:\n",
|
||||
" blob_datastore = Datastore.register_azure_blob_container(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=blob_datastore_name,\n",
|
||||
|
||||
@@ -46,10 +46,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
|
||||
"from azureml.core import Workspace, Experiment, Datastore\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.compute import DataFactoryCompute\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
@@ -71,12 +70,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"from azureml.pipeline.steps import DataTransferStep\n",
|
||||
"from azureml.pipeline.core import PublishedPipeline\n",
|
||||
"from azureml.pipeline.core.graph import PipelineParameter\n",
|
||||
"\n",
|
||||
"print(\"Pipeline SDK-specific imports completed\")"
|
||||
]
|
||||
@@ -237,12 +232,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"aml_compute_target = \"aml-compute\"\n",
|
||||
"try:\n",
|
||||
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
|
||||
" print(\"found existing compute target.\")\n",
|
||||
"except:\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"creating new compute target\")\n",
|
||||
" \n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
|
||||
|
||||
@@ -33,20 +33,16 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
|
||||
"from azureml.core import Workspace, Datastore\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.compute import DataFactoryCompute\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)\n",
|
||||
"\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"from azureml.pipeline.steps import DataTransferStep\n",
|
||||
"from azureml.pipeline.core import PublishedPipeline\n",
|
||||
"from azureml.pipeline.core.graph import PipelineParameter\n",
|
||||
"\n",
|
||||
"print(\"Pipeline SDK-specific imports completed\")\n",
|
||||
@@ -79,12 +75,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"aml_compute_target = \"aml-compute\"\n",
|
||||
"try:\n",
|
||||
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
|
||||
" print(\"found existing compute target.\")\n",
|
||||
"except:\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"creating new compute target\")\n",
|
||||
" \n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
|
||||
|
||||
@@ -31,14 +31,12 @@
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import AdlaStep\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.core import attach_legacy_compute_target\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
@@ -91,8 +89,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from msrest.exceptions import HttpOperationError\n",
|
||||
"\n",
|
||||
"workspace = ws.name\n",
|
||||
"datastore_name='MyAdlsDatastore'\n",
|
||||
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
|
||||
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
|
||||
@@ -104,7 +102,7 @@
|
||||
"try:\n",
|
||||
" adls_datastore = Datastore.get(ws, datastore_name)\n",
|
||||
" print(\"found datastore with name: %s\" % datastore_name)\n",
|
||||
"except:\n",
|
||||
"except HttpOperationError:\n",
|
||||
" adls_datastore = Datastore.register_azure_data_lake(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=datastore_name,\n",
|
||||
@@ -171,9 +169,9 @@
|
||||
" if 'ComputeTargetNotFound' in e.message:\n",
|
||||
" print('adla compute not found, creating...')\n",
|
||||
" provisioning_config = AdlaCompute.provisioning_configuration()\n",
|
||||
" adla_compute = ComputeTarget.create(workspace, compute_name, provisioning_config)\n",
|
||||
" adla_compute.wait_for_completion()\n",
|
||||
" return adla_compute\n",
|
||||
" new_adla_compute = ComputeTarget.create(workspace, compute_name, provisioning_config)\n",
|
||||
" new_adla_compute.wait_for_completion()\n",
|
||||
" return new_adla_compute\n",
|
||||
" else:\n",
|
||||
" raise e\n",
|
||||
" \n",
|
||||
@@ -284,7 +282,7 @@
|
||||
" steps=[adla_step],\n",
|
||||
" default_source_directory=script_folder)\n",
|
||||
"\n",
|
||||
"pipeline_run = Experiment(workspace, experiment_name).submit(pipeline)\n",
|
||||
"pipeline_run = Experiment(ws, experiment_name).submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -89,7 +89,7 @@
|
||||
"from azureml.core.runconfig import JarLibrary\n",
|
||||
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import DatabricksStep\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
@@ -146,7 +146,7 @@
|
||||
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
|
||||
" \n",
|
||||
"try:\n",
|
||||
" databricks_compute = ComputeTarget(workspace=ws, name=db_compute_name)\n",
|
||||
" databricks_compute = DatabricksCompute(workspace=ws, name=db_compute_name)\n",
