mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 10:35:12 -05:00
Compare commits
23 Commits
azureml-sd
...
azureml-sd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
24f53f1aa1 | ||
|
|
6fc5d11de2 | ||
|
|
d17547d890 | ||
|
|
928e0d4327 | ||
|
|
05327cfbb9 | ||
|
|
8f7717014b | ||
|
|
a47e50b79a | ||
|
|
8f89d88def | ||
|
|
ec97207bb1 | ||
|
|
a2d20b0f47 | ||
|
|
8180cebd75 | ||
|
|
700ab2d782 | ||
|
|
ec9a5a061d | ||
|
|
467630f955 | ||
|
|
eac6b69bae | ||
|
|
441a5b0141 | ||
|
|
70902df6da | ||
|
|
6f893ff0b4 | ||
|
|
bda592a236 | ||
|
|
8b32e8d5ad | ||
|
|
54a065c698 | ||
|
|
b9718678b3 | ||
|
|
3fa40d2c6d |
@@ -103,7 +103,7 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -254,6 +254,8 @@
|
||||
"\n",
|
||||
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
|
||||
"\n",
|
||||
"The cluster parameters are:\n",
|
||||
|
||||
@@ -36,9 +36,9 @@
|
||||
"\n",
|
||||
"<a id=\"Introduction\"></a>\n",
|
||||
"## Introduction\n",
|
||||
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.github.io) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.github.io/).\n",
|
||||
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.org) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.org/).\n",
|
||||
"\n",
|
||||
"We will apply the [grid search algorithm](https://fairlearn.github.io/master/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
|
||||
"We will apply the [grid search algorithm](https://fairlearn.org/v0.4.6/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
|
||||
"\n",
|
||||
"### Setup\n",
|
||||
"\n",
|
||||
@@ -46,9 +46,10 @@
|
||||
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
|
||||
"This notebook also requires the following packages:\n",
|
||||
"* `azureml-contrib-fairness`\n",
|
||||
"* `fairlearn==0.4.6` (v0.5.0 will work with minor modifications)\n",
|
||||
"* `fairlearn>=0.6.2` (pre-v0.5.0 will work with minor modifications)\n",
|
||||
"* `joblib`\n",
|
||||
"* `shap`\n",
|
||||
"* `liac-arff`\n",
|
||||
"* `raiwidgets==0.4.0`\n",
|
||||
"\n",
|
||||
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
|
||||
]
|
||||
@@ -85,10 +86,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.reductions import GridSearch, DemographicParity, ErrorRate\n",
|
||||
"from fairlearn.widget import FairlearnDashboard\n",
|
||||
"from raiwidgets import FairnessDashboard\n",
|
||||
"\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.datasets import fetch_openml\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
@@ -112,9 +112,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairness_nb_utils import fetch_openml_with_retries\n",
|
||||
"from fairness_nb_utils import fetch_census_dataset\n",
|
||||
"\n",
|
||||
"data = fetch_openml_with_retries(data_id=1590)\n",
|
||||
"data = fetch_census_dataset()\n",
|
||||
" \n",
|
||||
"# Extract the items we want\n",
|
||||
"X_raw = data.data\n",
|
||||
@@ -137,7 +137,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"A = X_raw[['sex','race']]\n",
|
||||
"X_raw = X_raw.drop(labels=['sex', 'race'],axis = 1)"
|
||||
"X_raw = X_raw.drop(labels=['sex', 'race'], axis = 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -257,9 +257,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FairlearnDashboard(sensitive_features=A_test, sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
|
||||
"FairnessDashboard(sensitive_features=A_test,\n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -312,8 +312,8 @@
|
||||
"sweep.fit(X_train, y_train,\n",
|
||||
" sensitive_features=A_train.sex)\n",
|
||||
"\n",
|
||||
"# For Fairlearn v0.5.0, need sweep.predictors_\n",
|
||||
"predictors = sweep._predictors"
|
||||
"# For Fairlearn pre-v0.5.0, need sweep._predictors\n",
|
||||
"predictors = sweep.predictors_"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -330,16 +330,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"errors, disparities = [], []\n",
|
||||
"for m in predictors:\n",
|
||||
" classifier = lambda X: m.predict(X)\n",
|
||||
" \n",
|
||||
"for predictor in predictors:\n",
|
||||
" error = ErrorRate()\n",
|
||||
" error.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
|
||||
" disparity = DemographicParity()\n",
|
||||
" disparity.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
|
||||
" \n",
|
||||
" errors.append(error.gamma(classifier)[0])\n",
|
||||
" disparities.append(disparity.gamma(classifier).max())\n",
|
||||
" errors.append(error.gamma(predictor.predict)[0])\n",
|
||||
" disparities.append(disparity.gamma(predictor.predict).max())\n",
|
||||
" \n",
|
||||
"all_results = pd.DataFrame( {\"predictor\": predictors, \"error\": errors, \"disparity\": disparities})\n",
|
||||
"\n",
|
||||
@@ -388,10 +386,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FairlearnDashboard(sensitive_features=A_test, \n",
|
||||
" sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=predictions_dominant)"
|
||||
"FairnessDashboard(sensitive_features=A_test, \n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=predictions_dominant)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -410,7 +407,7 @@
|
||||
"<a id=\"AzureUpload\"></a>\n",
|
||||
"## Uploading a Fairness Dashboard to Azure\n",
|
||||
"\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
|
||||
"1. Register the dominant models\n",
|
||||
"1. Precompute all the required metrics\n",
|
||||
"1. Upload to Azure\n",
|
||||
@@ -584,7 +581,7 @@
|
||||
"<a id=\"Conclusion\"></a>\n",
|
||||
"## Conclusion\n",
|
||||
"\n",
|
||||
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.github.io/) provides that discussion"
|
||||
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.org/) provides that discussion"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,5 +3,7 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-fairness
|
||||
- fairlearn==0.4.6
|
||||
- fairlearn>=0.6.2
|
||||
- joblib
|
||||
- liac-arff
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -4,7 +4,13 @@
|
||||
|
||||
"""Utilities for azureml-contrib-fairness notebooks."""
|
||||
|
||||
import arff
|
||||
from collections import OrderedDict
|
||||
from contextlib import closing
|
||||
import gzip
|
||||
import pandas as pd
|
||||
from sklearn.datasets import fetch_openml
|
||||
from sklearn.utils import Bunch
|
||||
import time
|
||||
|
||||
|
||||
@@ -15,7 +21,7 @@ def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
|
||||
print("Download attempt {0} of {1}".format(i + 1, max_retries))
|
||||
data = fetch_openml(data_id=data_id, as_frame=True)
|
||||
break
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: B902
|
||||
print("Download attempt failed with exception:")
|
||||
print(e)
|
||||
if i + 1 != max_retries:
|
||||
@@ -26,3 +32,80 @@ def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
|
||||
raise RuntimeError("Unable to download dataset from OpenML")
|
||||
|
||||
return data
|
||||
|
||||
|
||||
_categorical_columns = [
|
||||
'workclass',
|
||||
'education',
|
||||
'marital-status',
|
||||
'occupation',
|
||||
'relationship',
|
||||
'race',
|
||||
'sex',
|
||||
'native-country'
|
||||
]
|
||||
|
||||
|
||||
def fetch_census_dataset():
|
||||
"""Fetch the Adult Census Dataset.
|
||||
|
||||
This uses a particular URL for the Adult Census dataset. The code
|
||||
is a simplified version of fetch_openml() in sklearn.
|
||||
|
||||
The data are copied from:
|
||||
https://openml.org/data/v1/download/1595261.gz
|
||||
(as of 2021-03-31)
|
||||
"""
|
||||
try:
|
||||
from urllib import urlretrieve
|
||||
except ImportError:
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
filename = "1595261.gz"
|
||||
data_url = "https://rainotebookscdn.blob.core.windows.net/datasets/"
|
||||
|
||||
remaining_attempts = 5
|
||||
sleep_duration = 10
|
||||
while remaining_attempts > 0:
|
||||
try:
|
||||
urlretrieve(data_url + filename, filename)
|
||||
|
||||
http_stream = gzip.GzipFile(filename=filename, mode='rb')
|
||||
|
||||
with closing(http_stream):
|
||||
def _stream_generator(response):
|
||||
for line in response:
|
||||
yield line.decode('utf-8')
|
||||
|
||||
stream = _stream_generator(http_stream)
|
||||
data = arff.load(stream)
|
||||
except Exception as exc: # noqa: B902
|
||||
remaining_attempts -= 1
|
||||
print("Error downloading dataset from {} ({} attempt(s) remaining)"
|
||||
.format(data_url, remaining_attempts))
|
||||
print(exc)
|
||||
time.sleep(sleep_duration)
|
||||
sleep_duration *= 2
|
||||
continue
|
||||
else:
|
||||
# dataset successfully downloaded
|
||||
break
|
||||
else:
|
||||
raise Exception("Could not retrieve dataset from {}.".format(data_url))
|
||||
|
||||
attributes = OrderedDict(data['attributes'])
|
||||
arff_columns = list(attributes)
|
||||
|
||||
raw_df = pd.DataFrame(data=data['data'], columns=arff_columns)
|
||||
|
||||
target_column_name = 'class'
|
||||
target = raw_df.pop(target_column_name)
|
||||
for col_name in _categorical_columns:
|
||||
dtype = pd.api.types.CategoricalDtype(attributes[col_name])
|
||||
raw_df[col_name] = raw_df[col_name].astype(dtype, copy=False)
|
||||
|
||||
result = Bunch()
|
||||
result.data = raw_df
|
||||
result.target = target
|
||||
|
||||
return result
|
||||
|
||||
@@ -30,7 +30,7 @@
|
||||
"1. [Training Models](#TrainingModels)\n",
|
||||
"1. [Logging in to AzureML](#LoginAzureML)\n",
|
||||
"1. [Registering the Models](#RegisterModels)\n",
|
||||
"1. [Using the Fairlearn Dashboard](#LocalDashboard)\n",
|
||||
"1. [Using the Fairness Dashboard](#LocalDashboard)\n",
|
||||
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
|
||||
" 1. Computing Fairness Metrics\n",
|
||||
" 1. Uploading to Azure\n",
|
||||
@@ -48,9 +48,10 @@
|
||||
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
|
||||
"This notebook also requires the following packages:\n",
|
||||
"* `azureml-contrib-fairness`\n",
|
||||
"* `fairlearn==0.4.6` (should also work with v0.5.0)\n",
|
||||
"* `fairlearn>=0.6.2` (also works for pre-v0.5.0 with slight modifications)\n",
|
||||
"* `joblib`\n",
|
||||
"* `shap`\n",
|
||||
"* `liac-arff`\n",
|
||||
"* `raiwidgets==0.4.0`\n",
|
||||
"\n",
|
||||
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
|
||||
]
|
||||
@@ -88,7 +89,6 @@
|
||||
"source": [
|
||||
"from sklearn import svm\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.datasets import fetch_openml\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
@@ -110,9 +110,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairness_nb_utils import fetch_openml_with_retries\n",
|
||||
"from fairness_nb_utils import fetch_census_dataset\n",
|
||||
"\n",
|
||||
"data = fetch_openml_with_retries(data_id=1590)\n",
|
||||
"data = fetch_census_dataset()\n",
|
||||
" \n",
|
||||
"# Extract the items we want\n",
|
||||
"X_raw = data.data\n",
|
||||
@@ -389,12 +389,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.widget import FairlearnDashboard\n",
|
||||
"from raiwidgets import FairnessDashboard\n",
|
||||
"\n",
|
||||
"FairlearnDashboard(sensitive_features=A_test, \n",
|
||||
" sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=ys_pred)"
|
||||
"FairnessDashboard(sensitive_features=A_test, \n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=ys_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -404,7 +403,7 @@
|
||||
"<a id=\"AzureUpload\"></a>\n",
|
||||
"## Uploading a Fairness Dashboard to Azure\n",
|
||||
"\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
|
||||
"1. Precompute all the required metrics\n",
|
||||
"1. Upload to Azure\n",
|
||||
"\n",
|
||||
|
||||
@@ -3,5 +3,7 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-fairness
|
||||
- fairlearn==0.4.6
|
||||
- fairlearn>=0.6.2
|
||||
- joblib
|
||||
- liac-arff
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -21,8 +21,8 @@ dependencies:
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets~=1.24.0
|
||||
- azureml-widgets~=1.31.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.24.0/validated_win32_requirements.txt [--no-deps]
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.31.0/validated_win32_requirements.txt [--no-deps]
|
||||
|
||||
@@ -21,8 +21,8 @@ dependencies:
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets~=1.24.0
|
||||
- azureml-widgets~=1.31.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.24.0/validated_linux_requirements.txt [--no-deps]
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.31.0/validated_linux_requirements.txt [--no-deps]
|
||||
|
||||
@@ -22,8 +22,8 @@ dependencies:
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets~=1.24.0
|
||||
- azureml-widgets~=1.31.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.24.0/validated_darwin_requirements.txt [--no-deps]
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.31.0/validated_darwin_requirements.txt [--no-deps]
|
||||
|
||||
@@ -32,6 +32,7 @@ if [ $? -ne 0 ]; then
|
||||
fi
|
||||
|
||||
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
|
||||
brew install libomp
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
|
||||
@@ -105,7 +105,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -165,6 +165,9 @@
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -374,15 +377,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -93,7 +93,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -127,6 +127,9 @@
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -255,15 +258,6 @@
|
||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -96,7 +96,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -138,6 +138,8 @@
|
||||
"## Set up a compute cluster\n",
|
||||
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
|
||||
]
|
||||
},
|
||||
@@ -281,7 +283,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"experiment_timeout_minutes\": 20,\n",
|
||||
" \"experiment_timeout_minutes\": 30,\n",
|
||||
" \"primary_metric\": 'accuracy',\n",
|
||||
" \"max_concurrent_iterations\": num_nodes, \n",
|
||||
" \"max_cores_per_iteration\": -1,\n",
|
||||
@@ -319,15 +321,6 @@
|
||||
"automl_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -494,7 +487,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run,\n",
|
||||
" train_dataset, test_dataset, target_column_name, model_name)"
|
||||
" test_dataset, target_column_name, model_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -5,7 +5,7 @@ from azureml.core.run import Run
|
||||
|
||||
|
||||
def run_inference(test_experiment, compute_target, script_folder, train_run,
|
||||
train_dataset, test_dataset, target_column_name, model_name):
|
||||
test_dataset, target_column_name, model_name):
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
@@ -16,7 +16,6 @@ def run_inference(test_experiment, compute_target, script_folder, train_run,
|
||||
'--model_name': model_name
|
||||
},
|
||||
inputs=[
|
||||
train_dataset.as_named_input('train_data'),
|
||||
test_dataset.as_named_input('test_data')
|
||||
],
|
||||
compute_target=compute_target,
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import argparse
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from sklearn.externals import joblib
|
||||
@@ -32,22 +33,21 @@ model = joblib.load(model_path)
|
||||
run = Run.get_context()
|
||||
# get input dataset by name
|
||||
test_dataset = run.input_datasets['test_data']
|
||||
train_dataset = run.input_datasets['train_data']
|
||||
|
||||
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
|
||||
.to_pandas_dataframe()
|
||||
y_test_df = test_dataset.with_timestamp_columns(None) \
|
||||
.keep_columns(columns=[target_column_name]) \
|
||||
.to_pandas_dataframe()
|
||||
y_train_df = test_dataset.with_timestamp_columns(None) \
|
||||
.keep_columns(columns=[target_column_name]) \
|
||||
.to_pandas_dataframe()
|
||||
|
||||
predicted = model.predict_proba(X_test_df)
|
||||
|
||||
if isinstance(predicted, pd.DataFrame):
|
||||
predicted = predicted.values
|
||||
|
||||
# Use the AutoML scoring module
|
||||
class_labels = np.unique(np.concatenate((y_train_df.values, y_test_df.values)))
|
||||
train_labels = model.classes_
|
||||
class_labels = np.unique(np.concatenate((y_test_df.values, np.reshape(train_labels, (-1, 1)))))
|
||||
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
|
||||
scores = scoring.score_classification(y_test_df.values, predicted,
|
||||
classification_metrics,
|
||||
|
||||
@@ -81,7 +81,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -141,6 +141,9 @@
|
||||
"#### Create or Attach existing AmlCompute\n",
|
||||
"\n",
|
||||
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -49,22 +49,24 @@ print("Argument 1(ds_name): %s" % args.ds_name)
|
||||
|
||||
dstor = ws.get_default_datastore()
|
||||
register_dataset = False
|
||||
end_time = datetime.utcnow()
|
||||
|
||||
try:
|
||||
ds = Dataset.get_by_name(ws, args.ds_name)
|
||||
end_time_last_slice = ds.data_changed_time.replace(tzinfo=None)
|
||||
print("Dataset {0} last updated on {1}".format(args.ds_name,
|
||||
end_time_last_slice))
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
print(traceback.format_exc())
|
||||
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
|
||||
register_dataset = True
|
||||
end_time_last_slice = datetime.today() - relativedelta(weeks=2)
|
||||
end_time = datetime(2021, 5, 1, 0, 0)
|
||||
end_time_last_slice = end_time - relativedelta(weeks=2)
|
||||
|
||||
end_time = datetime.utcnow()
|
||||
train_df = get_noaa_data(end_time_last_slice, end_time)
|
||||
|
||||
if train_df.size > 0:
|
||||
print("Received {0} rows of new data after {0}.".format(
|
||||
print("Received {0} rows of new data after {1}.".format(
|
||||
train_df.shape[0], end_time_last_slice))
|
||||
folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year,
|
||||
end_time.month, end_time.day,
|
||||
|
||||
@@ -0,0 +1,420 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Classification of credit card fraudulent transactions on local managed compute **_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n",
|
||||
"1. [Acknowledgements](#Acknowledgements)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
|
||||
"\n",
|
||||
"This notebook is using local managed compute to train the model.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an experiment using an existing workspace.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local managed compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the fitted model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.compute_target import LocalTarget\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-local-managed'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Determine if local docker is configured for Linux images\n",
|
||||
"\n",
|
||||
"Local managed runs will leverage a Linux docker container to submit the run to. Due to this, the docker needs to be configured to use Linux containers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check if Docker is installed and Linux containers are enabled\n",
|
||||
"import subprocess\n",
|
||||
"from subprocess import CalledProcessError\n",
|
||||
"try:\n",
|
||||
" assert subprocess.run(\"docker -v\", shell=True).returncode == 0, 'Local Managed runs require docker to be installed.'\n",
|
||||
" out = subprocess.check_output(\"docker system info\", shell=True).decode('ascii')\n",
|
||||
" assert \"OSType: linux\" in out, 'Docker engine needs to be configured to use Linux containers.' \\\n",
|
||||
" 'https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers'\n",
|
||||
"except CalledProcessError as ex:\n",
|
||||
" raise Exception('Local Managed runs require docker to be installed.') from ex"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
|
||||
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
||||
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
|
||||
"label_column_name = 'Class'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"|**enable_local_managed**|Enable the experimental local-managed scenario.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||
" \"enable_early_stopping\": True,\n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" compute_target = LocalTarget(),\n",
|
||||
" enable_local_managed = True,\n",
|
||||
" training_data = training_data,\n",
|
||||
" label_column_name = label_column_name,\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"parent_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If you need to retrieve a run that already started, use the following code\n",
|
||||
"#from azureml.train.automl.run import AutoMLRun\n",
|
||||
"#parent_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"parent_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Explain model\n",
|
||||
"\n",
|
||||
"Automated ML models can be explained and visualized using the SDK Explainability library. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Analyze results\n",
|
||||
"\n",
|
||||
"### Retrieve the Best Child Run\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_best_child` method returns the best run. Overloads on `get_best_child` allow you to retrieve the best run for *any* logged metric."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run = parent_run.get_best_child()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test the fitted model\n",
|
||||
"\n",
|
||||
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test_df = validation_data.drop_columns(columns=[label_column_name])\n",
|
||||
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Creating ModelProxy for submitting prediction runs to the training environment.\n",
|
||||
"We will create a ModelProxy for the best child run, which will allow us to submit a run that does the prediction in the training environment. Unlike the local client, which can have different versions of some libraries, the training environment will have all the compatible libraries for the model already."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.model_proxy import ModelProxy\n",
|
||||
"best_model_proxy = ModelProxy(best_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# call the predict functions on the model proxy\n",
|
||||
"y_pred = best_model_proxy.predict(X_test_df).to_pandas_dataframe()\n",
|
||||
"y_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Acknowledgements"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
|
||||
"Please cite the following works: \n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
|
||||
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "sekrupa"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
],
|
||||
"datasets": [
|
||||
"Creditcard"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"file_extension": ".py",
|
||||
"framework": [
|
||||
"None"
|
||||
],
|
||||
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
|
||||
"index_order": 5,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"tags": [
|
||||
"AutomatedML"
|
||||
],
|
||||
"task": "Classification",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
name: auto-ml-classification-credit-card-fraud-local-managed
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -39,6 +39,7 @@
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
|
||||
"This notebook will also leverage MLFlow for saving models, allowing for more portability of the resulting models. See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow for more details around MLFlow is AzureML.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
@@ -90,7 +91,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -212,10 +213,11 @@
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'r2_score',\n",
|
||||
" \"enable_early_stopping\": True, \n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
||||
" \"max_concurrent_iterations\": 4,\n",
|
||||
" \"max_cores_per_iteration\": -1,\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
" \"save_mlflow\": True,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
|
||||
@@ -113,7 +113,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -162,7 +162,9 @@
|
||||
},
|
||||
"source": [
|
||||
"### Using AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -365,7 +367,9 @@
|
||||
"source": [
|
||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" freq='MS' # Set the forecast frequency to be monthly (start of the month)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
@@ -401,8 +405,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output= False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output= True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -419,15 +422,6 @@
|
||||
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
|
||||
@@ -87,7 +87,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -129,6 +129,9 @@
|
||||
"source": [
|
||||
"## Compute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -318,7 +321,8 @@
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
|
||||
" target_lags='auto' # use heuristic based lag setting \n",
|
||||
" target_lags='auto', # use heuristic based lag setting\n",
|
||||
" freq='D' # Set the forecast frequency to be daily\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
@@ -349,8 +353,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -97,7 +97,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -342,7 +342,9 @@
|
||||
"source": [
|
||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
@@ -375,15 +377,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
||||
@@ -94,7 +94,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -263,7 +263,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -319,7 +321,8 @@
|
||||
" time_column_name=TIME_COLUMN_NAME,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
|
||||
" target_lags=lags\n",
|
||||
" target_lags=lags,\n",
|
||||
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -82,7 +82,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -124,6 +124,9 @@
|
||||
"source": [
|
||||
"## Compute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -423,7 +426,8 @@
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=n_test_periods,\n",
|
||||
" time_series_id_column_names=time_series_id_column_names\n",
|
||||
" time_series_id_column_names=time_series_id_column_names,\n",
|
||||
" freq='W-THU' # Set the forecast frequency to be weekly (start on each Thursday)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
@@ -455,8 +459,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -725,7 +728,7 @@
|
||||
"X_query[time_column_name] = X_query[time_column_name].astype(str)\n",
|
||||
"# The Service object accept the complex dictionary, which is internally converted to JSON string.\n",
|
||||
"# The section 'data' contains the data frame in the form of dictionary.\n",
|
||||
"test_sample = json.dumps({'data': X_query.to_dict(orient='records')})\n",
|
||||
"test_sample = json.dumps({\"data\": json.loads(X_query.to_json(orient=\"records\"))})\n",
|
||||
"response = aci_service.run(input_data = test_sample)\n",
|
||||
"# translate from networkese to datascientese\n",
|
||||
"try: \n",
|
||||
|
||||
@@ -96,7 +96,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -215,15 +215,6 @@
|
||||
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -445,7 +436,8 @@
|
||||
"\n",
|
||||
