Compare commits

...

70 Commits

Author SHA1 Message Date
Roope Astala
648b48fc0c Merge pull request #247 from rastala/master
version 1.0.18
2019-03-11 15:23:44 -04:00
Roope Astala
04db5d93e2 version 1.0.18 2019-03-11 15:22:38 -04:00
Roope Astala
4e10935701 version 1.0.18 2019-03-11 15:21:35 -04:00
Roope Astala
f737db499d Delete googleade5d7141b3f2910.html 2019-03-05 17:01:36 -05:00
Roope Astala
6b66da1558 Merge pull request #238 from rastala/master
fix link in configuration notebook
2019-03-05 17:00:31 -05:00
Roope Astala
8647aea9d9 fix link in configuration notebook 2019-03-05 16:59:38 -05:00
Roope Astala
3ee2dc3258 Merge pull request #233 from jeff-shepherd/master
Setup updated to fix remote run
2019-02-26 15:34:15 -05:00
Jeff Shepherd
9f7c4ce668 Setup updated to fix remote run 2019-02-26 11:59:20 -08:00
hning86
036ca6ac75 dockerfile 1.0.17 2019-02-26 10:57:07 -05:00
Roope Astala
0b8817ee1c Merge pull request #229 from rastala/master
version 1.0.17
2019-02-25 16:12:51 -05:00
Roope Astala
b7b5576b15 version 1.0.17 2019-02-25 16:12:02 -05:00
Hai Ning
c082b72b71 Update pr.md 2019-02-23 21:55:59 -05:00
Hai Ning
673e76d431 Merge pull request #186 from gison93/master
Fix typos
2019-02-20 23:18:15 -05:00
Hai Ning
c518a04a19 Merge pull request #203 from davidefiocco/patch-1
Typo fix
2019-02-20 23:17:14 -05:00
Hai Ning
2f34888716 Update README.md 2019-02-20 07:52:14 -05:00
Roope Astala
6ca0088991 Merge pull request #218 from jeff-shepherd/master
Fixed broken links to configuration notebook
2019-02-15 14:47:49 -05:00
Jeff Shepherd
40e3856786 Removed subsampling reference, which is not published yet 2019-02-15 11:35:45 -08:00
Jeff Shepherd
ddd025e83e Fixed links to configuration notebook. 2019-02-15 11:31:10 -08:00
Hai Ning
ece4242c8f Update README.md 2019-02-15 12:57:08 -05:00
Hai Ning
4bca2bd7db Merge pull request #217 from nishankgu/patch-1
Update README.md
2019-02-15 12:52:59 -05:00
Nishank
a927dbfa31 Update README.md 2019-02-14 14:22:05 -08:00
hning86
280c718f53 keras sample 2019-02-14 16:59:08 -05:00
Hai Ning
bf1ac2b26a Update NBSETUP.md 2019-02-14 11:02:01 -05:00
Roope Astala
954c2afbce Merge pull request #214 from rongduan-zhu/master
Updated Azure Databricks Automated ML notebook from master
2019-02-13 14:06:48 -05:00
Rongduan Zhu
fbf1ea5f1a updated notebook from latest master 2019-02-13 11:02:27 -08:00
Roope Astala
84b72d904b Merge pull request #210 from rastala/master
tutorial update
2019-02-11 16:07:47 -05:00
Roope Astala
82bb9fcac3 tutorial update 2019-02-11 16:07:10 -05:00
Roope Astala
5c6bbacd47 Merge pull request #209 from rastala/master
adb readme update
2019-02-11 15:52:34 -05:00
Roope Astala
90aaeea113 adb readme update 2019-02-11 15:51:50 -05:00
Roope Astala
eeab7284c9 Merge pull request #208 from rastala/master
few missing files
2019-02-11 15:48:22 -05:00
Roope Astala
02fd9b685c few missing files 2019-02-11 15:47:37 -05:00
hning86
d5c923b446 dockerfile updated 2019-02-11 15:21:56 -05:00
Roope Astala
f16bf27e26 Merge pull request #207 from rastala/master
release 1.0.15
2019-02-11 15:18:00 -05:00
Roope Astala
c7bec58593 update version 2019-02-11 15:17:40 -05:00
Roope Astala
cca3996eb4 release 1.0.15 2019-02-11 15:12:30 -05:00
Davide Fiocco
210efe022a Typo fix 2019-02-08 20:23:12 +01:00
Roope Astala
5fd14bac30 Merge pull request #199 from rastala/master
update automl databricks
2019-02-06 11:53:35 -05:00
Roope Astala
3fa409543b update automl databricks 2019-02-06 11:53:00 -05:00
Josée Martens
42f2822b61 Adding file to enable search performance tracking.
@rastala
2019-02-04 14:36:40 -06:00
Roope Astala
48afbe1cab Delete release.json 2019-01-31 16:07:08 -05:00
Roope Astala
1298c55dd4 Merge pull request #193 from rastala/master
fix broken link
2019-01-31 15:45:01 -05:00
Roope Astala
0aa1b248f4 fix broken link 2019-01-31 15:44:22 -05:00
Roope Astala
3012b8f5a8 Merge pull request #192 from rastala/master
add authentication notebook
2019-01-31 15:41:40 -05:00
Roope Astala
501c55bcaf add authentication notebook 2019-01-31 15:40:51 -05:00
hning86
1a38f50221 docker instructions 2019-01-31 15:16:36 -05:00
hning86
cc64be8d6f text update 2019-01-31 14:29:31 -05:00
hning86
a0127a2a64 dockerfile instruction 2019-01-31 11:46:06 -05:00
Hai Ning
7eb966bf79 Merge pull request #191 from Azure/dockerfiles
Dockerfiles
2019-01-31 10:54:55 -05:00
Roope Astala
9118f2c7ce Merge pull request #190 from rastala/master
fix NBSETUP
2019-01-31 09:33:17 -05:00
Roope Astala
0e3198f311 fix NBSETUP 2019-01-31 09:32:30 -05:00
hning86
0fdab91b97 dockefile reorg 2019-01-31 09:21:06 -05:00
hning86
b54be912d8 dockerfiles added 2019-01-30 17:04:18 -05:00
Roope Astala
3d0c7990ff Merge pull request #189 from rastala/master
update tutorial readme
2019-01-30 14:28:24 -05:00
Roope Astala
6e1ce29a94 Merge remote-tracking branch 'upstream/master' 2019-01-30 14:26:25 -05:00
Roope Astala
0d26c9986a update tutorials README 2019-01-30 14:25:17 -05:00
gison93
100ab10797 add pipeline validation 2019-01-29 14:50:00 +01:00
gison93
1307efe7bc fix typo
remove trailing \u00c2\u00a0 from variable and notebook_path
2019-01-29 14:34:07 +01:00
gison93
08d0b8cf08 fix typo
Bloband -> Blob and
2019-01-29 12:42:48 +01:00
Roope Astala
0514eee64b Merge pull request #182 from rastala/master
version 1.0.10
2019-01-28 18:10:20 -05:00
Roope Astala
4b6e34fdc0 Update train-within-notebook.ipynb 2019-01-28 18:09:36 -05:00
Roope Astala
e01216d85b Update configuration.ipynb 2019-01-28 18:08:41 -05:00
Roope Astala
b00f75edd8 version 1.0.10 2019-01-28 15:30:17 -05:00
Hai Ning
06aba388c6 Update azure-ml-with-nvidia-rapids.ipynb 2019-01-24 10:09:31 -05:00
Roope Astala
3018461dfc Merge pull request #176 from rastala/master
update tutorials
2019-01-22 14:25:28 -05:00
Roope Astala
0d91f2d697 update tutorials 2019-01-22 14:24:31 -05:00
Roope Astala
a14cb635f0 Merge pull request #175 from rastala/master
RAPIDS sample
2019-01-22 13:44:55 -05:00
Roope Astala
88f6a966cc RAPIDS sample 2019-01-22 13:32:59 -05:00
Hai Ning
4f76a844c6 Update README.md 2019-01-18 01:18:44 -05:00
Hai Ning
c1573ff949 Update NBSETUP.md 2019-01-18 01:15:53 -05:00
Hai Ning
d1b18b3771 Update NBSETUP.md 2019-01-18 01:09:13 -05:00
113 changed files with 9486 additions and 1308 deletions

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.10"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.10" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.15"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.15" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.17"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.17" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.2"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.2" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.6"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.6" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.8"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.8" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -1,10 +1,11 @@
# Notebook setup
# Setting up environment
---
To run the notebooks in this repository use one of these methods:
To run the notebooks in this repository use one of following options.
## Use Azure Notebooks - Jupyter based notebooks in the Azure cloud
## **Option 1: Use Azure Notebooks**
Azure Notebooks is a hosted Jupyter-based notebook service in the Azure cloud. Azure Machine Learning Python SDK is already pre-installed in the Azure Notebooks `Python 3.6` kernel.
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks
@@ -15,20 +16,91 @@ To run the notebooks in this repository use one of these methods:
![set kernel to Python 3.6](images/python36.png)
## **Use your own notebook server**
## **Option 2: Use your own notebook server**
Video walkthrough:
### Quick installation
We recommend you create a Python virtual environment ([Miniconda](https://conda.io/miniconda.html) preferred but [virtualenv](https://virtualenv.pypa.io/en/latest/) works too) and install the SDK in it.
```sh
# install just the base SDK
pip install azureml-sdk
# clone the sample repoistory
git clone https://github.com/Azure/MachineLearningNotebooks.git
# below steps are optional
# install the base SDK and a Jupyter notebook server
pip install azureml-sdk[notebooks]
# install the data prep component
pip install azureml-dataprep
# install model explainability component
pip install azureml-sdk[explain]
# install automated ml components
pip install azureml-sdk[automl]
# install experimental features (not ready for production use)
pip install azureml-sdk[contrib]
```
Note the _extras_ (the keywords inside the square brackets) can be combined. For example:
```sh
# install base SDK, Jupyter notebook and automated ml components
pip install azureml-sdk[notebooks,automl]
```
### Full instructions
[Install the Azure Machine Learning SDK](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python)
Please make sure you start with the [Configuration](configuration.ipynb) notebook to create and connect to a workspace.
### Video walkthrough:
[![Get Started video](images/yt_cover.png)](https://youtu.be/VIsXeTuW3FU)
1. Setup a Jupyter Notebook server and [install the Azure Machine Learning SDK](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python)
1. Clone [this repository](https://aka.ms/aml-notebooks)
1. You may need to install other packages for specific notebook
- For example, to run the Azure Machine Learning Data Prep notebooks, install the extra dataprep SDK:
```bash
pip install azureml-dataprep
```
1. Start your notebook server
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
1. Open one of the sample notebooks
## **Option 3: Use Docker**
You need to have Docker engine installed locally and running. Open a command line window and type the following command.
__Note:__ We use version `1.0.10` below as an exmaple, but you can replace that with any available version number you like.
```sh
# clone the sample repoistory
git clone https://github.com/Azure/MachineLearningNotebooks.git
# change current directory to the folder
# where Dockerfile of the specific SDK version is located.
cd MachineLearningNotebooks/Dockerfiles/1.0.10
# build a Docker image with the a name (azuremlsdk for example)
# and a version number tag (1.0.10 for example).
# this can take several minutes depending on your computer speed and network bandwidth.
docker build . -t azuremlsdk:1.0.10
# launch the built Docker container which also automatically starts
# a Jupyter server instance listening on port 8887 of the host machine
docker run -it -p 8887:8887 azuremlsdk:1.0.10
```
Now you can point your browser to http://localhost:8887. We recommend that you start from the `configuration.ipynb` notebook at the root directory.
If you need additional Azure ML SDK components, you can either modify the Docker files before you build the Docker images to add additional steps, or install them through command line in the live container after you build the Docker image. For example:
```sh
# install dataprep components
pip install azureml-dataprep
# install the core SDK and automated ml components
pip install azureml-sdk[automl]
# install the core SDK and model explainability component
pip install azureml-sdk[explain]
# install the core SDK and experimental components
pip install azureml-sdk[contrib]
```
Drag and Drop
The image will be downloaded by Fatkun

View File

@@ -1,37 +1,39 @@
# Azure Machine Learning service example notebooks
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK
which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK
allows you the choice of using local or cloud compute resources, while managing
and maintaining the complete data science workflow from the cloud.
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
![Azure ML workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/service/media/overview-what-is-azure-ml/aml.png)
## How to use and navigate the example notebooks?
You can set up you own Python environment or use Azure Notebooks with Azure ML SDK pre-installed. Read [these instructions](./NBSETUP.md) to set up your environment and clone the example notebooks.
## Quick installation
```sh
pip install azureml-sdk
```
Read more detailed instructions on [how to set up your environment](./NBSETUP.md) using Azure Notebook service, your own Jupyter notebook server, or Docker.
## How to navigate and use the example notebooks?
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you want to...
* ...try out and explore Azure ML, start with image classification tutorials [part 1 training](./tutorials/img-classification-part1-training.ipynb) and [part 2 deployment](./tutorials/img-classification-part2-deploy.ipynb).
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/img-classification-part2-deploy.ipynb).
* ...prepare your data and do automated machine learning, start with regression tutorials: [Part 1 (Data Prep)](./tutorials/regression-part1-data-prep.ipynb) and [Part 2 (Automated ML)](./tutorials/regression-part2-automated-ml.ipynb).
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy model as realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
## Tutorials
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs)
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs).
## How to use Azure ML
The [How to use Azure ML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets.
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets
- [Training with Deep Learning](./how-to-use-azureml/training-with-deep-learning) - Examples demonstrating how to build deep learning models using estimators and parameter sweeps
- [Manage Azure ML Service](./how-to-use-azureml/manage-azureml-service) - Examples how to perform tasks, such as authenticate against Azure ML service in different ways.
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
@@ -41,9 +43,8 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
## Documentation
* Quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
* [Python SDK reference]( https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py)
* [Python SDK reference](https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py)
* Azure ML Data Prep SDK [overview](https://aka.ms/data-prep-sdk), [Python SDK reference](https://aka.ms/aml-data-prep-apiref), and [tutorials and how-tos](https://aka.ms/aml-data-prep-notebooks).
---
@@ -52,5 +53,4 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
Visit following repos to see projects contributed by Azure ML users:
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)

View File

@@ -96,7 +96,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.6 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.18 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -0,0 +1,409 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA RAPIDS in Azure Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [RAPIDS](https://www.developer.nvidia.com/rapids) suite of software libraries from NVIDIA enables the execution of end-to-end data science and analytics pipelines entirely on GPUs. In many machine learning projects, a significant portion of the model training time is spent in setting up the data; this stage of the process is known as Extraction, Transformation and Loading, or ETL. By using the DataFrame API for ETL\u00c2\u00a0and GPU-capable ML algorithms in RAPIDS, data preparation and training models can be done in GPU-accelerated end-to-end pipelines without incurring serialization costs between the pipeline stages. This notebook demonstrates how to use NVIDIA RAPIDS to prepare data and train model\u00c2\u00a0in Azure.\n",
" \n",
"In this notebook, we will do the following:\n",
" \n",
"* Create an Azure Machine Learning Workspace\n",
"* Create an AMLCompute target\n",
"* Use a script to process our data and train a model\n",
"* Obtain the data required to run this sample\n",
"* Create an AML run configuration to launch a machine learning job\n",
"* Run the script to prepare data for training and train the model\n",
" \n",
"Prerequisites:\n",
"* An Azure subscription to create a Machine Learning Workspace\n",
"* Familiarity with the Azure ML SDK (refer to [notebook samples](https://github.com/Azure/MachineLearningNotebooks))\n",
"* A Jupyter notebook environment with Azure Machine Learning SDK installed. Refer to instructions to [setup the environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Verify if Azure ML SDK is installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core import ScriptRunConfig\n",
"from azureml.widgets import RunDetails"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following step is optional if you already have a workspace. If you want to use an existing workspace, then\n",
"skip this workspace creation step and move on to the next step to load the workspace.\n",
" \n",
"<font color='red'>Important</font>: in the code cell below, be sure to set the correct values for the subscription_id, \n",
"resource_group, workspace_name, region before executing this code cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<subscription_id>\")\n",
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<resource_group>\")\n",
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<workspace_name>\")\n",
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"<region>\")\n",
"\n",
"ws = Workspace.create(workspace_name, subscription_id=subscription_id, resource_group=resource_group, location=workspace_region)\n",
"\n",
"# write config to a local directory for future use\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load existing Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"# if a locally-saved configuration file for the workspace is not available, use the following to load workspace\n",
"# ws = Workspace(subscription_id=subscription_id, resource_group=resource_group, workspace_name=workspace_name)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"\n",
"scripts_folder = \"scripts_folder\"\n",
"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML Compute Target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because NVIDIA RAPIDS requires P40 or V100 GPUs, the user needs to specify compute targets from one of [NC_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview) virtual machine types in Azure; these are the families of virtual machines in Azure that are provisioned with these GPUs.\n",
" \n",
"Pick one of the supported VM SKUs based on the number of GPUs you want to use for ETL and training in RAPIDS.\n",
" \n",
"The script in this notebook is implemented for single-machine scenarios. An example supporting multiple nodes will be published later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"if gpu_cluster_name in ws.compute_targets:\n",
" gpu_cluster = ws.compute_targets[gpu_cluster_name]\n",
" if gpu_cluster and type(gpu_cluster) is AmlCompute:\n",
" print('found compute target. just use it. ' + gpu_cluster_name)\n",
"else:\n",
" print(\"creating new cluster\")\n",
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
"\n",
" # create the cluster\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Script to process data and train model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _process&#95;data.py_ script used in the step below is a slightly modified implementation of [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# copy process_data.py into the script folder\n",
"import shutil\n",
"shutil.copy('./process_data.py', os.path.join(scripts_folder, 'process_data.py'))\n",
"\n",
"with open(os.path.join(scripts_folder, './process_data.py'), 'r') as process_data_script:\n",
" print(process_data_script.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data required to run this sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample uses [Fannie Mae\u00e2\u20ac\u2122s Single-Family Loan Performance Data](http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html). Refer to the 'Available mortgage datasets' section in [instructions](https://rapidsai.github.io/demos/datasets/mortgage-data) to get sample data.\n",
"\n",
"Once you obtain access to the data, you will need to make this data available in an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data), for use in this sample."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<font color='red'>Important</font>: The following step assumes the data is uploaded to the Workspace's default data store under a folder named 'mortgagedata2000_01'. Note that uploading data to the Workspace's default data store is not necessary and the data can be referenced from any datastore, e.g., from Azure Blob or File service, once it is added as a datastore to the workspace. The path_on_datastore parameter needs to be updated, depending on where the data is available. The directory where the data is available should have the following folder structure, as the process_data.py script expects this directory structure:\n",
"* _&lt;data directory>_/acq\n",
"* _&lt;data directory>_/perf\n",
"* _names.csv_\n",
"\n",
"The 'acq' and 'perf' refer to directories containing data files. The _&lt;data directory>_ is the path specified in _path&#95;on&#95;datastore_ parameter in the step below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"\n",
"# download and uncompress data in a local directory before uploading to data store\n",
"# directory specified in src_dir parameter below should have the acq, perf directories with data and names.csv file\n",
"# ds.upload(src_dir='<local directory that has data>', target_path='mortgagedata2000_01', overwrite=True, show_progress=True)\n",
"\n",
"# data already uploaded to the datastore\n",
"data_ref = DataReference(data_reference_name='data', datastore=ds, path_on_datastore='mortgagedata2000_01')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML run configuration to launch a machine learning job"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"AML allows the option of using existing Docker images with prebuilt conda environments. The following step use an existing image from [Docker Hub](https://hub.docker.com/r/rapidsai/rapidsai/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_config = RunConfiguration()\n",
"run_config.framework = 'python'\n",
"run_config.environment.python.user_managed_dependencies = True\n",
"# use conda environment named 'rapids' available in the Docker image\n",
"# this conda environment does not include azureml-defaults package that is required for using AML functionality like metrics tracking, model management etc.\n",
"run_config.environment.python.interpreter_path = '/conda/envs/rapids/bin/python'\n",
"run_config.target = gpu_cluster_name\n",
"run_config.environment.docker.enabled = True\n",
"run_config.environment.docker.gpu_support = True\n",
"# if registry is not mentioned the image is pulled from Docker Hub\n",
"run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2_ubuntu16.04_root\"\n",
"run_config.environment.spark.precache_packages = False\n",
"run_config.data_references={'data':data_ref.to_config()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wrapper function to submit Azure Machine Learning experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameter cpu_predictor indicates if training should be done on CPU. If set to true, GPUs are used *only* for ETL and *not* for training\n",
"# parameter num_gpu indicates number of GPUs to use among the GPUs available in the VM for ETL and if cpu_predictor is false, for training as well \n",
"def run_rapids_experiment(cpu_training, gpu_count):\n",
" # any value between 1-4 is allowed here depending the type of VMs available in gpu_cluster\n",
" if gpu_count not in [1, 2, 3, 4]:\n",
" raise Exception('Value specified for the number of GPUs to use {0} is invalid'.format(gpu_count))\n",
"\n",
" # following data partition mapping is empirical (specific to GPUs used and current data partitioning scheme) and may need to be tweaked\n",
" gpu_count_data_partition_mapping = {1: 2, 2: 4, 3: 5, 4: 7}\n",
" part_count = gpu_count_data_partition_mapping[gpu_count]\n",
"\n",
" end_year = 2000\n",
" if gpu_count > 2:\n",
" end_year = 2001 # use more data with more GPUs\n",
"\n",
" src = ScriptRunConfig(source_directory=scripts_folder, \n",
" script='process_data.py', \n",
" arguments = ['--num_gpu', gpu_count, '--data_dir', str(data_ref),\n",
" '--part_count', part_count, '--end_year', end_year,\n",
" '--cpu_predictor', cpu_training\n",
" ],\n",
" run_config=run_config\n",
" )\n",
"\n",
" exp = Experiment(ws, 'rapidstest')\n",
" run = exp.submit(config=src)\n",
" RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL & training on GPU)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = False\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1 \n",
"# train using CPU, use GPU for both ETL and training\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL on GPU, training on CPU)\n",
"\n",
"To observe performance difference between GPU-accelerated RAPIDS based training with CPU-only training, set 'cpu_predictor' predictor to 'True' and rerun the experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = True\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1\n",
"# train using CPU, use GPU for ETL\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# delete the cluster\n",
"# gpu_cluster.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "ksivas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,500 @@
# License Info: https://github.com/rapidsai/notebooks/blob/master/LICENSE
import numpy as np
import datetime
import dask_xgboost as dxgb_gpu
import dask
import dask_cudf
from dask.delayed import delayed
from dask.distributed import Client, wait
import xgboost as xgb
import cudf
from cudf.dataframe import DataFrame
from collections import OrderedDict
import gc
from glob import glob
import os
import argparse
parser = argparse.ArgumentParser("rapidssample")
parser.add_argument("--data_dir", type=str, help="location of data")
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
args = parser.parse_args()
data_dir = args.data_dir
num_gpu = args.num_gpu
part_count = args.part_count
end_year = args.end_year
cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')
print('data_dir = {0}'.format(data_dir))
print('num_gpu = {0}'.format(num_gpu))
print('part_count = {0}'.format(part_count))
part_count = part_count + 1 # adding one because the usage below is not inclusive
print('end_year = {0}'.format(end_year))
print('cpu_predictor = {0}'.format(cpu_predictor))
import subprocess
cmd = "hostname --all-ip-addresses"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
IPADDR = str(output.decode()).split()[0]
print('IPADDR is {0}'.format(IPADDR))
cmd = "/rapids/notebooks/utils/dask-setup.sh 0"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
cmd = "/rapids/notebooks/utils/dask-setup.sh rapids " + str(num_gpu) + " 8786 8787 8790 " + str(IPADDR) + " MASTER"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
print(output.decode())
import dask
from dask.delayed import delayed
from dask.distributed import Client, wait
_client = IPADDR + str(":8786")
client = dask.distributed.Client(_client)
def initialize_rmm_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = True
#rmm_cfg.initial_pool_size = 2<<30 # set to 2GiB. Default is 1/2 total GPU memory
import cudf
return cudf._gdf.rmm_initialize()
def initialize_rmm_no_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = False
import cudf
return cudf._gdf.rmm_initialize()
def run_dask_task(func, **kwargs):
task = func(**kwargs)
return task
def process_quarter_gpu(year=2000, quarter=1, perf_file=""):
ml_arrays = run_dask_task(delayed(run_gpu_workflow),
quarter=quarter,
year=year,
perf_file=perf_file)
return client.compute(ml_arrays,
optimize_graph=False,
fifo_timeout="0ms"
)
def null_workaround(df, **kwargs):
for column, data_type in df.dtypes.items():
if str(data_type) == "category":
df[column] = df[column].astype('int32').fillna(-1)
if str(data_type) in ['int8', 'int16', 'int32', 'int64', 'float32', 'float64']:
df[column] = df[column].fillna(-1)
return df
def run_gpu_workflow(quarter=1, year=2000, perf_file="", **kwargs):
names = gpu_load_names()
acq_gdf = gpu_load_acquisition_csv(acquisition_path= acq_data_path + "/Acquisition_"
+ str(year) + "Q" + str(quarter) + ".txt")
acq_gdf = acq_gdf.merge(names, how='left', on=['seller_name'])
acq_gdf.drop_column('seller_name')
acq_gdf['seller_name'] = acq_gdf['new']
acq_gdf.drop_column('new')
perf_df_tmp = gpu_load_performance_csv(perf_file)
gdf = perf_df_tmp
everdf = create_ever_features(gdf)
delinq_merge = create_delinq_features(gdf)
everdf = join_ever_delinq_features(everdf, delinq_merge)
del(delinq_merge)
joined_df = create_joined_df(gdf, everdf)
testdf = create_12_mon_features(joined_df)
joined_df = combine_joined_12_mon(joined_df, testdf)
del(testdf)
perf_df = final_performance_delinquency(gdf, joined_df)
del(gdf, joined_df)