|
||||
" print('Compute target {} already exists'.format(db_compute_name))\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Compute not found, will use below parameters to attach new one')\n",
|
||||
@@ -297,7 +297,7 @@
|
||||
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
|
||||
"\n",
|
||||
"# We are uploading a sample file in the local directory to be used as a datasource\n",
|
||||
"def_blob_store.upload_files([\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
|
||||
"def_blob_store.upload_files(files=[\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
|
||||
"\n",
|
||||
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
|
||||
" data_reference_name=\"input\")\n",
|
||||
|
||||
@@ -33,22 +33,17 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
|
||||
"from azureml.core import Workspace, Experiment, Datastore\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.compute import DataFactoryCompute\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)\n",
|
||||
"\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"from azureml.pipeline.steps import DataTransferStep\n",
|
||||
"from azureml.pipeline.core import PublishedPipeline\n",
|
||||
"from azureml.pipeline.core.graph import PipelineParameter\n",
|
||||
"\n",
|
||||
"print(\"Pipeline SDK-specific imports completed\")"
|
||||
]
|
||||
},
|
||||
@@ -135,12 +130,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"aml_compute_target = \"aml-compute\"\n",
|
||||
"try:\n",
|
||||
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
|
||||
" print(\"found existing compute target.\")\n",
|
||||
"except:\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"creating new compute target\")\n",
|
||||
" \n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
|
||||
|
||||
@@ -37,10 +37,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Datastore\n",
|
||||
"from azureml.core import Experiment\n",
|
||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
@@ -55,7 +53,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
@@ -166,8 +164,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"aml_compute_name = os.environ.get(\"AML_COMPUTE_NAME\", \"gpu-cluster\")\n",
|
||||
"cluster_min_nodes = os.environ.get(\"AML_COMPUTE_MIN_NODES\", 0)\n",
|
||||
@@ -513,8 +509,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core import PublishedPipeline\n",
|
||||
"\n",
|
||||
"rest_endpoint = published_pipeline.endpoint\n",
|
||||
"# specify batch size when running the pipeline\n",
|
||||
"response = requests.post(rest_endpoint, \n",
|
||||
|
||||
@@ -44,7 +44,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
@@ -69,7 +69,8 @@
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep, MpiStep\n",
|
||||
"from azureml.core.runconfig import CondaDependencies, RunConfiguration"
|
||||
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,7 +91,7 @@
|
||||
"try:\n",
|
||||
" cpu_cluster = AmlCompute(ws, cpu_cluster_name)\n",
|
||||
" print(\"found existing cluster.\")\n",
|
||||
"except:\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"creating new cluster\")\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_v2\",\n",
|
||||
" max_nodes = 1)\n",
|
||||
@@ -104,7 +105,7 @@
|
||||
"try:\n",
|
||||
" gpu_cluster = AmlCompute(ws, gpu_cluster_name)\n",
|
||||
" print(\"found existing cluster.\")\n",
|
||||
"except:\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"creating new cluster\")\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_NC6\",\n",
|
||||
" max_nodes = 3)\n",
|
||||
@@ -526,7 +527,6 @@
|
||||
" \"ParameterAssignments\": {\"style\": \"rain_princess\", \"nodecount\": 3}}) \n",
|
||||
"run_id = response.json()[\"Id\"]\n",
|
||||
"\n",
|
||||
"from azureml.pipeline.core.run import PipelineRun\n",
|
||||
"published_pipeline_run_rain = PipelineRun(ws.experiments[\"style_transfer\"], run_id)\n",
|
||||
"\n",
|
||||
"RunDetails(published_pipeline_run_rain).show()"
|
||||
@@ -545,7 +545,6 @@
|
||||
" \"ParameterAssignments\": {\"style\": \"udnie\", \"nodecount\": 4}}) \n",
|
||||
"run_id = response.json()[\"Id\"]\n",
|
||||
"\n",
|
||||
"from azureml.pipeline.core.run import PipelineRun\n",
|
||||
"published_pipeline_run_udnie = PipelineRun(ws.experiments[\"style_transfer\"], run_id)\n",
|
||||
"\n",
|
||||
"RunDetails(published_pipeline_run_udnie).show()"
|
||||
|
||||
@@ -1,8 +1,15 @@
|
||||
## Azure Machine Learning service training examples
|
||||
|
||||
These examples show you:
|
||||
* Distributed training of models on Machine Learning Compute cluster
|
||||
* Hyperparameter tuning at scale
|
||||
* Using Tensorboard with Azure ML Python SDK.