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
|
||||
" X_test=X_test, y=y_train, \n",
|
||||
" task='classification')"
|
||||
" task='classification',\n",
|
||||
" automl_run=automl_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -462,11 +454,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret.ext.glassbox import LGBMExplainableModel\n",
|
||||
"from azureml.interpret.mimic_wrapper import MimicWrapper\n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
|
||||
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_explainer_setup_obj.automl_run,\n",
|
||||
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
|
||||
" classes=automl_explainer_setup_obj.classes,\n",
|
||||
|
||||
@@ -96,7 +96,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -130,6 +130,8 @@
|
||||
"### Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -305,15 +307,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -448,7 +441,7 @@
|
||||
"\n",
|
||||
"### Retrieve any AutoML Model for explanations\n",
|
||||
"\n",
|
||||
"Below we select the some AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
"Below we select an AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for any logged `metric` or for a particular `iteration`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -457,7 +450,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run, fitted_model = remote_run.get_output(metric='r2_score')"
|
||||
"#automl_run, fitted_model = remote_run.get_output(metric='r2_score')\n",
|
||||
"automl_run, fitted_model = remote_run.get_output(iteration=2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -27,7 +27,7 @@ automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
||||
|
||||
# Check if this AutoML model is explainable
|
||||
if not automl_check_model_if_explainable(automl_run):
|
||||
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get(
|
||||
raise Exception("Model explanations are currently not supported for " + automl_run.get_properties().get(
|
||||
'run_algorithm'))
|
||||
|
||||
# Download the best model from the artifact store
|
||||
@@ -38,23 +38,25 @@ fitted_model = joblib.load('model.pkl')
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
|
||||
# Drop the lablled column to get the training set.
|
||||
# Drop the labeled column to get the training set.
|
||||
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
# Get the test dataset from the workspace
|
||||
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
|
||||
# Drop the lablled column to get the testing set.
|
||||
# Drop the labeled column to get the testing set.
|
||||
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
|
||||
# Setup the class for explaining the AtuoML models
|
||||
# Setup the class for explaining the AutoML models
|
||||
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
|
||||
X=X_train, X_test=X_test,
|
||||
y=y_train)
|
||||
y=y_train,
|
||||
automl_run=automl_run)
|
||||
|
||||
# Initialize the Mimic Explainer
|
||||
explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
|
||||
init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,
|
||||
init_dataset=automl_explainer_setup_obj.X_transform,
|
||||
run=automl_explainer_setup_obj.automl_run,
|
||||
features=automl_explainer_setup_obj.engineered_feature_names,
|
||||
feature_maps=[automl_explainer_setup_obj.feature_map],
|
||||
classes=automl_explainer_setup_obj.classes)
|
||||
|
||||
@@ -92,7 +92,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.24.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.31.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -256,15 +256,6 @@
|
||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -350,32 +350,6 @@
|
||||
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" #print(properties)\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -352,32 +352,6 @@
|
||||
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" #print(properties)\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
160
how-to-use-azureml/azure-synapse/Synapse_Job_Scala_Support.ipynb
Normal file
160
how-to-use-azureml/azure-synapse/Synapse_Job_Scala_Support.ipynb
Normal file
@@ -0,0 +1,160 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Get AML workspace which has synapse spark pool attached"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace, Experiment, Dataset, Environment\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Leverage ScriptRunConfig to submit scala job to an attached synapse spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"run_config.target = \"link-pool\"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.memory\"] = \"2g\"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.cores\"] = 2\n",
|
||||
"run_config.spark.configuration[\"spark.executor.memory\"] = \"2g\"\n",
|
||||
"run_config.spark.configuration[\"spark.executor.cores\"] = 1\n",
|
||||
"run_config.spark.configuration[\"spark.executor.instances\"] = 1\n",
|
||||
"\n",
|
||||
"run_config.spark.configuration[\"spark.yarn.dist.jars\"]=\"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/wordcount.jar\" # this can be removed if you are using local jars in source folder\n",
|
||||
"\n",
|
||||
"dir_name = \"wordcount-{}\".format(str(uuid.uuid4()))\n",
|
||||
"input = \"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/shakespeare.txt\"\n",
|
||||
"output = HDFSOutputDatasetConfig(destination=(ws.get_default_datastore(), \"{}/result\".format(dir_name)))\n",
|
||||
"\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"args = ['--input', input, '--output', output]\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = '.',\n",
|
||||
" script= 'start_script.py',\n",
|
||||
" arguments= args,\n",
|
||||
" run_config = run_config)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"exp = Experiment(workspace=ws, name='synapse-spark')\n",
|
||||
"run = exp.submit(config=script_run_config)\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Leverage SynapseSparkStep in an AML pipeline to add dataprep step on synapse spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import SynapseSparkStep\n",
|
||||
"\n",
|
||||
"configs = {}\n",
|
||||
"configs[\"spark.yarn.dist.jars\"] = \"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/wordcount.jar\"\n",
|
||||
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
|
||||
" file = 'start_script.py',\n",
|
||||
" source_directory=\".\",\n",
|
||||
" arguments = args,\n",
|
||||
" compute_target = 'link-pool',\n",
|
||||
" driver_memory = \"2g\",\n",
|
||||
" driver_cores = 2,\n",
|
||||
" executor_memory = \"2g\",\n",
|
||||
" executor_cores = 1,\n",
|
||||
" num_executors = 1,\n",
|
||||
" conf = configs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline = Pipeline(workspace=ws, steps=[step_1])\n",
|
||||
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "feli1"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,240 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Interactive Spark Session on Synapse Spark Pool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U \"azureml-synapse\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For JupyterLab, please additionally run:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!jupyter lab build --minimize=False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PLEASE restart kernel and then refresh web page before starting spark session."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 0. Magic Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
|
||||
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
|
||||
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
|
||||
},
|
||||
"gather": {
|
||||
"logged": 1615594584642
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# show help\n",
|
||||
"%synapse ?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 1. Start Synapse Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"gather": {
|
||||
"logged": 1615577715289
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse start -c linktestpool --start-timeout 1000"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# 2. Use Scala"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## (1) Read Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse scala\n",
|
||||
"\n",
|
||||
"var df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
|
||||
"df.show(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## (2) Use Scala Sql"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse scala\n",
|
||||
"\n",
|
||||
"df.createOrReplaceTempView(\"titanic\")\n",
|
||||
"var sqlDF = spark.sql(\"SELECT Name, Fare from titanic\")\n",
|
||||
"sqlDF.show(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Stop Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse stop"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "feli1"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
@@ -0,0 +1,892 @@
|
||||
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
|
||||
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
|
||||
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
|
||||
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
|
||||
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
|
||||
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
|
||||
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
|
||||
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
|
||||
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
|
||||
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
|
||||
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
|
||||
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
|
||||
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
|
||||
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
|
||||
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
|
||||
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
|
||||
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
|
||||
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
|
||||
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
|
||||
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
|
||||
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
|
||||
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
|
||||
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
|
||||
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
|
||||
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
|
||||
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
|
||||
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
|
||||
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
|
||||
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
|
||||
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
|
||||
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
|
||||
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
|
||||
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
|
||||
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
|
||||
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
|
||||
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
|
||||
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
|
||||
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
|
||||
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
|
||||
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
|
||||
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
|
||||
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
|
||||
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
|
||||
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
|
||||
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
|
||||
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
|
||||
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
|
||||
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
|
||||
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
|
||||
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
|
||||
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
|
||||
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
|
||||
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
|
||||
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
|
||||
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
|
||||
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
|
||||
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
|
||||
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
|
||||
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
|
||||
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
|
||||
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
|
||||
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
|
||||
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
|
||||
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
|
||||
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
|
||||
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
|
||||
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
|
||||
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
|
||||
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
|
||||
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
|
||||
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
|
||||
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
|
||||
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
|
||||
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
|
||||
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
|
||||
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
|
||||
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
|
||||
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
|
||||
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
|
||||
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
|
||||
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
|
||||
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
|
||||
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
|
||||
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
|
||||
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
|
||||
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
|
||||
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
|
||||
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
|
||||
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
|
||||
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
|
||||
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
|
||||
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
|
||||
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
|
||||
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
|
||||
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
|
||||
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
|
||||
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
|
||||
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
|
||||
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
|
||||
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
|
||||
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
|
||||
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
|
||||
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
|
||||
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
|
||||
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
|
||||
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
|
||||
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
|
||||
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
|
||||
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
|
||||
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
|
||||
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
|
||||
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
|
||||
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
|
||||
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
|
||||
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
|
||||
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
|
||||
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
|
||||
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
|
||||
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
|
||||
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
|
||||
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
|
||||
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
|
||||
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
|
||||
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
|
||||
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
|
||||
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
|
||||
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
|
||||
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
|
||||
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
|
||||
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
|
||||
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
|
||||
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
|
||||
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
|
||||
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
|
||||
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
|
||||
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
|
||||
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
|
||||
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
|
||||
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
|
||||
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
|
||||
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
|
||||
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
|
||||
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
|
||||
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
|
||||
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
|
||||
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
|
||||
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
|
||||
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
|
||||
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
|
||||
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
|
||||
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
|
||||
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
|
||||
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
|
||||
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
|
||||
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
|
||||
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
|
||||
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
|
||||
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
|
||||
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
|
||||
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
|
||||
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
|
||||
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
|
||||
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
|
||||
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
|
||||
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
|
||||
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
|
||||
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
|
||||
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
|
||||
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
|
||||
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
|
||||
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
|
||||
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
|
||||
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
|
||||
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
|
||||
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
|
||||
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
|
||||
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
|
||||
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
|
||||
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
|
||||
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
|
||||
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
|
||||
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
|
||||
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
|
||||
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
|
||||
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
|
||||
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
|
||||
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
|
||||
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
|
||||
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
|
||||
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
|
||||
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
|
||||
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
|
||||
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
|
||||
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
|
||||
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
|
||||
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
|
||||
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
|
||||
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
|
||||
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
|
||||
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
|
||||
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
|
||||
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
|
||||
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
|
||||
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
|
||||
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
|
||||
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
|
||||
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
|
||||
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
|
||||
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
|
||||
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
|
||||
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
|
||||
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
|
||||
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
|
||||
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
|
||||
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
|
||||
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
|
||||
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
|
||||
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
|
||||
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
|
||||
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
|
||||
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
|
||||
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
|
||||
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
|
||||
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
|
||||
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
|
||||
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
|
||||
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
|
||||
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
|
||||
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
|
||||
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
|
||||
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
|
||||
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
|
||||
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
|
||||
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
|
||||
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
|
||||
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
|
||||
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
|
||||
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
|
||||
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
|
||||
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
|
||||
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
|
||||
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
|
||||
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
|
||||
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
|
||||
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
|
||||
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
|
||||
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
|
||||
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
|
||||
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
|
||||
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
|
||||
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
|
||||
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
|
||||
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
|
||||
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
|
||||
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
|
||||
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
|
||||
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
|
||||
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
|
||||
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
|
||||
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
|
||||
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
|
||||
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
|
||||
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
|
||||
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
|
||||
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
|
||||
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
|
||||
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
|
||||
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
|
||||
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
|
||||
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
|
||||
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
|
||||
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
|
||||
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
|
||||
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
|
||||
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
|
||||
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
|
||||
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
|
||||
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
|
||||
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
|
||||
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
|
||||
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
|
||||
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
|
||||
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
|
||||
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
|
||||
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
|
||||
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
|
||||
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
|
||||
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
|
||||
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
|
||||
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
|
||||
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
|
||||
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
|
||||
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
|
||||
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
|
||||
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
|
||||
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
|
||||
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
|
||||
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
|
||||
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