final_gdf = join_perf_acq_gdfs(perf_df, acq_gdf)
del(perf_df)
del(acq_gdf)
final_gdf = last_mile_cleaning(final_gdf)
return final_gdf
def gpu_load_performance_csv(performance_path, **kwargs):
""" Loads performance data
Returns
-------
GPU DataFrame
"""
cols = [
"loan_id", "monthly_reporting_period", "servicer", "interest_rate", "current_actual_upb",
"loan_age", "remaining_months_to_legal_maturity", "adj_remaining_months_to_maturity",
"maturity_date", "msa", "current_loan_delinquency_status", "mod_flag", "zero_balance_code",
"zero_balance_effective_date", "last_paid_installment_date", "foreclosed_after",
"disposition_date", "foreclosure_costs", "prop_preservation_and_repair_costs",
"asset_recovery_costs", "misc_holding_expenses", "holding_taxes", "net_sale_proceeds",
"credit_enhancement_proceeds", "repurchase_make_whole_proceeds", "other_foreclosure_proceeds",
"non_interest_bearing_upb", "principal_forgiveness_upb", "repurchase_make_whole_proceeds_flag",
"foreclosure_principal_write_off_amount", "servicing_activity_indicator"
]
dtypes = OrderedDict([
("loan_id", "int64"),
("monthly_reporting_period", "date"),
("servicer", "category"),
("interest_rate", "float64"),
("current_actual_upb", "float64"),
("loan_age", "float64"),
("remaining_months_to_legal_maturity", "float64"),
("adj_remaining_months_to_maturity", "float64"),
("maturity_date", "date"),
("msa", "float64"),
("current_loan_delinquency_status", "int32"),
("mod_flag", "category"),
("zero_balance_code", "category"),
("zero_balance_effective_date", "date"),
("last_paid_installment_date", "date"),
("foreclosed_after", "date"),
("disposition_date", "date"),
("foreclosure_costs", "float64"),
("prop_preservation_and_repair_costs", "float64"),
("asset_recovery_costs", "float64"),
("misc_holding_expenses", "float64"),
("holding_taxes", "float64"),
("net_sale_proceeds", "float64"),
("credit_enhancement_proceeds", "float64"),
("repurchase_make_whole_proceeds", "float64"),
("other_foreclosure_proceeds", "float64"),
("non_interest_bearing_upb", "float64"),
("principal_forgiveness_upb", "float64"),
("repurchase_make_whole_proceeds_flag", "category"),
("foreclosure_principal_write_off_amount", "float64"),
("servicing_activity_indicator", "category")
])
print(performance_path)
return cudf.read_csv(performance_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def gpu_load_acquisition_csv(acquisition_path, **kwargs):
""" Loads acquisition data
Returns
-------
GPU DataFrame
"""
cols = [
'loan_id', 'orig_channel', 'seller_name', 'orig_interest_rate', 'orig_upb', 'orig_loan_term',
'orig_date', 'first_pay_date', 'orig_ltv', 'orig_cltv', 'num_borrowers', 'dti', 'borrower_credit_score',
'first_home_buyer', 'loan_purpose', 'property_type', 'num_units', 'occupancy_status', 'property_state',
'zip', 'mortgage_insurance_percent', 'product_type', 'coborrow_credit_score', 'mortgage_insurance_type',
'relocation_mortgage_indicator'
]
dtypes = OrderedDict([
("loan_id", "int64"),
("orig_channel", "category"),
("seller_name", "category"),
("orig_interest_rate", "float64"),
("orig_upb", "int64"),
("orig_loan_term", "int64"),
("orig_date", "date"),
("first_pay_date", "date"),
("orig_ltv", "float64"),
("orig_cltv", "float64"),
("num_borrowers", "float64"),
("dti", "float64"),
("borrower_credit_score", "float64"),
("first_home_buyer", "category"),
("loan_purpose", "category"),
("property_type", "category"),
("num_units", "int64"),
("occupancy_status", "category"),
("property_state", "category"),
("zip", "int64"),
("mortgage_insurance_percent", "float64"),
("product_type", "category"),
("coborrow_credit_score", "float64"),
("mortgage_insurance_type", "float64"),
("relocation_mortgage_indicator", "category")
])
print(acquisition_path)
return cudf.read_csv(acquisition_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def gpu_load_names(**kwargs):
""" Loads names used for renaming the banks
Returns
-------
GPU DataFrame
"""
cols = [
'seller_name', 'new'
]
dtypes = OrderedDict([
("seller_name", "category"),
("new", "category"),
])
return cudf.read_csv(col_names_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def create_ever_features(gdf, **kwargs):
everdf = gdf[['loan_id', 'current_loan_delinquency_status']]
everdf = everdf.groupby('loan_id', method='hash').max()
del(gdf)
everdf['ever_30'] = (everdf['max_current_loan_delinquency_status'] >= 1).astype('int8')
everdf['ever_90'] = (everdf['max_current_loan_delinquency_status'] >= 3).astype('int8')
everdf['ever_180'] = (everdf['max_current_loan_delinquency_status'] >= 6).astype('int8')
everdf.drop_column('max_current_loan_delinquency_status')
return everdf
def create_delinq_features(gdf, **kwargs):
delinq_gdf = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status']]
del(gdf)
delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_30['delinquency_30'] = delinq_30['min_monthly_reporting_period']
delinq_30.drop_column('min_monthly_reporting_period')
delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_90['delinquency_90'] = delinq_90['min_monthly_reporting_period']
delinq_90.drop_column('min_monthly_reporting_period')
delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_180['delinquency_180'] = delinq_180['min_monthly_reporting_period']
delinq_180.drop_column('min_monthly_reporting_period')
del(delinq_gdf)
delinq_merge = delinq_30.merge(delinq_90, how='left', on=['loan_id'], type='hash')
delinq_merge['delinquency_90'] = delinq_merge['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
delinq_merge = delinq_merge.merge(delinq_180, how='left', on=['loan_id'], type='hash')
delinq_merge['delinquency_180'] = delinq_merge['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
del(delinq_30)
del(delinq_90)
del(delinq_180)
return delinq_merge
def join_ever_delinq_features(everdf_tmp, delinq_merge, **kwargs):
everdf = everdf_tmp.merge(delinq_merge, on=['loan_id'], how='left', type='hash')
del(everdf_tmp)
del(delinq_merge)
everdf['delinquency_30'] = everdf['delinquency_30'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
everdf['delinquency_90'] = everdf['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
everdf['delinquency_180'] = everdf['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
return everdf
def create_joined_df(gdf, everdf, **kwargs):
test = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status', 'current_actual_upb']]
del(gdf)
test['timestamp'] = test['monthly_reporting_period']
test.drop_column('monthly_reporting_period')
test['timestamp_month'] = test['timestamp'].dt.month
test['timestamp_year'] = test['timestamp'].dt.year
test['delinquency_12'] = test['current_loan_delinquency_status']
test.drop_column('current_loan_delinquency_status')
test['upb_12'] = test['current_actual_upb']
test.drop_column('current_actual_upb')
test['upb_12'] = test['upb_12'].fillna(999999999)
test['delinquency_12'] = test['delinquency_12'].fillna(-1)
joined_df = test.merge(everdf, how='left', on=['loan_id'], type='hash')
del(everdf)
del(test)
joined_df['ever_30'] = joined_df['ever_30'].fillna(-1)
joined_df['ever_90'] = joined_df['ever_90'].fillna(-1)
joined_df['ever_180'] = joined_df['ever_180'].fillna(-1)
joined_df['delinquency_30'] = joined_df['delinquency_30'].fillna(-1)
joined_df['delinquency_90'] = joined_df['delinquency_90'].fillna(-1)
joined_df['delinquency_180'] = joined_df['delinquency_180'].fillna(-1)
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int32')
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int32')
return joined_df
def create_12_mon_features(joined_df, **kwargs):
testdfs = []
n_months = 12
for y in range(1, n_months + 1):
tmpdf = joined_df[['loan_id', 'timestamp_year', 'timestamp_month', 'delinquency_12', 'upb_12']]
tmpdf['josh_months'] = tmpdf['timestamp_year'] * 12 + tmpdf['timestamp_month']
tmpdf['josh_mody_n'] = ((tmpdf['josh_months'].astype('float64') - 24000 - y) / 12).floor()
tmpdf = tmpdf.groupby(['loan_id', 'josh_mody_n'], method='hash').agg({'delinquency_12': 'max','upb_12': 'min'})
tmpdf['delinquency_12'] = (tmpdf['max_delinquency_12']>3).astype('int32')
tmpdf['delinquency_12'] +=(tmpdf['min_upb_12']==0).astype('int32')
tmpdf.drop_column('max_delinquency_12')
tmpdf['upb_12'] = tmpdf['min_upb_12']
tmpdf.drop_column('min_upb_12')
tmpdf['timestamp_year'] = (((tmpdf['josh_mody_n'] * n_months) + 24000 + (y - 1)) / 12).floor().astype('int16')
tmpdf['timestamp_month'] = np.int8(y)
tmpdf.drop_column('josh_mody_n')
testdfs.append(tmpdf)
del(tmpdf)
del(joined_df)
return cudf.concat(testdfs)
def combine_joined_12_mon(joined_df, testdf, **kwargs):
joined_df.drop_column('delinquency_12')
joined_df.drop_column('upb_12')
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int16')
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int8')
return joined_df.merge(testdf, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
def final_performance_delinquency(gdf, joined_df, **kwargs):
merged = null_workaround(gdf)
joined_df = null_workaround(joined_df)
merged['timestamp_month'] = merged['monthly_reporting_period'].dt.month
merged['timestamp_month'] = merged['timestamp_month'].astype('int8')
merged['timestamp_year'] = merged['monthly_reporting_period'].dt.year
merged['timestamp_year'] = merged['timestamp_year'].astype('int16')
merged = merged.merge(joined_df, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
merged.drop_column('timestamp_year')
merged.drop_column('timestamp_month')
return merged
def join_perf_acq_gdfs(perf, acq, **kwargs):
perf = null_workaround(perf)
acq = null_workaround(acq)
return perf.merge(acq, how='left', on=['loan_id'], type='hash')
def last_mile_cleaning(df, **kwargs):
drop_list = [
'loan_id', 'orig_date', 'first_pay_date', 'seller_name',
'monthly_reporting_period', 'last_paid_installment_date', 'maturity_date', 'ever_30', 'ever_90', 'ever_180',
'delinquency_30', 'delinquency_90', 'delinquency_180', 'upb_12',
'zero_balance_effective_date','foreclosed_after', 'disposition_date','timestamp'
]
for column in drop_list:
df.drop_column(column)
for col, dtype in df.dtypes.iteritems():
if str(dtype)=='category':
df[col] = df[col].cat.codes
df[col] = df[col].astype('float32')
df['delinquency_12'] = df['delinquency_12'] > 0
df['delinquency_12'] = df['delinquency_12'].fillna(False).astype('int32')
for column in df.columns:
df[column] = df[column].fillna(-1)
return df.to_arrow(index=False)
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
start_year = 2000
#end_year = 2000 # end_year is inclusive -- converted to parameter
#part_count = 2 # the number of data files to train against -- converted to parameter
client.run(initialize_rmm_pool)
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
print("Reading ...")
t1 = datetime.datetime.now()
gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
if count < part_count:
gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
count += 1
print('file: {0}'.format(file))
print('count: {0}'.format(count))
quarter += 1
if quarter == 5:
year += 1
quarter = 1
wait(gpu_dfs)
t2 = datetime.datetime.now()
print("Reading time ...")
print(t2-t1)
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
client.run(cudf._gdf.rmm_finalize)
client.run(initialize_rmm_no_pool)
dxgb_gpu_params = {
'nround': 100,
'max_depth': 8,
'max_leaves': 2**8,
'alpha': 0.9,
'eta': 0.1,
'gamma': 0.1,
'learning_rate': 0.1,
'subsample': 1,
'reg_lambda': 1,
'scale_pos_weight': 2,
'min_child_weight': 30,
'tree_method': 'gpu_hist',
'n_gpus': 1,
'distributed_dask': True,
'loss': 'ls',
'objective': 'gpu:reg:linear',
'max_features': 'auto',
'criterion': 'friedman_mse',
'grow_policy': 'lossguide',
'verbose': True
}
if cpu_predictor:
print('Training using CPUs')
dxgb_gpu_params['predictor'] = 'cpu_predictor'
dxgb_gpu_params['tree_method'] = 'hist'
dxgb_gpu_params['objective'] = 'reg:linear'
else:
print('Training using GPUs')
print('Training parameters are {0}'.format(dxgb_gpu_params))
gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
if value not in new_map:
new_map[value] = [key]
else:
new_map[value].append(key)
del(tmp_map)
gpu_dfs = []
for list_delayed in new_map.values():
gpu_dfs.append(delayed(cudf.concat)(list_delayed))
del(new_map)
gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
gc.collect()
labels = None
print('str(gpu_dfs) is {0}'.format(str(gpu_dfs)))
wait(gpu_dfs)
t1 = datetime.datetime.now()
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
t2 = datetime.datetime.now()
print("Training time ...")
print(t2-t1)
print('str(bst) is {0}'.format(str(bst)))
print('Exiting script')

View File

@@ -4,8 +4,9 @@ Learn how to use Azure Machine Learning services for experimentation and model m
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-on-local](./training/train-on-local): Learn how to submit a run and use Azure ML managed run configuration.
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-on-local](./training/train-on-local): Learn how to submit a run to local computer and use Azure ML managed run configuration.
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
* [logging-api](./training/logging-api): Learn about the details of logging metrics to run history.
* [register-model-create-image-deploy-service](./deployment/register-model-create-image-deploy-service): Learn about the details of model management.
@@ -13,4 +14,4 @@ As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) not
* [enable-data-collection-for-models-in-aks](./deployment/enable-data-collection-for-models-in-aks) Learn about data collection APIs for deployed model.
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).

View File

@@ -25,7 +25,7 @@ Below are the three execution environments supported by AutoML.
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
1. Follow the instructions in the [configuration](configuration.ipynb) notebook to create and connect to a workspace.
1. Follow the instructions in the [configuration](../../configuration.ipynb) notebook to create and connect to a workspace.
1. Open one of the sample notebooks.
<a name="databricks"></a>
@@ -90,7 +90,7 @@ bash automl_setup_linux.sh
```
### 4. Running configuration.ipynb
- Before running any samples you next need to run the configuration notebook. Click on configuration.ipynb notebook
- Before running any samples you next need to run the configuration notebook. Click on [configuration](../../configuration.ipynb) notebook
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
### 5. Running Samples
@@ -99,9 +99,6 @@ bash automl_setup_linux.sh
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [configuration.ipynb](configuration.ipynb)
- Create new Azure ML Workspace
- Save Workspace configuration file
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
@@ -122,7 +119,7 @@ bash automl_setup_linux.sh
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- [auto-ml-remote-batchai.ipynb](remote-batchai/auto-ml-remote-batchai.ipynb)
- [auto-ml-remote-amlcompute.ipynb](remote-batchai/auto-ml-remote-amlcompute.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using automated ML for classification using remote AmlCompute for training
- Parallel execution of iterations
@@ -169,6 +166,9 @@ bash automl_setup_linux.sh
- How to specifying sample_weight
- The difference that it makes to test results
- [auto-ml-subsampling-local.ipynb](subsampling/auto-ml-subsampling-local.ipynb)
- How to enable subsampling
- [auto-ml-dataprep.ipynb](dataprep/auto-ml-dataprep.ipynb)
- Using DataPrep for reading data
@@ -229,6 +229,9 @@ If a sample notebook fails with an error that property, method or library does n
1) Check that you have selected correct kernel in jupyter notebook. The kernel is displayed in the top right of the notebook page. It can be changed using the `Kernel | Change Kernel` menu option. For Azure Notebooks, it should be `Python 3.6`. For local conda environments, it should be the conda envioronment name that you specified in automl_setup. The default is azure_automl. Note that the kernel is saved as part of the notebook. So, if you switch to a new conda environment, you will have to select the new kernel in the notebook.
2) Check that the notebook is for the SDK version that you are using. You can check the SDK version by executing `azureml.core.VERSION` in a jupyter notebook cell. You can download previous version of the sample notebooks from GitHub by clicking the `Branch` button, selecting the `Tags` tab and then selecting the version.
## Numpy import fails on Windows
Some Windows environments see an error loading numpy with the latest Python version 3.6.8. If you see this issue, try with Python version 3.6.7.
## Remote run: DsvmCompute.create fails
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.

View File

@@ -2,7 +2,7 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python=3.6
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<1.15.0
@@ -12,21 +12,11 @@ dependencies:
- scikit-learn>=0.18.0,<=0.19.1
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
- py-xgboost<=0.80
# Required for azuremlftk
- dill
- pyodbc
- statsmodels
- numexpr
- keras
- distributed>=1.21.5,<1.24
- pip:
# Required for azuremlftk
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -2,7 +2,7 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python=3.6
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.15.3
@@ -12,22 +12,12 @@ dependencies:
- scikit-learn>=0.18.0,<=0.19.1
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
- py-xgboost<=0.80
# Required for azuremlftk
- dill
- pyodbc
- statsmodels
- numexpr
- keras
- distributed>=1.21.5,<1.24
- pip:
# Required for azuremlftk
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -1,6 +1,7 @@
@echo off
set conda_env_name=%1
set automl_env_file=%2
set options=%3
set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
@@ -32,10 +33,12 @@ echo.
echo ***************************************
echo * AutoML setup completed successfully *
echo ***************************************
echo.
echo Starting jupyter notebook - please run the configuration notebook
echo.
jupyter notebook --log-level=50 --notebook-dir='..\..'
IF NOT "%options%"=="nolaunch" (
echo.
echo Starting jupyter notebook - please run the configuration notebook
echo.
jupyter notebook --log-level=50 --notebook-dir='..\..'
)
goto End

View File

@@ -2,6 +2,7 @@
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
@@ -34,10 +35,13 @@ else
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]

View File

@@ -2,6 +2,7 @@
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
@@ -36,10 +37,13 @@ else
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]

View File

@@ -84,9 +84,9 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-local-classification'\n",
"experiment_name = 'automl-classification-deployment'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"project_folder = './sample_projects/automl-classification-deployment'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
@@ -103,23 +103,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -289,8 +272,6 @@
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)"
]

View File

@@ -100,23 +100,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -81,8 +81,8 @@
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"experiment_name = 'automl-classification'\n",
"project_folder = './sample_projects/automl-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -99,23 +99,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -49,23 +49,6 @@
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -212,7 +195,7 @@
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{

View File

@@ -49,23 +49,6 @@
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -70,23 +70,6 @@
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -44,9 +44,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
"## Setup\n"
]
},
{
@@ -71,6 +69,13 @@
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -368,7 +373,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.8"
}
},
"nbformat": 4,

View File

@@ -38,16 +38,14 @@
"3. Find and train a forecasting model using local compute\n",
"4. Evaluate the performance of the model\n",
"\n",
"The examples in the follow code samples use the [University of Chicago's Dominick's Finer Foods dataset](https://research.chicagobooth.edu/kilts/marketing-databases/dominicks) to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
"The examples in the follow code samples use the University of Chicago's Dominick's Finer Foods dataset to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
"## Setup"
]
},
{
@@ -71,6 +69,13 @@
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -142,8 +147,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Splitting\n",
"For the purposes of demonstration and later forecast evaluation, we now split the data into a training and a testing set. The test set will contain the final 20 weeks of observed sales for each time-series."
"For demonstration purposes, we extract sales time-series for just a few of the stores:"
]
},
{
@@ -152,19 +156,37 @@
"metadata": {},
"outputs": [],
"source": [
"ntest_periods = 20\n",
"use_stores = [2, 5, 8]\n",
"data_subset = data[data.Store.isin(use_stores)]\n",
"nseries = data_subset.groupby(grain_column_names).ngroups\n",
"print('Data subset contains {0} individual time-series.'.format(nseries))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Splitting\n",
"We now split the data into a training and a testing set for later forecast evaluation. The test set will contain the final 20 weeks of observed sales for each time-series. The splits should be stratified by series, so we use a group-by statement on the grain columns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n_test_periods = 20\n",
"\n",
"def split_last_n_by_grain(df, n):\n",
" \"\"\"\n",
" Group df by grain and split on last n rows for each group\n",
" \"\"\"\n",
" \"\"\"Group df by grain and split on last n rows for each group.\"\"\"\n",
" df_grouped = (df.sort_values(time_column_name) # Sort by ascending time\n",
" .groupby(grain_column_names, group_keys=False))\n",
" df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])\n",
" df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])\n",
" return df_head, df_tail\n",
"\n",
"X_train, X_test = split_last_n_by_grain(data, ntest_periods)"
"X_train, X_test = split_last_n_by_grain(data_subset, n_test_periods)"
]
},
{
@@ -182,24 +204,7 @@
"\n",
"AutoML will currently train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series.\n",
"\n",
"You are almost ready to start an AutoML training job. We will first need to create a validation set from the existing training set (i.e. for hyper-parameter tuning): "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nvalidation_periods = 20\n",
"X_train, X_validate = split_last_n_by_grain(X_train, nvalidation_periods)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also need to separate the target column from the rest of the DataFrame: "
"You are almost ready to start an AutoML training job. First, we need to separate the target column from the rest of the DataFrame: "
]
},
{
@@ -209,8 +214,7 @@
"outputs": [],
"source": [
"target_column_name = 'Quantity'\n",
"y_train = X_train.pop(target_column_name).values\n",
"y_validate = X_validate.pop(target_column_name).values "
"y_train = X_train.pop(target_column_name).values"
]
},
{
@@ -219,22 +223,31 @@
"source": [
"## Train\n",
"\n",
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, and the training and validation data. \n",
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters. \n",
"\n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time and the grain column names. A time column is required for forecasting, while the grain is optional. If a grain is not given, the forecaster assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak. \n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
"\n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up-to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. \n",
"\n",
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *X_valid* and *y_valid* parameters of AutoMLConfig.\n",
"\n",
"Here is a summary of AutoMLConfig parameters used for training the OJ model:\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**X**|Training matrix of features, shape = [n_training_samples, n_features]|\n",
"|**y**|Target values, shape = [n_training_samples, ]|\n",
"|**X_valid**|Validation matrix of features, shape = [n_validation_samples, n_features]|\n",
"|**y_valid**|Target values for validation, shape = [n_validation_samples, ]\n",
"|**X**|Training matrix of features as a pandas DataFrame, shape = [n_training_samples, n_features]|\n",
"|**y**|Target values as a numpy.ndarray, shape = [n_training_samples, ]|\n",
"|**n_cross_validations**|Number of cross-validation folds to use for model/pipeline selection|\n",
"|**enable_ensembling**|Allow AutoML to create ensembles of the best performing models\n",
"|**debug_log**|Log file path for writing debugging information\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|"
]
},
{
@@ -243,10 +256,11 @@
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
"time_series_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity']\n",
" 'drop_column_names': ['logQuantity'],\n",
" 'max_horizon': n_test_periods\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
@@ -255,12 +269,11 @@
" iterations=10,\n",
" X=X_train,\n",
" y=y_train,\n",
" X_valid=X_validate,\n",
" y_valid=y_validate,\n",
" n_cross_validations=5,\n",
" enable_ensembling=False,\n",
" path=project_folder,\n",
" verbosity=logging.INFO,\n",
" **automl_settings)"
" **time_series_settings)"
]
},
{
@@ -404,7 +417,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.8"
}
},
"nbformat": 4,

View File

@@ -102,23 +102,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -74,9 +74,9 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-local-classification'\n",
"experiment_name = 'automl-model-explanation'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-classification-model-explanation'\n",
"project_folder = './sample_projects/automl-model-explanation'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
@@ -93,23 +93,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -96,23 +96,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -0,0 +1,555 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using AmlCompute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Create or Attach existing AmlCompute to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AmlCompute\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bai_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='bai_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 2,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading executed runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration=iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -104,23 +104,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -130,7 +113,7 @@
"1. Create a Linux DSVM in Azure, following these [quick instructions](https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/how-to-create-dsvm-hdi). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
"2. Enter the IP address, user name and password below.\n",
"\n",
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://render.githubusercontent.com/documentation/sdk/ssh-issue.md) on changing SSH ports for security reasons."
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on changing SSH ports for security reasons."
]
},
{

View File

@@ -67,6 +67,7 @@
"source": [
"import logging\n",
"import os\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
@@ -89,7 +90,7 @@
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute'\n",
"project_folder = './sample_projects/automl-remote-amlcompute'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -106,23 +107,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -171,6 +155,51 @@
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bai_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='bai_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -188,29 +217,13 @@
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -219,17 +232,13 @@
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"from sklearn import datasets\n",
"from scipy import sparse\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" \n",
" digits = datasets.load_digits()\n",
" X_train = digits.data\n",
" y_train = digits.target\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train, \"y\" : y_train }"
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{

View File

@@ -99,23 +99,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -123,7 +106,7 @@
"### Create a Remote Linux DSVM\n",
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
"\n",
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://render.githubusercontent.com/documentation/sdk/ssh-issue.md) on this."
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on this."