|
||||
|
||||
1. [How to use the Estimator pattern in Azure ML](how-to-use-estimator)
|
||||
2. [Train using TensorFlow Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-tensorflow)
|
||||
3. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch)
|
||||
4. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server)
|
||||
5. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod)
|
||||
6. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod)
|
||||
7. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
|
||||
8. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
|
||||
9. [Use TensorBoard to monitor training execution](tensorboard)
|
||||
|
||||
Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models).
|
||||
|
||||
@@ -69,7 +69,7 @@
|
||||
"source": [
|
||||
"## Initialize workspace\n",
|
||||
"\n",
|
||||
"Initialize a [Workspace](https://review.docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture?branch=release-ignite-aml#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
|
||||
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -81,10 +81,10 @@
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
"print('Workspace name: ' + ws.name,\n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -124,7 +124,7 @@
|
||||
"\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# use get_status() to get a detailed status for the current AmlCompute. \n",
|
||||
"# use get_status() to get a detailed status for the current AmlCompute\n",
|
||||
"print(compute_target.get_status().serialize())"
|
||||
]
|
||||
},
|
||||
@@ -282,7 +282,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.estimator import *\n",
|
||||
"from azureml.train.estimator import Estimator\n",
|
||||
"\n",
|
||||
"script_params = {\n",
|
||||
" '--num_epochs': 20,\n",
|
||||
@@ -296,7 +296,7 @@
|
||||
" script_params=script_params,\n",
|
||||
" node_count=2,\n",
|
||||
" process_count_per_node=1,\n",
|
||||
" distributed_backend='mpi', \n",
|
||||
" distributed_backend='mpi',\n",
|
||||
" pip_packages=['cntk-gpu==2.6'],\n",
|
||||
" custom_docker_base_image='microsoft/mmlspark:gpu-0.12',\n",
|
||||
" use_gpu=True)"
|
||||
|
||||
@@ -23,7 +23,7 @@
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"* Go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`\n",
|
||||
"* Review the [tutorial](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
|
||||
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -82,7 +82,7 @@
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -50,7 +50,7 @@ if args.cuda:
|
||||
torch.cuda.manual_seed(args.seed)
|
||||
|
||||
|
||||
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
|
||||
kwargs = {}
|
||||
train_dataset = \
|
||||
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
|
||||
transform=transforms.Compose([
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
|
||||
" * install the AML SDK\n",
|
||||
" * create a workspace and its configuration file (`config.json`)\n",
|
||||
"* Review the [tutorial](https://aka.ms/aml-notebook-hyperdrive) on single-node TensorFlow training using the SDK"
|
||||
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) on single-node TensorFlow training using the SDK"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -84,7 +84,7 @@
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -96,7 +96,7 @@
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -238,8 +238,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"project_folder = './tf-distr-hvd'\n",
|
||||
"os.makedirs(project_folder, exist_ok=True)"
|
||||
]
|
||||
|
||||
@@ -74,14 +74,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace, Run, Experiment\n",
|
||||
"\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -143,7 +142,7 @@
|
||||
" # More data science stuff\n",
|
||||
" reg = Ridge(alpha=alpha)\n",
|
||||
" reg.fit(data[\"train\"][\"x\"], data[\"train\"][\"y\"])\n",
|
||||
" # TODO save model\n",
|
||||
" \n",
|
||||
" preds = reg.predict(data[\"test\"][\"x\"])\n",
|
||||
" mse = mean_squared_error(preds, data[\"test\"][\"y\"])\n",
|
||||
" # End train and eval\n",
|
||||
@@ -169,7 +168,6 @@
|
||||
"# Export Run History to Tensorboard logs\n",
|
||||
"from azureml.contrib.tensorboard.export import export_to_tensorboard\n",
|
||||
"import os\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"logdir = 'exportedTBlogs'\n",
|
||||
"log_path = os.path.join(os.getcwd(), logdir)\n",
|
||||
|
||||
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
print("*********************************************************")
|
||||
print("Hello Azure ML!")