|
||||
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
|
||||
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
|
||||
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
|
||||
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
|
||||
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
|
||||
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
|
||||
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
|
||||
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
|
||||
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
|
||||
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
|
||||
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
|
||||
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
|
||||
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
|
||||
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
|
||||
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
|
||||
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
|
||||
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
|
||||
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
|
||||
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
|
||||
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
|
||||
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
|
||||
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
|
||||
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
|
||||
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
|
||||
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
|
||||
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
|
||||
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
|
||||
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
|
||||
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
|
||||
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
|
||||
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
|
||||
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
|
||||
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
|
||||
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
|
||||
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
|
||||
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
|
||||
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
|
||||
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
|
||||
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
|
||||
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
|
||||
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
|
||||
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
|
||||
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
|
||||
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
|
||||
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
|
||||
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
|
||||
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
|
||||
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
|
||||
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
|
||||
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
|
||||
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
|
||||
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
|
||||
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
|
||||
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
|
||||
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
|
||||
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
|
||||
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
|
||||
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
|
||||
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
|
||||
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
|
||||
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
|
||||
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
|
||||
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
|
||||
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
|
||||
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
|
||||
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
|
||||
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
|
||||
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
|
||||
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
|
||||
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
|
||||
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
|
||||
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
|
||||
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
|
||||
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
|
||||
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
|
||||
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
|
||||
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
|
||||
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
|
||||
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
|
||||
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
|
||||
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
|
||||
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
|
||||
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
|
||||
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
|
||||
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
|
||||
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
|
||||
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
|
||||
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
|
||||
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
|
||||
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
|
||||
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
|
||||
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
|
||||
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
|
||||
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
|
||||
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
|
||||
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
|
||||
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
|
||||
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
|
||||
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
|
||||
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
|
||||
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
|
||||
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
|
||||
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
|
||||
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
|
||||
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
|
||||
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
|
||||
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
|
||||
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
|
||||
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
|
||||
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
|
||||
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
|
||||
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
|
||||
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
|
||||
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
|
||||
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
|
||||
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
|
||||
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
|
||||
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
|
||||
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
|
||||
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
|
||||
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
|
||||
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
|
||||
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
|
||||
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
|
||||
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
|
||||
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
|
||||
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
|
||||
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
|
||||
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
|
||||
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
|
||||
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
|
||||
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
|
||||
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
|
||||
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
|
||||
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
|
||||
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
|
||||
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
|
||||
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
|
||||
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
|
||||
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
|
||||
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
|
||||
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
|
||||
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
|
||||
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
|
||||
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
|
||||
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
|
||||
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
|
||||
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
|
||||
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
|
||||
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
|
||||
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
|
||||
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
|
||||
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
|
||||
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
|
||||
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
|
||||
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
|
||||
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
|
||||
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
|
||||
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
|
||||
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
|
||||
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
|
||||
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
|
||||
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
|
||||
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
|
||||
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
|
||||
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
|
||||
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
|
||||
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
|
||||
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
|
||||
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
|
||||
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
|
||||
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
|
||||
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
|
||||
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
|
||||
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
|
||||
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
|
||||
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
|
||||
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
|
||||
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
|
||||
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
|
||||
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
|
||||
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
|
||||
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
|
||||
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
|
||||
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
|
||||
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
|
||||
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
|
||||
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
|
||||
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
|
||||
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
|
||||
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
|
||||
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
|
||||
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
|
||||
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
|
||||
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
|
||||
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
|
||||
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
|
||||
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
|
||||
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
|
||||
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
|
||||
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
|
||||
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
|
||||
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
|
||||
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
|
||||
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
|
||||
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
|
||||
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
|
||||
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
|
||||
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
|
||||
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
|
||||
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
|
||||
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
|
||||
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
|
||||
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
|
||||
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
|
||||
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
|
||||
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
|
||||
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
|
||||
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
|
||||
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
|
||||
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
|
||||
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
|
||||
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
|
||||
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
|
||||
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
|
||||
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
|
||||
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
|
||||
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
|
||||
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
|
||||
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
|
||||
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
|
||||
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
|
||||
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
|
||||
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
|
||||
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
|
||||
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
|
||||
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
|
||||
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
|
||||
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
|
||||
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
|
||||
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
|
||||
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
|
||||
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
|
||||
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
|
||||
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
|
||||
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
|
||||
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
|
||||
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
|
||||
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
|
||||
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
|
||||
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
|
||||
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
|
||||
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
|
||||
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
|
||||
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
|
||||
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
|
||||
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
|
||||
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
|
||||
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
|
||||
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
|
||||
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
|
||||
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
|
||||
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
|
||||
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
|
||||
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
|
||||
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
|
||||
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
|
||||
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
|
||||
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
|
||||
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
|
||||
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
|
||||
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
|
||||
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
|
||||
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
|
||||
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
|
||||
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
|
||||
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
|
||||
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
|
||||
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
|
||||
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
|
||||
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
|
||||
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
|
||||
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
|
||||
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
|
||||
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
|
||||
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
|
||||
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
|
||||
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
|
||||
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
|
||||
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
|
||||
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
|
||||
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
|
||||
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
|
||||
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
|
||||
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
|
||||
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
|
||||
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
|
||||
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
|
||||
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
|
||||
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
|
||||
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
|
||||
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
|
||||
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
|
||||
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
|
||||
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
|
||||
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
|
||||
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
|
||||
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
|
||||
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
|
||||
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
|
||||
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
|
||||
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
|
||||
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
|
||||
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
|
||||
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
|
||||
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
|
||||
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
|
||||
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
|
||||
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
|
||||
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
|
||||
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
|
||||
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
|
||||
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
|
||||
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
|
||||
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
|
||||
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
|
||||
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
|
||||
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
|
||||
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
|
||||
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
|
||||
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
|
||||
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
|
||||
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
|
||||
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
|
||||
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
|
||||
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
|
||||
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
|
||||
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
|
||||
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
|
||||
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
|
||||
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
|
||||
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
|
||||
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
|
||||
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
|
||||
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
|
||||
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
|
||||
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
|
||||
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
|
||||
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
|
||||
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
|
||||
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
|
||||
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
|
||||
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
|
||||
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
|
||||
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
|
||||
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
|
||||
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
|
||||
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
|
||||
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
|
||||
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
|
||||
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
|
||||
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
|
||||
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
|
||||
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
|
||||
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
|
||||
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
|
||||
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
|
||||
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
|
||||
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
|
||||
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
|
||||
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
|
||||
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
|
||||
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
|
||||
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
|
||||
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
|
||||
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
|
||||
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
|
||||
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
|
||||
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
|
||||
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
|
||||
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
|
||||
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
|
||||
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
|
||||
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
|
||||
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
|
||||
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
|
||||
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
|
||||
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
|
||||
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
|
||||
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
|
||||
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
|
||||
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
|
||||
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
|
||||
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
|
||||
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
|
||||
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
|
||||
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
|
||||
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
|
||||
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
|
||||
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
|
||||
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
|
||||
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
|
||||
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
|
||||
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
|
||||
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
|
||||
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
|
||||
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
|
||||
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
|
||||
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
|
||||
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
|
||||
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
|
||||
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
|
||||
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
|
||||
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
|
||||
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
|
||||
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
|
||||
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
|
||||
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
|
||||
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
|
||||
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
|
||||
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
|
||||
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
|
||||
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
|
||||
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
|
||||
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
|
||||
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
|
||||
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
|
||||
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
|
||||
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
|
||||
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
|
||||
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
|
||||
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
|
||||
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
|
||||
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
|
||||
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
|
||||
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
|
||||
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
|
||||
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
|
||||
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
|
||||
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
|
||||
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
|
||||
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
|
||||
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
|
||||