]
},
{
@@ -145,7 +128,7 @@
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output=True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{

View File

@@ -68,6 +68,7 @@
"import logging\n",
"import os\n",
"import time\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
@@ -90,7 +91,7 @@
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-dsvm'\n",
"project_folder = './sample_projects/automl-remote-dsvm'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -107,23 +108,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -150,7 +134,45 @@
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='re_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='re_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
@@ -168,29 +190,13 @@
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -199,17 +205,13 @@
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"from sklearn import datasets\n",
"from scipy import sparse\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" \n",
" digits = datasets.load_digits()\n",
" X_train = digits.data[100:,:]\n",
" y_train = digits.target[100:]\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/re_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/re_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train, \"y\" : y_train }"
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{

View File

@@ -75,7 +75,7 @@
"experiment_name = 'non_sample_weight_experiment'\n",
"sample_weight_experiment_name = 'sample_weight_experiment'\n",
"\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"project_folder = './sample_projects/sample_weight'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"sample_weight_experiment=Experiment(ws, sample_weight_experiment_name)\n",
@@ -93,23 +93,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -79,9 +79,9 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the experiment\n",
"experiment_name = 'automl-local-missing-data'\n",
"experiment_name = 'sparse-data-train-test-split'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-missing-data'\n",
"project_folder = './sample_projects/sparse-data-train-test-split'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -98,23 +98,6 @@
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -0,0 +1,201 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we will explore AutoML's subsampling feature. This is useful for training on large datasets to speed up the convergence.\n",
"\n",
"The setup is quiet similar to a normal classification, with the exception of the `enable_subsampling` option. Keep in mind that even with the `enable_subsampling` flag set, subsampling will only be run for large datasets (>= 50k rows) and large (>= 85) or no iteration restrictions.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-subsampling'\n",
"project_folder = './sample_projects/automl-subsampling'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"We will create a simple dataset using the numpy sin function just for this example. We need just over 50k rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"base = np.arange(60000)\n",
"cos = np.cos(base)\n",
"y = np.round(np.sin(base)).astype('int')\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = np.hstack((base.reshape(-1, 1), cos.reshape(-1, 1)))\n",
"y_train = y"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**enable_subsampling**|This enables subsampling as an option. However it does not guarantee subsampling will be used. It also depends on how large the dataset is and how many iterations it's expected to run at a minimum.|\n",
"|**iterations**|Number of iterations. Subsampling requires a lot of iterations at smaller percent so in order for subsampling to be used we need to set iterations to be a high number.|\n",
"|**experiment_timeout_minutes**|The experiment timeout, it's set to 5 right now to shorten the demo but it should probably be higher if we want to finish all the iterations.|\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'accuracy',\n",
" iterations = 85,\n",
" experiment_timeout_minutes = 5,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_subsampling=True,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "rogehe"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -10,52 +10,7 @@ In this section, you will find sample notebooks on how to use Azure Machine Lear
- Every run (including the best run) is available as a pipeline, which you can tune further if needed.
- The model trained using Azure Databricks can be registered in Azure ML SDK workspace and then deployed to Azure managed compute (ACI or AKS) using the Azure Machine learning SDK.
**Create Azure Databricks Cluster:**
Select New Cluster and fill in following detail:
- Cluster name: _yourclustername_
- Databricks Runtime: Any **non ML** runtime (non ML 4.x, 5.x)
- Python version: **3**
- Workers: 2 or higher.
These settings are only for using Automated Machine Learning on Databricks.
- Max. number of **concurrent iterations** in Automated ML settings is **<=** to the number of **worker nodes** in your Databricks cluster.
- Worker node VM types: **Memory optimized VM** preferred.
- Uncheck _Enable Autoscaling_
It will take few minutes to create the cluster. Please ensure that the cluster state is running before proceeding further.
**Install Azure ML SDK without Automated ML capability on your Azure Databricks cluster**
- Select Import library
- Source: Upload Python Egg or PyPI
- PyPi Name: **azureml-sdk[databricks]**
**Install Azure ML with Automated ML SDK on your Azure Databricks cluster**
- Select Import library
- Source: Upload Python Egg or PyPI
- PyPi Name: **azureml-sdk[automl_databricks]**
**For installation with or without Automated ML**
- Click Install Library
- Do not select _Attach automatically to all clusters_. In case you selected this earlier, please go to your Home folder and deselect it.
- Select the check box _Attach_ next to your cluster name
(More details on how to attach and detach libs are here - [https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster](https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster) )
- Ensure that there are no errors until Status changes to _Attached_. It may take a couple of minutes.
**Note** - If you have an old SDK version, please deselect it from clusters installed libs > move to trash. Install the new SDK verdion and restart the cluster. If there is an issue after this, please detach and reattach your cluster.
Please follow our [Azure doc](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#azure-databricks) to install the sdk in your Azure Databricks cluster before trying any of the sample notebooks.
**Single file** -
The following archive contains all the sample notebooks. You can the run notebooks after importing [DBC](Databricks_AMLSDK_1-4_6.dbc) in your Databricks workspace instead of downloading individually.
@@ -66,6 +21,9 @@ Notebook 6 is an Automated ML sample notebook for Classification.
Learn more about [how to use Azure Databricks as a development environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment#azure-databricks) for Azure Machine Learning service.
**Databricks as a Compute Target from AML Pipelines**
You can use Azure Databricks as a compute target from [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines). Take a look at this notebook for details: [aml-pipelines-use-databricks-as-compute-target.ipynb](aml-pipelines-use-databricks-as-compute-target.ipynb).
For more on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
**Please let us know your feedback.**

View File

@@ -0,0 +1,714 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n",
"The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
"2. Running an arbitrary Python script that the customer has in DBFS\n",
"3. Running an arbitrary Python script that is available on local computer (will upload to DBFS, and then run in Databricks) \n",
"4. Running a JAR job that the customer has in DBFS.\n",
"\n",
"## Before you begin:\n",
"\n",
"1. **Create an Azure Databricks workspace** in the same subscription where you have your Azure Machine Learning workspace. You will need details of this workspace later on to define DatabricksStep. [Click here](https://ms.portal.azure.com/#blade/HubsExtension/Resources/resourceType/Microsoft.Databricks%2Fworkspaces) for more information.\n",
"2. **Create PAT (access token)**: Manually create a Databricks access token at the Azure Databricks portal. See [this](https://docs.databricks.com/api/latest/authentication.html#generate-a-token) for more information.\n",
"3. **Add demo notebook to ADB**: This notebook has a sample you can use as is. Launch Azure Databricks attached to your Azure Machine Learning workspace and add a new notebook. \n",
"4. **Create/attach a Blob storage** for use from ADB"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add demo notebook to ADB Workspace\n",
"Copy and paste the below code to create a new notebook in your ADB workspace."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# direct access\n",
"dbutils.widgets.get(\"myparam\")\n",
"p = getArgument(\"myparam\")\n",
"print (\"Param -\\'myparam':\")\n",
"print (p)\n",
"\n",
"dbutils.widgets.get(\"input\")\n",
"i = getArgument(\"input\")\n",
"print (\"Param -\\'input':\")\n",
"print (i)\n",
"\n",
"dbutils.widgets.get(\"output\")\n",
"o = getArgument(\"output\")\n",
"print (\"Param -\\'output':\")\n",
"print (o)\n",
"\n",
"n = i + \"/testdata.txt\"\n",
"df = spark.read.csv(n)\n",
"\n",
"display (df)\n",
"\n",
"data = [('value1', 'value2')]\n",
"df2 = spark.createDataFrame(data)\n",
"\n",
"z = o + \"/output.txt\"\n",
"df2.write.csv(z)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core.runconfig import JarLibrary\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import DatabricksStep\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach Databricks compute target\n",
"Next, you need to add your Databricks workspace to Azure Machine Learning as a compute target and give it a name. You will use this name to refer to your Databricks workspace compute target inside Azure Machine Learning.\n",
"\n",
"- **Resource Group** - The resource group name of your Azure Machine Learning workspace\n",
"- **Databricks Workspace Name** - The workspace name of your Azure Databricks workspace\n",
"- **Databricks Access Token** - The access token you created in ADB\n",
"\n",
"**The Databricks workspace need to be present in the same subscription as your AML workspace**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Replace with your account info before running.\n",
" \n",
"db_compute_name=os.getenv(\"DATABRICKS_COMPUTE_NAME\", \"<my-databricks-compute-name>\") # Databricks compute name\n",
"db_resource_group=os.getenv(\"DATABRICKS_RESOURCE_GROUP\", \"<my-db-resource-group>\") # Databricks resource group\n",
"db_workspace_name=os.getenv(\"DATABRICKS_WORKSPACE_NAME\", \"<my-db-workspace-name>\") # Databricks workspace name\n",
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
" \n",
"try:\n",
" databricks_compute = DatabricksCompute(workspace=ws, name=db_compute_name)\n",
" print('Compute target {} already exists'.format(db_compute_name))\n",
"except ComputeTargetException:\n",
" print('Compute not found, will use below parameters to attach new one')\n",
" print('db_compute_name {}'.format(db_compute_name))\n",
" print('db_resource_group {}'.format(db_resource_group))\n",
" print('db_workspace_name {}'.format(db_workspace_name))\n",
" print('db_access_token {}'.format(db_access_token))\n",
" \n",
" config = DatabricksCompute.attach_configuration(\n",
" resource_group = db_resource_group,\n",
" workspace_name = db_workspace_name,\n",
" access_token= db_access_token)\n",
" databricks_compute=ComputeTarget.attach(ws, db_compute_name, config)\n",
" databricks_compute.wait_for_completion(True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Connections with Inputs and Outputs\n",
"The DatabricksStep supports Azure Bloband ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.azuredatabricks.net/user-guide/secrets/index.html) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"\n",
"- Databricks documentation on [Azure Blob](https://docs.azuredatabricks.net/spark/latest/data-sources/azure/azure-storage.html)\n",
"- Databricks documentation on [ADLS](https://docs.databricks.com/spark/latest/data-sources/azure/azure-datalake.html)\n",
"\n",
"### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
"- **Direct Access**: Databricks allows you to interact with Azure Blob or ADLS URIs directly. The input or output URIs will be mapped to a Databricks widget param in the Databricks notebook.\n",
"- **Mounting**: You will be supplied with additional parameters and secrets that will enable you to mount your ADLS or Azure Blob input or output location in your Databricks notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Direct Access: Python sample code\n",
"If you have a data reference named \"input\" it will represent the URI of the input and you can access it directly in the Databricks python notebook like so:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"dbutils.widgets.get(\"input\")\n",
"y = getArgument(\"input\")\n",
"df = spark.read.csv(y)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for Azure Blob\n",
"Given an Azure Blob data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\")\n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# How to get the input datastore name inside ADB notebook\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contians an access key or sas for the Azure Blob input (this name is obtained by appending \n",
"# the name of the input with \"_blob_secretname\". \n",
"dbutils.widgets.get(\"input_blob_secretname\") \n",
"myinput_blob_secretname = getArgument(\"input_blob_secretname\")\n",
"\n",
"# This contains the required configuration for mounting\n",
"dbutils.widgets.get(\"input_blob_config\")\n",
"myinput_blob_config = getArgument(\"input_blob_config\")\n",
"\n",
"# Usage\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/input\",\n",
" extra_configs = {myinput_blob_config:dbutils.secrets.get(scope = \"amlscope\", key = myinput_blob_secretname)})\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for ADLS\n",
"Given an ADLS data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\") \n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# This contains the client id for the service principal \n",
"# that has access to the adls input\n",
"dbutils.widgets.get(\"input_adls_clientid\") \n",
"myinput_adls_clientid = getArgument(\"input_adls_clientid\")\n",
"\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contains the secret for the above mentioned service principal\n",
"dbutils.widgets.get(\"input_adls_secretname\") \n",
"myinput_adls_secretname = getArgument(\"input_adls_secretname\")\n",
"\n",
"# This contains the refresh url for the mounting configs\n",
"dbutils.widgets.get(\"input_adls_refresh_url\") \n",
"myinput_adls_refresh_url = getArgument(\"input_adls_refresh_url\")\n",
"\n",
"# Usage \n",
"configs = {\"dfs.adls.oauth2.access.token.provider.type\": \"ClientCredential\",\n",
" \"dfs.adls.oauth2.client.id\": myinput_adls_clientid,\n",
" \"dfs.adls.oauth2.credential\": dbutils.secrets.get(scope = \"amlscope\", key =myinput_adls_secretname),\n",
" \"dfs.adls.oauth2.refresh.url\": myinput_adls_refresh_url}\n",
"\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/output\",\n",
" extra_configs = configs)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Databricks from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from Azure Machine Learning Pipeline, a DatabricksStep is used. Let's define a datasource (via DataReference) and intermediate data (via PipelineData) to be used in DatabricksStep."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default blob storage\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
"\n",
"# We are uploading a sample file in the local directory to be used as a datasource\n",
"def_blob_store.upload_files(files=[\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
"\n",
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
" data_reference_name=\"input\")\n",
"\n",
"step_1_output = PipelineData(\"output\", datastore=def_blob_store)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add a DatabricksStep\n",
"Adds a Databricks notebook as a step in a Pipeline.\n",
"- ***name:** Name of the Module\n",
"- **inputs:** List of input connections for data consumed by this step. Fetch this inside the notebook using dbutils.widgets.get(\"input\")\n",
"- **outputs:** List of output port definitions for outputs produced by this step. Fetch this inside the notebook using dbutils.widgets.get(\"output\")\n",
"- **existing_cluster_id:** Cluster ID of an existing Interactive cluster on the Databricks workspace. If you are providing this, do not provide any of the parameters below that are used to create a new cluster such as spark_version, node_type, etc.\n",
"- **spark_version:** Version of spark for the databricks run cluster. default value: 4.0.x-scala2.11\n",
"- **node_type:** Azure vm node types for the databricks run cluster. default value: Standard_D3_v2\n",
"- **num_workers:** Specifies a static number of workers for the databricks run cluster\n",
"- **min_workers:** Specifies a min number of workers to use for auto-scaling the databricks run cluster\n",
"- **max_workers:** Specifies a max number of workers to use for auto-scaling the databricks run cluster\n",
"- **spark_env_variables:** Spark environment variables for the databricks run cluster (dictionary of {str:str}). default value: {'PYSPARK_PYTHON': '/databricks/python3/bin/python3'}\n",
"- **notebook_path:** Path to the notebook in the databricks instance. If you are providing this, do not provide python script related paramaters or JAR related parameters.\n",
"- **notebook_params:** Parameters for the databricks notebook (dictionary of {str:str}). Fetch this inside the notebook using dbutils.widgets.get(\"myparam\")\n",
"- **python_script_path:** The path to the python script in the DBFS or S3. If you are providing this, do not provide python_script_name which is used for uploading script from local machine.\n",
"- **python_script_params:** Parameters for the python script (list of str)\n",
"- **main_class_name:** The name of the entry point in a JAR module. If you are providing this, do not provide any python script or notebook related parameters.\n",
"- **jar_params:** Parameters for the JAR module (list of str)\n",
"- **python_script_name:** name of a python script on your local machine (relative to source_directory). If you are providing this do not provide python_script_path which is used to execute a remote python script; or any of the JAR or notebook related parameters.\n",
"- **source_directory:** folder that contains the script and other files\n",
"- **hash_paths:** list of paths to hash to detect a change in source_directory (script file is always hashed)\n",
"- **run_name:** Name in databricks for this run\n",
"- **timeout_seconds:** Timeout for the databricks run\n",
"- **runconfig:** Runconfig to use. Either pass runconfig or each library type as a separate parameter but do not mix the two\n",
"- **maven_libraries:** maven libraries for the databricks run\n",
"- **pypi_libraries:** pypi libraries for the databricks run\n",
"- **egg_libraries:** egg libraries for the databricks run\n",
"- **jar_libraries:** jar libraries for the databricks run\n",
"- **rcran_libraries:** rcran libraries for the databricks run\n",
"- **compute_target:** Azure Databricks compute\n",
"- **allow_reuse:** Whether the step should reuse previous results when run with the same settings/inputs\n",
"- **version:** Optional version tag to denote a change in functionality for the step\n",
"\n",
"\\* *denotes required fields* \n",
"*You must provide exactly one of num_workers or min_workers and max_workers paramaters* \n",
"*You must provide exactly one of databricks_compute or databricks_compute_name parameters*\n",
"\n",
"## Use runconfig to specify library dependencies\n",
"You can use a runconfig to specify the library dependencies for your cluster in Databricks. The runconfig will contain a databricks section as follows:\n",
"\n",
"```yaml\n",
"environment:\n",
"# Databricks details\n",
" databricks:\n",
"# List of maven libraries.\n",
" mavenLibraries:\n",
" - coordinates: org.jsoup:jsoup:1.7.1\n",
" repo: ''\n",
" exclusions:\n",
" - slf4j:slf4j\n",
" - '*:hadoop-client'\n",
"# List of PyPi libraries\n",
" pypiLibraries:\n",
" - package: beautifulsoup4\n",
" repo: ''\n",
"# List of RCran libraries\n",
" rcranLibraries:\n",
" -\n",
"# Coordinates.\n",
" package: ada\n",
"# Repo\n",
" repo: http://cran.us.r-project.org\n",
"# List of JAR libraries\n",
" jarLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.jar\n",
"# List of Egg libraries\n",
" eggLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.egg\n",
"```\n",
"\n",
"You can then create a RunConfiguration object using this file and pass it as the runconfig parameter to DatabricksStep.\n",
"```python\n",
"from azureml.core.runconfig import RunConfiguration\n",
"\n",
"runconfig = RunConfiguration()\n",
"runconfig.load(path='<directory_where_runconfig_is_stored>', name='<runconfig_file_name>')\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Running the demo notebook already added to the Databricks workspace\n",
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable notebook_path when you run the code cell below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"notebook_path=os.getenv(\"DATABRICKS_NOTEBOOK_PATH\", \"<my-databricks-notebook-path>\") # Databricks notebook path\n",
"\n",
"dbNbStep = DatabricksStep(\n",
" name=\"DBNotebookInWS\",\n",
" inputs=[step_1_input],\n",
" outputs=[step_1_output],\n",
" num_workers=1,\n",
" notebook_path=notebook_path,\n",
" notebook_params={'myparam': 'testparam'},\n",
" run_name='DB_Notebook_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbNbStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_Notebook_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n",
"\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
"```\n",
"\n",
"The code in the below cell assumes that you have completed the previous step of uploading the script `train-db-dbfs.py` to the root folder in DBFS."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_path = os.getenv(\"DATABRICKS_PYTHON_SCRIPT_PATH\", \"<my-databricks-python-script-path>\") # Databricks python script path\n",
"\n",
"dbPythonInDbfsStep = DatabricksStep(\n",
" name=\"DBPythonInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_path=python_script_path,\n",
" python_script_params={'--input_data'},\n",
" run_name='DB_Python_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbPythonInDbfsStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_Python_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Running a Python script in Databricks that currenlty is in local computer\n",
"To run a Python script that is currently in your local computer, follow the instructions below. \n",
"\n",
"The commented out code below code assumes that you have `train-db-local.py` in the `scripts` subdirectory under the current working directory.\n",
"\n",
"In this case, the Python script will be uploaded first to DBFS, and then the script will be run in Databricks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_name = \"train-db-local.py\"\n",
"source_directory = \".\"\n",
"\n",
"dbPythonInLocalMachineStep = DatabricksStep(\n",
" name=\"DBPythonInLocalMachine\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_name=python_script_name,\n",
" source_directory=source_directory,\n",
" run_name='DB_Python_Local_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbPythonInLocalMachineStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Python_Local_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Running a JAR job that is alreay added in DBFS\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.jar dbfs:/train-db-dbfs.jar\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"main_jar_class_name = \"com.microsoft.aeva.Main\"\n",
"jar_library_dbfs_path = os.getenv(\"DATABRICKS_JAR_LIB_PATH\", \"<my-databricks-jar-lib-path>\") # Databricks jar library path\n",
"\n",
"dbJarInDbfsStep = DatabricksStep(\n",
" name=\"DBJarInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" main_class_name=main_jar_class_name,\n",
" jar_params={'arg1', 'arg2'},\n",
" run_name='DB_JAR_demo',\n",
" jar_libraries=[JarLibrary(jar_library_dbfs_path)],\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#steps = [dbJarInDbfsStep]\n",
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
"#pipeline_run = Experiment(ws, 'DB_JAR_demo').submit(pipeline)\n",
"#pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PUBLISHONLY\n",
"#from azureml.widgets import RunDetails\n",
"#RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](./aml-pipelines-use-adla-as-compute-target.ipynb) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
]
}
],
"metadata": {
"authors": [
{
"name": "diray"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -11,13 +11,6 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image2.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -60,14 +53,10 @@
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
@@ -79,7 +68,7 @@
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
@@ -350,9 +339,6 @@
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
@@ -370,9 +356,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.6"
},
"name": "03.Build_model_runHistory",
"name": "build-model-run-history-03",
"notebookId": 3836944406456339
},
"nbformat": 4,

View File

@@ -20,13 +20,6 @@
"Please Register Azure Container Instance(ACI) using Azure Portal: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services#portal in your subscription before using the SDK to deploy your ML model to ACI."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image3.JPG)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -45,15 +38,10 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"#'''\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"#'''"
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
@@ -63,18 +51,12 @@
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)\n",
"\n",
"#'''\n",
"ws = Workspace.from_config()\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"#'''"
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
@@ -293,24 +275,14 @@
"outputs": [],
"source": [
"#comment to not delete the web service\n",
"#myservice.delete()"
"myservice.delete()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
@@ -328,9 +300,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.6"
},
"name": "04.DeploytoACI",
"name": "deploy-to-aci-04",
"notebookId": 3836944406456376
},
"nbformat": 4,

View File

@@ -0,0 +1,236 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses image from ACI notebook for deploying to AKS."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# List images by ws\n",
"\n",
"from azureml.core.image import ContainerImage\n",
"for i in ContainerImage.list(workspace = ws):\n",
" print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image\n",
"myimage = Image(workspace=ws, name=\"aciws\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#create AKS compute\n",
"#it may take 20-25 minutes to create a new cluster\n",
"\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"\n",
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"aks_name = 'ps-aks-demo2' \n",
"\n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)\n",
"\n",
"aks_target.wait_for_completion(show_output = True)\n",
"\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"help( Webservice.deploy_from_image)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"#Set the web service configuration (using default here with app insights)\n",
"aks_config = AksWebservice.deploy_configuration(enable_app_insights=True)\n",
"\n",
"#unique service name\n",
"service_name ='ps-aks-service'\n",
"\n",
"# Webservice creation using single command, there is a variant to use image directly as well.\n",
"aks_service = Webservice.deploy_from_image(\n",
" workspace=ws, \n",
" name=service_name,\n",
" deployment_config = aks_config,\n",
" image = myimage,\n",
" deployment_target = aks_target\n",
" )\n",
"\n",
"aks_service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.deployment_status"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#for using the Web HTTP API \n",
"print(aks_service.scoring_uri)\n",
"print(aks_service.get_keys())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"#get the some sample data\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"test = spark.read.parquet(test_data_path).limit(5)\n",
"\n",
"test_json = json.dumps(test.toJSON().collect())\n",
"\n",
"print(test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#using data defined above predict if income is >50K (1) or <=50K (0)\n",
"aks_service.run(input_data=test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#comment to not delete the web service\n",
"aks_service.delete()\n",
"#image.delete()\n",
"#model.delete()\n",
"aks_target.delete() "
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"name": "deploy-to-aks-existingimage-05",
"notebookId": 1030695628045968
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -11,13 +11,6 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image1.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -42,7 +35,7 @@
"outputs": [],
"source": [
"# Download AdultCensusIncome.csv from Azure CDN. This file has 32,561 rows.\n",
"basedataurl = \"https://amldockerdatasets.azureedge.net\"\n",
"dataurl = \"https://amldockerdatasets.azureedge.net/AdultCensusIncome.csv\"\n",
"datafile = \"AdultCensusIncome.csv\"\n",
"datafile_dbfs = os.path.join(\"/dbfs\", datafile)\n",
"\n",
@@ -50,7 +43,7 @@
" print(\"found {} at {}\".format(datafile, datafile_dbfs))\n",
"else:\n",
" print(\"downloading {} to {}\".format(datafile, datafile_dbfs))\n",
" urllib.request.urlretrieve(os.path.join(basedataurl, datafile), datafile_dbfs)"
" urllib.request.urlretrieve(dataurl, datafile_dbfs)"
]
},
{
@@ -152,9 +145,6 @@
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
@@ -172,9 +162,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.6"
},
"name": "02.Ingest_data",
"name": "ingest-data-02",
"notebookId": 3836944406456362
},
"nbformat": 4,

View File

@@ -35,13 +35,6 @@
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image2b.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -67,6 +60,18 @@
"# workspace_region = \"<your-resource group-region>\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -82,6 +87,7 @@
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" auth = auth,\n",
" exist_ok=True)"
]
},
@@ -103,12 +109,13 @@
"source": [
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group)\n",
" resource_group = resource_group,\n",
" auth = auth)\n",
"\n",
"# persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()\n",
"##if you need to give a different path/filename please use this\n",
"##write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
"#if you need to give a different path/filename please use this\n",
"#write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
@@ -129,29 +136,19 @@
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"ws = Workspace.from_config(auth = auth)\n",
"#ws = Workspace.from_config(<full path>)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
@@ -169,10 +166,10 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.6"
},
"name": "01.Installation_and_Configuration",
"notebookId": 3836944406456490
"name": "installation-and-configuration-01",
"notebookId": 3688394266452835
},
"nbformat": 4,
"nbformat_minor": 1

View File

@@ -123,13 +123,6 @@
"ws.get_details()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
@@ -257,7 +250,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Training Data Using DataPrep"
"## Registering Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Datastore is the way to save connection information to a storage service (e.g. Azure Blob, Azure Data Lake, Azure SQL) information to your workspace so you can access them without exposing credentials in your code. The first thing you will need to do is register a datastore, you can refer to our [python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) on how to register datastores. __Note: for best security practices, please do not check in code that contains registering datastores with secrets into your source control__\n",
"\n",
"The code below registers a datastore pointing to a publicly readable blob container."