|
||||
|
||||
try:
|
||||
from azureml.core import Run
|
||||
run = Run.get_context()
|
||||
print("Log Fibonacci numbers.")
|
||||
run.log_list('Fibonacci numbers', [0, 1, 1, 2, 3, 5, 8, 13, 21, 34])
|
||||
run.complete()
|
||||
except:
|
||||
print("Warning: you need to install Azure ML SDK in order to log metrics.")
|
||||
|
||||
print("*********************************************************")
|
||||
@@ -0,0 +1,365 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbpresent": {
|
||||
"id": "bf74d2e9-2708-49b1-934b-e0ede342f475"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# How to use Estimator in Azure ML\n",
|
||||
"\n",
|
||||
"## Introduction\n",
|
||||
"This tutorial shows how to use the Estimator pattern in Azure Machine Learning SDK. Estimator is a convenient object in Azure Machine Learning that wraps run configuration information to help simplify the tasks of specifying how a script is executed.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Prerequisite:\n",
|
||||
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
|
||||
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
|
||||
" * install the AML SDK\n",
|
||||
" * create a workspace and its configuration file (`config.json`)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's get started. First let's import some Python libraries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbpresent": {
|
||||
"id": "edaa7f2f-2439-4148-b57a-8c794c0945ec"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"# check core SDK version number\n",
|
||||
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize workspace\n",
|
||||
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbpresent": {
|
||||
"id": "59f52294-4a25-4c92-bab8-3b07f0f44d15"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Create an Azure ML experiment\n",
|
||||
"Let's create an experiment named \"estimator-test\". The script runs will be recorded under this experiment in Azure."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"nbpresent": {
|
||||
"id": "bc70f780-c240-4779-96f3-bc5ef9a37d59"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"\n",
|
||||
"exp = Experiment(workspace=ws, name='estimator-test')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we could not find the cluster with the given name, then we will create a new cluster here. We will create an `AmlCompute` cluster of `STANDARD_NC6` GPU VMs. This process is broken down into 3 steps:\n",
|
||||
"1. create the configuration (this step is local and only takes a second)\n",
|
||||
"2. create the cluster (this step will take about **20 seconds**)\n",
|
||||
"3. provision the VMs to bring the cluster to the initial size (of 1 in this case). This step will take about **3-5 minutes** and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cluster_name)\n",
|
||||
" print('Found existing compute target')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
" # can poll for a minimum number of nodes and for a specific timeout. \n",
|
||||
" # if no min node count is provided it uses the scale settings for the cluster\n",
|
||||
" cpu_cluster.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
|
||||
"\n",
|
||||
"# use get_status() to get a detailed status for the current cluster. \n",
|
||||
"print(cpu_cluster.get_status().serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now that you have created the compute target, let's see what the workspace's `compute_targets` property returns. You should now see one entry named 'cpucluster' of type `AmlCompute`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"compute_targets = ws.compute_targets\n",
|
||||
"for name, ct in compute_targets.items():\n",
|
||||
" print(name, ct.type, ct.provisioning_state)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nbpresent": {
|
||||
"id": "2039d2d5-aca6-4f25-a12f-df9ae6529cae"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Use a simple script\n",
|
||||
"We have already created a simple \"hello world\" script. This is the script that we will submit through the estimator pattern. It prints a hello-world message, and if Azure ML SDK is installed, it will also logs an array of values ([Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number))."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('./dummy_train.py', 'r') as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create A Generic Estimator"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"First we import the Estimator class and also a widget to visualize a run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.estimator import Estimator\n",