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
|
||||
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
|
||||
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
|
||||
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
|
||||
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
|
||||
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
|
||||
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
|
||||
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
|
||||
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
|
||||
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
|
||||
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
|
||||
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
|
||||
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
|
||||
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
|
||||
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
|
||||
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
|
||||
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
|
||||
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
|
||||
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
|
||||
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
|
||||
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
|
||||
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
|
||||
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
|
||||
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
|
||||
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
|
||||
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
|
||||
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
|
||||
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
|
||||
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
|
||||
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
|
||||
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
|
||||
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
|
||||
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
|
||||
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
|
||||
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
|
||||
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
|
||||
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
|
||||
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
|
||||
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
|
||||
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
|
||||
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
|
||||
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
|
||||
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
|
||||
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
|
||||
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
|
||||
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
|
||||
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
|
||||
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
|
||||
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
|
||||
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
|
||||
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
|
||||
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
|
||||
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
|
||||
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
|
||||
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
|
||||
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
|
||||
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
|
||||
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
|
||||
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
|
||||
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
|
||||
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
|
||||
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
|
||||
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
|
||||
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
|
||||
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
|
||||
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
|
||||
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
|
||||
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
|
||||
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
|
||||
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
|
||||
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
|
||||
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
|
||||
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
|
||||
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
|
||||
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
|
||||
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
|
||||
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
|
||||
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
|
||||
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
|
||||
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
|
||||
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
|
||||
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
|
||||
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
|
||||
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
|
||||
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
|
||||
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
|
||||
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
|
||||
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
|
||||
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
|
||||
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
|
||||
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
|
||||
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
|
||||
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
|
||||
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
|
||||
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
|
||||
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
|
||||
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
|
||||
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
|
||||
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
|
||||
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
|
||||
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
|
||||
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
|
||||
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
|
||||
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
|
||||
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
|
||||
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
|
||||
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
|
||||
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
|
||||
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
|
||||
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
|
||||
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
|
||||
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
|
||||
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
|
||||
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
|
||||
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
|
||||
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
|
||||
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
|
||||
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
|
||||
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
|
||||
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
|
||||
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
|
||||
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
|
||||
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
|
||||
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
|
||||
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
|
||||
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
|
||||
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
|
||||
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
|
||||
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
|
||||
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
|
||||
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
|
||||
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
|
||||
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
|
||||
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
|
||||
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
|
||||
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
|
||||
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
|
||||
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
|
||||
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
|
||||
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
|
||||
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
|
||||
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
|
||||
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
|
||||
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
|
||||
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
|
||||
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
|
||||
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
|
||||
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
|
||||
|
@@ -0,0 +1,507 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Using Synapse Spark Pool as a Compute Target from Azure Machine Learning Remote Run\n",
|
||||
"1. To use Synapse Spark Pool as a compute target from Experiment Run, [ScriptRunConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) is used, the same as other Experiment Runs. This notebook demonstrates how to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster.\n",
|
||||
"2. To use Synapse Spark Pool as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [SynapseSparkStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.synapse_spark_step.synapsesparkstep?view=azure-ml-py) is used. This notebook demonstrates how to leverage SynapseSparkStep in Azure Machine Learning Pipeline.\n",
|
||||
"\n",
|
||||
"## Before you begin:\n",
|
||||
"1. **Create an Azure Synapse workspace**, check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace) for more information.\n",
|
||||
"2. **Create Spark Pool in Synapse workspace**: check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure Machine Learning and Pipeline SDK-specific imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute, SynapseCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep, SynapseSparkStep\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Link Synapse workspace to AML \n",
|
||||
"You have to be an \"Owner\" of Synapse workspace resource to perform linking. You can check your role in the Azure resource management portal, if you don't have an \"Owner\" role, you can contact an \"Owner\" to link the workspaces for you."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"# Replace with your resource info before running.\n",
|
||||
"\n",
|
||||
"synapse_subscription_id=os.getenv(\"SYNAPSE_SUBSCRIPTION_ID\", \"<my-synapse-subscription-id>\")\n",
|
||||
"synapse_resource_group=os.getenv(\"SYNAPSE_RESOURCE_GROUP\", \"<my-synapse-resource-group>\")\n",
|
||||
"synapse_workspace_name=os.getenv(\"SYNAPSE_WORKSPACE_NAME\", \"<my-synapse-workspace-name>\")\n",
|
||||
"synapse_linked_service_name=os.getenv(\"SYNAPSE_LINKED_SERVICE_NAME\", \"<my-synapse-linked-service-name>\")\n",
|
||||
"\n",
|
||||
"synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(\n",
|
||||
" subscription_id=synapse_subscription_id,\n",
|
||||
" resource_group=synapse_resource_group,\n",
|
||||
" name=synapse_workspace_name\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"linked_service = LinkedService.register(\n",
|
||||
" workspace=ws,\n",
|
||||
" name=synapse_linked_service_name,\n",
|
||||
" linked_service_config=synapse_link_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Linked service property\n",
|
||||
"\n",
|
||||
"A MSI (system_assigned_identity_principal_id) will be generated for each linked service, for example:\n",
|
||||
"\n",
|
||||
"name=synapselink,</p>\n",
|
||||
"type=Synapse, </p>\n",
|
||||
"linked_service_resource_id=/subscriptions/4faaaf21-663f-4391-96fd-47197c630979/resourceGroups/static_resources_synapse_test/providers/Microsoft.Synapse/workspaces/synapsetest2, </p>\n",
|
||||
"system_assigned_identity_principal_id=eb355d52-3806-4c5a-aec9-91447e8cfc2e </p>\n",
|
||||
"\n",
|
||||
"#### Make sure you grant \"Synapse Apache Spark Administrator\" role of the synapse workspace to the generated workspace linking MSI in Synapse studio portal before you submit job."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"linked_service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"LinkedService.list(ws)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Attach Synapse spark pool as AML compute target"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"synapse_spark_pool_name=os.getenv(\"SYNAPSE_SPARK_POOL_NAME\", \"<my-synapse-spark-pool-name>\")\n",
|
||||
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")\n",
|
||||
"\n",
|
||||
"attach_config = SynapseCompute.attach_configuration(\n",
|
||||
" linked_service,\n",
|
||||
" type=\"SynapseSpark\",\n",
|
||||
" pool_name=synapse_spark_pool_name)\n",
|
||||
"\n",
|
||||
"synapse_compute=ComputeTarget.attach(\n",
|
||||
" workspace=ws,\n",
|
||||
" name=synapse_compute_name,\n",
|
||||
" attach_configuration=attach_config)\n",
|
||||
"\n",
|
||||
"synapse_compute.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Start an experiment run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prepare data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Use the default blob storage\n",
|
||||
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
|
||||
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
|
||||
"\n",
|
||||
"# We are uploading a sample file in the local directory to be used as a datasource\n",
|
||||
"file_name = \"Titanic.csv\"\n",
|
||||
"def_blob_store.upload_files(files=[\"./{}\".format(file_name)], overwrite=False)\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tabular dataset as input"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||
"input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## File dataset as input"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||
"input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Output config: the output will be registered as a File dataset\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dataprep script"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.makedirs(\"code\", exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile code/dataprep.py\n",
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import azureml.core\n",
|
||||
"from pyspark.sql import SparkSession\n",
|
||||
"from azureml.core import Run, Dataset\n",
|
||||
"\n",
|
||||
"print(azureml.core.VERSION)\n",
|
||||
"print(os.environ)\n",
|
||||
"\n",
|
||||
"import argparse\n",
|
||||
"parser = argparse.ArgumentParser()\n",
|
||||
"parser.add_argument(\"--tabular_input\")\n",
|
||||
"parser.add_argument(\"--file_input\")\n",
|
||||
"parser.add_argument(\"--output_dir\")\n",
|
||||
"args = parser.parse_args()\n",
|
||||
"\n",
|
||||
"# use dataset sdk to read tabular dataset\n",
|
||||
"run_context = Run.get_context()\n",
|
||||
"dataset = Dataset.get_by_id(run_context.experiment.workspace,id=args.tabular_input)\n",
|
||||
"sdf = dataset.to_spark_dataframe()\n",
|
||||
"sdf.show()\n",
|
||||
"\n",
|
||||
"# use hdfs path to read file dataset\n",
|
||||
"spark= SparkSession.builder.getOrCreate()\n",
|
||||
"sdf = spark.read.option(\"header\", \"true\").csv(args.file_input)\n",
|
||||
"sdf.show()\n",
|
||||
"\n",
|
||||
"sdf.coalesce(1).write\\\n",
|
||||
".option(\"header\", \"true\")\\\n",
|
||||
".mode(\"append\")\\\n",
|
||||
".csv(args.output_dir)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up Conda dependency for the following Script Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.environment import CondaDependencies\n",
|
||||
"conda_dep = CondaDependencies()\n",
|
||||
"conda_dep.add_pip_package(\"azureml-core==1.20.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## How to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import RunConfiguration\n",
|
||||
"from azureml.core import ScriptRunConfig \n",
|
||||
"from azureml.core import Experiment\n",
|
||||
"\n",
|
||||
"run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"run_config.target = synapse_compute_name\n",
|
||||
"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.memory\"] = \"1g\" \n",
|
||||
"run_config.spark.configuration[\"spark.driver.cores\"] = 2 \n",
|
||||
"run_config.spark.configuration[\"spark.executor.memory\"] = \"1g\" \n",
|
||||
"run_config.spark.configuration[\"spark.executor.cores\"] = 1 \n",
|
||||
"run_config.spark.configuration[\"spark.executor.instances\"] = 1 \n",
|
||||
"\n",
|
||||
"run_config.environment.python.conda_dependencies = conda_dep\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = './code',\n",
|
||||
" script= 'dataprep.py',\n",
|
||||
" arguments = [\"--tabular_input\", input1, \n",
|
||||
" \"--file_input\", input2,\n",
|
||||
" \"--output_dir\", output],\n",
|
||||
" run_config = run_config) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment \n",
|
||||
"exp = Experiment(workspace=ws, name=\"synapse-spark\") \n",
|
||||
"run = exp.submit(config=script_run_config) \n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## How to leverage SynapseSparkStep in an AML pipeline to orchestrate data prep step on Synapse Spark and training step on AzureML compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" max_nodes=1)\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile code/train.py\n",
|
||||
"import glob\n",
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"from os import listdir\n",
|
||||
"from os.path import isfile, join\n",
|
||||
"\n",
|
||||
"mypath = os.environ[\"step2_input\"]\n",
|
||||
"files = [f for f in listdir(mypath) if isfile(join(mypath, f))]\n",
|
||||
"for file in files:\n",
|
||||
" with open(join(mypath,file)) as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||
"\n",
|
||||
"step1_input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")\n",
|
||||
"step1_input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()\n",
|
||||
"step1_output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")\n",
|
||||
"\n",
|
||||
"step2_input = step1_output.as_input(\"step2_input\").as_download()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"env = Environment(name=\"myenv\")\n",
|
||||
"env.python.conda_dependencies.add_pip_package(\"azureml-core==1.20.0\")\n",
|
||||
"\n",
|
||||
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
|
||||
" file = 'dataprep.py',\n",
|
||||
" source_directory=\"./code\", \n",
|
||||
" inputs=[step1_input1, step1_input2],\n",
|
||||
" outputs=[step1_output],\n",
|
||||
" arguments = [\"--tabular_input\", step1_input1, \n",
|
||||
" \"--file_input\", step1_input2,\n",
|
||||
" \"--output_dir\", step1_output],\n",
|
||||
" compute_target = synapse_compute_name,\n",
|
||||
" driver_memory = \"7g\",\n",
|
||||
" driver_cores = 4,\n",
|
||||
" executor_memory = \"7g\",\n",
|
||||
" executor_cores = 2,\n",
|
||||
" num_executors = 1,\n",
|
||||
" environment = env)\n",
|
||||
"\n",
|
||||
"step_2 = PythonScriptStep(script_name=\"train.py\",\n",
|
||||
" arguments=[step2_input],\n",
|
||||
" inputs=[step2_input],\n",
|
||||
" compute_target=cpu_cluster_name,\n",
|
||||
" source_directory=\"./code\",\n",
|
||||
" allow_reuse=False)\n",
|
||||
"\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=[step_1, step_2])\n",
|
||||
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "yunzhan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,327 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Interactive Spark Session on Synapse Spark Pool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Install package"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U \"azureml-synapse\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For JupyterLab, please additionally run:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!jupyter lab build --minimize=False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PLEASE restart kernel and then refresh web page before starting spark session."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 0. How to leverage Spark Magic for interactive Spark experience"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
|
||||
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
|
||||
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# show help\n",
|
||||
"%synapse ?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Start Synapse Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute linked to the Compute Instance's workspace with an aml envrionment.\n",
|
||||
"# conda dependencies specified in the environment will be installed before the spark session started.\n",
|
||||
"\n",
|
||||
"%synapse start -c $synapse_compute_name -e AzureML-Minimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute from anther workspace via its config file\n",
|
||||
"\n",
|
||||
"# %synapse start -c <compute-name> -f config.json"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute from anther workspace via subscription_id, resource_group and workspace_name\n",
|
||||
"\n",
|
||||
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# start a spark session with an AML environment, \n",
|
||||
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name> -e AzureML-Minimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data prepration\n",
|
||||
"\n",
|
||||
"Three types of datastore are supported in synapse spark, and you have two ways to load the data.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"| Datastore Type | Data Acess |\n",
|
||||
"|--------------------|-------------------------------|\n",
|
||||
"| Blob | Credential |\n",
|
||||
"| Adlsgen1 | Credential & Credential-less |\n",
|
||||
"| Adlsgen2 | Credential & Credential-less |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Example 1: Data loading by HDFS path"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Read data from Blob**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup access key or sas token\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.key.<storage account name>.blob.core.windows.net\", \"<acess key>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.sas.<container name>.<storage account name>.blob.core.windows.net\", \"sas token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.parquet(\"wasbs://<container name>@<storage account name>.blob.core.windows.net/<path>\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Read data from Adlsgen1**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup service pricinpal which has access of the data\n",
|
||||
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.access.token.provider.type\",\"ClientCredential\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.client.id\", \"<client id>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.credential\", \"<client secret>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.refresh.url\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.csv(\"adl://<storage account name>.azuredatalakestore.net/<path>\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Read data from Adlsgen2**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup service pricinpal which has access of the data\n",
|
||||
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.auth.type.<storage account name>.dfs.core.windows.net\",\"OAuth\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth.provider.type.<storage account name>.dfs.core.windows.net\", \"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.id.<storage account name>.dfs.core.windows.net\", \"<client id>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.secret.<storage account name>.dfs.core.windows.net\", \"<client secret>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.endpoint.<storage account name>.dfs.core.windows.net\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.csv(\"abfss://<container name>@<storage account>.dfs.core.windows.net/<path>\")\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-04T08:11:18.812276Z",
|
||||
"iopub.status.busy": "2020-06-04T08:11:18.812276Z",
|
||||
"iopub.status.idle": "2020-06-04T08:11:23.854526Z",
|
||||
"shell.execute_reply": "2020-06-04T08:11:23.853525Z",
|
||||
"shell.execute_reply.started": "2020-06-04T08:11:18.812276Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse\n",
|
||||
"\n",
|
||||
"from pyspark.sql.functions import col, desc\n",
|
||||
"\n",
|
||||
"df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
|
||||
"df.filter(col('Survived') == 1).groupBy('Age').count().orderBy(desc('count')).show(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Example 2: Data loading by AML Dataset\n",
|
||||
"\n",
|
||||
"You can create tabular data by following the [guidance](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-register-datasets) and use to_spark_dataframe() to load the data.\n",
|
||||
"\n",
|
||||
"```text\n",
|
||||
"%%synapse\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"print(azureml.core.VERSION)\n",
|
||||
"\n",
|
||||
"from azureml.core import Workspace, Dataset\n",
|
||||
"ws = Workspace.get(name='<workspace name>', subscription_id='<subscription id>', resource_group='<resource group>')\n",
|
||||
"ds = Dataset.get_by_name(ws, \"<tabular dataset name>\")\n",
|
||||
"df = ds.to_spark_dataframe()\n",
|
||||
"\n",
|
||||
"# You can do more data transformation on spark dataframe\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 3. Session Metadata\n",
|
||||
"After session started, you can check the session's metadata, find the links to Synapse portal."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse meta"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 4. Stop Session\n",
|
||||
"When current session reach the status timeout, dead or any failure, you must explicitly stop it before start new one. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse stop"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "yunzhan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
18
how-to-use-azureml/azure-synapse/start_script.py
Normal file
18
how-to-use-azureml/azure-synapse/start_script.py
Normal file
@@ -0,0 +1,18 @@
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", default="")
|
||||
parser.add_argument("--output", default="")
|
||||
|
||||
args, unparsed = parser.parse_known_args()
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
sc = spark.sparkContext
|
||||
|
||||
arr = sc._gateway.new_array(sc._jvm.java.lang.String, 2)
|
||||
arr[0] = args.input
|
||||
arr[1] = args.output
|
||||
|
||||
obj = sc._jvm.WordCount
|
||||
obj.main(arr)
|
||||
@@ -157,7 +157,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Provision the AKS Cluster\n",
|
||||
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster."
|
||||
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -267,7 +267,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AKS compute if you haven't done so."