]
},
{
@@ -266,19 +268,82 @@
"metadata": {},
"outputs": [],
"source": [
"#Automated ML requires a dataflow, which is different from dataframe.\n",
"#If your data is in a dataframe, please use read_pandas_dataframe to convert a dataframe to dataflow before usind dprep.\n",
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = 'automl-notebook-data', \n",
" account_name = 'dprepdata'\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example on how to register a private blob container\n",
"```python\n",
"datastore = Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = 'example_datastore', \n",
" container_name = 'example-container', \n",
" account_name = 'storageaccount',\n",
" account_key = 'accountkey'\n",
")\n",
"```\n",
"The example below shows how to register an Azure Data Lake store. Please make sure you have granted the necessary permissions for the service principal to access the data lake.\n",
"```python\n",
"datastore = Datastore.register_azure_data_lake(\n",
" workspace = ws,\n",
" datastore_name = 'example_datastore',\n",
" store_name = 'adlsstore',\n",
" tenant_id = 'tenant-id-of-service-principal',\n",
" client_id = 'client-id-of-service-principal',\n",
" client_secret = 'client-secret-of-service-principal'\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Training Data Using DataPrep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Automated ML takes a Dataflow as input.\n",
"\n",
"If you are familiar with Pandas and have done your data preparation work in Pandas already, you can use the `read_pandas_dataframe` method in dprep to convert the DataFrame to a Dataflow.\n",
"```python\n",
"df = pd.read_csv(...)\n",
"# apply some transforms\n",
"dprep.read_pandas_dataframe(df, temp_folder='/path/accessible/by/both/driver/and/worker')\n",
"```\n",
"\n",
"If you just need to ingest data without doing any preparation, you can directly use AzureML Data Prep (Data Prep) to do so. The code below demonstrates this scenario. Data Prep also has data preparation capabilities, we have many [sample notebooks](https://github.com/Microsoft/AMLDataPrepDocs) demonstrating the capabilities.\n",
"\n",
"You will get the datastore you registered previously and pass it to Data Prep for reading. The data comes from the digits dataset: `sklearn.datasets.load_digits()`. `DataPath` points to a specific location within a datastore. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.dataprep as dprep\n",
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X_train = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y_train = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
"datastore = Datastore.get(workspace = ws, name = datastore_name)\n",
"\n",
"X_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'X.csv')) \n",
"y_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
@@ -286,7 +351,7 @@
"metadata": {},
"source": [
"## Review the Data Preparation Result\n",
"You can peek the result of a Dataflow at any range using skip(i) and head(j). Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
@@ -295,7 +360,16 @@
"metadata": {},
"outputs": [],
"source": [
"X_train.skip(1).head(5)"
"X_train.get_profile()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train.get_profile()"
]
},
{
@@ -333,7 +407,8 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 30,\n",
" iterations = 5,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
@@ -349,8 +424,7 @@
"source": [
"## Train the Models\n",
"\n",
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while."
]
},
{
@@ -359,7 +433,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True) # for higher runs please use show_output=False and use the below"
"local_run = experiment.submit(automl_config, show_output = False) # for higher runs please use show_output=False and use the below"
]
},
{
@@ -549,11 +623,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.5"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 817220787969977
"notebookId": 587284549713154
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 1
}

View File

@@ -99,10 +99,10 @@
"metadata": {},
"outputs": [],
"source": [
"subscription_id = \"<Your SubscriptionId>\"\n",
"resource_group = \"<Resource group - new or existing>\"\n",
"workspace_name = \"<workspace to be created>\"\n",
"workspace_region = \"<azureregion>\""
"subscription_id = \"<Your SubscriptionId>\" #you should be owner or contributor\n",
"resource_group = \"<Resource group - new or existing>\" #you should be owner or contributor\n",
"workspace_name = \"<workspace to be created>\" #your workspace name\n",
"workspace_region = \"<azureregion>\" #your region"
]
},
{
@@ -134,7 +134,7 @@
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" location = workspace_region, \n",
" exist_ok=True)\n",
"ws.get_details()"
]
@@ -160,7 +160,8 @@
" resource_group = resource_group)\n",
"\n",
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()"
"ws.write_config()\n",
"write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
@@ -262,6 +263,66 @@
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Registering Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Datastore is the way to save connection information to a storage service (e.g. Azure Blob, Azure Data Lake, Azure SQL) information to your workspace so you can access them without exposing credentials in your code. The first thing you will need to do is register a datastore, you can refer to our [python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) on how to register datastores. __Note: for best security practices, please do not check in code that contains registering datastores with secrets into your source control__\n",
"\n",
"The code below registers a datastore pointing to a publicly readable blob container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = 'automl-notebook-data', \n",
" account_name = 'dprepdata'\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example on how to register a private blob container\n",
"```python\n",
"datastore = Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = 'example_datastore', \n",
" container_name = 'example-container', \n",
" account_name = 'storageaccount',\n",
" account_key = 'accountkey'\n",
")\n",
"```\n",
"The example below shows how to register an Azure Data Lake store. Please make sure you have granted the necessary permissions for the service principal to access the data lake.\n",
"```python\n",
"datastore = Datastore.register_azure_data_lake(\n",
" workspace = ws,\n",
" datastore_name = 'example_datastore',\n",
" store_name = 'adlsstore',\n",
" tenant_id = 'tenant-id-of-service-principal',\n",
" client_id = 'client-id-of-service-principal',\n",
" client_secret = 'client-secret-of-service-principal'\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -269,6 +330,24 @@
"## Load Training Data Using DataPrep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Automated ML takes a Dataflow as input.\n",
"\n",
"If you are familiar with Pandas and have done your data preparation work in Pandas already, you can use the `read_pandas_dataframe` method in dprep to convert the DataFrame to a Dataflow.\n",
"```python\n",
"df = pd.read_csv(...)\n",
"# apply some transforms\n",
"dprep.read_pandas_dataframe(df, temp_folder='/path/accessible/by/both/driver/and/worker')\n",
"```\n",
"\n",
"If you just need to ingest data without doing any preparation, you can directly use AzureML Data Prep (Data Prep) to do so. The code below demonstrates this scenario. Data Prep also has data preparation capabilities, we have many [sample notebooks](https://github.com/Microsoft/AMLDataPrepDocs) demonstrating the capabilities.\n",
"\n",
"You will get the datastore you registered previously and pass it to Data Prep for reading. The data comes from the digits dataset: `sklearn.datasets.load_digits()`. `DataPath` points to a specific location within a datastore. "
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -276,15 +355,12 @@
"outputs": [],
"source": [
"import azureml.dataprep as dprep\n",
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X_train = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y_train = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
"datastore = Datastore.get(workspace = ws, name = datastore_name)\n",
"\n",
"X_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'X.csv')) \n",
"y_train = dprep.read_csv(DataPath(datastore = datastore, path_on_datastore = 'y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
@@ -301,7 +377,16 @@
"metadata": {},
"outputs": [],
"source": [
"X_train.skip(1).head(5)"
"X_train.get_profile()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train.get_profile()"
]
},
{
@@ -339,14 +424,14 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 5,\n",
" n_cross_validations = 2,\n",
" max_concurrent_iterations = 4, #change it based on number of worker nodes\n",
" iterations = 30,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #databricks/spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_cache=False,\n",
" path = project_folder)"
]
},
@@ -356,8 +441,7 @@
"source": [
"## Train the Models\n",
"\n",
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while."
]
},
{
@@ -366,7 +450,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True) # for higher runs please use show_output=False and use the below"
"local_run = experiment.submit(automl_config, show_output = False) # for higher runs please use show_output=False and use the below"
]
},
{
@@ -419,6 +503,7 @@
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" #print(properties)\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
@@ -694,11 +779,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
"version": "3.6.5"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 3888835968049288
"notebookId": 2733885892129020
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 1
}

View File

@@ -0,0 +1 @@
Test1

View File

@@ -0,0 +1,5 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
print("In train.py")
print("As a data scientist, this is where I use my training code.")

View File

@@ -0,0 +1,5 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
print("In train.py")
print("As a data scientist, this is where I use my training code.")

View File

@@ -38,13 +38,11 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Run\n",
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import Image\n",
"from azureml.core.model import Model\n",
"\n",
"from azureml.core.webservice import AksWebservice\n",
"import azureml.core\n",
"import json\n",
"print(azureml.core.VERSION)"
]
},
@@ -247,7 +245,6 @@
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
@@ -401,7 +398,6 @@
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
@@ -413,7 +409,7 @@
" prediction = aks_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
]
},
{
@@ -469,7 +465,7 @@
"metadata": {
"authors": [
{
"name": "marthalc"
"name": "jocier"
}
],
"kernelspec": {
@@ -487,7 +483,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.6.3"
}
},
"nbformat": 4,

View File

@@ -37,12 +37,9 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Run\n",
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import Image\n",
"from azureml.core.model import Model\n",
"\n",
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
@@ -51,8 +48,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up your configuration and create a workspace\n",
"Follow Notebook 00 instructions to do this.\n"
"## 2. Set up your configuration and create a workspace"
]
},
{
@@ -277,9 +273,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"scrolled": true
},
"metadata": {},
"source": [
"```python \n",
" %%time\n",
@@ -403,11 +397,11 @@
"source": [
"### b. Connect Blob to Power Bi (Small Data only)\n",
"1. Download and Open PowerBi Desktop\n",
"2. Select \u201cGet Data\u201d and click on \u201cAzure Blob Storage\u201d >> Connect\n",
"2. Select \"Get Data\" and click on \"Azure Blob Storage\" >> Connect\n",
"3. Add your storage account and enter your storage key.\n",
"4. Select the container where your Data Collection is stored and click on Edit. \n",
"5. In the query editor, click under \u201cName\u201d column and add your Storage account Model path into the filter. Note: if you want to only look into files from a specific year or month, just expand the filter path. For example, just look into March data: /modeldata/subscriptionid>/resourcegroupname>/workspacename>/webservicename>/modelname>/modelversion>/identifier>/year>/3\n",
"6. Click on the double arrow aside the \u201cContent\u201d column to combine the files. \n",
"5. In the query editor, click under \"Name\" column and add your Storage account Model path into the filter. Note: if you want to only look into files from a specific year or month, just expand the filter path. For example, just look into March data: /modeldata/subscriptionid>/resourcegroupname>/workspacename>/webservicename>/modelname>/modelversion>/identifier>/year>/3\n",
"6. Click on the double arrow aside the \"Content\" column to combine the files. \n",
"7. Click OK and the data will preload.\n",
"8. You can now click Close and Apply and start building your custom reports on your Model Input data."
]
@@ -451,7 +445,7 @@
"metadata": {
"authors": [
{
"name": "marthalc"
"name": "jocier"
}
],
"kernelspec": {
@@ -469,7 +463,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.6.3"
}
},
"nbformat": 4,

View File

@@ -409,7 +409,7 @@
"metadata": {
"authors": [
{
"name": "onnx"
"name": "viswamy"
}
],
"kernelspec": {
@@ -427,7 +427,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
"version": "3.6.5"
}
},
"nbformat": 4,

View File

@@ -197,7 +197,6 @@
"source": [
"# for images and plots in this notebook\n",
"import matplotlib.pyplot as plt \n",
"from IPython.display import Image\n",
"\n",
"# display images inline\n",
"%matplotlib inline"
@@ -481,8 +480,8 @@
" \n",
" emotion_keys = list(emotion_table.keys())\n",
" emotions = []\n",
" for i in range(N):\n",
" emotions.append(emotion_keys[classes[i]])\n",
" for c in range(N):\n",
" emotions.append(emotion_keys[classes[c]])\n",
" return emotions\n",
"\n",
"def softmax(x):\n",
@@ -534,9 +533,9 @@
"# read in 3 testing images from .pb files\n",
"test_data_size = 3\n",
"\n",
"for i in np.arange(test_data_size):\n",
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(i), 'input_0.pb')\n",
" output_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(i), 'output_0.pb')\n",
"for num in np.arange(test_data_size):\n",
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(num), 'input_0.pb')\n",
" output_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(num), 'output_0.pb')\n",
" \n",
" # convert protobuf tensors to np arrays using the TensorProto reader from ONNX\n",
" tensor = onnx.TensorProto()\n",
@@ -671,19 +670,19 @@
" \"\"\"Convert the input image into grayscale\"\"\"\n",
" return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])\n",
"\n",
"def resize_img(img):\n",
" \"\"\"Resize image to MNIST model input dimensions\"\"\"\n",
" img = cv2.resize(img, dsize=(64, 64), interpolation=cv2.INTER_AREA)\n",
" img.resize((1, 1, 64, 64))\n",
" return img\n",
"def resize_img(img_to_resize):\n",
" \"\"\"Resize image to FER+ model input dimensions\"\"\"\n",
" r_img = cv2.resize(img_to_resize, dsize=(64, 64), interpolation=cv2.INTER_AREA)\n",
" r_img.resize((1, 1, 64, 64))\n",
" return r_img\n",
"\n",
"def preprocess(img):\n",
"def preprocess(img_to_preprocess):\n",
" \"\"\"Resize input images and convert them to grayscale.\"\"\"\n",
" if img.shape == (64, 64):\n",
" img.resize((1, 1, 64, 64))\n",
" return img\n",
" if img_to_preprocess.shape == (64, 64):\n",
" img_to_preprocess.resize((1, 1, 64, 64))\n",
" return img_to_preprocess\n",
" \n",
" grayscale = rgb2gray(img)\n",
" grayscale = rgb2gray(img_to_preprocess)\n",
" processed_img = resize_img(grayscale)\n",
" return processed_img"
]
@@ -732,7 +731,7 @@
" r = json.loads(aci_service.run(input_data))\n",
" result = r['result'][0]\n",
" time_ms = np.round(r['time_in_sec'][0] * 1000, 2)\n",
" except Exception as e:\n",
" except KeyError as e:\n",
" print(str(e))\n",
"\n",
" plt.figure(figsize = (16, 6))\n",
@@ -800,7 +799,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.5"
},
"msauthor": "vinitra.swamy"
},

View File

@@ -621,19 +621,19 @@
" \"\"\"Convert the input image into grayscale\"\"\"\n",
" return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])\n",
"\n",
"def resize_img(img):\n",
"def resize_img(img_to_resize):\n",
" \"\"\"Resize image to MNIST model input dimensions\"\"\"\n",
" img = cv2.resize(img, dsize=(28, 28), interpolation=cv2.INTER_AREA)\n",
" img.resize((1, 1, 28, 28))\n",
" return img\n",
" r_img = cv2.resize(img_to_resize, dsize=(28, 28), interpolation=cv2.INTER_AREA)\n",
" r_img.resize((1, 1, 28, 28))\n",
" return r_img\n",
"\n",
"def preprocess(img):\n",
"def preprocess(img_to_preprocess):\n",
" \"\"\"Resize input images and convert them to grayscale.\"\"\"\n",
" if img.shape == (28, 28):\n",
" img.resize((1, 1, 28, 28))\n",
" return img\n",
" if img_to_preprocess.shape == (28, 28):\n",
" img_to_preprocess.resize((1, 1, 28, 28))\n",
" return img_to_preprocess\n",
" \n",
" grayscale = rgb2gray(img)\n",
" grayscale = rgb2gray(img_to_preprocess)\n",
" processed_img = resize_img(grayscale)\n",
" return processed_img"
]
@@ -681,7 +681,7 @@
" r = aci_service.run(input_data)\n",
" result = r['result']\n",
" time_ms = np.round(r['time_in_sec'] * 1000, 2)\n",
" except Exception as e:\n",
" except KeyError as e:\n",
" print(str(e))\n",
"\n",
" plt.figure(figsize = (16, 6))\n",

View File

@@ -393,7 +393,7 @@
"metadata": {
"authors": [
{
"name": "onnx"
"name": "viswamy"
}
],
"kernelspec": {
@@ -411,7 +411,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
"version": "3.6.5"
}
},
"nbformat": 4,

View File

@@ -241,7 +241,8 @@
" description = \"Image with ridge regression model\")\n",
"\n",
"image = Image.create(name = \"myimage1\",\n",
" # this is the model object \n",
" # this is the model object. note you can pass in 0-n models via this list-type parameter\n",
" # in case you need to reference multiple models, or none at all, in your scoring script.\n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)"

View File

@@ -44,6 +44,9 @@ In this directory, there are two types of notebooks:
4. [aml-pipelines-data-transfer.ipynb](https://aka.ms/pl-data-trans)
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](https://aka.ms/pl-databricks)
6. [aml-pipelines-use-adla-as-compute-target.ipynb](https://aka.ms/pl-adla)
7. [aml-pipelines-parameter-tuning-with-hyperdrive.ipynb](https://aka.ms/pl-hyperdrive)
8. [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb](https://aka.ms/pl-azbatch)
9. [aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb](https://aka.ms/pl-schedule)
* The second type of notebooks illustrate more sophisticated scenarios, and are independent of each other. These notebooks include:

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -17,7 +17,7 @@
"\n",
"In certain cases, you will need to transfer data from one data location to another. For example, your data may be in Files storage and you may want to move it to Blob storage. Or, if your data is in an ADLS account and you want to make it available in the Blob storage. The built-in **DataTransferStep** class helps you transfer data in these situations.\n",
"\n",
"The below example shows how to move data in an ADLS account to Blob storage."
"The below example shows how to move data between an ADLS account, Blob storage, SQL Server, PostgreSQL server. "
]
},
{
@@ -35,16 +35,12 @@
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute, DataFactoryCompute\n",
"from azureml.core.compute import ComputeTarget, DataFactoryCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Run, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import AdlaStep\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.pipeline.core import Pipeline\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.data.sql_data_reference import SqlDataReference\n",
"from azureml.core import attach_legacy_compute_target\n",
"from azureml.data.stored_procedure_parameter import StoredProcedureParameter, StoredProcedureParameterType\n",
"from azureml.pipeline.steps import DataTransferStep\n",
"\n",
"# Check core SDK version number\n",
@@ -89,7 +85,9 @@
"\n",
"For background on registering your data store, consult this article:\n",
"\n",
"https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-service-to-service-authenticate-using-active-directory"
"https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-service-to-service-authenticate-using-active-directory\n",
"\n",
"### register datastores for Azure Data Lake and Azure Blob storage"
]
},
{
@@ -98,8 +96,8 @@
"metadata": {},
"outputs": [],
"source": [
"from msrest.exceptions import HttpOperationError\n",
"\n",
"workspace = ws.name\n",
"datastore_name='MyAdlsDatastore'\n",
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
@@ -111,7 +109,7 @@
"try:\n",
" adls_datastore = Datastore.get(ws, datastore_name)\n",
" print(\"found datastore with name: %s\" % datastore_name)\n",
"except:\n",
"except HttpOperationError:\n",
" adls_datastore = Datastore.register_azure_data_lake(\n",
" workspace=ws,\n",
" datastore_name=datastore_name,\n",
@@ -133,7 +131,7 @@
"try:\n",
" blob_datastore = Datastore.get(ws, blob_datastore_name)\n",
" print(\"found blob datastore with name: %s\" % blob_datastore_name)\n",
"except:\n",
"except HttpOperationError:\n",
" blob_datastore = Datastore.register_azure_blob_container(\n",
" workspace=ws,\n",
" datastore_name=blob_datastore_name,\n",
@@ -150,7 +148,65 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create DataReferences"
"### register datastores for Azure SQL Server and Azure database for PostgreSQL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"sql_datastore_name=\"MySqlDatastore\"\n",
"server_name=os.getenv(\"SQL_SERVERNAME_62\", \"<my-server-name>\") # Name of SQL server\n",
"database_name=os.getenv(\"SQL_DATBASENAME_62\", \"<my-database-name>\") # Name of SQL database\n",
"client_id=os.getenv(\"SQL_CLIENTNAME_62\", \"<my-client-id>\") # client id of service principal with permissions to access database\n",
"client_secret=os.getenv(\"SQL_CLIENTSECRET_62\", \"<my-client-secret>\") # the secret of service principal\n",
"tenant_id=os.getenv(\"SQL_TENANTID_62\", \"<my-tenant-id>\") # tenant id of service principal\n",
"\n",
"try:\n",
" sql_datastore = Datastore.get(ws, sql_datastore_name)\n",
" print(\"found sql database datastore with name: %s\" % sql_datastore_name)\n",
"except HttpOperationError:\n",
" sql_datastore = Datastore.register_azure_sql_database(\n",
" workspace=ws,\n",
" datastore_name=sql_datastore_name,\n",
" server_name=server_name,\n",
" database_name=database_name,\n",
" client_id=client_id,\n",
" client_secret=client_secret,\n",
" tenant_id=tenant_id)\n",
" print(\"registered sql databse datastore with name: %s\" % sql_datastore_name)\n",
"\n",
" \n",
"psql_datastore_name=\"MyPostgreSqlDatastore\"\n",
"server_name=os.getenv(\"PSQL_SERVERNAME_62\", \"<my-server-name>\") # Name of PostgreSQL server \n",
"database_name=os.getenv(\"PSQL_DATBASENAME_62\", \"<my-database-name>\") # Name of PostgreSQL database\n",
"user_id=os.getenv(\"PSQL_USERID_62\", \"<my-user-id>\") # user id\n",
"user_password=os.getenv(\"PSQL_USERPW_62\", \"<my-user-password>\") # user password\n",
"\n",
"try:\n",
" psql_datastore = Datastore.get(ws, psql_datastore_name)\n",
" print(\"found PostgreSQL database datastore with name: %s\" % psql_datastore_name)\n",
"except HttpOperationError:\n",
" psql_datastore = Datastore.register_azure_postgre_sql(\n",
" workspace=ws,\n",
" datastore_name=psql_datastore,\n",
" server_name=server_name,\n",
" database_name=database_name,\n",
" user_id=user_id,\n",
" user_password=user_password)\n",
" print(\"registered PostgreSQL databse datastore with name: %s\" % psql_datastore_name)\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create DataReferences\n",
"### create DataReferences for Azure Data Lake and Azure Blob storage"
]
},
{
@@ -178,6 +234,39 @@
"print(\"obtained adls, blob data references\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### create DataReferences for Azure SQL Server and Azure database for PostgreSQL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.data.sql_data_reference import SqlDataReference\n",
"\n",
"sql_datastore = Datastore(workspace=ws, name=\"MySqlDatastore\")\n",
"\n",
"sql_query_data_ref = SqlDataReference(\n",
" datastore=sql_datastore,\n",
" data_reference_name=\"sql_query_data_ref\",\n",
" sql_query=\"select top 1 * from TestData\")\n",
"\n",
"\n",
"psql_datastore = Datastore(workspace=ws, name=\"MyPostgreSqlDatastore\")\n",
"\n",
"psql_query_data_ref = SqlDataReference(\n",
" datastore=psql_datastore,\n",
" data_reference_name=\"psql_query_data_ref\",\n",
" sql_query=\"SELECT * FROM testtable\")\n",
"\n",
"print(\"obtained Sql server, PostgreSQL data references\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -255,6 +344,29 @@
"print(\"data transfer step created\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"transfer_sql_to_blob = DataTransferStep(\n",
" name=\"transfer_sql_to_blob\",\n",
" source_data_reference=sql_query_data_ref,\n",
" destination_data_reference=blob_data_ref,\n",
" compute_target=data_factory_compute,\n",
" destination_reference_type='file')\n",
"\n",
"transfer_psql_to_blob = DataTransferStep(\n",
" name=\"transfer_psql_to_blob\",\n",
" source_data_reference=psql_query_data_ref,\n",
" destination_data_reference=blob_data_ref,\n",
" compute_target=data_factory_compute,\n",
" destination_reference_type='file')\n",
"\n",
"print(\"data transfer step created for Sql server and PostgreSQL\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -268,13 +380,28 @@
"metadata": {},
"outputs": [],
"source": [
"pipeline = Pipeline(\n",
" description=\"data_transfer_101\",\n",
"pipeline_01 = Pipeline(\n",
" description=\"data_transfer_01\",\n",
" workspace=ws,\n",
" steps=[transfer_adls_to_blob])\n",
"\n",
"pipeline_run = Experiment(ws, \"Data_Transfer_example\").submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
"pipeline_run_01 = Experiment(ws, \"Data_Transfer_example_01\").submit(pipeline_01)\n",
"pipeline_run_01.wait_for_completion()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_02 = Pipeline(\n",
" description=\"data_transfer_02\",\n",
" workspace=ws,\n",
" steps=[transfer_sql_to_blob,transfer_psql_to_blob])\n",
"\n",
"pipeline_run_02 = Experiment(ws, \"Data_Transfer_example_02\").submit(pipeline_02)\n",
"pipeline_run_02.wait_for_completion()"
]
},
{
@@ -291,7 +418,17 @@
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
"RunDetails(pipeline_run_01).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run_02).show()"
]
},
{
@@ -324,7 +461,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.2"
}
},
"nbformat": 4,

View File

@@ -16,10 +16,20 @@
"\n",
"## Overview\n",
"\n",
"Read [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines) overview, or the [readme article](../README.md) on Azure Machine Learning Pipelines to get more information.\n",
" \n",
"\n",
"This Notebook shows basic construction of a **pipeline** that runs jobs unattended in different compute clusters. "
"A common scenario when using machine learning components is to have a data workflow that includes the following steps:\n",
"\n",
"- Preparing/preprocessing a given dataset for training, followed by\n",
"- Training a machine learning model on this data, and then\n",
"- Deploying this trained model in a separate environment, and finally\n",
"- Running a batch scoring task on another data set, using the trained model.\n",
"\n",
"Azure's Machine Learning pipelines give you a way to combine multiple steps like these into one configurable workflow, so that multiple agents/users can share and/or reuse this workflow. Machine learning pipelines thus provide a consistent, reproducible mechanism for building, evaluating, deploying, and running ML systems.\n",
"\n",
"To get more information about Azure machine learning pipelines, please read our [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines) overview, or the [readme article](../README.md).\n",
"\n",
"In this notebook, we provide a gentle introduction to Azure machine learning pipelines. We build a pipeline that runs jobs unattended on different compute clusters; in this notebook, you'll see how to use the basic Azure ML SDK APIs for constructing this pipeline.\n",
" "
]
},
{
@@ -45,11 +55,11 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
"from azureml.core import Workspace, Experiment, Datastore\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.compute import DataFactoryCompute\n",
"from azureml.widgets import RunDetails\n",
"\n",
"# Check core SDK version number\n",
@@ -71,12 +81,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
"from azureml.pipeline.core import Pipeline\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"from azureml.pipeline.steps import DataTransferStep\n",
"from azureml.pipeline.core import PublishedPipeline\n",
"from azureml.pipeline.core.graph import PipelineParameter\n",
"\n",
"print(\"Pipeline SDK-specific imports completed\")"
]
@@ -124,7 +130,7 @@
"# project folder\n",
"project_folder = '.'\n",
" \n",
"print('Sample projects will be created in {}.'.format(project_folder))"
"print('Sample projects will be created in {}.'.format(os.path.realpath(project_folder)))"
]
},
{
@@ -140,7 +146,7 @@
"metadata": {},
"source": [
"### Datastore concepts\n",
"A [Datastore](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore(class) is a place where data can be stored that is then made accessible to a compute either by means of mounting or copying the data to the compute target. \n",
"A [Datastore](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py) is a place where data can be stored that is then made accessible to a compute either by means of mounting or copying the data to the compute target. \n",
"\n",
"A Datastore can either be backed by an Azure File Storage (default) or by an Azure Blob Storage.\n",
"\n",
@@ -237,12 +243,13 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aml_compute_target = \"aml-compute\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"found existing compute target.\")\n",
"except:\n",
"except ComputeTargetException:\n",
" print(\"creating new compute target\")\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
@@ -326,7 +333,7 @@
" script_name=\"train.py\", \n",
" compute_target=aml_compute, \n",
" source_directory=project_folder,\n",
" allow_reuse=False)\n",
" allow_reuse=True)\n",
"print(\"Step1 created\")"
]
},
@@ -379,7 +386,7 @@
"### Build the pipeline\n",
"Once we have the steps (or steps collection), we can build the [pipeline](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py). By deafult, all these steps will run in **parallel** once we submit the pipeline for run.\n",
"\n",
"A pipeline is created with a list of steps and a workspace. Submit a pipeline using [submit](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.experiment%28class%29?view=azure-ml-py#submit). When submit is called, a [PipelineRun](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinerun?view=azure-ml-py) is created which in turn creates [StepRun](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.steprun?view=azure-ml-py) objects for each step in the workflow."