|
||||
"from azureml.widgets import RunDetails"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The simplest estimator is to submit the current folder to the local computer. Estimator by default will attempt to use Docker-based execution. Let's turn that off for now. It then builds a conda environment locally, installs Azure ML SDK in it, and runs your script."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use a conda environment, don't use Docker, on local computer\n",
|
||||
"est = Estimator(source_directory='.', compute_target='local', entry_script='dummy_train.py', use_docker=False)\n",
|
||||
"run = exp.submit(est)\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also enable Docker and let estimator pick the default CPU image supplied by Azure ML for execution. You can target an AmlCompute cluster (or any other supported compute target types)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use a conda environment on default Docker image in an AmlCompute cluster\n",
|
||||
"est = Estimator(source_directory='.', compute_target=cpu_cluster, entry_script='dummy_train.py', use_docker=True)\n",
|
||||
"run = exp.submit(est)\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can customize the conda environment by adding conda and/or pip packages."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# add a conda package\n",
|
||||
"est = Estimator(source_directory='.', \n",
|
||||
" compute_target='local', \n",
|
||||
" entry_script='dummy_train.py', \n",
|
||||
" use_docker=False, \n",
|
||||
" conda_packages=['scikit-learn'])\n",
|
||||
"run = exp.submit(est)\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also specify a custom Docker image for exeution. In this case, you probably want to tell the system not to build a new conda environment for you. Instead, you can specify the path to an existing Python environment in the custom Docker image.\n",
|
||||
"\n",
|
||||
"**Note**: since the below example points to the preinstalled Python environment in the miniconda3 image maintained by continuum.io on Docker Hub where Azure ML SDK is not present, the logging metric code is not triggered. But a run history record is still recorded. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use a custom Docker image\n",
|
||||
"from azureml.core import RunConfiguration\n",
|
||||
"\n",
|
||||
"rc = RunConfiguration()\n",
|
||||
"rc.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# this is an image available in Docker Hub\n",
|
||||
"rc.environment.docker.base_image = 'continuumio/miniconda3'\n",
|
||||
"\n",
|
||||
"# you can also point to an image in a private ACR\n",
|
||||
"#rc.environment.docker.base_image = \"mycustomimage:1.0\"\n",
|
||||
"#rc.environment.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
|
||||
"#rc.environment.docker.base_image_registry.username = \"username\"\n",
|
||||
"#rc.environment.docker.base_image_registry.password = \"password\"\n",
|
||||
"\n",
|
||||
"# don't let the system build a new conda environment\n",
|
||||
"rc.environment.python.user_managed_dependencies = True\n",
|
||||
"# point to an existing python environment instead\n",
|
||||
"rc.environment.python.interpreter_path = '/opt/conda/bin/python'\n",
|
||||
"\n",
|
||||
"# submit to a local Docker container. if you don't have Docker engine running locally, you can set compute_target to cpu_cluster.\n",
|
||||
"est = Estimator(source_directory='.', compute_target='local', \n",
|
||||
" entry_script='dummy_train.py',\n",
|
||||
" environment_definition=rc.environment)\n",
|
||||
"\n",
|
||||
"run = exp.submit(est)\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Next Steps\n",
|
||||
"Now you can proceed to explore the other types of estimators, such as TensorFlow estimator, PyTorch estimator, etc. in the sample folder."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "minxia"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.8"
|
||||
},
|
||||
"msauthor": "haining"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -104,7 +104,7 @@
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,7 +153,7 @@
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"import os\n",
|
||||
"import tempfile\n",
|
||||
"\n",
|
||||
"tf_code = requests.get(\"https://raw.githubusercontent.com/tensorflow/tensorflow/r1.8/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py\")\n",
|
||||
"with open(os.path.join(exp_dir, \"mnist_with_summaries.py\"), \"w\") as file:\n",
|
||||
" file.write(tf_code.text)"
|
||||