|
||||
"### Create AKS compute if you haven't done so.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -211,6 +211,8 @@
|
||||
"# Provision the AKS Cluster with SSL\n",
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -325,7 +325,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Provision the AKS Cluster\n",
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -203,6 +203,8 @@
|
||||
"source": [
|
||||
"### Provision a compute target\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
|
||||
"\n",
|
||||
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
|
||||
@@ -215,7 +217,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
@@ -255,9 +256,6 @@
|
||||
"# Set compute target to AmlCompute target created in previous step\n",
|
||||
"run_config.target = cpu_cluster.name\n",
|
||||
"\n",
|
||||
"# Enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
@@ -268,7 +266,7 @@
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
"for dist in list(available_packages):\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
@@ -287,7 +285,6 @@
|
||||
"azureml_pip_packages.extend([sklearn_dep, pandas_dep])\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"from azureml.core import Run\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"src = ScriptRunConfig(source_directory=project_folder, \n",
|
||||
@@ -417,7 +414,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Retrieve x_test for visualization\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test_boston_housing.pkl'\n",
|
||||
"run.download_file('x_test_boston_housing.pkl', output_file_path=x_test_path)"
|
||||
]
|
||||
@@ -445,7 +441,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -454,7 +450,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, original_model, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, original_model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -11,3 +11,4 @@ dependencies:
|
||||
- matplotlib
|
||||
- azureml-dataset-runtime
|
||||
- ipywidgets
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -87,7 +87,6 @@
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.svm import SVC\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Explainers:\n",
|
||||
"# 1. SHAP Tabular Explainer\n",
|
||||
@@ -533,7 +532,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -542,7 +541,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(downloaded_global_explanation, model, datasetX=x_test)"
|
||||
"ExplanationDashboard(downloaded_global_explanation, model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -10,3 +10,4 @@ dependencies:
|
||||
- ipython
|
||||
- matplotlib
|
||||
- ipywidgets
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -170,7 +170,6 @@
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||
"\n",
|
||||
"from interpret.ext.blackbox import TabularExplainer\n",
|
||||
@@ -221,7 +220,6 @@
|
||||
" ('classifier', RandomForestClassifier())])\n",
|
||||
"\n",
|
||||
"# Split data into train and test\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"x_train, x_test, y_train, y_test = train_test_split(attritionXData,\n",
|
||||
" target,\n",
|
||||
" test_size=0.2,\n",
|
||||
@@ -296,7 +294,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -305,7 +303,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, clf, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, clf, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -356,8 +354,7 @@
|
||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=['pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
|
||||
" pin_sdk_version=False)\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=['pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())\n",
|
||||
@@ -383,11 +380,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"from azureml.exceptions import WebserviceException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
@@ -401,7 +397,12 @@
|
||||
"\n",
|
||||
"# Use configs and models generated above\n",
|
||||
"service = Model.deploy(ws, 'model-scoring-deploy-local', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
"try:\n",
|
||||
" service.wait_for_deployment(show_output=True)\n",
|
||||
"except WebserviceException as e:\n",
|
||||
" print(e.message)\n",
|
||||
" print(service.get_logs())\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -10,3 +10,4 @@ dependencies:
|
||||
- ipython
|
||||
- matplotlib
|
||||
- ipywidgets
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -204,6 +204,8 @@
|
||||
"source": [
|
||||
"### Provision a compute target\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
|
||||
"\n",
|
||||
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
|
||||
@@ -216,7 +218,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
@@ -257,9 +258,6 @@
|
||||
"# Set compute target to AmlCompute target created in previous step\n",
|
||||
"run_config.target = cpu_cluster.name\n",
|
||||
"\n",
|
||||
"# Enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# Set Docker base image to the default CPU-based image\n",
|
||||
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
@@ -381,7 +379,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Retrieve x_test for visualization\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test.pkl'\n",
|
||||
"run.download_file('x_test_ibm.pkl', output_file_path=x_test_path)\n",
|
||||
"x_test = joblib.load(x_test_path)"
|
||||
@@ -401,7 +398,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -410,7 +407,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, original_svm_model, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, original_svm_model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -427,8 +424,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-core', 'azureml-telemetry',\n",
|
||||
@@ -438,7 +433,6 @@
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
@@ -484,11 +478,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"from azureml.exceptions import WebserviceException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
@@ -502,7 +495,12 @@
|
||||
"\n",
|
||||
"# Use configs and models generated above\n",
|
||||
"service = Model.deploy(ws, 'model-scoring-service', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
"try:\n",
|
||||
" service.wait_for_deployment(show_output=True)\n",
|
||||
"except WebserviceException as e:\n",
|
||||
" print(e.message)\n",
|
||||
" print(service.get_logs())\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -12,3 +12,4 @@ dependencies:
|
||||
- azureml-dataset-runtime
|
||||
- azureml-core
|
||||
- ipywidgets
|
||||
- raiwidgets==0.4.0
|
||||
|
||||
@@ -209,6 +209,8 @@
|
||||
"#### Retrieve or create a Azure Machine Learning compute\n",
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. We will create an Azure Machine Learning Compute containing **STANDARD_D2_V2 CPU VMs**. This process is broken down into the following steps:\n",
|
||||
"\n",
|
||||
"1. Create the configuration\n",
|
||||
|
||||
@@ -55,7 +55,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Target\n",
|
||||
"Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline."
|
||||
"Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -42,15 +42,13 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment, Datastore, Dataset\n",
|
||||
"from azureml.core import Workspace, Environment, Experiment, Datastore, Dataset, ScriptRunConfig\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun, PythonScriptStep\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData, TrainingOutput\n",
|
||||
"from azureml.train.dnn import TensorFlow\n",
|
||||
"# from azureml.train.hyperdrive import *\n",
|
||||
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal\n",
|
||||
"from azureml.train.hyperdrive import choice, loguniform\n",
|
||||
"\n",
|
||||
@@ -125,13 +123,13 @@
|
||||
"os.makedirs(data_folder, exist_ok=True)\n",
|
||||
"\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-images-idx3-ubyte.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 'train-images.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-labels-idx1-ubyte.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 'train-labels.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'))\n",
|
||||
" filename=os.path.join(data_folder, 'test-images.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'))"
|
||||
" filename=os.path.join(data_folder, 'test-labels.gz'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -151,10 +149,10 @@
|
||||
"from utils import load_data\n",
|
||||
"\n",
|
||||
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
|
||||
"X_train = load_data(os.path.join(data_folder, 'train-images-idx3-ubyte.gz'), False) / np.float32(255.0)\n",
|
||||
"X_test = load_data(os.path.join(data_folder, 't10k-images-idx3-ubyte.gz'), False) / np.float32(255.0)\n",
|
||||
"y_train = load_data(os.path.join(data_folder, 'train-labels-idx1-ubyte.gz'), True).reshape(-1)\n",
|
||||
"y_test = load_data(os.path.join(data_folder, 't10k-labels-idx1-ubyte.gz'), True).reshape(-1)\n",
|
||||
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / np.float32(255.0)\n",
|
||||
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / np.float32(255.0)\n",
|
||||
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
|
||||
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"count = 0\n",
|
||||
@@ -212,6 +210,8 @@
|
||||
"## Retrieve or create a Azure Machine Learning compute\n",
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n",
|
||||
"\n",
|
||||
"1. Create the configuration\n",
|
||||
@@ -282,13 +282,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create TensorFlow estimator\n",
|
||||
"Next, we construct an [TensorFlow](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py) estimator object.\n",
|
||||
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker.\n",
|
||||
"\n",
|
||||
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release.\n",
|
||||
"\n",
|
||||
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
|
||||
"## Retrieve an Environment\n",
|
||||
"In this tutorial, we will use one of Azure ML's curated TensorFlow environments for training. Curated environments are available in your workspace by default. Specifically, we will use the TensorFlow 2.0 GPU curated environment."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -297,12 +292,45 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"est = TensorFlow(source_directory=script_folder, \n",
|
||||
" compute_target=compute_target,\n",
|
||||
" entry_script='tf_mnist.py', \n",
|
||||
" use_gpu=True,\n",
|
||||
" framework_version='2.0',\n",
|
||||
" pip_packages=['azureml-dataset-runtime[pandas,fuse]'])"
|
||||
"tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup an input for the ScriptRunConfig step\n",
|
||||
"You can mount dataset to remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_folder = dataset.as_mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure the training job\n",
|
||||
"Create a ScriptRunConfig object to specify the configuration details of your training job, including your training script, environment to use, and the compute target to run on"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"src = ScriptRunConfig(source_directory=script_folder,\n",
|
||||
" script='tf_mnist.py',\n",
|
||||
" arguments=['--data-folder', data_folder],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" environment=tf_env)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -366,7 +394,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hd_config = HyperDriveConfig(estimator=est, \n",
|
||||
"hd_config = HyperDriveConfig(run_config=src, \n",
|
||||
" hyperparameter_sampling=ps,\n",
|
||||
" policy=early_termination_policy,\n",
|
||||
" primary_metric_name='validation_acc', \n",
|
||||
@@ -375,25 +403,6 @@
|
||||
" max_concurrent_runs=4)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Add HyperDrive as a step of pipeline\n",
|
||||
"\n",
|
||||
"### Setup an input for the hypderdrive step\n",
|
||||
"You can mount dataset to remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_folder = dataset.as_mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -402,7 +411,6 @@
|
||||
"HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n",
|
||||
"- **name:** Name of the step\n",
|
||||
"- **hyperdrive_config:** A HyperDriveConfig that defines the configuration for this HyperDrive run\n",
|
||||
"- **estimator_entry_script_arguments:** List of command-line arguments for estimator entry script\n",
|
||||
"- **inputs:** List of input port bindings\n",
|
||||
"- **outputs:** List of output port bindings\n",
|
||||
"- **metrics_output:** Optional value specifying the location to store HyperDrive run metrics as a JSON file\n",
|
||||
@@ -437,7 +445,6 @@
|
||||
"hd_step = HyperDriveStep(\n",
|
||||
" name=hd_step_name,\n",
|
||||
" hyperdrive_config=hd_config,\n",
|
||||
" estimator_entry_script_arguments=['--data-folder', data_folder],\n",
|
||||
" inputs=[data_folder],\n",
|
||||
" outputs=[metrics_data, saved_model])"
|
||||
]
|
||||
|
||||
@@ -68,7 +68,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Targets\n",
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute"
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -54,7 +54,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Targets\n",
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute"
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -78,7 +78,9 @@
|
||||
"source": [
|
||||
"#### Initialization, Steps to create a Pipeline\n",
|
||||
"\n",
|
||||
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step."
|
||||
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -109,7 +109,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -111,7 +111,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -699,12 +699,162 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"### 5. Running demo notebook already added to the Databricks workspace using existing cluster\n",
|
||||
"First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
|
||||
"\n",
|
||||
"Find existing_cluster_id by opeing Azure Databricks UI with Clusters page and in url you will find a string connected with '-' right after \"clusters/\"."
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"try:\n",
|
||||
" dbfs_ds = Datastore.get(workspace=ws, datastore_name='dbfs_datastore')\n",
|
||||
" print('DBFS Datastore already exists')\n",
|
||||
"except Exception as ex:\n",
|
||||
" dbfs_ds = Datastore.register_dbfs(ws, datastore_name='dbfs_datastore')\n",
|
||||
"\n",
|
||||
"step_1_input = DataReference(datastore=dbfs_ds, path_on_datastore=\"FileStore\", data_reference_name=\"input\")\n",
|
||||
"step_1_output = PipelineData(\"output\", datastore=dbfs_ds)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dbNbWithExistingClusterStep = DatabricksStep(\n",
|
||||
" name=\"DBFSReferenceWithExisting\",\n",
|
||||
" inputs=[step_1_input],\n",
|
||||
" outputs=[step_1_output],\n",
|
||||
" notebook_path=notebook_path,\n",
|
||||
" notebook_params={'myparam': 'testparam', \n",
|
||||
" 'myparam2': pipeline_param},\n",
|
||||
" run_name='DBFS_Reference_With_Existing',\n",
|
||||
" compute_target=databricks_compute,\n",
|
||||
" existing_cluster_id=\"your existing cluster id\",\n",
|
||||
" allow_reuse=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"#### Build and submit the Experiment"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = [dbNbWithExistingClusterStep]\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"pipeline_run = Experiment(ws, 'DBFS_Reference_With_Existing').submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"#### View Run Details"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"### 6. Running a Python script in Databricks that currenlty is in local computer with existing cluster\n",
|
||||
"When you access azure blob or data lake storage from an existing (interactive) cluster, you need to ensure the Spark configuration is set up correctly to access this storage and this set up may require the cluster to be restarted.\n",
|
||||
"\n",
|
||||
"If you set permit_cluster_restart to True, AML will check if the spark configuration needs to be updated and restart the cluster for you if required. This will ensure that the storage can be correctly accessed from the Databricks cluster."
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
|
||||
" data_reference_name=\"input\")\n",
|
||||
"\n",
|
||||
"dbPythonInLocalWithExistingStep = DatabricksStep(\n",
|
||||
" name=\"DBPythonInLocalMachineWithExisting\",\n",
|
||||
" inputs=[step_1_input],\n",
|
||||
" python_script_name=python_script_name,\n",
|
||||
" source_directory=source_directory,\n",
|
||||
" run_name='DB_Python_Local_existing_demo',\n",
|
||||
" compute_target=databricks_compute,\n",
|
||||
" existing_cluster_id=\"your existing cluster id\",\n",
|
||||
" allow_reuse=False,\n",
|
||||
" permit_cluster_restart=True\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"#### Build and submit the Experiment"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = [dbPythonInLocalWithExistingStep]\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"pipeline_run = Experiment(ws, 'DB_Python_Local_existing_demo').submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"#### View Run Details"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"# Next: ADLA as a Compute Target\n",
|
||||
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](https://aka.ms/pl-adla) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
|
||||
]
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -125,7 +125,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -79,7 +79,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -77,7 +77,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -134,7 +134,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve or create an Aml compute\n",
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's get the default Aml Compute in the current workspace. We will then run the training script on this compute target."
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's get the default Aml Compute in the current workspace. We will then run the training script on this compute target.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -147,7 +147,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.computetarget?view=azure-ml-py) for your remote run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.computetarget?view=azure-ml-py) for your remote run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -225,7 +225,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup Compute\n",
|
||||
"#### Create new or use an existing compute"
|
||||
"#### Create new or use an existing compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -679,7 +681,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"\n",
|
||||
"# Change iterations to a reasonable number (50) to get better accuracy\n",
|
||||
@@ -782,8 +783,8 @@
|
||||
" path = download_path + '/azureml/' + output_folder + '/' + output_name\n",
|
||||
" return path\n",
|
||||
"\n",
|
||||
"def fetch_df(step, output_name):\n",
|
||||
" output_data = step.get_output_data(output_name) \n",
|
||||
"def fetch_df(current_step, output_name):\n",
|
||||
" output_data = current_step.get_output_data(output_name) \n",
|
||||
" download_path = './outputs/' + output_name\n",
|
||||
" output_data.download(download_path, overwrite=True)\n",
|
||||
" df_path = get_download_path(download_path, output_name) + '/processed.parquet'\n",
|
||||
@@ -939,32 +940,6 @@
|
||||
"#RunDetails(automl_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve all Child runs\n",
|
||||
"\n",
|
||||
"We use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(automl_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -2,6 +2,7 @@ name: nyc-taxi-data-regression-model-building
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- certifi
|
||||
- azureml-widgets
|
||||
- azureml-opendatasets
|
||||
- azureml-train-automl
|
||||
|
||||
@@ -24,9 +24,9 @@
|
||||
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
|
||||
"\n",
|
||||
"> **Tip**\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"\n",
|
||||
"In this example will be take a digit identification model already-trained on MNIST dataset using the [AzureML training with deep learning example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb), and run that trained model on some of the MNIST test images in batch. \n",
|
||||
"In this example will be take a digit identification model already-trained on MNIST dataset using the [AzureML training with deep learning example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb), and run that trained model on some of the MNIST test images in batch. \n",
|
||||
"\n",
|
||||
"The input dataset used for this notebook differs from a standard MNIST dataset in that it has been converted to PNG images to demonstrate use of files as inputs to Batch Inference. A sample of PNG-converted images of the MNIST dataset were take from [this repository](https://github.com/myleott/mnist_png). \n",
|
||||
"\n",
|
||||
@@ -86,6 +86,8 @@
|
||||
"### Create or Attach existing compute resource\n",
|
||||
"By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you create Azure Machine Learning Compute as your training environment. The code below creates the compute clusters for you if they don't already exist in your workspace.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of compute takes approximately 5 minutes. If the AmlCompute with that name is already in your workspace the code will skip the creation process.**"
|
||||
]
|
||||
},
|
||||
@@ -180,8 +182,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a FileDataset\n",
|
||||
"A [FileDataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) references single or multiple files in your datastores or public urls. The files can be of any format. FileDataset provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred.",
|
||||
"\n",
|
||||
"A [FileDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) references single or multiple files in your datastores or public urls. The files can be of any format. FileDataset provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred.\n",
|
||||
"You can use dataset objects as inputs. Register the datasets to the workspace if you want to reuse them later."