"A pipeline is created with a list of steps and a workspace. Submit a pipeline using [submit](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.experiment(class)?view=azure-ml-py#submit-config--tags-none----kwargs-). When submit is called, a [PipelineRun](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinerun?view=azure-ml-py) is created which in turn creates [StepRun](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.steprun?view=azure-ml-py) objects for each step in the workflow."
]
},
{
@@ -407,7 +414,7 @@
"metadata": {},
"source": [
"### Validate the pipeline\n",
"You have the option to [validate](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py#validate) the pipeline prior to submitting for run. The platform runs validation steps such as checking for circular dependencies and parameter checks etc. even if you do not explicitly call validate method."
"You have the option to [validate](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py#validate--) the pipeline prior to submitting for run. The platform runs validation steps such as checking for circular dependencies and parameter checks etc. even if you do not explicitly call validate method."
]
},
{
@@ -440,7 +447,7 @@
"# continue_on_node_failure=False, \n",
"# regenerate_outputs=False)\n",
"\n",
"pipeline_run1 = Experiment(ws, 'Hello_World1').submit(pipeline1, regenerate_outputs=True)\n",
"pipeline_run1 = Experiment(ws, 'Hello_World1').submit(pipeline1, regenerate_outputs=False)\n",
"print(\"Pipeline is submitted for execution\")"
]
},
@@ -521,7 +528,7 @@
"## Running a few steps in sequence\n",
"Now let's see how we run a few steps in sequence. We already have three steps defined earlier. Let's *reuse* those steps for this part.\n",
"\n",
"We will reuse step1, step2, step3, but build the pipeline in such a way that we chain step3 after step2 and step2 after step1. Note that there is no explicit data dependency between these steps, but still steps can be made dependent by using the [run_after](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py#run-after) construct."
"We will reuse step1, step2, step3, but build the pipeline in such a way that we chain step3 after step2 and step2 after step1. Note that there is no explicit data dependency between these steps, but still steps can be made dependent by using the [run_after](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py#run-after-step-) construct."
]
},
{

View File

@@ -0,0 +1,376 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure Machine Learning Pipeline with AzureBatchStep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook is used to demonstrate the use of AzureBatchStep in Azure Machine Learning Pipeline.\n",
"An AzureBatchStep will submit a job to an AzureBatch Compute to run a simple windows executable."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure Machine Learning and Pipeline SDK-specific Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import ComputeTarget, BatchCompute\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import AzureBatchStep\n",
"\n",
"import os\n",
"from os import path\n",
"from tempfile import mkdtemp\n",
"\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json\n",
"\n",
"If you don't have a config.json file, please go through the configuration Notebook located [here](https://github.com/Azure/MachineLearningNotebooks). \n",
"\n",
"This sets you up with a working config file that has information on your workspace, subscription id, etc. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"print('Workspace Name: ' + ws.name, \n",
" 'Azure Region: ' + ws.location, \n",
" 'Subscription Id: ' + ws.subscription_id, \n",
" 'Resource Group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach Batch Compute to Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To submit jobs to Azure Batch service, you must attach your Azure Batch account to the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"batch_compute_name = 'mybatchcompute' # Name to associate with new compute in workspace\n",
"\n",
"# Batch account details needed to attach as compute to workspace\n",
"batch_account_name = \"<batch_account_name>\" # Name of the Batch account\n",
"batch_resource_group = \"<batch_resource_group>\" # Name of the resource group which contains this account\n",
"\n",
"try:\n",
" # check if already attached\n",
" batch_compute = BatchCompute(ws, batch_compute_name)\n",
"except ComputeTargetException:\n",
" print('Attaching Batch compute...')\n",
" provisioning_config = BatchCompute.attach_configuration(resource_group=batch_resource_group, \n",
" account_name=batch_account_name)\n",
" batch_compute = ComputeTarget.attach(ws, batch_compute_name, provisioning_config)\n",
" batch_compute.wait_for_completion()\n",
" print(\"Provisioning state:{}\".format(batch_compute.provisioning_state))\n",
" print(\"Provisioning errors:{}\".format(batch_compute.provisioning_errors))\n",
"\n",
"print(\"Using Batch compute:{}\".format(batch_compute.cluster_resource_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setting up the Blob storage associated with the workspace. \n",
"The following call retrieves the Azure Blob Store associated with your workspace. \n",
"Note that workspaceblobstore is **the name of this store and CANNOT BE CHANGED and must be used as is**. \n",
" \n",
"If you want to register another Datastore, please follow the instructions from here:\n",
"https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data#register-a-datastore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore = Datastore(ws, \"workspaceblobstore\")\n",
"\n",
"print('Datastore details:')\n",
"print('Datastore Account Name: ' + datastore.account_name)\n",
"print('Datastore Workspace Name: ' + datastore.workspace.name)\n",
"print('Datastore Container Name: ' + datastore.container_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Input and Output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For this example we will upload a file in the provided Datastore. These are some helper methods to achieve that."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def create_local_file(content, file_name):\n",
" # create a file in a local temporary directory\n",
" temp_dir = mkdtemp()\n",
" with open(path.join(temp_dir, file_name), 'w') as f:\n",
" f.write(content)\n",
" return temp_dir\n",
"\n",
"\n",
"def upload_file_to_datastore(datastore, file_name, content):\n",
" dir = create_local_file(content=content, file_name=file_name)\n",
" datastore.upload(src_dir=dir, overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we associate the input DataReference with an existing file in the provided Datastore. Feel free to upload the file of your choice manually or use the *upload_file_to_datastore* method. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"file_name=\"input.txt\"\n",
"\n",
"upload_file_to_datastore(datastore=datastore, \n",
" file_name=file_name, \n",
" content=\"this is the content of the file\")\n",
"\n",
"testdata = DataReference(datastore=datastore, \n",
" path_on_datastore=file_name, \n",
" data_reference_name=\"input\")\n",
"\n",
"outputdata = PipelineData(name=\"output\", datastore=datastore)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup AzureBatch Job Binaries"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"AzureBatch can run a task within the job and here we put a simple .cmd file to be executed. Feel free to put any binaries in the folder, or modify the .cmd file as needed, they will be uploaded once we create the AzureBatch Step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"binaries_folder = \"azurebatch/job_binaries\"\n",
"if not os.path.isdir(binaries_folder):\n",
" os.mkdir(binaries_folder)\n",
"\n",
"file_name=\"azurebatch.cmd\"\n",
"with open(path.join(binaries_folder, file_name), 'w') as f:\n",
" f.write(\"copy \\\"%1\\\" \\\"%2\\\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an AzureBatchStep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"AzureBatchStep is used to submit a job to the attached Azure Batch compute.\n",
"- **name:** Name of the step\n",
"- **pool_id:** Name of the pool, it can be an existing pool, or one that will be created when the job is submitted\n",
"- **inputs:** List of inputs that will be processed by the job\n",
"- **outputs:** List of outputs the job will create\n",
"- **executable:** The executable that will run as part of the job\n",
"- **arguments:** Arguments for the executable. They can be plain string format, inputs, outputs or parameters\n",
"- **compute_target:** The compute target where the job will run.\n",
"- **source_directory:** The local directory with binaries to be executed by the job\n",
"\n",
"Optional parameters:\n",
"\n",
"- **create_pool:** Boolean flag to indicate whether create the pool before running the jobs\n",
"- **delete_batch_job_after_finish:** Boolean flag to indicate whether to delete the job from Batch account after it's finished\n",
"- **delete_batch_pool_after_finish:** Boolean flag to indicate whether to delete the pool after the job finishes\n",
"- **is_positive_exit_code_failure:** Boolean flag to indicate if the job fails if the task exists with a positive code\n",
"- **vm_image_urn:** If create_pool is true and VM uses VirtualMachineConfiguration. \n",
" Value format: 'urn:publisher:offer:sku'. \n",
" Example: urn:MicrosoftWindowsServer:WindowsServer:2012-R2-Datacenter \n",
" For more details: \n",
" https://docs.microsoft.com/en-us/azure/virtual-machines/windows/cli-ps-findimage#table-of-commonly-used-windows-images and \n",
" https://docs.microsoft.com/en-us/azure/virtual-machines/linux/cli-ps-findimage#find-specific-images\n",
"- **run_task_as_admin:** Boolean flag to indicate if the task should run with Admin privileges\n",
"- **target_compute_nodes:** Assumes create_pool is true, indicates how many compute nodes will be added to the pool\n",
"- **source_directory:** Local folder that contains the module binaries, executable, assemblies etc.\n",
"- **executable:** Name of the command/executable that will be executed as part of the job\n",
"- **arguments:** Arguments for the command/executable\n",
"- **inputs:** List of input port bindings\n",
"- **outputs:** List of output port bindings\n",
"- **vm_size:** If create_pool is true, indicating Virtual machine size of the compute nodes\n",
"- **compute_target:** BatchCompute compute\n",
"- **allow_reuse:** Whether the module should reuse previous results when run with the same settings/inputs\n",
"- **version:** A version tag to denote a change in functionality for the module"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step = AzureBatchStep(\n",
" name=\"Azure Batch Job\",\n",
" pool_id=\"MyPoolName\", # Replace this with the pool name of your choice\n",
" inputs=[testdata],\n",
" outputs=[outputdata],\n",
" executable=\"azurebatch.cmd\",\n",
" arguments=[testdata, outputdata],\n",
" compute_target=batch_compute,\n",
" source_directory=binaries_folder,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build and Submit the Pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline = Pipeline(workspace=ws, steps=[step])\n",
"pipeline_run = Experiment(ws, 'azurebatch_experiment').submit(pipeline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize the Running Pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
}
],
"metadata": {
"authors": [
{
"name": "diray"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,397 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure Machine Learning Pipeline with HyperDriveStep\n",
"\n",
"\n",
"This notebook is used to demonstrate the use of HyperDriveStep in AML Pipeline.\n",
"\n",
"## Azure Machine Learning and Pipeline SDK-specific imports\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"import urllib\n",
"import azureml.core\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.steps import HyperDriveStep\n",
"from azureml.pipeline.core import Pipeline\n",
"from azureml.train.dnn import TensorFlow\n",
"from azureml.train.hyperdrive import *\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Azure ML experiment\n",
"Let's create an experiment named \"tf-mnist\" and a folder to hold the training scripts. The script runs will be recorded under the experiment in Azure.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = './tf-mnist'\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"\n",
"exp = Experiment(workspace=ws, name='tf-mnist')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download MNIST dataset\n",
"In order to train on the MNIST dataset we will first need to download it from Yan LeCun's web site directly and save them in a `data` folder locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.makedirs('./data/mnist', exist_ok=True)\n",
"\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename = './data/mnist/train-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upload MNIST dataset to blob datastore \n",
"A [datastore](https://docs.microsoft.com/azure/machine-learning/service/how-to-access-data) is a place where data can be stored that is then made accessible to a Run either by means of mounting or copying the data to the compute target. In the next step, we will use Azure Blob Storage and upload the training and test set into the Azure Blob datastore, which we will then later be mount on a Batch AI cluster for training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data/mnist', target_path='mnist', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Retrieve or create a Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
"\n",
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n",
"\n",
"1. Create the configuration\n",
"2. Create the Azure Machine Learning compute\n",
"\n",
"**This process will take a few minutes and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell.**\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cluster_name = \"gpucluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target {}.'.format(cluster_name))\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" max_nodes=4)\n",
"\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
" compute_target.wait_for_completion(show_output=True, timeout_in_minutes=20)\n",
"\n",
"print(\"Azure Machine Learning Compute attached\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Copy the training files into the script folder\n",
"The TensorFlow training script is already created for you. You can simply copy it into the script folder, together with the utility library used to load compressed data file into numpy array."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# the training logic is in the tf_mnist.py file.\n",
"shutil.copy('./tf_mnist.py', script_folder)\n",
"\n",
"# the utils.py just helps loading data from the downloaded MNIST dataset into numpy arrays.\n",
"shutil.copy('./utils.py', script_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create TensorFlow estimator\n",
"Next, we construct an `azureml.train.dnn.TensorFlow` estimator object, use the Batch AI cluster as compute target, and pass the mount-point of the datastore to the training code as a parameter.\n",
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"est = TensorFlow(source_directory=script_folder, \n",
" compute_target=compute_target,\n",
" entry_script='tf_mnist.py', \n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Intelligent hyperparameter tuning\n",
"We have trained the model with one set of hyperparameters, now let's how we can do hyperparameter tuning by launching multiple runs on the cluster. First let's define the parameter space using random sampling.\n",
"\n",
"In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, the best validation accuracy (`validation_acc`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ps = RandomParameterSampling(\n",
" {\n",
" '--batch-size': choice(25, 50, 100),\n",
" '--first-layer-neurons': choice(10, 50, 200, 300, 500),\n",
" '--second-layer-neurons': choice(10, 50, 200, 500),\n",
" '--learning-rate': loguniform(-6, -1)\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we will define an early termnination policy. The `BanditPolicy` basically states to check the job every 2 iterations. If the primary metric (defined later) falls outside of the top 10% range, Azure ML terminate the job. This saves us from continuing to explore hyperparameters that don't show promise of helping reach our target metric.\n",
"\n",
"Refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters#specify-an-early-termination-policy) for more information on the BanditPolicy and other policies available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"early_termination_policy = BanditPolicy(evaluation_interval=2, slack_factor=0.1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we are ready to configure a run configuration object, and specify the primary metric `validation_acc` that's recorded in your training runs. If you go back to visit the training script, you will notice that this value is being logged after every epoch (a full batch set). We also want to tell the service that we are looking to maximizing this value. We also set the number of samples to 20, and maximal concurrent job to 4, which is the same as the number of nodes in our computer cluster."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hd_config = HyperDriveRunConfig(estimator=est, \n",
" hyperparameter_sampling=ps,\n",
" policy=early_termination_policy,\n",
" primary_metric_name='validation_acc', \n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, \n",
" max_total_runs=1,\n",
" max_concurrent_runs=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add HyperDrive as a step of pipeline\n",
"\n",
"Let's setup a data reference for inputs of hyperdrive step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder = DataReference(\n",
" datastore=ds,\n",
" data_reference_name=\"mnist_data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### HyperDriveStep\n",
"HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n",
"- **name:** Name of the step\n",
"- **hyperdrive_run_config:** A HyperDriveRunConfig that defines the configuration for this HyperDrive run\n",
"- **estimator_entry_script_arguments:** List of command-line arguments for estimator entry script\n",
"- **inputs:** List of input port bindings\n",
"- **outputs:** List of output port bindings\n",
"- **metrics_output:** Optional value specifying the location to store HyperDrive run metrics as a JSON file\n",
"- **allow_reuse:** whether to allow reuse\n",
"- **version:** version\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hd_step = HyperDriveStep(\n",
" name=\"hyperdrive_module\",\n",
" hyperdrive_run_config=hd_config,\n",
" estimator_entry_script_arguments=['--data-folder', data_folder],\n",
" inputs=[data_folder])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run the pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline = Pipeline(workspace=ws, steps=[hd_step])\n",
"pipeline_run = Experiment(ws, 'Hyperdrive_Test').submit(pipeline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor using widget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wait for the completion of this Pipeline run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_run.wait_for_completion()"
]
}
],
"metadata": {
"authors": [
{
"name": "sonnyp"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -33,20 +33,16 @@
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
"from azureml.core import Workspace, Datastore\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.compute import DataFactoryCompute\n",
"from azureml.widgets import RunDetails\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)\n",
"\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"from azureml.pipeline.steps import DataTransferStep\n",
"from azureml.pipeline.core import PublishedPipeline\n",
"from azureml.pipeline.core.graph import PipelineParameter\n",
"\n",
"print(\"Pipeline SDK-specific imports completed\")\n",
@@ -79,12 +75,13 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aml_compute_target = \"aml-compute\"\n",
"aml_compute_target = \"cpucluster\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"found existing compute target.\")\n",
"except:\n",
"except ComputeTargetException:\n",
" print(\"creating new compute target\")\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
@@ -283,7 +280,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Publish the pipeline"
"## Run published pipeline\n",
"### Publish the pipeline"
]
},
{
@@ -293,7 +291,34 @@
"outputs": [],
"source": [
"published_pipeline1 = pipeline1.publish(name=\"My_New_Pipeline\", description=\"My Published Pipeline Description\")\n",
"print(published_pipeline1.id)"
"published_pipeline1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get published pipeline\n",
"\n",
"You can get the published pipeline using **pipeline id**.\n",
"\n",
"To get all the published pipelines for a given workspace(ws): \n",
"```css\n",
"all_pub_pipelines = PublishedPipeline.get_all(ws)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PublishedPipeline\n",
"\n",
"pipeline_id = published_pipeline1.id # use your published pipeline id\n",
"published_pipeline = PublishedPipeline.get(ws, pipeline_id)\n",
"published_pipeline"
]
},
{
@@ -309,15 +334,15 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import AzureCliAuthentication\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"import requests\n",
"\n",
"cli_auth = AzureCliAuthentication()\n",
"aad_token = cli_auth.get_authentication_header()\n",
"auth = InteractiveLoginAuthentication()\n",
"aad_token = auth.get_authentication_header()\n",
"\n",
"rest_endpoint1 = published_pipeline1.endpoint\n",
"rest_endpoint1 = published_pipeline.endpoint\n",
"\n",
"print(rest_endpoint1)\n",
"print(\"You can perform HTTP POST on URL {} to trigger this pipeline\".format(rest_endpoint1))\n",
"\n",
"# specify the param when running the pipeline\n",
"response = requests.post(rest_endpoint1, \n",

View File

@@ -0,0 +1,450 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to Setup a Schedule for a Published Pipeline\n",
"In this notebook, we will show you how you can run an already published pipeline on a schedule."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites and AML Basics\n",
"Make sure you go through the configuration Notebook located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc.\n",
"\n",
"### Initialization Steps"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compute Targets\n",
"#### Retrieve an already attached Azure Machine Learning Compute"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Run, Experiment, Datastore\n",
"\n",
"from azureml.widgets import RunDetails\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"aml_compute_target = \"aml-compute\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"Found existing compute target: {}\".format(aml_compute_target))\n",
"except:\n",
" print(\"Creating new compute target: {}\".format(aml_compute_target))\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
" min_nodes = 1, \n",
" max_nodes = 4) \n",
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build and Publish Pipeline\n",
"Build a simple pipeline, publish it and add a schedule to run it."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define a pipeline step\n",
"Define a single step pipeline for demonstration purpose."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.steps import PythonScriptStep\n",
"\n",
"\n",
"# project folder\n",
"project_folder = 'scripts'\n",
"\n",
"trainStep = PythonScriptStep(\n",
" name=\"Training_Step\",\n",
" script_name=\"train.py\", \n",
" compute_target=aml_compute_target, \n",
" source_directory=project_folder\n",
")\n",
"print(\"TrainStep created\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Build the pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Pipeline\n",
"\n",
"pipeline1 = Pipeline(workspace=ws, steps=[trainStep])\n",
"print (\"Pipeline is built\")\n",
"\n",
"pipeline1.validate()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Publish the pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"timenow = datetime.now().strftime('%m-%d-%Y-%H-%M')\n",
"\n",
"pipeline_name = timenow + \"-Pipeline\"\n",
"print(pipeline_name)\n",
"\n",
"published_pipeline1 = pipeline1.publish(\n",
" name=pipeline_name, \n",
" description=pipeline_name)\n",
"print(\"Newly published pipeline id: {}\".format(published_pipeline1.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Schedule Operations\n",
"Schedule operations require id of a published pipeline. You can get all published pipelines and do Schedule operations on them, or if you already know the id of the published pipeline, you can use it directly as well.\n",
"### Get published pipeline ID"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PublishedPipeline\n",
"\n",
"# You could retrieve all pipelines that are published, or \n",
"# just get the published pipeline object that you have the ID for.\n",
"\n",
"# Get all published pipeline objects in the workspace\n",
"all_pub_pipelines = PublishedPipeline.get_all(ws)\n",
"\n",
"# We will iterate through the list of published pipelines and \n",
"# use the last ID in the list for Schelue operations: \n",
"print(\"Published pipelines found in the workspace:\")\n",
"for pub_pipeline in all_pub_pipelines:\n",
" print(pub_pipeline.id)\n",
" pub_pipeline_id = pub_pipeline.id\n",
"\n",
"print(\"Published pipeline id to be used for Schedule operations: {}\".format(pub_pipeline_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a schedule for the pipeline using a recurrence\n",
"This schedule will run on a specified recurrence interval."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core.schedule import ScheduleRecurrence, Schedule\n",
"\n",
"recurrence = ScheduleRecurrence(frequency=\"Day\", interval=2, hours=[22], minutes=[30]) # Runs every other day at 10:30pm\n",
"\n",
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
" pipeline_id=pub_pipeline_id, \n",
" experiment_name='Schedule_Run',\n",
" recurrence=recurrence,\n",
" wait_for_provisioning=True,\n",
" description=\"Schedule Run\")\n",
"\n",
"# You may want to make sure that the schedule is provisioned properly\n",
"# before making any further changes to the schedule\n",
"\n",
"print(\"Created schedule with id: {}\".format(schedule.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: Set the `wait_for_provisioning` flag to False if you do not want to wait for the call to provision the schedule in the backend."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get all schedules for a given pipeline\n",
"Once you have the published pipeline ID, then you can get all schedules for that pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"schedules = Schedule.get_all(ws, pipeline_id=pub_pipeline_id)\n",
"\n",
"# We will iterate through the list of schedules and \n",
"# use the last ID in the list for further operations: \n",
"print(\"Found these schedules for the pipeline id {}:\".format(pub_pipeline_id))\n",
"for schedule in schedules: \n",
" print(schedule.id)\n",
" schedule_id = schedule.id\n",
"\n",
"print(\"Schedule id to be used for schedule operations: {}\".format(schedule_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get all schedules in your workspace\n",
"You can also iterate through all schedules in your workspace if needed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use active_only=False to get all schedules including disabled schedules\n",
"schedules = Schedule.get_all(ws, active_only=True) \n",
"print(\"Your workspace has the following schedules set up:\")\n",
"for schedule in schedules:\n",
" print(\"{} (Published pipeline: {}\".format(schedule.id, schedule.pipeline_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get the schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
"print(\"Using schedule with id: {}\".format(fetched_schedule.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disable the schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
"# for the call to provision the schedule in the backend.\n",
"fetched_schedule.disable(wait_for_provisioning=True)\n",
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
"print(\"Disabled schedule {}. New status is: {}\".format(fetched_schedule.id, fetched_schedule.status))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Reactivate the schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
"# for the call to provision the schedule in the backend.\n",
"fetched_schedule.activate(wait_for_provisioning=True)\n",
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
"print(\"Activated schedule {}. New status is: {}\".format(fetched_schedule.id, fetched_schedule.status))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Change recurrence of the schedule"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
"# for the call to provision the schedule in the backend.\n",
"recurrence = ScheduleRecurrence(frequency=\"Hour\", interval=2) # Runs every two hours\n",
"\n",
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
"\n",
"fetched_schedule.update(name=\"My_Updated_Schedule\", \n",
" description=\"Updated_Schedule_Run\", \n",
" status='Active', \n",
" wait_for_provisioning=True,\n",
" recurrence=recurrence)\n",
"\n",
"fetched_schedule = Schedule.get(ws, fetched_schedule.id)\n",
"\n",
"print(\"Updated schedule:\", fetched_schedule.id, \n",
" \"\\nNew name:\", fetched_schedule.name,\n",
" \"\\nNew frequency:\", fetched_schedule.recurrence.frequency,\n",
" \"\\nNew status:\", fetched_schedule.status)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a schedule for the pipeline using a Datastore\n",
"This schedule will run when additions or modifications are made to Blobs in the Datastore container.\n",
"Note: Only Blob Datastores are supported."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.datastore import Datastore\n",
"\n",
"datastore = Datastore(workspace=ws, name=\"workspaceblobstore\")\n",
"\n",
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
" pipeline_id=pub_pipeline_id, \n",
" experiment_name='Schedule_Run',\n",
" datastore=datastore,\n",
" wait_for_provisioning=True,\n",
" description=\"Schedule Run\")\n",
"\n",
"# You may want to make sure that the schedule is provisioned properly\n",
"# before making any further changes to the schedule\n",
"\n",
"print(\"Created schedule with id: {}\".format(schedule.id))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
"# for the call to provision the schedule in the backend.\n",
"schedule.disable(wait_for_provisioning=True)\n",
"schedule = Schedule.get(ws, schedule_id)\n",
"print(\"Disabled schedule {}. New status is: {}\".format(schedule.id, schedule.status))"
]
}
],
"metadata": {
"authors": [
{
"name": "diray"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -13,7 +13,8 @@
"metadata": {},
"source": [
"# AML Pipeline with AdlaStep\n",
"This notebook is used to demonstrate the use of AdlaStep in AML Pipeline."