@@ -192,9 +192,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment, Run\n",
|
||||
"from azureml.core import Experiment\n",
|
||||
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"logs_dir = os.path.join(os.curdir, \"logs\")\n",
|
||||
"data_dir = os.path.abspath(os.path.join(os.curdir, \"mnist_data\"))\n",
|
||||
@@ -276,7 +275,7 @@
|
||||
"Tensorboard uploading works with all compute targets. Here we demonstrate it from a DSVM.\n",
|
||||
"Note that the Tensorboard instance itself will be run by the notebook kernel. Again, this means this notebook's kernel must have access to the Tensorboard module.\n",
|
||||
"\n",
|
||||
"If you are unfamiliar with DSVM configuration, check [04. Train in a remote VM](04.train-on-remote-vm.ipynb) for a more detailed breakdown.\n",
|
||||
"If you are unfamiliar with DSVM configuration, check [Train in a remote VM](../../training/train-on-remote-vm/train-on-remote-vm.ipynb) for a more detailed breakdown.\n",
|
||||
"\n",
|
||||
"**Note**: To streamline the compute that Azure Machine Learning creates, we are making updates to support creating only single to multi-node `AmlCompute`. The `DSVMCompute` class will be deprecated in a later release, but the DSVM can be created using the below single line command and then attached(like any VM) using the sample code below. Also note, that we only support Linux VMs for remote execution from AML and the commands below will spin a Linux VM only.\n",
|
||||
"\n",
|
||||
@@ -296,7 +295,6 @@
|
||||
"source": [
|
||||
"from azureml.core.compute import RemoteCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"username = os.getenv('AZUREML_DSVM_USERNAME', default='<my_username>')\n",
|
||||
"address = os.getenv('AZUREML_DSVM_ADDRESS', default='<ip_address_or_fqdn>')\n",
|
||||
@@ -405,7 +403,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"cluster_name = \"cpucluster\"\n",
|
||||
|
||||
@@ -83,7 +83,7 @@
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -359,7 +359,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.hyperdrive import *\n",
|
||||
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveRunConfig, uniform, PrimaryMetricGoal\n",
|
||||
"\n",
|
||||
"param_sampling = RandomParameterSampling( {\n",
|
||||
" 'learning_rate': uniform(0.0005, 0.005),\n",
|
||||
@@ -409,8 +409,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"RunDetails(hyperdrive_run).show()"
|
||||
]
|
||||
},
|
||||
@@ -649,7 +647,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os, json\n",
|
||||
"import json\n",
|
||||
"from PIL import Image\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
|
||||
@@ -51,7 +51,6 @@
|
||||
"%matplotlib inline\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt"
|
||||
]
|
||||
},
|
||||
@@ -66,7 +65,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml\n",
|
||||
"from azureml.core import Workspace, Run\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"# check core SDK version number\n",
|
||||
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
|
||||
@@ -109,8 +108,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
@@ -166,7 +163,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import urllib\n",
|
||||
"\n",
|
||||
"os.makedirs('./data/mnist', exist_ok=True)\n",
|
||||
@@ -431,7 +427,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Submit job to run\n",
|
||||
"Calling the `fit` function on the estimator submits the job to Azure ML for execution. Submitting the job should only take a few seconds."
|
||||
"Submit the estimator to an Azure ML experiment to kick off the execution."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -552,7 +548,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.makedirs('./imgs', exist_ok=True)\n",
|
||||
"metrics = run.get_metrics()\n",
|
||||
@@ -685,7 +680,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.hyperdrive import *\n",
|
||||
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveRunConfig, PrimaryMetricGoal\n",
|
||||
"from azureml.train.hyperdrive import choice, loguniform\n",
|
||||
"\n",
|
||||
"ps = RandomParameterSampling(\n",
|
||||
" {\n",
|
||||
@@ -1079,7 +1075,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"# send a random row from the test set to score\n",
|
||||
"random_index = np.random.randint(0, len(X_test)-1)\n",
|
||||
@@ -1163,7 +1158,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.8"
|
||||
},
|
||||
"msauthor": "minxia"
|
||||
},
|
||||
|
||||
@@ -6,4 +6,5 @@ Follow these sample notebooks to learn:
|
||||
2. [Train on local](train-on-local): train a model using local computer as compute target.