|
||||
]
|
||||
},
|
||||
@@ -224,7 +225,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Intermediate/Output Data\n",
|
||||
"Intermediate data (or output of a Step) is represented by [PipelineData](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py) object. PipelineData can be produced by one step and consumed in another step by providing the PipelineData object as an output of one step and the input of one or more steps."
|
||||
"Intermediate data (or output of a Step) is represented by [PipelineData](https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py) object. PipelineData can be produced by one step and consumed in another step by providing the PipelineData object as an output of one step and the input of one or more steps."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -276,7 +277,7 @@
|
||||
"### Register the model with Workspace\n",
|
||||
"A registered model is a logical container for one or more files that make up your model. For example, if you have a model that's stored in multiple files, you can register them as a single model in the workspace. After you register the files, you can then download or deploy the registered model and receive all the files that you registered.\n",
|
||||
"\n",
|
||||
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#registermodel) "
|
||||
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-deploy-and-where#registermodel) "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -362,7 +363,6 @@
|
||||
" \"azureml-core\", \"azureml-dataset-runtime[fuse]\"])\n",
|
||||
"batch_env = Environment(name=\"batch_environment\")\n",
|
||||
"batch_env.python.conda_dependencies = batch_conda_deps\n",
|
||||
"batch_env.docker.enabled = True\n",
|
||||
"batch_env.docker.base_image = DEFAULT_CPU_IMAGE"
|
||||
]
|
||||
},
|
||||
@@ -379,7 +379,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core import PipelineParameter\n",
|
||||
"from azureml.pipeline.steps import ParallelRunStep, ParallelRunConfig\n",
|
||||
"\n",
|
||||
"parallel_run_config = ParallelRunConfig(\n",
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
|
||||
"\n",
|
||||
"> **Tip**\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
|
||||
"\n",
|
||||
"In this example we will take use a machine learning model already trained to predict different types of iris flowers and run that trained model on some of the data in a CSV file which has characteristics of different iris flowers. However, the same example can be extended to manipulating data to any embarrassingly-parallel processing through a python script.\n",
|
||||
"\n",
|
||||
@@ -84,6 +84,8 @@
|
||||
"### Create or Attach existing compute resource\n",
|
||||
"By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you create Azure Machine Learning Compute as your training environment. The code below creates the compute clusters for you if they don't already exist in your workspace.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of compute takes approximately 5 minutes. If the AmlCompute with that name is already in your workspace the code will skip the creation process.**"
|
||||
]
|
||||
},
|
||||
@@ -160,7 +162,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a TabularDataset\n",
|
||||
"A [TabularDataSet](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) references single or multiple files which contain data in a tabular structure (ie like CSV files) in your datastores or public urls. TabularDatasets provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred.\n",
|
||||
"A [TabularDataSet](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) references single or multiple files which contain data in a tabular structure (ie like CSV files) in your datastores or public urls. TabularDatasets provides you with the ability to download or mount the files to your compute. By creating a dataset, you create a reference to the data source location. If you applied any subsetting transformations to the dataset, they will be stored in the dataset as well. The data remains in its existing location, so no extra storage cost is incurred.\n",
|
||||
"You can use dataset objects as inputs. Register the datasets to the workspace if you want to reuse them later."
|
||||
]
|
||||
},
|
||||
@@ -184,7 +186,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Intermediate/Output Data\n",
|
||||
"Intermediate data (or output of a Step) is represented by [PipelineData](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py) object. PipelineData can be produced by one step and consumed in another step by providing the PipelineData object as an output of one step and the input of one or more steps."
|
||||
"Intermediate data (or output of a Step) is represented by [PipelineData](https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py) object. PipelineData can be produced by one step and consumed in another step by providing the PipelineData object as an output of one step and the input of one or more steps."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -311,7 +313,6 @@
|
||||
"\n",
|
||||
"predict_env = Environment(name=\"predict_environment\")\n",
|
||||
"predict_env.python.conda_dependencies = predict_conda_deps\n",
|
||||
"predict_env.docker.enabled = True\n",
|
||||
"predict_env.spark.precache_packages = False"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -81,12 +81,12 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.core import Datastore, Dataset\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException"
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"from azureml.data import OutputFileDatasetConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -178,7 +178,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Create or use existing compute"
|
||||
"# Create or use existing compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -297,9 +299,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"video_name=os.getenv(\"STYLE_TRANSFER_VIDEO_NAME\", \"orangutan.mp4\") \n",
|
||||
"orangutan_video = DataReference(datastore=video_ds,\n",
|
||||
" data_reference_name=\"video\",\n",
|
||||
" path_on_datastore=video_name, mode=\"download\")"
|
||||
"orangutan_video = Dataset.File.from_files((video_ds,video_name))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -325,13 +325,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ffmpeg_audio = PipelineData(name=\"ffmpeg_audio\", datastore=default_datastore)\n",
|
||||
"processed_images = PipelineData(name=\"processed_images\", datastore=default_datastore)\n",
|
||||
"output_video = PipelineData(name=\"output_video\", datastore=default_datastore)\n",
|
||||
"ffmpeg_audio = OutputFileDatasetConfig(name=\"ffmpeg_audio\")\n",
|
||||
"processed_images = OutputFileDatasetConfig(name=\"processed_images\")\n",
|
||||
"output_video = OutputFileDatasetConfig(name=\"output_video\")\n",
|
||||
"\n",
|
||||
"ffmpeg_images_ds_name = \"ffmpeg_images_data\"\n",
|
||||
"ffmpeg_images = PipelineData(name=\"ffmpeg_images\", datastore=default_datastore)\n",
|
||||
"ffmpeg_images_file_dataset = ffmpeg_images.as_dataset()"
|
||||
"ffmpeg_images = OutputFileDatasetConfig(name=\"ffmpeg_images\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -367,13 +365,10 @@
|
||||
"split_video_step = PythonScriptStep(\n",
|
||||
" name=\"split video\",\n",
|
||||
" script_name=\"process_video.py\",\n",
|
||||
" arguments=[\"--input_video\", orangutan_video,\n",
|
||||
" arguments=[\"--input_video\", orangutan_video.as_mount(),\n",
|
||||
" \"--output_audio\", ffmpeg_audio,\n",
|
||||
" \"--output_images\", ffmpeg_images_file_dataset,\n",
|
||||
" ],\n",
|
||||
" \"--output_images\", ffmpeg_images],\n",
|
||||
" compute_target=cpu_cluster,\n",
|
||||
" inputs=[orangutan_video],\n",
|
||||
" outputs=[ffmpeg_images_file_dataset, ffmpeg_audio],\n",
|
||||
" runconfig=amlcompute_run_config,\n",
|
||||
" source_directory=scripts_folder\n",
|
||||
")\n",
|
||||
@@ -381,12 +376,10 @@
|
||||
"stitch_video_step = PythonScriptStep(\n",
|
||||
" name=\"stitch\",\n",
|
||||
" script_name=\"stitch_video.py\",\n",
|
||||
" arguments=[\"--images_dir\", processed_images, \n",
|
||||
" \"--input_audio\", ffmpeg_audio, \n",
|
||||
" arguments=[\"--images_dir\", processed_images.as_input(), \n",
|
||||
" \"--input_audio\", ffmpeg_audio.as_input(), \n",
|
||||
" \"--output_dir\", output_video],\n",
|
||||
" compute_target=cpu_cluster,\n",
|
||||
" inputs=[processed_images, ffmpeg_audio],\n",
|
||||
" outputs=[output_video],\n",
|
||||
" runconfig=amlcompute_run_config,\n",
|
||||
" source_directory=scripts_folder\n",
|
||||
")"
|
||||
@@ -415,7 +408,6 @@
|
||||
"parallel_cd.add_conda_package(\"torchvision\")\n",
|
||||
"parallel_cd.add_conda_package(\"pillow<7\") # needed for torchvision==0.4.0\n",
|
||||
"parallel_cd.add_pip_package(\"azureml-core\")\n",
|
||||
"parallel_cd.add_pip_package(\"azureml-dataset-runtime[fuse]\")\n",
|
||||
"\n",
|
||||
"styleenvironment = Environment(name=\"styleenvironment\")\n",
|
||||
"styleenvironment.python.conda_dependencies=parallel_cd\n",
|
||||
@@ -457,7 +449,7 @@
|
||||
"\n",
|
||||
"distributed_style_transfer_step = ParallelRunStep(\n",
|
||||
" name=parallel_step_name,\n",
|
||||
" inputs=[ffmpeg_images_file_dataset], # Input file share/blob container/file dataset\n",
|
||||
" inputs=[ffmpeg_images], # Input file share/blob container/file dataset\n",
|
||||
" output=processed_images, # Output file share/blob container\n",
|
||||
" arguments=[\"--style\", style_param],\n",
|
||||
" parallel_run_config=parallel_run_config,\n",
|
||||
@@ -552,8 +544,8 @@
|
||||
"source": [
|
||||
"def download_video(run, target_dir=None):\n",
|
||||
" stitch_run = run.find_step_run(stitch_video_step.name)[0]\n",
|
||||
" port_data = stitch_run.get_output_data(output_video.name)\n",
|
||||
" port_data.download(target_dir, show_progress=True)"
|
||||
" port_data = stitch_run.get_details()['outputDatasets'][0]['dataset']\n",
|
||||
" port_data.download(target_dir)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -98,6 +98,8 @@
|
||||
"## Create or attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -45,16 +45,6 @@
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!jupyter nbextension install --py --user azureml.widgets\n",
|
||||
"!jupyter nbextension enable --py --user azureml.widgets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -108,6 +98,8 @@
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -278,12 +270,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Environment\n",
|
||||
"from azureml.core.runconfig import DockerConfiguration\n",
|
||||
"\n",
|
||||
"chainer_env = Environment.from_conda_specification(name = 'chainer-5.1.0-gpu', file_path = './conda_dependencies.yml')\n",
|
||||
"\n",
|
||||
"# Specify a GPU base image\n",
|
||||
"chainer_env.docker.enabled = True\n",
|
||||
"chainer_env.docker.base_image = 'mcr.microsoft.com/azureml/intelmpi2018.3-cuda9.0-cudnn7-ubuntu16.04'"
|
||||
"chainer_env.docker.base_image = 'mcr.microsoft.com/azureml/intelmpi2018.3-cuda9.0-cudnn7-ubuntu16.04'\n",
|
||||
"\n",
|
||||
"docker_config = DockerConfiguration(use_docker=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -307,7 +301,8 @@
|
||||
" script='chainer_mnist.py',\n",
|
||||
" arguments=['--epochs', 10, '--batchsize', 128, '--output_dir', './outputs'],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" environment=chainer_env)"
|
||||
" environment=chainer_env,\n",
|
||||
" docker_runtime_config=docker_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -222,6 +222,8 @@
|
||||
"### Create or attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -272,7 +272,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -99,6 +99,8 @@
|
||||
"## Create or attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -99,6 +99,8 @@
|
||||
"## Create or attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -100,6 +100,8 @@
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -117,6 +117,8 @@
|
||||
"source": [
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
|
||||
@@ -101,6 +101,8 @@
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -101,6 +101,8 @@
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -270,7 +270,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -286,7 +286,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -101,6 +101,8 @@
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
|
||||
@@ -250,7 +250,7 @@
|
||||
"source": [
|
||||
"### Deploy model as web service\n",
|
||||
"\n",
|
||||
"The ```mlflow.azureml.deploy``` function registers the logged Keras+Tensorflow model and deploys the model in a framework-aware manner. It automatically creates the Tensorflow-specific inferencing wrapper code and specifies package dependencies for you. See [this doc](https://mlflow.org/docs/latest/models.html#id34) for more information on deploying models on Azure ML using MLflow.\n",
|
||||
"The ```client.create_deployment``` function registers the logged Keras+Tensorflow model and deploys the model in a framework-aware manner. It automatically creates the Tensorflow-specific inferencing wrapper code and specifies package dependencies for you. See [this doc](https://mlflow.org/docs/latest/models.html#id34) for more information on deploying models on Azure ML using MLflow.\n",
|
||||
"\n",
|
||||
"In this example, we deploy the Docker image to Azure Container Instance: a serverless compute capable of running a single container. You can tag and add descriptions to help keep track of your web service. \n",
|
||||
"\n",
|
||||
@@ -259,131 +259,63 @@
|
||||
"Note that the service deployment can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"First define your deployment target and customize parameters in the deployment config. Refer to [this documentation](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli#azure-container-instance-deployment-configuration-schema) for more information. "
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"import json\n",
|
||||
" \n",
|
||||
"# Data to be written\n",
|
||||
"deploy_config ={\n",
|
||||
" \"computeType\": \"aci\"\n",
|
||||
"}\n",
|
||||
"# Serializing json \n",
|
||||
"json_object = json.dumps(deploy_config)\n",
|
||||
" \n",
|
||||
"# Writing to sample.json\n",
|
||||
"with open(\"deployment_config.json\", \"w\") as outfile:\n",
|
||||
" outfile.write(json_object)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from mlflow.deployments import get_deploy_client\n",
|
||||
"\n",
|
||||
"# set the tracking uri as the deployment client\n",
|
||||
"client = get_deploy_client(mlflow.get_tracking_uri())\n",
|
||||
"\n",
|
||||
"# set the model path \n",
|
||||
"model_path = \"model\"\n",
|
||||
"\n",
|
||||
"aci_config = AciWebservice.deploy_configuration(cpu_cores=2, \n",
|
||||
" memory_gb=5, \n",
|
||||
" tags={\"data\": \"MNIST\", \"method\" : \"keras\"}, \n",
|
||||
" description=\"Predict using webservice\")\n",
|
||||
"# set the deployment config\n",
|
||||
"deployment_config_path = \"deployment_config.json\"\n",
|
||||
"test_config = {'deploy-config-file': deployment_config_path}\n",
|
||||
"\n",
|
||||
"webservice, azure_model = mlflow.azureml.deploy(model_uri='runs:/{}/{}'.format(run.id, model_path),\n",
|
||||
" workspace=ws,\n",
|
||||
" deployment_config=aci_config,\n",
|
||||
" service_name=\"keras-mnist-1\",\n",
|
||||
" model_name=\"keras_mnist\")"
|
||||
"# define the model path and the name is the service name\n",
|
||||
"# the model gets registered automatically and a name is autogenerated using the \"name\" parameter below \n",
|
||||
"client.create_deployment(model_uri='runs:/{}/{}'.format(run.id, model_path),\n",
|
||||
" config=test_config,\n",
|
||||
" name=\"keras-aci-deployment\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Once the deployment has completed you can check the scoring URI of the web service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Scoring URI is: {}\".format(webservice.scoring_uri))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In case of a service creation issue, you can use ```webservice.get_logs()``` to get logs to debug."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Make predictions using a web service\n",
|
||||
"\n",
|
||||
"To make the web service, create a test data set as normalized NumPy array. \n",
|
||||
"\n",
|
||||
"Then, let's define a utility function that takes a random image and converts it into a format and shape suitable for input to the Keras inferencing end-point. The conversion is done by: \n",
|
||||
"\n",
|
||||
" 1. Select a random (image, label) tuple\n",
|
||||
" 2. Take the image and converting to to NumPy array \n",
|
||||
" 3. Reshape array into 1 x 1 x N array\n",
|
||||
" * 1 image in batch, 1 color channel, N = 784 pixels for MNIST images\n",
|
||||