"\n",
"This notebook is used to demonstrate the use of AdlaStep in AML Pipelines. [AdlaStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.adla_step.adlastep?view=azure-ml-py) is used to run U-SQL scripts using Azure Data Lake Analytics service. "
]
},
{
@@ -30,15 +31,16 @@
"outputs": [],
"source": [
"import os\n",
"from msrest.exceptions import HttpOperationError\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Run, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import AdlaStep\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import ComputeTarget, AdlaCompute\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.core import attach_legacy_compute_target\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import AdlaStep\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
@@ -67,22 +69,57 @@
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach ADLA account to workspace\n",
"\n",
"To submit jobs to Azure Data Lake Analytics service, you must first attach your ADLA account to the workspace. You'll need to provide the account name and resource group of ADLA account to complete this part."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = '.'\n",
"experiment_name = \"adla_101_experiment\"\n",
"ws._initialize_folder(experiment_name=experiment_name, directory=script_folder)"
"adla_compute_name = 'testadl' # Name to associate with new compute in workspace\n",
"\n",
"# ADLA account details needed to attach as compute to workspace\n",
"adla_account_name = \"<adla_account_name>\" # Name of the Azure Data Lake Analytics account\n",
"adla_resource_group = \"<adla_resource_group>\" # Name of the resource group which contains this account\n",
"\n",
"try:\n",
" # check if already attached\n",
" adla_compute = AdlaCompute(ws, adla_compute_name)\n",
"except ComputeTargetException:\n",
" print('attaching adla compute...')\n",
" attach_config = AdlaCompute.attach_configuration(resource_group=adla_resource_group, account_name=adla_account_name)\n",
" adla_compute = ComputeTarget.attach(ws, adla_compute_name, attach_config)\n",
" adla_compute.wait_for_completion()\n",
"\n",
"print(\"Using ADLA compute:{}\".format(adla_compute.cluster_resource_id))\n",
"print(\"Provisioning state:{}\".format(adla_compute.provisioning_state))\n",
"print(\"Provisioning errors:{}\".format(adla_compute.provisioning_errors))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Datastore"
"## Register Data Lake Storage as Datastore\n",
"\n",
"To register Data Lake Storage as Datastore in workspace, you'll need account information like account name, resource group and subscription Id. \n",
"\n",
"> AdlaStep can only work with data stored in the **default** Data Lake Storage of the Data Lake Analytics account provided above. If the data you need to work with is in a non-default storage, you can use a DataTransferStep to copy the data before training. You can find the default storage by opening your Data Lake Analytics account in Azure portal and then navigating to 'Data sources' item under Settings in the left pane.\n",
"\n",
"### Grant Azure AD application access to Data Lake Storage\n",
"\n",
"You'll also need to provide an Active Directory application which can access Data Lake Storage. [This document](https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-service-to-service-authenticate-using-active-directory) contains step-by-step instructions on how to create an AAD application and assign to Data Lake Storage. Couple of important notes when assigning permissions to AAD app:\n",
"\n",
"- Access should be provided at root folder level.\n",
"- In 'Assign permissions' pane, select Read, Write, and Execute permissions for 'This folder and all children'. Add as 'An access permission entry and a default permission entry' to make sure application can access any new files created in the future."
]
},
{
@@ -91,20 +128,20 @@
"metadata": {},
"outputs": [],
"source": [
"datastore_name = 'MyAdlsDatastore' # Name to associate with data store in workspace\n",
"\n",
"workspace = ws.name\n",
"datastore_name='MyAdlsDatastore'\n",
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
"store_name=os.getenv(\"ADL_STORENAME_62\", \"<my-datastore-name>\") # ADLS account name\n",
"tenant_id=os.getenv(\"ADL_TENANT_62\", \"<my-tenant-id>\") # tenant id of service principal\n",
"client_id=os.getenv(\"ADL_CLIENTID_62\", \"<my-client-id>\") # client id of service principal\n",
"client_secret=os.getenv(\"ADL_CLIENT_62_SECRET\", \"<my-client-secret>\") # the secret of service principal\n",
"# ADLS storage account details needed to register as a Datastore\n",
"subscription_id = os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
"resource_group = os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
"store_name = os.getenv(\"ADL_STORENAME_62\", \"<my-datastore-name>\") # ADLS account name\n",
"tenant_id = os.getenv(\"ADL_TENANT_62\", \"<my-tenant-id>\") # tenant id of service principal\n",
"client_id = os.getenv(\"ADL_CLIENTID_62\", \"<my-client-id>\") # client id of service principal\n",
"client_secret = os.getenv(\"ADL_CLIENT_62_SECRET\", \"<my-client-secret>\") # the secret of service principal\n",
"\n",
"try:\n",
" adls_datastore = Datastore.get(ws, datastore_name)\n",
" print(\"found datastore with name: %s\" % datastore_name)\n",
"except:\n",
"except HttpOperationError:\n",
" adls_datastore = Datastore.register_azure_data_lake(\n",
" workspace=ws,\n",
" datastore_name=datastore_name,\n",
@@ -114,16 +151,16 @@
" tenant_id=tenant_id, # tenant id of service principal\n",
" client_id=client_id, # client id of service principal\n",
" client_secret=client_secret) # the secret of service principal\n",
" print(\"registered datastore with name: %s\" % datastore_name)\n"
" print(\"registered datastore with name: %s\" % datastore_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create DataReferences and PipelineData\n",
"## Setup inputs and outputs\n",
"\n",
"In the code cell below, replace datastorename with your default datastore name. Copy the file `testdata.txt` (located in the pipeline folder that this notebook is in) to the path on the datastore."
"For purpose of this demo, we're going to execute a simple U-SQL script that reads a CSV file and writes portion of content to a new text file. First, let's create our sample input which contains 3 columns: employee Id, name and department Id."
]
},
{
@@ -132,26 +169,51 @@
"metadata": {},
"outputs": [],
"source": [
"datastorename = \"MyAdlsDatastore\"\n",
"# create a folder to store files for our job\n",
"sample_folder = \"adla_sample\"\n",
"\n",
"adls_datastore = Datastore(workspace=ws, name=datastorename)\n",
"script_input = DataReference(\n",
"if not os.path.isdir(sample_folder):\n",
" os.mkdir(sample_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $sample_folder/sample_input.csv\n",
"1, Noah, 100\n",
"3, Liam, 100\n",
"4, Emma, 100\n",
"5, Jacob, 100\n",
"7, Jennie, 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Upload this file to Data Lake Storage at location `adla_sample/sample_input.csv` and create a DataReference to refer to this file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_input = DataReference(\n",
" datastore=adls_datastore,\n",
" data_reference_name=\"script_input\",\n",
" path_on_datastore=\"testdata/testdata.txt\")\n",
"\n",
"script_output = PipelineData(\"script_output\", datastore=adls_datastore)\n",
"\n",
"print(\"Created Pipeline Data\")"
" data_reference_name=\"employee_data\",\n",
" path_on_datastore=\"adla_sample/sample_input.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Data Lake Account\n",
"\n",
"ADLA can only use data that is located in the default data store associated with that ADLA account. Through Azure portal, check the name of the default data store corresponding to the ADLA account you are using below. Replace the value associated with `adla_compute_name` in the code cell below accordingly."
"Create PipelineData object to store output produced by AdlaStep."
]
},
{
@@ -160,35 +222,23 @@
"metadata": {},
"outputs": [],
"source": [
"adla_compute_name = 'testadl' # Replace this with your default compute\n",
"\n",
"from azureml.core.compute import ComputeTarget, AdlaCompute\n",
"\n",
"def get_or_create_adla_compute(workspace, compute_name):\n",
" try:\n",
" return AdlaCompute(workspace, compute_name)\n",
" except ComputeTargetException as e:\n",
" if 'ComputeTargetNotFound' in e.message:\n",
" print('adla compute not found, creating...')\n",
" provisioning_config = AdlaCompute.provisioning_configuration()\n",
" adla_compute = ComputeTarget.create(workspace, compute_name, provisioning_config)\n",
" adla_compute.wait_for_completion()\n",
" return adla_compute\n",
" else:\n",
" raise e\n",
" \n",
"adla_compute = get_or_create_adla_compute(ws, adla_compute_name)\n",
"\n",
"# CLI:\n",
"# Create: az ml computetarget setup adla -n <name>\n",
"# BYOC: az ml computetarget attach adla -n <name> -i <resource-id>"
"sample_output = PipelineData(\"sample_output\", datastore=adls_datastore)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the above code cell completes, run the below to check your ADLA compute status:"
"## Write your U-SQL script\n",
"\n",
"Now let's write a U-Sql script that reads above CSV file and writes the name column to a new file.\n",
"\n",
"Instead of hard-coding paths in your script, you can use `@@name@@` syntax to refer to inputs, outputs, and parameters.\n",
"\n",
"- If `name` is the name of an input or output port binding, any occurrences of `@@name@@` in the script are replaced with actual data path of corresponding port binding.\n",
"- If `name` matches any key in the `params` dictionary, any occurrences of `@@name@@` will be replaced with corresponding value in the dictionary.\n",
"\n",
"Note the use of @@ syntax in the below script. Before submitting the job to Data Lake Analytics service, `@@emplyee_data@@` will be replaced with actual path of `sample_input.csv` in Data Lake Storage. Similarly, `@@sample_output@@` will be replaced with a path in Data Lake Storage which will be used to store intermediate output produced by the step."
]
},
{
@@ -197,58 +247,43 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"ADLA compute state:{}\".format(adla_compute.provisioning_state))\n",
"print(\"ADLA compute state:{}\".format(adla_compute.provisioning_errors))\n",
"print(\"Using ADLA compute:{}\".format(adla_compute.cluster_resource_id))"
"%%writefile $sample_folder/sample_script.usql\n",
"\n",
"// Read employee information from csv file\n",
"@employees = \n",
" EXTRACT EmpId int, EmpName string, DeptId int\n",
" FROM \"@@employee_data@@\"\n",
" USING Extractors.Csv();\n",
"\n",
"// Export employee names to text file\n",
"OUTPUT\n",
"(\n",
" SELECT EmpName\n",
" FROM @employees\n",
")\n",
"TO \"@@sample_output@@\"\n",
"USING Outputters.Text();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an AdlaStep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**AdlaStep** is used to run U-SQL script using Azure Data Lake Analytics.\n",
"## Create an AdlaStep\n",
"\n",
"**[AdlaStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.adla_step.adlastep?view=azure-ml-py)** is used to run U-SQL script using Azure Data Lake Analytics.\n",
"\n",
"- **name:** Name of module\n",
"- **script_name:** name of U-SQL script\n",
"- **script_name:** name of U-SQL script file\n",
"- **inputs:** List of input port bindings\n",
"- **outputs:** List of output port bindings\n",
"- **adla_compute:** the ADLA compute to use for this job\n",
"- **compute_target:** the ADLA compute to use for this job\n",
"- **params:** Dictionary of name-value pairs to pass to U-SQL job *(optional)*\n",
"- **degree_of_parallelism:** the degree of parallelism to use for this job *(optional)*\n",
"- **priority:** the priority value to use for the current job *(optional)*\n",
"- **runtime_version:** the runtime version of the Data Lake Analytics engine *(optional)*\n",
"- **root_folder:** folder that contains the script, assemblies etc. *(optional)*\n",
"- **hash_paths:** list of paths to hash to detect a change (script file is always hashed) *(optional)*\n",
"\n",
"### Remarks\n",
"\n",
"You can use `@@name@@` syntax in your script to refer to inputs, outputs, and params.\n",
"\n",
"* if `name` is the name of an input or output port binding, any occurences of `@@name@@` in the script\n",
"are replaced with actual data path of corresponding port binding.\n",
"* if `name` matches any key in `params` dict, any occurences of `@@name@@` will be replaced with\n",
"corresponding value in dict.\n",
"\n",
"#### Sample script\n",
"\n",
"```\n",
"@resourcereader =\n",
" EXTRACT query string\n",
" FROM \"@@script_input@@\"\n",
" USING Extractors.Csv();\n",
"\n",
"\n",
"OUTPUT @resourcereader\n",
"TO \"@@script_output@@\"\n",
"USING Outputters.Csv();\n",
"```"
"- **source_directory:** folder that contains the script, assemblies etc. *(optional)*\n",
"- **hash_paths:** list of paths to hash to detect a change (script file is always hashed) *(optional)*"
]
},
{
@@ -258,10 +293,11 @@
"outputs": [],
"source": [
"adla_step = AdlaStep(\n",
" name='adla_script_step',\n",
" script_name='test_adla_script.usql',\n",
" inputs=[script_input],\n",
" outputs=[script_output],\n",
" name='extract_employee_names',\n",
" script_name='sample_script.usql',\n",
" source_directory=sample_folder,\n",
" inputs=[sample_input],\n",
" outputs=[sample_output],\n",
" compute_target=adla_compute)"
]
},
@@ -278,13 +314,9 @@
"metadata": {},
"outputs": [],
"source": [
"pipeline = Pipeline(\n",
" description=\"adla_102\",\n",
" workspace=ws, \n",
" steps=[adla_step],\n",
" default_source_directory=script_folder)\n",
"pipeline = Pipeline(workspace=ws, steps=[adla_step])\n",
"\n",
"pipeline_run = Experiment(workspace, experiment_name).submit(pipeline)\n",
"pipeline_run = Experiment(ws, 'adla_sample').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
@@ -304,39 +336,6 @@
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Examine the run\n",
"You can cycle through the node_run objects and examine job logs, stdout, and stderr of each of the steps."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_runs = pipeline_run.get_children()\n",
"for step_run in step_runs:\n",
" status = step_run.get_status()\n",
" print('node', step_run.name, 'status:', status)\n",
" if status == \"Failed\":\n",
" joblog = step_run.get_job_log()\n",
" print('job log:', joblog)\n",
" stdout_log = step_run.get_stdout_log()\n",
" print('stdout log:', stdout_log)\n",
" stderr_log = step_run.get_stderr_log()\n",
" print('stderr log:', stderr_log)\n",
" with open(\"logs-\" + step_run.name + \".txt\", \"w\") as f:\n",
" f.write(joblog)\n",
" print(\"Job log written to logs-\"+ step_run.name + \".txt\")\n",
" if status == \"Finished\":\n",
" stdout_log = step_run.get_stdout_log()\n",
" print('stdout log:', stdout_log)"
]
}
],
"metadata": {

View File

@@ -89,7 +89,7 @@
"from azureml.core.runconfig import JarLibrary\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Run, Experiment\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import DatabricksStep\n",
"from azureml.core.datastore import Datastore\n",
@@ -146,7 +146,7 @@
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
" \n",
"try:\n",
" databricks_compute = ComputeTarget(workspace=ws, name=db_compute_name)\n",
" databricks_compute = DatabricksCompute(workspace=ws, name=db_compute_name)\n",
" print('Compute target {} already exists'.format(db_compute_name))\n",
"except ComputeTargetException:\n",
" print('Compute not found, will use below parameters to attach new one')\n",
@@ -176,7 +176,7 @@
"### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
"- **Direct Access**: Databricks allows you to interact with Azure Blob or ADLS URIs directly. The input or output URIs will be mapped to a Databricks widget param in the Databricks notebook.\n",
"- **Mouting**: You will be supplied with additional parameters and secrets that will enable you to mount your ADLS or Azure Blob input or output location in your Databricks notebook."
"- **Mounting**: You will be supplied with additional parameters and secrets that will enable you to mount your ADLS or Azure Blob input or output location in your Databricks notebook."
]
},
{
@@ -297,7 +297,7 @@
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
"\n",
"# We are uploading a sample file in the local directory to be used as a datasource\n",
"def_blob_store.upload_files([\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
"def_blob_store.upload_files(files=[\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
"\n",
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
" data_reference_name=\"input\")\n",
@@ -348,6 +348,7 @@
"\n",
"## Use runconfig to specify library dependencies\n",
"You can use a runconfig to specify the library dependencies for your cluster in Databricks. The runconfig will contain a databricks section as follows:\n",
"\n",
"```yaml\n",
"environment:\n",
"# Databricks details\n",
@@ -365,14 +366,21 @@
" repo: ''\n",
"# List of RCran libraries\n",
" rcranLibraries:\n",
" - package: ada\n",
" -\n",
"# Coordinates.\n",
" package: ada\n",
"# Repo\n",
" repo: http://cran.us.r-project.org\n",
"# List of JAR libraries\n",
" jarLibraries:\n",
" - library: dbfs:/mnt/libraries/library.jar\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.jar\n",
"# List of Egg libraries\n",
" eggLibraries:\n",
" - library: dbfs:/mnt/libraries/library.egg\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.egg\n",
"```\n",
"\n",
"You can then create a RunConfiguration object using this file and pass it as the runconfig parameter to DatabricksStep.\n",
@@ -409,7 +417,7 @@
" notebook_params={'myparam': 'testparam'},\n",
" run_name='DB_Notebook_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=False\n",
" allow_reuse=True\n",
")"
]
},
@@ -453,14 +461,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Running a Python script that is already added in DBFS\n",
"To run a Python script that is already uploaded to DBFS, follow the instructions below. You will first upload the Python script to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n",
"\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.py` to the root folder in DBFS. You can upload `train-db-dbfs.py` to the root folder in DBFS using this commandline so you can use `python_script_path = \"dbfs:/train-db-dbfs.py\"`:\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
"```"
"```\n",
"\n",
"The code in the below cell assumes that you have completed the previous step of uploading the script `train-db-dbfs.py` to the root folder in DBFS."
]
},
{
@@ -469,7 +479,7 @@
"metadata": {},
"outputs": [],
"source": [
"python_script_path = \"dbfs:/train-db-dbfs.py\"\n",
"python_script_path = os.getenv(\"DATABRICKS_PYTHON_SCRIPT_PATH\", \"<my-databricks-python-script-path>\") # Databricks python script path\n",
"\n",
"dbPythonInDbfsStep = DatabricksStep(\n",
" name=\"DBPythonInDBFS\",\n",
@@ -479,7 +489,7 @@
" python_script_params={'--input_data'},\n",
" run_name='DB_Python_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=False\n",
" allow_reuse=True\n",
")"
]
},
@@ -548,7 +558,7 @@
" source_directory=source_directory,\n",
" run_name='DB_Python_Local_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=False\n",
" allow_reuse=True\n",
")"
]
},
@@ -609,7 +619,7 @@
"outputs": [],
"source": [
"main_jar_class_name = \"com.microsoft.aeva.Main\"\n",
"jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"\n",
"jar_library_dbfs_path = os.getenv(\"DATABRICKS_JAR_LIB_PATH\", \"<my-databricks-jar-lib-path>\") # Databricks jar library path\n",
"\n",
"dbJarInDbfsStep = DatabricksStep(\n",
" name=\"DBJarInDBFS\",\n",
@@ -620,7 +630,7 @@
" run_name='DB_JAR_demo',\n",
" jar_libraries=[JarLibrary(jar_library_dbfs_path)],\n",
" compute_target=databricks_compute,\n",
" allow_reuse=False\n",
" allow_reuse=True\n",
")"
]
},

View File

@@ -33,22 +33,17 @@
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Run, Experiment, Datastore\n",
"from azureml.core import Workspace, Experiment, Datastore\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.compute import DataFactoryCompute\n",
"from azureml.widgets import RunDetails\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)\n",
"\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.core import Pipeline, PipelineData, StepSequence\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"from azureml.pipeline.steps import DataTransferStep\n",
"from azureml.pipeline.core import PublishedPipeline\n",
"from azureml.pipeline.core.graph import PipelineParameter\n",
"\n",
"print(\"Pipeline SDK-specific imports completed\")"
]
},
@@ -135,12 +130,13 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aml_compute_target = \"aml-compute\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"found existing compute target.\")\n",
"except:\n",
"except ComputeTargetException:\n",
" print(\"creating new compute target\")\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",

View File

@@ -0,0 +1,106 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
import argparse
import os
import tensorflow as tf
from azureml.core import Run
from utils import load_data
print("TensorFlow version:", tf.VERSION)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
help='# of neurons in the first layer')
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
help='# of neurons in the second layer')
parser.add_argument('--learning-rate', type=float, dest='learning_rate', default=0.01, help='learning rate')
args = parser.parse_args()
data_folder = os.path.join(args.data_folder, 'mnist')
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
training_set_size = X_train.shape[0]
n_inputs = 28 * 28
n_h1 = args.n_hidden_1
n_h2 = args.n_hidden_2
n_outputs = 10
learning_rate = args.learning_rate
n_epochs = 50
batch_size = args.batch_size
with tf.name_scope('network'):
# construct the DNN
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name='X')
y = tf.placeholder(tf.int64, shape=(None), name='y')
h1 = tf.layers.dense(X, n_h1, activation=tf.nn.relu, name='h1')
h2 = tf.layers.dense(h1, n_h2, activation=tf.nn.relu, name='h2')
output = tf.layers.dense(h2, n_outputs, name='output')
with tf.name_scope('train'):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=output)
loss = tf.reduce_mean(cross_entropy, name='loss')
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss)
with tf.name_scope('eval'):
correct = tf.nn.in_top_k(output, y, 1)
acc_op = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# start an Azure ML run
run = Run.get_context()
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
# randomly shuffle training set
indices = np.random.permutation(training_set_size)
X_train = X_train[indices]
y_train = y_train[indices]
# batch index
b_start = 0
b_end = b_start + batch_size
for _ in range(training_set_size // batch_size):
# get a batch
X_batch, y_batch = X_train[b_start: b_end], y_train[b_start: b_end]
# update batch index for the next batch
b_start = b_start + batch_size
b_end = min(b_start + batch_size, training_set_size)
# train
sess.run(train_op, feed_dict={X: X_batch, y: y_batch})
# evaluate training set
acc_train = acc_op.eval(feed_dict={X: X_batch, y: y_batch})
# evaluate validation set
acc_val = acc_op.eval(feed_dict={X: X_test, y: y_test})
# log accuracies
run.log('training_acc', np.float(acc_train))
run.log('validation_acc', np.float(acc_val))
print(epoch, '-- Training accuracy:', acc_train, '\b Validation accuracy:', acc_val)
y_hat = np.argmax(output.eval(feed_dict={X: X_test}), axis=1)
run.log('final_acc', np.float(acc_val))
os.makedirs('./outputs/model', exist_ok=True)
# files saved in the "./outputs" folder are automatically uploaded into run history
saver.save(sess, './outputs/model/mnist-tf.model')

View File

@@ -0,0 +1,27 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import gzip
import numpy as np
import struct
# load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
with gzip.open(filename) as gz:
struct.unpack('I', gz.read(4))
n_items = struct.unpack('>I', gz.read(4))
if not label:
n_rows = struct.unpack('>I', gz.read(4))[0]
n_cols = struct.unpack('>I', gz.read(4))[0]
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
res = res.reshape(n_items[0], n_rows * n_cols)
else:
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
res = res.reshape(n_items[0], 1)
return res
# one-hot encode a 1-D array
def one_hot_encode(array, num_of_classes):
return np.eye(num_of_classes)[array.reshape(-1)]

View File

@@ -37,10 +37,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"from azureml.core import Experiment\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
"from azureml.data.data_reference import DataReference\n",
@@ -55,7 +53,7 @@
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Run, Experiment\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
@@ -166,10 +164,8 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# choose a name for your cluster\n",
"aml_compute_name = os.environ.get(\"AML_COMPUTE_NAME\", \"gpu-cluster\")\n",
"aml_compute_name = os.environ.get(\"AML_COMPUTE_NAME\", \"gpucluster\")\n",
"cluster_min_nodes = os.environ.get(\"AML_COMPUTE_MIN_NODES\", 0)\n",
"cluster_max_nodes = os.environ.get(\"AML_COMPUTE_MAX_NODES\", 1)\n",
"vm_size = os.environ.get(\"AML_COMPUTE_SKU\", \"STANDARD_NC6\")\n",
@@ -470,7 +466,35 @@
"published_pipeline = pipeline_run.publish_pipeline(\n",
" name=\"Inception_v3_scoring\", description=\"Batch scoring using Inception v3 model\", version=\"1.0\")\n",
"\n",
"published_id = published_pipeline.id"
"published_pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get published pipeline\n",
"\n",
"You can get the published pipeline using **pipeline id**.\n",
"\n",
"To get all the published pipelines for a given workspace(ws): \n",
"```css\n",
"all_pub_pipelines = PublishedPipeline.get_all(ws)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PublishedPipeline\n",
"\n",
"pipeline_id = published_pipeline.id # use your published pipeline id\n",
"published_pipeline = PublishedPipeline.get(ws, pipeline_id)\n",
"\n",
"published_pipeline"
]
},
{
@@ -493,11 +517,11 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import AzureCliAuthentication\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"import requests\n",
"\n",
"cli_auth = AzureCliAuthentication()\n",
"aad_token = cli_auth.get_authentication_header()"
"auth = InteractiveLoginAuthentication()\n",
"aad_token = auth.get_authentication_header()\n"
]
},
{
@@ -513,8 +537,6 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PublishedPipeline\n",
"\n",
"rest_endpoint = published_pipeline.endpoint\n",
"# specify batch size when running the pipeline\n",
"response = requests.post(rest_endpoint, \n",

View File

@@ -44,7 +44,7 @@
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Run, Experiment\n",
"from azureml.core import Workspace, Experiment\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
@@ -69,7 +69,8 @@
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import PythonScriptStep, MpiStep\n",
"from azureml.core.runconfig import CondaDependencies, RunConfiguration"
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
"from azureml.core.compute_target import ComputeTargetException"
]
},
{
@@ -90,7 +91,7 @@
"try:\n",
" cpu_cluster = AmlCompute(ws, cpu_cluster_name)\n",
" print(\"found existing cluster.\")\n",
"except:\n",
"except ComputeTargetException:\n",
" print(\"creating new cluster\")\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_v2\",\n",
" max_nodes = 1)\n",
@@ -104,7 +105,7 @@
"try:\n",
" gpu_cluster = AmlCompute(ws, gpu_cluster_name)\n",
" print(\"found existing cluster.\")\n",
"except:\n",
"except ComputeTargetException:\n",
" print(\"creating new cluster\")\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_NC6\",\n",
" max_nodes = 3)\n",
@@ -119,7 +120,7 @@
"metadata": {},
"source": [
"# Python Scripts\n",
"We use an edited version of `neural_style_mpi.py` (original is [here](https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/neural_style_mpi.py)). Scripts to split and stitch the video are thin wrappers to calls to `ffmpeg`. \n",
"We use an edited version of `neural_style_mpi.py` (original is [here](https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/neural_style.py)). Scripts to split and stitch the video are thin wrappers to calls to `ffmpeg`. \n",
"\n",
"We install `ffmpeg` through conda dependencies."