|
||||
3. [Train on remote VM](train-on-remote-vm): train a model using a remote Azure VM as compute target.
|
||||
4. [Train on AmlCompute](train-on-amlcompute): train a model using an AmlCompute cluster as compute target.
|
||||
5. [Logging API](logging-api): experiment with various logging functions to create runs and automatically generate graphs.
|
||||
5. [Train in an HDI Spark cluster](train-in-spark): train a Spark ML model using an HDInsight Spark cluster as compute target.
|
||||
6. [Logging API](logging-api): experiment with various logging functions to create runs and automatically generate graphs.
|
||||
@@ -46,7 +46,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment, Run, Workspace\n",
|
||||
"from azureml.core import Experiment, Workspace\n",
|
||||
"import azureml.core\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
|
||||
@@ -214,6 +214,13 @@
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -449,8 +456,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Get_status () gets the latest status of the AmlCompute target\n",
|
||||
"cpu_cluster.get_status()\n",
|
||||
"cpu_cluster.serialize()"
|
||||
"cpu_cluster.get_status().serialize()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -143,7 +143,7 @@
|
||||
"run_config_user_managed.environment.python.user_managed_dependencies = True\n",
|
||||
"\n",
|
||||
"# You can choose a specific Python environment by pointing to a Python path \n",
|
||||
"#run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/sdk2/bin/python'"
|
||||
"#run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python'"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -182,6 +182,13 @@
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -212,7 +219,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"run_config_system_managed = RunConfiguration()\n",
|
||||
@@ -281,6 +287,7 @@
|
||||
"source": [
|
||||
"### Docker-based execution\n",
|
||||
"**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.\n",
|
||||
"\n",
|
||||
"NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.\n",
|
||||
"\n",
|
||||
"You can also ask the system to pull down a Docker image and execute your scripts in it."
|
||||
@@ -296,6 +303,8 @@
|
||||
"run_config_docker.environment.python.user_managed_dependencies = False\n",
|
||||
"run_config_docker.auto_prepare_environment = True\n",
|
||||
"run_config_docker.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# use the default CPU-based Docker image from Azure ML\n",
|
||||
"run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"# Specify conda dependencies with scikit-learn\n",
|
||||
@@ -309,7 +318,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Submit script to run in the system-managed environment\n",
|
||||
"### Submit script to run in the system-managed environment\n",
|
||||
"A new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies.\n",
|
||||
"\n",
|
||||
"\n"
|
||||
@@ -353,6 +362,33 @@
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use a custom Docker image\n",
|
||||
"\n",
|
||||
"You can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# use an image available in Docker Hub without authentication\n",
|
||||
"run_config_docker.environment.docker.base_image = \"continuumio/miniconda3\"\n",
|
||||
"\n",
|
||||
"# or, use an image available in a private Azure Container Registry\n",
|
||||
"run_config_docker.environment.docker.base_image = \"mycustomimage:1.0\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.username = \"username\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.password = \"password\"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:\n",
|
||||
"```python\n",
|
||||
"run_config_docker.environment.python.user_managed_dependencies = True\n",
|
||||
"# path to the Python environment in the custom Docker image\n",
|
||||
"run_config.environment.python.interpreter_path = '/opt/conda/bin/python'\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -452,7 +488,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
"name": "haining"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
@@ -306,6 +306,13 @@
|
||||
"run = exp.submit(config=src)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -501,6 +508,33 @@
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use a custom Docker image instead\n",
|
||||
"\n",
|
||||
"You can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# use an image available in Docker Hub without authentication\n",
|
||||
"run_config_docker.environment.docker.base_image = \"continuumio/miniconda3\"\n",