" * Note also ```x = x.view(-1, 1, 28, 28)``` in net definition in ```train.py``` program to shape incoming scoring requests.\n",
|
||||
" 4. Convert the NumPy array to list to make it into a built-in type.\n",
|
||||
" 5. Create a dictionary {\"data\", <list>} that can be converted to JSON string for web service requests."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import keras\n",
|
||||
"import random\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# the data, split between train and test sets\n",
|
||||
"(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()\n",
|
||||
"\n",
|
||||
"# Scale images to the [0, 1] range\n",
|
||||
"x_test = x_test.astype(\"float32\") / 255\n",
|
||||
"x_test = x_test.reshape(len(x_test), -1)\n",
|
||||
"\n",
|
||||
"# convert class vectors to binary class matrices\n",
|
||||
"y_test = keras.utils.to_categorical(y_test, 10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"import json\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"# send a random row from the test set to score\n",
|
||||
"random_index = np.random.randint(0, len(x_test)-1)\n",
|
||||
"input_data = \"{\\\"data\\\": [\" + str(list(x_test[random_index])) + \"]}\"\n",
|
||||
"\n",
|
||||
"response = webservice.run(input_data)\n",
|
||||
"\n",
|
||||
"response = sorted(response[0].items(), key = lambda x: x[1], reverse = True)\n",
|
||||
"\n",
|
||||
"print(\"Predicted label:\", response[0][0])\n",
|
||||
"plt.imshow(x_test[random_index].reshape(28,28), cmap = \"gray\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also call the web service using a raw POST method against the web service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"response = requests.post(url=webservice.scoring_uri, data=input_data,headers={\"Content-type\": \"application/json\"})\n",
|
||||
"print(response.text)"
|
||||
"Once the deployment has completed you can check the scoring URI of the web service in AzureML studio UI in the endpoints tab. Refer [mlflow predict](https://mlflow.org/docs/latest/python_api/mlflow.deployments.html#mlflow.deployments.BaseDeploymentClient.predict) on how to test your deployment. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -400,7 +332,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"webservice.delete()"
|
||||
"client.delete(\"keras-aci-deployment\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -249,7 +249,7 @@
|
||||
"source": [
|
||||
"## Deploy model as web service\n",
|
||||
"\n",
|
||||
"The ```mlflow.azureml.deploy``` function registers the logged PyTorch model and deploys the model in a framework-aware manner. It automatically creates the PyTorch-specific inferencing wrapper code and specifies package dependencies for you. See [this doc](https://mlflow.org/docs/latest/models.html#id34) for more information on deploying models on Azure ML using MLflow.\n",
|
||||
"The ```client.create_deployment``` function registers the logged PyTorch model and deploys the model in a framework-aware manner. It automatically creates the PyTorch-specific inferencing wrapper code and specifies package dependencies for you. See [this doc](https://mlflow.org/docs/latest/models.html#id34) for more information on deploying models on Azure ML using MLflow.\n",
|
||||
"\n",
|
||||
"In this example, we deploy the Docker image to Azure Container Instance: a serverless compute capable of running a single container. You can tag and add descriptions to help keep track of your web service. \n",
|
||||
"\n",
|
||||
@@ -258,33 +258,63 @@
|
||||
"Note that the service deployment can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"First define your deployment target and customize parameters in the deployment config. Refer to [this documentation](https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli#azure-container-instance-deployment-configuration-schema) for more information. "
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"import json\n",
|
||||
" \n",
|
||||
"# Data to be written\n",
|
||||
"deploy_config ={\n",
|
||||
" \"computeType\": \"aci\"\n",
|
||||
"}\n",
|
||||
"# Serializing json \n",
|
||||
"json_object = json.dumps(deploy_config)\n",
|
||||
" \n",
|
||||
"# Writing to sample.json\n",
|
||||
"with open(\"deployment_config.json\", \"w\") as outfile:\n",
|
||||
" outfile.write(json_object)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from mlflow.deployments import get_deploy_client\n",
|
||||
"\n",
|
||||
"# set the tracking uri as the deployment client\n",
|
||||
"client = get_deploy_client(mlflow.get_tracking_uri())\n",
|
||||
"\n",
|
||||
"# set the model path \n",
|
||||
"model_path = \"model\"\n",
|
||||
"\n",
|
||||
"aci_config = AciWebservice.deploy_configuration(cpu_cores=2, \n",
|
||||
" memory_gb=5, \n",
|
||||
" tags={\"data\": \"MNIST\", \"method\" : \"pytorch\"}, \n",
|
||||
" description=\"Predict using webservice\")\n",
|
||||
"# set the deployment config\n",
|
||||
"deployment_config_path = \"deployment_config.json\"\n",
|
||||
"test_config = {'deploy-config-file': deployment_config_path}\n",
|
||||
"\n",
|
||||
"webservice, azure_model = mlflow.azureml.deploy(model_uri='runs:/{}/{}'.format(run.id, model_path),\n",
|
||||
" workspace=ws,\n",
|
||||
" deployment_config=aci_config,\n",
|
||||
" service_name=\"pytorch-mnist-1\",\n",
|
||||
" model_name=\"pytorch_mnist\")"
|
||||
"# define the model path and the name is the service name\n",
|
||||
"# the model gets registered automatically and a name is autogenerated using the \"name\" parameter below \n",
|
||||
"client.create_deployment(model_uri='runs:/{}/{}'.format(run.id, model_path),\n",
|
||||
" config=test_config,\n",
|
||||
" name=\"keras-aci-deployment\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Once the deployment has completed you can check the scoring URI of the web service."
|
||||
"Once the deployment has completed you can check the scoring URI of the web service in AzureML studio UI in the endpoints tab. Refer [mlflow predict](https://mlflow.org/docs/latest/python_api/mlflow.deployments.html#mlflow.deployments.BaseDeploymentClient.predict) on how to test your deployment. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -293,133 +323,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Scoring URI is: {}\".format(webservice.scoring_uri))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In case of a service creation issue, you can use ```webservice.get_logs()``` to get logs to debug."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Make predictions using a web service\n",
|
||||
"\n",
|
||||
"To make the web service, create a test data set as normalized PyTorch tensors. \n",
|
||||
"\n",
|
||||
"Then, let's define a utility function that takes a random image and converts it into a format and shape suitable for input to the PyTorch inferencing end-point. The conversion is done by: \n",
|
||||
"\n",
|
||||
" 1. Select a random (image, label) tuple\n",
|
||||
" 2. Take the image and converting the tensor to NumPy array \n",
|
||||
" 3. Reshape array into 1 x 1 x N array\n",
|
||||
" * 1 image in batch, 1 color channel, N = 784 pixels for MNIST images\n",
|
||||
" * Note also ```x = x.view(-1, 1, 28, 28)``` in net definition in ```train.py``` program to shape incoming scoring requests.\n",
|
||||
" 4. Convert the NumPy array to list to make it into a built-in type.\n",
|
||||
" 5. Create a dictionary {\"data\", <list>} that can be converted to JSON string for web service requests."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from torchvision import datasets, transforms\n",
|
||||
"import random\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Use Azure Open Datasets for MNIST dataset\n",
|
||||
"datasets.MNIST.resources = [\n",
|
||||
" (\"https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz\",\n",
|
||||
" \"f68b3c2dcbeaaa9fbdd348bbdeb94873\"),\n",
|
||||
" (\"https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz\",\n",
|
||||
" \"d53e105ee54ea40749a09fcbcd1e9432\"),\n",
|
||||
" (\"https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz\",\n",
|
||||
" \"9fb629c4189551a2d022fa330f9573f3\"),\n",
|
||||
" (\"https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz\",\n",
|
||||
" \"ec29112dd5afa0611ce80d1b7f02629c\")\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"test_data = datasets.MNIST('../data', train=False, transform=transforms.Compose([\n",
|
||||
" transforms.ToTensor(),\n",
|
||||
" transforms.Normalize((0.1307,), (0.3081,))]))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_random_image():\n",
|
||||
" image_idx = random.randint(0,len(test_data))\n",
|
||||
" image_as_tensor = test_data[image_idx][0]\n",
|
||||
" return {\"data\": elem for elem in image_as_tensor.numpy().reshape(1,1,-1).tolist()}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Then, invoke the web service using a random test image. Convert the dictionary containing the image to JSON string before passing it to web service.\n",
|
||||
"\n",
|
||||
"The response contains the raw scores for each label, with greater value indicating higher probability. Sort the labels and select the one with greatest score to get the prediction. Let's also plot the image sent to web service for comparison purposes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"import json\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"test_image = get_random_image()\n",
|
||||
"\n",
|
||||
"response = webservice.run(json.dumps(test_image))\n",
|
||||
"\n",
|
||||
"response = sorted(response[0].items(), key = lambda x: x[1], reverse = True)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"Predicted label:\", response[0][0])\n",
|
||||
"plt.imshow(np.array(test_image[\"data\"]).reshape(28,28), cmap = \"gray\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also call the web service using a raw POST method against the web service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"response = requests.post(url=webservice.scoring_uri, data=json.dumps(test_image),headers={\"Content-type\": \"application/json\"})\n",
|
||||
"print(response.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clean up\n",
|
||||
"You can delete the ACI deployment with a delete API call."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"webservice.delete()"
|
||||
"client.delete(\"keras-aci-deployment\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -8,7 +8,7 @@ from azureml.core import Run
|
||||
def on_train_result(info):
|
||||
'''Callback on train result to record metrics returned by trainer.
|
||||
'''
|
||||
run = Run.get_context()
|
||||
run = Run.get_context().parent
|
||||
run.log(
|
||||
name='episode_reward_mean',
|
||||
value=info["result"]["episode_reward_mean"])
|
||||
|
||||
@@ -141,13 +141,20 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create Virtual Network\n",
|
||||
"### Create Virtual Network and Network Security Group\n",
|
||||
"\n",
|
||||
"If you are using separate compute targets for the Ray head and worker, a virtual network must be created in the resource group. If you have alraeady created a virtual network in the resource group, you can skip this step.\n",
|
||||
"**If you are using separate compute targets for the Ray head and worker, as we do in this notebook**, a virtual network must be created in the resource group. If you have already created a virtual network in the resource group, you can skip this step.\n",
|
||||
"\n",
|
||||
"To do this, you first must install the Azure Networking API.\n",
|
||||
"> Note that your user role must have permissions to create and manage virtual networks to run the cells below. Talk to your IT admin if you do not have these permissions.\n",
|
||||
"\n",
|
||||
"`pip install --upgrade azure-mgmt-network==12.0.0`"
|
||||
"#### Create Virtual Network\n",
|
||||
"To create the virtual network you first must install the [Azure Networking Python API](https://docs.microsoft.com/python/api/overview/azure/network?view=azure-python).\n",
|
||||
"\n",
|
||||
"`pip install --upgrade azure-mgmt-network`\n",
|
||||
"\n",
|
||||
"Note: In this section we are using [DefaultAzureCredential](https://docs.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential?view=azure-python)\n",
|
||||
"class for authentication which, by default, examines several options in turn, and stops on the first option that provides\n",
|
||||
"a token. You will need to log in using Azure CLI, if none of the other options are available (please find more details [here](https://docs.microsoft.com/python/api/azure-identity/azure.identity.defaultazurecredential?view=azure-python))."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -157,7 +164,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If you need to install the Azure Networking SDK, uncomment the following line.\n",
|
||||
"#!pip install --upgrade azure-mgmt-network==12.0.0"
|
||||
"#!pip install --upgrade azure-mgmt-network"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -167,6 +174,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azure.mgmt.network import NetworkManagementClient\n",
|
||||
"from azure.identity import DefaultAzureCredential\n",
|
||||
"\n",
|
||||
"# Virtual network name\n",
|
||||
"vnet_name =\"rl_pong_vnet\"\n",
|
||||
@@ -183,9 +191,9 @@
|
||||
"# Azure region of the resource group\n",
|
||||
"location=ws.location\n",
|
||||
"\n",
|
||||
"network_client = NetworkManagementClient(ws._auth_object, subscription_id)\n",
|
||||
"network_client = NetworkManagementClient(credential=DefaultAzureCredential(), subscription_id=subscription_id)\n",
|
||||
"\n",
|
||||
"async_vnet_creation = network_client.virtual_networks.create_or_update(\n",
|
||||
"async_vnet_creation = network_client.virtual_networks.begin_create_or_update(\n",
|
||||
" resource_group,\n",
|
||||
" vnet_name,\n",
|
||||
" {\n",
|
||||
@@ -204,9 +212,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set up Network Security Group on Virtual Network\n",
|
||||
"#### Set up Network Security Group on Virtual Network\n",
|
||||
"\n",
|
||||
"Depending on your Azure setup, you may need to open certain ports to make it possible for Azure to manage the compute targets that you create. The ports that need to be opened are described [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-virtual-network).\n",
|
||||
"Depending on your Azure setup, you may need to open certain ports to make it possible for Azure to manage the compute targets that you create. The ports that need to be opened are described [here](https://docs.microsoft.com/azure/machine-learning/how-to-enable-virtual-network).\n",
|
||||
"\n",
|
||||
"A common situation is that ports `29876-29877` are closed. The following code will add a security rule to open these ports. Or you can do this manually in the [Azure portal](https://portal.azure.com).\n",
|
||||
"\n",
|
||||
@@ -243,7 +251,7 @@
|
||||
" ],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"async_nsg_creation = network_client.network_security_groups.create_or_update(\n",
|
||||
"async_nsg_creation = network_client.network_security_groups.begin_create_or_update(\n",
|
||||
" resource_group,\n",
|
||||
" security_group_name,\n",
|
||||
" nsg_params,\n",
|
||||
@@ -265,7 +273,7 @@
|
||||
" )\n",
|
||||
" \n",
|
||||
"# Create subnet on virtual network\n",
|
||||
"async_subnet_creation = network_client.subnets.create_or_update(\n",
|
||||
"async_subnet_creation = network_client.subnets.begin_create_or_update(\n",
|
||||
" resource_group_name=resource_group,\n",
|
||||
" virtual_network_name=vnet_name,\n",
|
||||
" subnet_name=subnet_name,\n",
|
||||
@@ -280,7 +288,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Review the virtual network security rules\n",
|
||||
"#### Review the virtual network security rules\n",
|
||||
"Ensure that the virtual network is configured correctly with required ports open. It is possible that you have configured rules with broader range of ports that allows ports 29876-29877 to be opened. Kindly review your network security group rules. "
|
||||
]
|
||||
},
|
||||
@@ -291,17 +299,24 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from files.networkutils import *\n",
|
||||
"from azure.identity import DefaultAzureCredential\n",
|
||||
"\n",
|
||||
"check_vnet_security_rules(ws._auth_object, ws.subscription_id, ws.resource_group, vnet_name, True)"
|
||||
"check_vnet_security_rules(DefaultAzureCredential(), ws.subscription_id, ws.resource_group, vnet_name, True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create head compute target\n",
|
||||
"### Create compute targets\n",
|
||||
"\n",
|
||||
"In this example, we show how to set up separate compute targets for the Ray head and Ray worker nodes. First we define the head cluster with GPU for the Ray head node. One CPU of the head node will be used for the Ray head process and the rest of the CPUs will be used by the Ray worker processes."