]
@@ -200,6 +201,13 @@
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The sample video **organutan.mp4** is stored at a publicly shared datastore. We are registering the datastore below. If you want to take a look at the original video, click here. (https://pipelinedata.blob.core.windows.net/sample-videos/orangutan.mp4)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -207,8 +215,8 @@
"outputs": [],
"source": [
"# datastore for input video\n",
"account_name = \"happypathspublic\"\n",
"video_ds = Datastore.register_azure_blob_container(ws, \"videos\", \"videos\",\n",
"account_name = \"pipelinedata\"\n",
"video_ds = Datastore.register_azure_blob_container(ws, \"videos\", \"sample-videos\",\n",
" account_name=account_name, overwrite=True)\n",
"\n",
"# datastore for models\n",
@@ -237,9 +245,10 @@
"metadata": {},
"outputs": [],
"source": [
"video_name=os.getenv(\"STYLE_TRANSFER_VIDEO_NAME\", \"orangutan.mp4\") \n",
"orangutan_video = DataReference(datastore=video_ds,\n",
" data_reference_name=\"video\",\n",
" path_on_datastore=\"orangutan.mp4\", mode=\"download\")"
" path_on_datastore=video_name, mode=\"download\")"
]
},
{
@@ -441,7 +450,35 @@
"published_pipeline = pipeline_run.publish_pipeline(\n",
" name=\"batch score style transfer\", description=\"style transfer\", version=\"1.0\")\n",
"\n",
"published_id = published_pipeline.id"
"published_pipeline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get published pipeline\n",
"\n",
"You can get the published pipeline using **pipeline id**.\n",
"\n",
"To get all the published pipelines for a given workspace(ws): \n",
"```css\n",
"all_pub_pipelines = PublishedPipeline.get_all(ws)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PublishedPipeline\n",
"\n",
"pipeline_id = published_pipeline.id # use your published pipeline id\n",
"published_pipeline = PublishedPipeline.get(ws, pipeline_id)\n",
"\n",
"published_pipeline"
]
},
{
@@ -464,11 +501,11 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import AzureCliAuthentication\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"import requests\n",
"\n",
"cli_auth = AzureCliAuthentication()\n",
"aad_token = cli_auth.get_authentication_header()"
"auth = InteractiveLoginAuthentication()\n",
"aad_token = auth.get_authentication_header()\n"
]
},
{
@@ -526,7 +563,6 @@
" \"ParameterAssignments\": {\"style\": \"rain_princess\", \"nodecount\": 3}}) \n",
"run_id = response.json()[\"Id\"]\n",
"\n",
"from azureml.pipeline.core.run import PipelineRun\n",
"published_pipeline_run_rain = PipelineRun(ws.experiments[\"style_transfer\"], run_id)\n",
"\n",
"RunDetails(published_pipeline_run_rain).show()"
@@ -542,10 +578,9 @@
"response = requests.post(rest_endpoint, \n",
" headers=aad_token,\n",
" json={\"ExperimentName\": \"style_transfer\",\n",
" \"ParameterAssignments\": {\"style\": \"udnie\", \"nodecount\": 4}}) \n",
" \"ParameterAssignments\": {\"style\": \"udnie\", \"nodecount\": 3}}) \n",
"run_id = response.json()[\"Id\"]\n",
"\n",
"from azureml.pipeline.core.run import PipelineRun\n",
"published_pipeline_run_udnie = PipelineRun(ws.experiments[\"style_transfer\"], run_id)\n",
"\n",
"RunDetails(published_pipeline_run_udnie).show()"

View File

@@ -0,0 +1,253 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"## Authentication in Azure Machine Learning\n",
"\n",
"This notebook shows you how to authenticate to your Azure ML Workspace using\n",
"\n",
" 1. Interactive Login Authentication\n",
" 2. Azure CLI Authentication\n",
" 3. Service Principal Authentication\n",
" \n",
"The interactive authentication is suitable for local experimentation on your own computer. Azure CLI authentication is suitable if you are already using Azure CLI for managing Azure resources, and want to sign in only once. The Service Principal authentication is suitable for automated workflows, for example as part of Azure Devops build."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interactive Authentication\n",
"\n",
"Interactive authentication is the default mode when using Azure ML SDK.\n",
"\n",
"When you connect to your workspace using workspace.from_config, you will get an interactive login dialog."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Also, if you explicitly specify the subscription ID, resource group and resource group, you will get the dialog."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace(subscription_id=\"my-subscription-id\",\n",
" resource_group=\"my-ml-rg\",\n",
" workspace_name=\"my-ml-workspace\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note the user you're authenticated as must have access to the subscription and resource group. If you receive an error\n",
"\n",
"```\n",
"AuthenticationException: You don't have access to xxxxxx-xxxx-xxx-xxx-xxxxxxxxxx subscription. All the subscriptions that you have access to = ...\n",
"```\n",
"\n",
"check that the you used correct login and entered the correct subscription ID."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In some cases, you may see a version of the error message containing text: ```All the subscriptions that you have access to = []```\n",
"\n",
"In such a case, you may have to specify the tenant ID of the Azure Active Directory you're using. An example would be accessing a subscription as a guest to a tenant that is not your default. You specify the tenant by explicitly instantiating _InteractiveLoginAuthentication_ with tenant ID as argument ([see instructions how to obtain tenant Id](#get-tenant-id))."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"\n",
"interactive_auth = InteractiveLoginAuthentication(tenant_id=\"my-tenant-id\")\n",
"\n",
"ws = Workspace(subscription_id=\"my-subscription-id\",\n",
" resource_group=\"my-ml-rg\",\n",
" workspace_name=\"my-ml-workspace\",\n",
" auth=interactive_auth)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Azure CLI Authentication\n",
"\n",
"If you have installed azure-cli package, and used ```az login``` command to log in to your Azure Subscription, you can use _AzureCliAuthentication_ class.\n",
"\n",
"Note that interactive authentication described above won't use existing Azure CLI auth tokens. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.authentication import AzureCliAuthentication\n",
"\n",
"cli_auth = AzureCliAuthentication()\n",
"\n",
"ws = Workspace(subscription_id=\"my-subscription-id\",\n",
" resource_group=\"my-ml-rg\",\n",
" workspace_name=\"my-ml-workspace\",\n",
" auth=cli_auth)\n",
"\n",
"print(\"Found workspace {} at location {}\".format(ws.name, ws.location))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Service Principal Authentication\n",
"\n",
"When setting up a machine learning workflow as an automated process, we recommend using Service Principal Authentication. This approach decouples the authentication from any specific user login, and allows managed access control.\n",
"\n",
"Note that you must have administrator privileges over the Azure subscription to complete these steps.\n",
"\n",
"The first step is to create a service principal. First, go to [Azure Portal](https://portal.azure.com), select **Azure Active Directory** and **App Registrations**. Then select **+New application registration**, give your service principal a name, for example _my-svc-principal_. You can leave application type as is, and specify a dummy value for Sign-on URL, such as _https://invalid_.\n",
"\n",
"Then click **Create**.\n",
"\n",
"![service principal creation]<img src=\"images/svc-pr-1.PNG\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The next step is to obtain the _Application ID_ (also called username) and create _password_ for the service principal.\n",
"\n",
"From the page for your newly created service principal, copy the _Application ID_. Then select **Settings** and **Keys**, write a description for your key, and select duration. Then click **Save**, and copy the _password_ to a secure location.\n",
"\n",
"![application id and password](images/svc-pr-2.PNG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id =\"get-tenant-id\"></a>\n",
"\n",
"Also, you need to obtain the tenant ID of your Azure subscription. Go back to **Azure Active Directory**, select **Properties** and copy _Directory ID_.\n",
"\n",
"![tenant id](images/svc-pr-3.PNG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, you need to give the service principal permissions to access your workspace. Navigate to **Resource Groups**, to the resource group for your Machine Learning Workspace. \n",
"\n",
"Then select **Access Control (IAM)** and **Add a role assignment**. For _Role_, specify which level of access you need to grant, for example _Contributor_. Start entering your service principal name and once it is found, select it, and click **Save**.\n",
"\n",
"![add role](images/svc-pr-4.PNG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you are ready to use the service principal authentication. For example, to connect to your Workspace, see code below and enter your own values for tenant ID, application ID, subscription ID, resource group and workspace.\n",
"\n",
"**We strongly recommended that you do not insert the secret password to code**. Instead, you can use environment variables to pass it to your code, for example through Azure Key Vault, or through secret build variables in Azure DevOps. For local testing, you can for example use following PowerShell command to set the environment variable.\n",
"\n",
"```\n",
"$env:AZUREML_PASSWORD = \"my-password\"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"\n",
"svc_pr_password = os.environ.get(\"AZUREML_PASSWORD\")\n",
"\n",
"svc_pr = ServicePrincipalAuthentication(\n",
" tenant_id=\"my-tenant-id\",\n",
" service_principal_id=\"my-application-id\",\n",
" service_principal_password=svc_pr_password)\n",
"\n",
"\n",
"ws = Workspace(\n",
" subscription_id=\"my-subscription-id\",\n",
" resource_group=\"my-ml-rg\",\n",
" workspace_name=\"my-ml-workspace\",\n",
" auth=svc_pr\n",
" )\n",
"\n",
"print(\"Found workspace {} at location {}\".format(ws.name, ws.location))"
]
}
],
"metadata": {
"authors": [
{
"name": "roastala"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

View File

@@ -1,8 +1,18 @@
## Azure Machine Learning service training examples
These examples show you:
* Distributed training of models on Machine Learning Compute cluster
* Hyperparameter tuning at scale
* Using Tensorboard with Azure ML Python SDK.
1. [How to use the Estimator pattern in Azure ML](how-to-use-estimator)
2. [Train using TensorFlow Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-tensorflow)
3. [Train using Pytorch Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-pytorch)
4. [Train using Keras and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-keras)
5. [Train using Chainer Estimator and tune hyperparameters using Hyperdrive](train-hyperparameter-tune-deploy-with-chainer)
6. [Distributed training using TensorFlow and Parameter Server](distributed-tensorflow-with-parameter-server)
7. [Distributed training using TensorFlow and Horovod](distributed-tensorflow-with-horovod)
8. [Distributed training using Pytorch and Horovod](distributed-pytorch-with-horovod)
9. [Distributed training using CNTK and custom Docker image](distributed-cntk-with-custom-docker)
10. [Distributed training using Chainer](distributed-chainer)
11. [Export run history records to Tensorboard](export-run-history-to-tensorboard)
12. [Use TensorBoard to monitor training execution](tensorboard)
Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models).

View File

@@ -0,0 +1,153 @@
import argparse
import chainer
import chainer.cuda
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
import chainermn
import chainermn.datasets
import chainermn.functions
chainer.disable_experimental_feature_warning = True
class MLP0SubA(chainer.Chain):
def __init__(self, comm, n_out):
super(MLP0SubA, self).__init__(
l1=L.Linear(784, n_out))
def __call__(self, x):
return F.relu(self.l1(x))
class MLP0SubB(chainer.Chain):
def __init__(self, comm):
super(MLP0SubB, self).__init__()
def __call__(self, y):
return y
class MLP0(chainermn.MultiNodeChainList):
# Model on worker 0.
def __init__(self, comm, n_out):
super(MLP0, self).__init__(comm=comm)
self.add_link(MLP0SubA(comm, n_out), rank_in=None, rank_out=1)
self.add_link(MLP0SubB(comm), rank_in=1, rank_out=None)
class MLP1Sub(chainer.Chain):
def __init__(self, n_units, n_out):
super(MLP1Sub, self).__init__(
l2=L.Linear(None, n_units),
l3=L.Linear(None, n_out))
def __call__(self, h0):
h1 = F.relu(self.l2(h0))
return self.l3(h1)
class MLP1(chainermn.MultiNodeChainList):
# Model on worker 1.
def __init__(self, comm, n_units, n_out):
super(MLP1, self).__init__(comm=comm)
self.add_link(MLP1Sub(n_units, n_out), rank_in=0, rank_out=0)
def main():
parser = argparse.ArgumentParser(
description='ChainerMN example: pipelined neural network')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', action='store_true',
help='Use GPU')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--unit', '-u', type=int, default=1000,
help='Number of units')
args = parser.parse_args()
# Prepare ChainerMN communicator.
if args.gpu:
comm = chainermn.create_communicator('hierarchical')
data_axis, model_axis = comm.rank % 2, comm.rank // 2
data_comm = comm.split(data_axis, comm.rank)
model_comm = comm.split(model_axis, comm.rank)
device = comm.intra_rank
else:
comm = chainermn.create_communicator('naive')
data_axis, model_axis = comm.rank % 2, comm.rank // 2
data_comm = comm.split(data_axis, comm.rank)
model_comm = comm.split(model_axis, comm.rank)
device = -1
if model_comm.size != 2:
raise ValueError(
'This example can only be executed on the even number'
'of processes.')
if comm.rank == 0:
print('==========================================')
if args.gpu:
print('Using GPUs')
print('Num unit: {}'.format(args.unit))
print('Num Minibatch-size: {}'.format(args.batchsize))
print('Num epoch: {}'.format(args.epoch))
print('==========================================')
if data_axis == 0:
model = L.Classifier(MLP0(model_comm, args.unit))
elif data_axis == 1:
model = MLP1(model_comm, args.unit, 10)
if device >= 0:
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), data_comm)
optimizer.setup(model)
# Original dataset on worker 0 and 1.
# Datasets of worker 0 and 1 are split and distributed to all workers.
if model_axis == 0:
train, test = chainer.datasets.get_mnist()
if data_axis == 1:
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)
else:
train, test = None, None
train = chainermn.scatter_dataset(train, data_comm, shuffle=True)
test = chainermn.scatter_dataset(test, data_comm, shuffle=True)
train_iter = chainer.iterators.SerialIterator(
train, args.batchsize, shuffle=False)
test_iter = chainer.iterators.SerialIterator(
test, args.batchsize, repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, data_comm)
trainer.extend(evaluator)
# Some display and output extentions are necessary only for worker 0.
if comm.rank == 0:
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
trainer.run()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,315 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed Chainer\n",
"In this tutorial, you will run a Chainer training example on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using ChainerMN distributed training across a GPU cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* Go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpucluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current AmlCompute. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that we have the AmlCompute ready to go, let's run our distributed training job."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './chainer-distr'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the script for distributed training of MNIST is already provided for you at `train_mnist.py`. In practice, you should be able to take any custom Chainer training script as is and run it with Azure ML without having to modify your code."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `train_mnist.py` into the project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('train_mnist.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this distributed Chainer tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'chainer-distr'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Chainer estimator\n",
"The Azure ML SDK's Chainer estimator enables you to easily submit Chainer training jobs for both single-node and distributed runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import Chainer\n",
"\n",
"estimator = Chainer(source_directory=project_folder,\n",
" compute_target=compute_target,\n",
" entry_script='train_mnist.py',\n",
" node_count=2,\n",
" process_count_per_node=1,\n",
" distributed_backend='mpi',\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to execute a distributed run using MPI, you must provide the argument `distributed_backend='mpi'`. Using this estimator with these settings, Chainer and its dependencies will be installed for you. However, if your script also uses other packages, make sure to install them via the `Chainer` constructor's `pip_packages` or `conda_packages` parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)\n",
"print(run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes. You can see that the widget automatically plots and visualizes the loss metric that we logged to the Azure ML run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": "minxia"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"msauthor": "minxia"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,125 @@
# Official ChainerMN example taken from
# https://github.com/chainer/chainer/blob/master/examples/chainermn/mnist/train_mnist.py
from __future__ import print_function
import argparse
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
import chainermn
class MLP(chainer.Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__(
# the size of the inputs to each layer will be inferred
l1=L.Linear(784, n_units), # n_in -> n_units
l2=L.Linear(n_units, n_units), # n_units -> n_units
l3=L.Linear(n_units, n_out), # n_units -> n_out
)
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
def main():
parser = argparse.ArgumentParser(description='ChainerMN example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--communicator', type=str,
default='non_cuda_aware', help='Type of communicator')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', default=True,
help='Use GPU')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--unit', '-u', type=int, default=1000,
help='Number of units')
args = parser.parse_args()
# Prepare ChainerMN communicator.
if args.gpu:
if args.communicator == 'naive':
print("Error: 'naive' communicator does not support GPU.\n")
exit(-1)
comm = chainermn.create_communicator(args.communicator)
device = comm.intra_rank
else:
if args.communicator != 'naive':
print('Warning: using naive communicator '
'because only naive supports CPU-only execution')
comm = chainermn.create_communicator('naive')
device = -1
if comm.rank == 0:
print('==========================================')
print('Num process (COMM_WORLD): {}'.format(comm.size))
if args.gpu:
print('Using GPUs')
print('Using {} communicator'.format(args.communicator))
print('Num unit: {}'.format(args.unit))
print('Num Minibatch-size: {}'.format(args.batchsize))
print('Num epoch: {}'.format(args.epoch))
print('==========================================')
model = L.Classifier(MLP(args.unit, 10))
if device >= 0:
chainer.cuda.get_device_from_id(device).use()
model.to_gpu()
# Create a multi node optimizer from a standard Chainer optimizer.
optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)
optimizer.setup(model)
# Split and distribute the dataset. Only worker 0 loads the whole dataset.
# Datasets of worker 0 are evenly split and distributed to all workers.
if comm.rank == 0:
train, test = chainer.datasets.get_mnist()
else:
train, test = None, None
train = chainermn.scatter_dataset(train, comm, shuffle=True)
test = chainermn.scatter_dataset(test, comm, shuffle=True)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
repeat=False, shuffle=False)
updater = training.StandardUpdater(train_iter, optimizer, device=device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Create a multi node evaluator from a standard Chainer evaluator.
evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)
# Some display and output extensions are necessary only for one worker.
# (Otherwise, there would just be repeated outputs.)
if comm.rank == 0:
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.ProgressBar())
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run()
if __name__ == '__main__':
main()

View File

@@ -69,7 +69,7 @@
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a [Workspace](https://review.docs.microsoft.com/en-us/azure/machine-learning/service/concept-azure-machine-learning-architecture?branch=release-ignite-aml#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
@@ -81,10 +81,10 @@
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
"print('Workspace name: ' + ws.name,\n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
@@ -124,7 +124,7 @@
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current AmlCompute. \n",
"# use get_status() to get a detailed status for the current AmlCompute\n",
"print(compute_target.get_status().serialize())"
]
},
@@ -282,7 +282,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.estimator import *\n",
"from azureml.train.estimator import Estimator\n",
"\n",
"script_params = {\n",
" '--num_epochs': 20,\n",
@@ -296,9 +296,9 @@
" script_params=script_params,\n",
" node_count=2,\n",
" process_count_per_node=1,\n",
" distributed_backend='mpi', \n",
" distributed_backend='mpi',\n",
" pip_packages=['cntk-gpu==2.6'],\n",
" custom_docker_base_image='microsoft/mmlspark:gpu-0.12',\n",
" custom_docker_image='microsoft/mmlspark:gpu-0.12',\n",
" use_gpu=True)"
]
},
@@ -306,7 +306,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We would like to train our model using a [pre-built Docker container](https://hub.docker.com/r/microsoft/mmlspark/). To do so, specify the name of the docker image to the argument `custom_docker_base_image`. You can only provide images available in public docker repositories such as Docker Hub using this argument. To use an image from a private docker repository, use the constructor's `environment_definition` parameter instead. Finally, we provide the `cntk` package to `pip_packages` to install CNTK 2.6 on our custom image.\n",
"We would like to train our model using a [pre-built Docker container](https://hub.docker.com/r/microsoft/mmlspark/). To do so, specify the name of the docker image to the argument `custom_docker_image`. Finally, we provide the `cntk` package to `pip_packages` to install CNTK 2.6 on our custom image.\n",
"\n",
"The above code specifies that we will run our training script on `2` nodes, with one worker per node. In order to run distributed CNTK, which uses MPI, you must provide the argument `distributed_backend='mpi'`."