|
||||
"\n",
|
||||
"# or, use an image available in a private Azure Container Registry\n",
|
||||
"run_config_docker.environment.docker.base_image = \"mycustomimage:1.0\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.username = \"username\"\n",
|
||||
"run_config_docker.environment.docker.base_image_registry.password = \"password\"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:\n",
|
||||
"```python\n",
|
||||
"run_config_docker.environment.python.user_managed_dependencies = True\n",
|
||||
"# path to the Python environment in the custom Docker image\n",
|
||||
"run_config.environment.python.interpreter_path = '/opt/conda/bin/python'\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -81,7 +81,7 @@
|
||||
"from azureml.core import Experiment, Workspace\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"This notebook was created using version 1.0.2 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.0.10 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")\n",
|
||||
"print(\"\")\n",
|
||||
"\n",
|
||||
@@ -157,7 +157,8 @@
|
||||
"experiment = Experiment(workspace=ws, name=\"train-within-notebook\")\n",
|
||||
"\n",
|
||||
"# Create a run object in the experiment\n",
|
||||
"run = experiment.start_logging()# Log the algorithm parameter alpha to the run\n",
|
||||
"run = experiment.start_logging()\n",
|
||||
"# Log the algorithm parameter alpha to the run\n",
|
||||
"run.log('alpha', 0.03)\n",
|
||||
"\n",
|
||||
"# Create, fit, and test the scikit-learn Ridge regression model\n",
|
||||
@@ -215,7 +216,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"\n",
|
||||
"model_name = \"model.pkl\"\n",
|
||||
@@ -680,7 +680,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
"name": "haining"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
@@ -703,4 +703,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
}
|
||||
|
||||
@@ -66,11 +66,10 @@
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"import azureml\n",
|
||||
"from azureml.core import Workspace, Run\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"# check core SDK version number\n",
|
||||
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
|
||||
@@ -205,7 +204,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import urllib.request\n",
|
||||
"\n",
|
||||
"os.makedirs('./data', exist_ok = True)\n",
|
||||
@@ -354,7 +352,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"script_folder = './sklearn-mnist'\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)"
|
||||
]
|
||||
@@ -573,6 +570,13 @@
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -690,7 +694,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
"name": "haining"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
@@ -99,11 +99,9 @@
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
" \n",
|
||||
"import azureml\n",
|
||||
"from azureml.core import Workspace, Run\n",
|
||||
"\n",
|
||||
"# display the core SDK version number\n",
|
||||
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
|
||||
@@ -129,13 +127,9 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"model=Model(ws, 'sklearn_mnist')\n",
|
||||
"model.download(target_dir='.', exist_ok=True)\n",
|
||||
"import os \n",
|
||||
"# verify the downloaded model file\n",
|
||||
"os.stat('./sklearn_mnist_model.pkl')"
|
||||
]
|
||||
@@ -521,7 +515,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"# send a random row from the test set to score\n",
|
||||
"random_index = np.random.randint(0, len(X_test)-1)\n",
|
||||
@@ -581,14 +574,14 @@
|
||||
"> * Deploy the model to ACI\n",
|
||||
"> * Test the deployed model\n",
|
||||
" \n",
|
||||
"You can also try out the [Automatic algorithm selection tutorial](03.auto-train-models.ipynb) to see how Azure Machine Learning can auto-select and tune the best algorithm for your model and build that model for you."
|
||||
"You can also try out the [regression tutorial](regression-part1-data-prep.ipynb)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
"name": "haining"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
@@ -468,7 +468,7 @@
|
||||
"> * Explored and reviewed training results\n",
|
||||
"> * Registered the best model\n",
|
||||
"\n",
|
||||
"[Deploy your model](02.deploy-models.ipynb) with Azure Machine Learning."
|
||||
"You can also try out the [image classification tutorial](img-classification-part1-training.ipynb)."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
Reference in New Issue
Block a user