]

View File

@@ -23,7 +23,7 @@
"source": [
"## Prerequisites\n",
"* Go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`\n",
"* Review the [tutorial](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
]
},
{
@@ -82,7 +82,7 @@
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{

View File

@@ -50,7 +50,7 @@ if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
kwargs = {}
train_dataset = \
datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
transform=transforms.Compose([

View File

@@ -26,7 +26,7 @@
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)\n",
"* Review the [tutorial](https://aka.ms/aml-notebook-hyperdrive) on single-node TensorFlow training using the SDK"
"* Review the [tutorial](../train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) on single-node TensorFlow training using the SDK"
]
},
{
@@ -84,7 +84,7 @@
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
@@ -96,7 +96,7 @@
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -238,8 +238,6 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './tf-distr-hvd'\n",
"os.makedirs(project_folder, exist_ok=True)"
]

View File

@@ -56,7 +56,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install azureml-contrib-tensorboard"
"!pip install azureml-tensorboard"
]
},
{
@@ -74,14 +74,13 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Run, Experiment\n",
"\n",
"from azureml.core import Workspace, Experiment\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
@@ -143,7 +142,7 @@
" # More data science stuff\n",
" reg = Ridge(alpha=alpha)\n",
" reg.fit(data[\"train\"][\"x\"], data[\"train\"][\"y\"])\n",
" # TODO save model\n",
" \n",
" preds = reg.predict(data[\"test\"][\"x\"])\n",
" mse = mean_squared_error(preds, data[\"test\"][\"y\"])\n",
" # End train and eval\n",
@@ -167,9 +166,8 @@
"outputs": [],
"source": [
"# Export Run History to Tensorboard logs\n",
"from azureml.contrib.tensorboard.export import export_to_tensorboard\n",
"from azureml.tensorboard.export import export_to_tensorboard\n",
"import os\n",
"import tensorflow as tf\n",
"\n",
"logdir = 'exportedTBlogs'\n",
"log_path = os.path.join(os.getcwd(), logdir)\n",
@@ -210,7 +208,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.tensorboard import Tensorboard\n",
"from azureml.tensorboard import Tensorboard\n",
"\n",
"# The Tensorboard constructor takes an array of runs, so be sure and pass it in as a single-element array here\n",
"tb = Tensorboard([], local_root=logdir, port=6006)\n",

View File

@@ -0,0 +1,16 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
print("*********************************************************")
print("Hello Azure ML!")
try:
from azureml.core import Run
run = Run.get_context()
print("Log Fibonacci numbers.")
run.log_list('Fibonacci numbers', [0, 1, 1, 2, 3, 5, 8, 13, 21, 34])
run.complete()
except:
print("Warning: you need to install Azure ML SDK in order to log metrics.")
print("*********************************************************")

View File

@@ -0,0 +1,363 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "bf74d2e9-2708-49b1-934b-e0ede342f475"
}
},
"source": [
"# How to use Estimator in Azure ML\n",
"\n",
"## Introduction\n",
"This tutorial shows how to use the Estimator pattern in Azure Machine Learning SDK. Estimator is a convenient object in Azure Machine Learning that wraps run configuration information to help simplify the tasks of specifying how a script is executed.\n",
"\n",
"\n",
"## Prerequisite:\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's get started. First let's import some Python libraries."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"nbpresent": {
"id": "edaa7f2f-2439-4148-b57a-8c794c0945ec"
}
},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace\n",
"\n",
"# check core SDK version number\n",
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "59f52294-4a25-4c92-bab8-3b07f0f44d15"
}
},
"source": [
"## Create an Azure ML experiment\n",
"Let's create an experiment named \"estimator-test\". The script runs will be recorded under this experiment in Azure."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"nbpresent": {
"id": "bc70f780-c240-4779-96f3-bc5ef9a37d59"
}
},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"exp = Experiment(workspace=ws, name='estimator-test')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we could not find the cluster with the given name, then we will create a new cluster here. We will create an `AmlCompute` cluster of `STANDARD_NC6` GPU VMs. This process is broken down into 3 steps:\n",
"1. create the configuration (this step is local and only takes a second)\n",
"2. create the cluster (this step will take about **20 seconds**)\n",
"3. provision the VMs to bring the cluster to the initial size (of 1 in this case). This step will take about **3-5 minutes** and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"cpucluster\"\n",
"\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', max_nodes=4)\n",
"\n",
" # create the cluster\n",
" cpu_cluster = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" # can poll for a minimum number of nodes and for a specific timeout. \n",
" # if no min node count is provided it uses the scale settings for the cluster\n",
" cpu_cluster.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(cpu_cluster.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that you have created the compute target, let's see what the workspace's `compute_targets` property returns. You should now see one entry named 'cpucluster' of type `AmlCompute`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_targets = ws.compute_targets\n",
"for name, ct in compute_targets.items():\n",
" print(name, ct.type, ct.provisioning_state)"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpresent": {
"id": "2039d2d5-aca6-4f25-a12f-df9ae6529cae"
}
},
"source": [
"## Use a simple script\n",
"We have already created a simple \"hello world\" script. This is the script that we will submit through the estimator pattern. It prints a hello-world message, and if Azure ML SDK is installed, it will also logs an array of values ([Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number))."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('./dummy_train.py', 'r') as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create A Generic Estimator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we import the Estimator class and also a widget to visualize a run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.estimator import Estimator\n",
"from azureml.widgets import RunDetails"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The simplest estimator is to submit the current folder to the local computer. Estimator by default will attempt to use Docker-based execution. Let's turn that off for now. It then builds a conda environment locally, installs Azure ML SDK in it, and runs your script."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use a conda environment, don't use Docker, on local computer\n",
"est = Estimator(source_directory='.', compute_target='local', entry_script='dummy_train.py', use_docker=False)\n",
"run = exp.submit(est)\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also enable Docker and let estimator pick the default CPU image supplied by Azure ML for execution. You can target an AmlCompute cluster (or any other supported compute target types)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use a conda environment on default Docker image in an AmlCompute cluster\n",
"est = Estimator(source_directory='.', compute_target=cpu_cluster, entry_script='dummy_train.py', use_docker=True)\n",
"run = exp.submit(est)\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can customize the conda environment by adding conda and/or pip packages."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# add a conda package\n",
"est = Estimator(source_directory='.', \n",
" compute_target='local', \n",
" entry_script='dummy_train.py', \n",
" use_docker=False, \n",
" conda_packages=['scikit-learn'])\n",
"run = exp.submit(est)\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also specify a custom Docker image for exeution. In this case, you probably want to tell the system not to build a new conda environment for you. Instead, you can specify the path to an existing Python environment in the custom Docker image.\n",
"\n",
"**Note**: since the below example points to the preinstalled Python environment in the miniconda3 image maintained by continuum.io on Docker Hub where Azure ML SDK is not present, the logging metric code is not triggered. But a run history record is still recorded. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use a custom Docker image\n",
"from azureml.core.runconfig import ContainerRegistry\n",
"\n",
"# this is an image available in Docker Hub\n",
"image_name = 'continuumio/miniconda3'\n",
"\n",
"# you can also point to an image in a private ACR\n",
"image_registry_details = ContainerRegistry()\n",
"image_registry_details.address = \"myregistry.azurecr.io\"\n",
"image_registry_details.username = \"username\"\n",
"image_registry_details.password = \"password\"\n",
"\n",
"# don't let the system build a new conda environment\n",
"user_managed_dependencies = True\n",
"\n",
"# submit to a local Docker container. if you don't have Docker engine running locally, you can set compute_target to cpu_cluster.\n",
"est = Estimator(source_directory='.', compute_target='local', \n",
" entry_script='dummy_train.py',\n",
" custom_docker_image=image_name,\n",
" image_registry_details=image_registry_details,\n",
" user_managed=user_managed_dependencies\n",
" )\n",
"\n",
"run = exp.submit(est)\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next Steps\n",
"Now you can proceed to explore the other types of estimators, such as TensorFlow estimator, PyTorch estimator, etc. in the sample folder."
]
}
],
"metadata": {
"authors": [
{
"name": "minxia"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"msauthor": "haining"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -57,7 +57,7 @@
"metadata": {},
"outputs": [],
"source": [
"!pip install azureml-contrib-tensorboard"
"!pip install azureml-tensorboard"
]
},
{
@@ -104,7 +104,7 @@
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
@@ -153,7 +153,7 @@
"source": [
"import requests\n",
"import os\n",
"import tempfile\n",
"\n",
"tf_code = requests.get(\"https://raw.githubusercontent.com/tensorflow/tensorflow/r1.8/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py\")\n",
"with open(os.path.join(exp_dir, \"mnist_with_summaries.py\"), \"w\") as file:\n",
" file.write(tf_code.text)"
@@ -192,9 +192,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment, Run\n",
"from azureml.core import Experiment\n",
"from azureml.core.script_run_config import ScriptRunConfig\n",
"import tensorflow as tf\n",
"\n",
"logs_dir = os.path.join(os.curdir, \"logs\")\n",
"data_dir = os.path.abspath(os.path.join(os.curdir, \"mnist_data\"))\n",
@@ -240,7 +239,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.tensorboard import Tensorboard\n",
"from azureml.tensorboard import Tensorboard\n",
"\n",
"# The Tensorboard constructor takes an array of runs, so be sure and pass it in as a single-element array here\n",
"tb = Tensorboard([run])\n",
@@ -276,7 +275,7 @@
"Tensorboard uploading works with all compute targets. Here we demonstrate it from a DSVM.\n",
"Note that the Tensorboard instance itself will be run by the notebook kernel. Again, this means this notebook's kernel must have access to the Tensorboard module.\n",
"\n",
"If you are unfamiliar with DSVM configuration, check [04. Train in a remote VM](04.train-on-remote-vm.ipynb) for a more detailed breakdown.\n",
"If you are unfamiliar with DSVM configuration, check [Train in a remote VM](../../training/train-on-remote-vm/train-on-remote-vm.ipynb) for a more detailed breakdown.\n",
"\n",
"**Note**: To streamline the compute that Azure Machine Learning creates, we are making updates to support creating only single to multi-node `AmlCompute`. The `DSVMCompute` class will be deprecated in a later release, but the DSVM can be created using the below single line command and then attached(like any VM) using the sample code below. Also note, that we only support Linux VMs for remote execution from AML and the commands below will spin a Linux VM only.\n",
"\n",
@@ -294,9 +293,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import RemoteCompute\n",
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"import os\n",
"\n",
"username = os.getenv('AZUREML_DSVM_USERNAME', default='<my_username>')\n",
"address = os.getenv('AZUREML_DSVM_ADDRESS', default='<ip_address_or_fqdn>')\n",
@@ -307,12 +305,11 @@
" attached_dsvm_compute = RemoteCompute(workspace=ws, name=compute_target_name)\n",
" print('found existing:', attached_dsvm_compute.name)\n",
"except ComputeTargetException:\n",
" attached_dsvm_compute = RemoteCompute.attach(workspace=ws,\n",
" name=compute_target_name,\n",
" username=username,\n",
" address=address,\n",
" ssh_port=22,\n",
" private_key_file='./.ssh/id_rsa')\n",
" config = RemoteCompute.attach_configuration(username=username,\n",
" address=address,\n",
" ssh_port=22,\n",
" private_key_file='./.ssh/id_rsa')\n",
" attached_dsvm_compute = ComputeTarget.attach(ws, compute_target_name, config)\n",
" \n",
" attached_dsvm_compute.wait_for_completion(show_output=True)"
]
@@ -405,15 +402,17 @@
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"cpucluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
"cts = ws.compute_targets\n",
"found = False\n",
"if cluster_name in cts and cts[cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[cluster_name]\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2', \n",
" max_nodes=4)\n",
@@ -421,10 +420,10 @@
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True, min_node_count=1, timeout_in_minutes=20)\n",
"compute_target.wait_for_completion(show_output=True, min_node_count=None)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
"# print(compute_target.get_status().serialize())"
]
},
{

View File

@@ -0,0 +1,136 @@
import argparse
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu
from azureml.core.run import Run
run = Run.get_context()
class MyNetwork(Chain):
def __init__(self, n_mid_units=100, n_out=10):
super(MyNetwork, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)
def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)
def main():
parser = argparse.ArgumentParser(description='Chainer example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epochs', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--output_dir', '-o', default='./outputs',
help='Directory to output the result')
parser.add_argument('--gpu_id', '-g', default=0,
help='ID of the GPU to be used. Set to -1 if you use CPU')
args = parser.parse_args()
# Download the MNIST data if you haven't downloaded it yet
train, test = datasets.mnist.get_mnist(withlabel=True, ndim=1)
gpu_id = args.gpu_id
batchsize = args.batchsize
epochs = args.epochs
run.log('Batch size', np.int(batchsize))
run.log('Epochs', np.int(epochs))
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False)
model = MyNetwork()
if gpu_id >= 0:
# Make a specified GPU current
chainer.backends.cuda.get_device_from_id(0).use()
model.to_gpu() # Copy the model to the GPU
# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)
while train_iter.epoch < epochs:
# ---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)
# Calculate the prediction of the network
prediction_train = model(image_train)
# Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)
# Calculate the gradients in the network
model.cleargrads()
loss.backward()
# Update all the trainable parameters
optimizer.update()
# --------------------- until here ---------------------
# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the current epoch
# Display the training loss
print('epoch:{:02d} train_loss:{:.04f} '.format(
train_iter.epoch, float(to_cpu(loss.array))), end='')
test_losses = []
test_accuracies = []
while True:
test_batch = test_iter.next()
image_test, target_test = concat_examples(test_batch, gpu_id)
# Forward the test data
prediction_test = model(image_test)
# Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))
# Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)
if test_iter.is_new_epoch:
test_iter.epoch = 0
test_iter.current_position = 0
test_iter.is_new_epoch = False
test_iter._pushed_position = None
break
val_accuracy = np.mean(test_accuracies)
print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), val_accuracy))
run.log("Accuracy", np.float(val_accuracy))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,134 @@
import argparse
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu
from azureml.core.run import Run
run = Run.get_context()
class MyNetwork(Chain):
def __init__(self, n_mid_units=100, n_out=10):
super(MyNetwork, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)
def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)
def main():
parser = argparse.ArgumentParser(description='Chainer example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epochs', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--output_dir', '-o', default='./outputs',
help='Directory to output the result')
args = parser.parse_args()
# Download the MNIST data if you haven't downloaded it yet
train, test = datasets.mnist.get_mnist(withlabel=True, ndim=1)
batchsize = args.batchsize
epochs = args.epochs
run.log('Batch size', np.int(batchsize))
run.log('Epochs', np.int(epochs))
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False)
model = MyNetwork()
gpu_id = -1 # Set to -1 if you use CPU
if gpu_id >= 0:
# Make a specified GPU current
chainer.backends.cuda.get_device_from_id(0).use()
model.to_gpu() # Copy the model to the GPU
# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)
# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup(model)
while train_iter.epoch < epochs:
# ---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)
# Calculate the prediction of the network
prediction_train = model(image_train)
# Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)
# Calculate the gradients in the network
model.cleargrads()
loss.backward()
# Update all the trainable parameters
optimizer.update()
# --------------------- until here ---------------------
# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the current epoch
# Display the training loss
print('epoch:{:02d} train_loss:{:.04f} '.format(
train_iter.epoch, float(to_cpu(loss.array))), end='')
test_losses = []
test_accuracies = []
while True:
test_batch = test_iter.next()
image_test, target_test = concat_examples(test_batch, gpu_id)
# Forward the test data
prediction_test = model(image_test)
# Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))
# Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)
if test_iter.is_new_epoch:
test_iter.epoch = 0
test_iter.current_position = 0
test_iter.is_new_epoch = False
test_iter._pushed_position = None
break
val_accuracy = np.mean(test_accuracies)
print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), val_accuracy))
run.log("Accuracy", np.float(val_accuracy))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,425 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train and hyperparameter tune with Chainer\n",
"\n",
"In this tutorial, we demonstrate how to use the Azure ML Python SDK to train a Convolutional Neural Network (CNN) on a single-node GPU with Chainer to perform handwritten digit recognition on the popular MNIST dataset. We will also demonstrate how to perform hyperparameter tuning of the model using Azure ML's HyperDrive service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"* Go through the [Configuration](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"Diagnostics"
]
},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# choose a name for your cluster\n",
"cluster_name = \"gpucluster\"\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target.')\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
" max_nodes=4)\n",
"\n",
" # create the cluster\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
"\n",
" compute_target.wait_for_completion(show_output=True)\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(compute_target.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train model on the remote compute\n",
"Now that you have your data and training script prepared, you are ready to train on your remote compute cluster. You can take advantage of Azure compute to leverage GPUs to cut down your training time. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a project directory\n",
"Create a directory that will contain all the necessary code from your local machine that you will need access to on the remote resource. This includes the training script and any additional files your training script depends on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"project_folder = './chainer-mnist'\n",
"os.makedirs(project_folder, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare training script\n",
"Now you will need to create your training script. In this tutorial, the training script is already provided for you at `chainer_mnist.py`. In practice, you should be able to take any custom training script as is and run it with Azure ML without having to modify your code.\n",
"\n",
"However, if you would like to use Azure ML's [tracking and metrics](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#metrics) capabilities, you will have to add a small amount of Azure ML code inside your training script. \n",
"\n",
"In `chainer_mnist.py`, we will log some metrics to our Azure ML run. To do so, we will access the Azure ML `Run` object within the script:\n",
"```Python\n",
"from azureml.core.run import Run\n",
"run = Run.get_context()\n",
"```\n",
"Further within `chainer_mnist.py`, we log the batchsize and epochs parameters, and the highest accuracy the model achieves:\n",
"```Python\n",
"run.log('Batch size', np.int(args.batchsize))\n",
"run.log('Epochs', np.int(args.epochs))\n",
"\n",
"run.log('Accuracy', np.float(val_accuracy))\n",
"```\n",
"These run metrics will become particularly important when we begin hyperparameter tuning our model in the \"Tune model hyperparameters\" section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once your script is ready, copy the training script `chainer_mnist.py` into your project directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"\n",
"shutil.copy('chainer_mnist.py', project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create an experiment\n",
"Create an [Experiment](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#experiment) to track all the runs in your workspace for this Chainer tutorial. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Experiment\n",
"\n",
"experiment_name = 'chainer-mnist'\n",
"experiment = Experiment(ws, name=experiment_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Chainer estimator\n",
"The Azure ML SDK's Chainer estimator enables you to easily submit Chainer training jobs for both single-node and distributed runs. The following code will define a single-node Chainer job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.dnn import Chainer\n",
"\n",
"script_params = {\n",
" '--epochs': 10,\n",
" '--batchsize': 128,\n",
" '--output_dir': './outputs'\n",
"}\n",
"\n",
"estimator = Chainer(source_directory=project_folder, \n",
" script_params=script_params,\n",
" compute_target=compute_target,\n",
" pip_packages=['numpy', 'pytest'],\n",
" entry_script='chainer_mnist.py',\n",
" use_gpu=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `script_params` parameter is a dictionary containing the command-line arguments to your training script `entry_script`. To leverage the Azure VM's GPU for training, we set `use_gpu=True`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit job\n",
"Run your experiment by submitting your estimator object. Note that this call is asynchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run = experiment.submit(estimator)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor your run\n",
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# to get more details of your run\n",
"print(run.get_details())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tune model hyperparameters\n",
"Now that we've seen how to do a simple Chainer training run using the SDK, let's see if we can further improve the accuracy of our model. We can optimize our model's hyperparameters using Azure Machine Learning's hyperparameter tuning capabilities."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Start a hyperparameter sweep\n",
"First, we will define the hyperparameter space to sweep over. Let's tune the batch size and epochs parameters. In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, accuracy.\n",
"\n",
"Then, we specify the early termination policy to use to early terminate poorly performing runs. Here we use the `BanditPolicy`, which will terminate any run that doesn't fall within the slack factor of our primary evaluation metric. In this tutorial, we will apply this policy every epoch (since we report our `Accuracy` metric every epoch and `evaluation_interval=1`). Notice we will delay the first policy evaluation until after the first `3` epochs (`delay_evaluation=3`).\n",
"Refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters#specify-an-early-termination-policy) for more information on the BanditPolicy and other policies available."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive.runconfig import HyperDriveRunConfig\n",
"from azureml.train.hyperdrive.sampling import RandomParameterSampling\n",
"from azureml.train.hyperdrive.policy import BanditPolicy\n",
"from azureml.train.hyperdrive.run import PrimaryMetricGoal\n",
"from azureml.train.hyperdrive.parameter_expressions import choice\n",
" \n",
"\n",
"param_sampling = RandomParameterSampling( {\n",
" \"--batchsize\": choice(128, 256),\n",
" \"--epochs\": choice(5, 10, 20, 40)\n",
" }\n",
")\n",
"\n",
"hyperdrive_run_config = HyperDriveRunConfig(estimator=estimator,\n",
" hyperparameter_sampling=param_sampling, \n",
" primary_metric_name='Accuracy',\n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,\n",
" max_total_runs=8,\n",
" max_concurrent_runs=4)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, lauch the hyperparameter tuning job."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start the HyperDrive run\n",
"hyperdrive_run = experiment.submit(hyperdrive_run_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Monitor HyperDrive runs\n",
"You can monitor the progress of the runs with the following Jupyter widget. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(hyperdrive_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
}
],
"metadata": {
"authors": [
{
"name": "minxia"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"msauthor": "minxia"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,123 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import numpy as np
import argparse
import os
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential, model_from_json
from keras.layers import Dense
from keras.optimizers import RMSprop
from keras.callbacks import Callback
import tensorflow as tf
from azureml.core import Run
from utils import load_data, one_hot_encode
print("Keras version:", keras.__version__)
print("Tensorflow version:", tf.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--batch-size', type=int, dest='batch_size', default=50, help='mini batch size for training')
parser.add_argument('--first-layer-neurons', type=int, dest='n_hidden_1', default=100,
help='# of neurons in the first layer')
parser.add_argument('--second-layer-neurons', type=int, dest='n_hidden_2', default=100,
help='# of neurons in the second layer')
parser.add_argument('--learning-rate', type=float, dest='learning_rate', default=0.001, help='learning rate')
args = parser.parse_args()
data_folder = args.data_folder
print('training dataset is stored here:', data_folder)
X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0
y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)
y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
training_set_size = X_train.shape[0]
n_inputs = 28 * 28
n_h1 = args.n_hidden_1
n_h2 = args.n_hidden_2
n_outputs = 10
n_epochs = 20
batch_size = args.batch_size
learning_rate = args.learning_rate
y_train = one_hot_encode(y_train, n_outputs)
y_test = one_hot_encode(y_test, n_outputs)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep='\n')
# Build a simple MLP model
model = Sequential()
# first hidden layer
model.add(Dense(n_h1, activation='relu', input_shape=(n_inputs,)))
# second hidden layer
model.add(Dense(n_h2, activation='relu'))
# output layer
model.add(Dense(n_outputs, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(lr=learning_rate),
metrics=['accuracy'])
# start an Azure ML run
run = Run.get_context()
class LogRunMetrics(Callback):
# callback at the end of every epoch
def on_epoch_end(self, epoch, log):
# log a value repeated which creates a list
run.log('Loss', log['loss'])
run.log('Accuracy', log['acc'])
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=n_epochs,
verbose=2,
validation_data=(X_test, y_test),
callbacks=[LogRunMetrics()])
score = model.evaluate(X_test, y_test, verbose=0)
# log a single value
run.log("Final test loss", score[0])
print('Test loss:', score[0])
run.log('Final test accuracy', score[1])
print('Test accuracy:', score[1])
plt.figure(figsize=(6, 3))
plt.title('MNIST with Keras MLP ({} epochs)'.format(n_epochs), fontsize=14)
plt.plot(history.history['acc'], 'b-', label='Accuracy', lw=4, alpha=0.5)
plt.plot(history.history['loss'], 'r--', label='Loss', lw=4, alpha=0.5)
plt.legend(fontsize=12)
plt.grid(True)
# log an image
run.log_image('Accuracy vs Loss', plot=plt)
# create a ./outputs/model folder in the compute target
# files saved in the "./outputs" folder are automatically uploaded into run history
os.makedirs('./outputs/model', exist_ok=True)
# serialize NN architecture to JSON
model_json = model.to_json()
# save model JSON
with open('./outputs/model/model.json', 'w') as f:
f.write(model_json)
# save model weights
model.save_weights('./outputs/model/model.h5')
print("model saved in ./outputs/model folder")

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

View File

@@ -0,0 +1,27 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import gzip
import numpy as np
import struct
# load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
with gzip.open(filename) as gz:
struct.unpack('I', gz.read(4))
n_items = struct.unpack('>I', gz.read(4))
if not label:
n_rows = struct.unpack('>I', gz.read(4))[0]
n_cols = struct.unpack('>I', gz.read(4))[0]
res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
res = res.reshape(n_items[0], n_rows * n_cols)
else:
res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
res = res.reshape(n_items[0], 1)
return res
# one-hot encode a 1-D array
def one_hot_encode(array, num_of_classes):
return np.eye(num_of_classes)[array.reshape(-1)]

View File

@@ -83,7 +83,7 @@
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
" 'Resource group: ' + ws.resource_group, sep='\\n')"
]
},
{
@@ -359,7 +359,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive import *\n",
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveRunConfig, uniform, PrimaryMetricGoal\n",
"\n",
"param_sampling = RandomParameterSampling( {\n",
" 'learning_rate': uniform(0.0005, 0.005),\n",
@@ -409,8 +409,6 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"\n",
"RunDetails(hyperdrive_run).show()"
]
},
@@ -649,7 +647,7 @@
"metadata": {},
"outputs": [],
"source": [
"import os, json\n",
"import json\n",
"from PIL import Image\n",
"import matplotlib.pyplot as plt\n",
"\n",

View File

@@ -51,7 +51,6 @@
"%matplotlib inline\n",
"import numpy as np\n",
"import os\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt"
]
},
@@ -66,7 +65,7 @@
"outputs": [],
"source": [
"import azureml\n",
"from azureml.core import Workspace, Run\n",
"from azureml.core import Workspace\n",
"\n",
"# check core SDK version number\n",
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
@@ -109,8 +108,6 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
@@ -166,7 +163,6 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"\n",
"os.makedirs('./data/mnist', exist_ok=True)\n",
@@ -431,7 +427,7 @@
"metadata": {},
"source": [
"## Submit job to run\n",
"Calling the `fit` function on the estimator submits the job to Azure ML for execution. Submitting the job should only take a few seconds."
"Submit the estimator to an Azure ML experiment to kick off the execution."
]
},
{
@@ -552,7 +548,6 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.makedirs('./imgs', exist_ok=True)\n",
"metrics = run.get_metrics()\n",
@@ -685,7 +680,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.hyperdrive import *\n",
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveRunConfig, PrimaryMetricGoal\n",
"from azureml.train.hyperdrive import choice, loguniform\n",
"\n",
"ps = RandomParameterSampling(\n",
" {\n",
@@ -1079,7 +1075,6 @@
"outputs": [],
"source": [
"import requests\n",
"import json\n",
"\n",
"# send a random row from the test set to score\n",
"random_index = np.random.randint(0, len(X_test)-1)\n",
@@ -1163,7 +1158,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.8"
},
"msauthor": "minxia"
},

View File

@@ -6,4 +6,5 @@ Follow these sample notebooks to learn:
2. [Train on local](train-on-local): train a model using local computer as compute target.
3. [Train on remote VM](train-on-remote-vm): train a model using a remote Azure VM as compute target.
4. [Train on AmlCompute](train-on-amlcompute): train a model using an AmlCompute cluster as compute target.
5. [Logging API](logging-api): experiment with various logging functions to create runs and automatically generate graphs.
5. [Train in an HDI Spark cluster](train-in-spark): train a Spark ML model using an HDInsight Spark cluster as compute target.
6. [Logging API](logging-api): experiment with various logging functions to create runs and automatically generate graphs.

View File

@@ -46,7 +46,7 @@
},
"outputs": [],
"source": [
"from azureml.core import Experiment, Run, Workspace\n",
"from azureml.core import Experiment, Workspace\n",
"import azureml.core\n",
"import numpy as np\n",
"\n",
@@ -217,7 +217,7 @@
"metadata": {},
"outputs": [],
"source": [
"props = run.upload_file(name='myfile_in_the_cloud.txt', path_or_stream='./myfile.txt')\n",
"props = run.upload_file(name='outputs/myfile_in_the_cloud.txt', path_or_stream='./myfile.txt')\n",
"props.serialize()"
]
},

Some files were not shown because too many files have changed in this diff Show More