|
||||
"In this example, we show how to set up separate compute targets for the Ray head and Ray worker nodes.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Create head compute target\n",
|
||||
"\n",
|
||||
"First we define the head cluster with GPU for the Ray head node. One CPU of the head node will be used for the Ray head process and the rest of the CPUs will be used by the Ray worker processes."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -353,7 +368,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create worker compute target\n",
|
||||
"#### Create worker compute target\n",
|
||||
"\n",
|
||||
"Now we create a compute target with CPUs for the additional Ray worker nodes. CPUs in these worker nodes are used by Ray worker processes. Each Ray worker node, depending on the CPUs on the node, may have multiple Ray worker processes. There can be multiple worker tasks on each worker process (core)."
|
||||
]
|
||||
@@ -423,9 +438,6 @@
|
||||
"source": [
|
||||
"from azureml.contrib.train.rl import WorkerConfiguration\n",
|
||||
"\n",
|
||||
"# Pip packages we will use for both head and worker\n",
|
||||
"pip_packages=[\"ray[rllib]==0.8.3\"] # Latest version of Ray has fixes for isses related to object transfers\n",
|
||||
"\n",
|
||||
"# Specify the Ray worker configuration\n",
|
||||
"worker_conf = WorkerConfiguration(\n",
|
||||
" \n",
|
||||
@@ -439,7 +451,6 @@
|
||||
" use_gpu=False, \n",
|
||||
" \n",
|
||||
" # PIP packages to use\n",
|
||||
" pip_packages=pip_packages\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -508,14 +519,11 @@
|
||||
" # The Azure Machine Learning compute target set up for Ray head nodes\n",
|
||||
" compute_target=head_compute_target,\n",
|
||||
" \n",
|
||||
" # Pip packages\n",
|
||||
" pip_packages=pip_packages,\n",
|
||||
" \n",
|
||||
" # GPU usage\n",
|
||||
" use_gpu=True,\n",
|
||||
" \n",
|
||||
" # Reinforcement learning framework. Currently must be Ray.\n",
|
||||
" rl_framework=Ray(),\n",
|
||||
" rl_framework=Ray('0.8.3'),\n",
|
||||
" \n",
|
||||
" # Ray worker configuration defined above.\n",
|
||||
" worker_configuration=worker_conf,\n",
|
||||
@@ -651,14 +659,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get all child runs\n",
|
||||
"child_runs = list(run.get_children(_rehydrate_runs=False))\n",
|
||||
"\n",
|
||||
"# Get the reward metrics from worker run\n",
|
||||
"if child_runs[0].id.endswith(\"_worker\"):\n",
|
||||
" episode_reward_mean = child_runs[0].get_metrics(name='episode_reward_mean')\n",
|
||||
"else:\n",
|
||||
" episode_reward_mean = child_runs[1].get_metrics(name='episode_reward_mean')"
|
||||
"episode_reward_mean = run.get_metrics(name='episode_reward_mean')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -5,4 +5,5 @@ dependencies:
|
||||
- azureml-contrib-reinforcementlearning
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- azure-mgmt-network==12.0.0
|
||||
- azure-mgmt-network
|
||||
- azure-cli
|
||||
|
||||
@@ -451,9 +451,8 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a dataset of training artifacts\n",
|
||||
"To evaluate a trained policy (a checkpoint) we need to make the checkpoint accessible to the rollout script. All the training artifacts are stored in workspace default datastore under **azureml/<run_id>** directory.\n",
|
||||
"\n",
|
||||
"Here we create a file dataset from the stored artifacts, and then use this dataset to feed these data to rollout estimator."
|
||||
"To evaluate a trained policy (a checkpoint) we need to make the checkpoint accessible to the rollout script.\n",
|
||||
"We can use the Run API to download policy training artifacts (saved model and checkpoints) to local compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -462,22 +461,24 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"from os import path\n",
|
||||
"from distutils import dir_util\n",
|
||||
"\n",
|
||||
"run_id = child_run_0.id # Or set to run id of a completed run (e.g. 'rl-cartpole-v0_1587572312_06e04ace_head')\n",
|
||||
"run_artifacts_path = os.path.join('azureml', run_id)\n",
|
||||
"print(\"Run artifacts path:\", run_artifacts_path)\n",
|
||||
"training_artifacts_path = path.join(\"logs\", training_algorithm)\n",
|
||||
"print(\"Training artifacts path:\", training_artifacts_path)\n",
|
||||
"\n",
|
||||
"# Create a file dataset object from the files stored on default datastore\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"training_artifacts_ds = Dataset.File.from_files(datastore.path(os.path.join(run_artifacts_path, '**')))"
|
||||
"if path.exists(training_artifacts_path):\n",
|
||||
" dir_util.remove_tree(training_artifacts_path)\n",
|
||||
"\n",
|
||||
"# Download run artifacts to local compute\n",
|
||||
"child_run_0.download_files(training_artifacts_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To verify, we can print out the number (and paths) of all the files in the dataset, as follows."
|
||||
"Now let's find the checkpoints and the last checkpoint number."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -486,7 +487,73 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"artifacts_paths = training_artifacts_ds.to_path()\n",
|
||||
"# A helper function to find checkpoint files in a directory\n",
|
||||
"def find_checkpoints(file_path):\n",
|
||||
" print(\"Looking in path:\", file_path)\n",
|
||||
" checkpoints = []\n",
|
||||
" for root, _, files in os.walk(file_path):\n",
|
||||
" for name in files:\n",
|
||||
" if os.path.basename(root).startswith('checkpoint_'):\n",
|
||||
" checkpoints.append(path.join(root, name))\n",
|
||||
" return checkpoints"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find checkpoints and last checkpoint number\n",
|
||||
"checkpoint_files = find_checkpoints(training_artifacts_path)\n",
|
||||
"\n",
|
||||
"checkpoint_numbers = []\n",
|
||||
"for file in checkpoint_files:\n",
|
||||
" file = os.path.basename(file)\n",
|
||||
" if file.startswith('checkpoint-') and not file.endswith('.tune_metadata'):\n",
|
||||
" checkpoint_numbers.append(int(file.split('-')[1]))\n",
|
||||
"\n",
|
||||
"print(\"Checkpoints:\", checkpoint_numbers)\n",
|
||||
"\n",
|
||||
"last_checkpoint_number = max(checkpoint_numbers)\n",
|
||||
"print(\"Last checkpoint number:\", last_checkpoint_number)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we upload checkpoints to default datastore and create a file dataset. This dataset will be used to pass in the checkpoints to the rollout script."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Upload the checkpoint files and create a DataSet\n",
|
||||
"from azureml.core import Dataset\n",
|
||||
"\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"checkpoint_dataref = datastore.upload_files(checkpoint_files, target_path='cartpole_checkpoints_' + run_id, overwrite=True)\n",
|
||||
"checkpoint_ds = Dataset.File.from_files(checkpoint_dataref)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To verify, we can print out the number (and paths) of all the files in the dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"artifacts_paths = checkpoint_ds.to_path()\n",
|
||||
"print(\"Number of files in dataset:\", len(artifacts_paths))\n",
|
||||
"\n",
|
||||
"# Uncomment line below to print all file paths\n",
|
||||
@@ -505,36 +572,6 @@
|
||||
"\n",
|
||||
"The checkpoints dataset will be accessible to the rollout script as a mounted folder. The mounted folder and the checkpoint number, passed in via `checkpoint-number`, will be used to create a path to the checkpoint we are going to evaluate. The created checkpoint path then will be passed into RLlib rollout script for evaluation.\n",
|
||||
"\n",
|
||||
"Let's find the checkpoints and the last checkpoint number first."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find checkpoints and last checkpoint number\n",
|
||||
"checkpoint_files = [\n",
|
||||
" os.path.basename(file) for file in training_artifacts_ds.to_path() \\\n",
|
||||
" if os.path.basename(file).startswith('checkpoint-') and \\\n",
|
||||
" not os.path.basename(file).endswith('tune_metadata')\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"checkpoint_numbers = []\n",
|
||||
"for file in checkpoint_files:\n",
|
||||
" checkpoint_numbers.append(int(file.split('-')[1]))\n",
|
||||
"\n",
|
||||
"print(\"Checkpoints:\", checkpoint_numbers)\n",
|
||||
"\n",
|
||||
"last_checkpoint_number = max(checkpoint_numbers)\n",
|
||||
"print(\"Last checkpoint number:\", last_checkpoint_number)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now let's configure rollout estimator. Note that we use the last checkpoint for evaluation. The assumption is that the last checkpoint points to our best trained agent. You may change this to any of the checkpoint numbers printed above and observe the effect."
|
||||
]
|
||||
},
|
||||
@@ -576,8 +613,8 @@
|
||||
" \n",
|
||||
" # Data inputs\n",
|
||||
" inputs=[\n",
|
||||
" training_artifacts_ds.as_named_input('artifacts_dataset'),\n",
|
||||
" training_artifacts_ds.as_named_input('artifacts_path').as_mount()],\n",
|
||||
" checkpoint_ds.as_named_input('artifacts_dataset'),\n",
|
||||
" checkpoint_ds.as_named_input('artifacts_path').as_mount()],\n",
|
||||
" \n",
|
||||
" # The Azure Machine Learning compute target\n",
|
||||
" compute_target=compute_target,\n",
|
||||
|
||||
@@ -8,7 +8,7 @@ from azureml.core import Run
|
||||
def on_train_result(info):
|
||||
'''Callback on train result to record metrics returned by trainer.
|
||||
'''
|
||||
run = Run.get_context()
|
||||
run = Run.get_context().parent
|
||||
run.log(
|
||||
name='episode_reward_mean',
|
||||
value=info["result"]["episode_reward_mean"])
|
||||
|
||||
@@ -118,6 +118,8 @@
|
||||
"\n",
|
||||
"A compute target is a designated compute resource where you run your training and simulation scripts. This location may be your local machine or a cloud-based compute resource. The code below shows how to create a cloud-based compute target. For more information see [What are compute targets in Azure Machine Learning?](https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target)\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Note: Creation of a compute resource can take several minutes**. Please make sure to change `STANDARD_D2_V2` to a [size available in your region](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines)."
|
||||
]
|
||||
},
|
||||
@@ -472,61 +474,14 @@
|
||||
"from os import path\n",
|
||||
"from distutils import dir_util\n",
|
||||
"\n",
|
||||
"path_prefix = path.join(\"logs\", training_algorithm)\n",
|
||||
"print(\"Path prefix:\", path_prefix)\n",
|
||||
"training_artifacts_path = path.join(\"logs\", training_algorithm)\n",
|
||||
"print(\"Training artifacts path:\", training_artifacts_path)\n",
|
||||
"\n",
|
||||
"if path.exists(path_prefix):\n",
|
||||
" dir_util.remove_tree(path_prefix)\n",
|
||||
"if path.exists(training_artifacts_path):\n",
|
||||
" dir_util.remove_tree(training_artifacts_path)\n",
|
||||
"\n",
|
||||
"# Uncomment line below to download run artifacts to local compute\n",
|
||||
"#child_run_0.download_files(path_prefix)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a dataset of training artifacts\n",
|
||||
"To evaluate a trained policy (a checkpoint) we need to make the checkpoint accessible to the rollout script. All the training artifacts are stored in workspace default datastore under **azureml/<run_id>** directory.\n",
|
||||
"\n",
|
||||
"Here we create a file dataset from the stored artifacts, and then use this dataset to feed these data to rollout estimator."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"\n",
|
||||
"run_id = child_run_0.id # Or set to run id of a completed run (e.g. 'rl-cartpole-v0_1587572312_06e04ace_head')\n",
|
||||
"run_artifacts_path = os.path.join('azureml', run_id)\n",
|
||||
"print(\"Run artifacts path:\", run_artifacts_path)\n",
|
||||
"\n",
|
||||
"# Create a file dataset object from the files stored on default datastore\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"training_artifacts_ds = Dataset.File.from_files(datastore.path(os.path.join(run_artifacts_path, '**')))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To verify, we can print out the number (and paths) of all the files in the dataset, as follows."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"artifacts_paths = training_artifacts_ds.to_path()\n",
|
||||
"print(\"Number of files in dataset:\", len(artifacts_paths))\n",
|
||||
"\n",
|
||||
"# Uncomment line below to print all file paths\n",
|
||||
"#print(\"Artifacts dataset file paths: \", artifacts_paths)"
|
||||
"# Download run artifacts to local compute\n",
|
||||
"child_run_0.download_files(training_artifacts_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -548,21 +503,6 @@
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"# A helper function to download movies from a dataset to local directory\n",
|
||||
"def download_movies(artifacts_ds, movies, destination):\n",
|
||||
" # Create the local destination directory \n",
|
||||
" if path.exists(destination):\n",
|
||||
" dir_util.remove_tree(destination)\n",
|
||||
" dir_util.mkpath(destination)\n",
|
||||
"\n",
|
||||
" for i, artifact in enumerate(artifacts_ds.to_path()):\n",
|
||||
" if artifact in movies:\n",
|
||||
" print('Downloading {} ...'.format(artifact))\n",
|
||||
" artifacts_ds.skip(i).take(1).download(target_path=destination, overwrite=True)\n",
|
||||
"\n",
|
||||
" print('Downloading movies completed!')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# A helper function to find movies in a directory\n",
|
||||
"def find_movies(movie_path):\n",
|
||||
" print(\"Looking in path:\", movie_path)\n",
|
||||
@@ -588,34 +528,6 @@
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now let's find the first and the last recorded videos in training artifacts dataset and download them to a local directory."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find first and last movie\n",
|
||||
"mp4_files = [file for file in training_artifacts_ds.to_path() if file.endswith('.mp4')]\n",
|
||||
"mp4_files.sort()\n",
|
||||
"\n",
|
||||
"first_movie = mp4_files[0] if len(mp4_files) > 0 else None\n",
|
||||
"last_movie = mp4_files[-1] if len(mp4_files) > 1 else None\n",
|
||||
"\n",
|
||||
"print(\"First movie:\", first_movie)\n",
|
||||
"print(\"Last movie:\", last_movie)\n",
|
||||
"\n",
|
||||
"# Download movies\n",
|
||||
"training_movies_path = path.join(\"training\", \"videos\")\n",
|
||||
"download_movies(training_artifacts_ds, [first_movie, last_movie], training_movies_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -629,7 +541,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mp4_files = find_movies(training_movies_path)\n",
|
||||
"mp4_files = find_movies(training_artifacts_path)\n",
|
||||
"mp4_files.sort()"
|
||||
]
|
||||
},
|
||||
@@ -702,16 +614,31 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find checkpoints and last checkpoint number\n",
|
||||
"checkpoint_files = [\n",
|
||||
" os.path.basename(file) for file in training_artifacts_ds.to_path() \\\n",
|
||||
" if os.path.basename(file).startswith('checkpoint-') and \\\n",
|
||||
" not os.path.basename(file).endswith('tune_metadata')\n",
|
||||
"]\n",
|
||||
"# A helper function to find checkpoint files in a directory\n",
|
||||
"def find_checkpoints(file_path):\n",
|
||||
" print(\"Looking in path:\", file_path)\n",
|
||||
" checkpoints = []\n",
|
||||
" for root, _, files in os.walk(file_path):\n",
|
||||
" for name in files:\n",
|
||||
" if os.path.basename(root).startswith('checkpoint_'):\n",
|
||||
" checkpoints.append(path.join(root, name))\n",
|
||||
" return checkpoints\n",
|
||||
"\n",
|
||||
"checkpoint_files = find_checkpoints(training_artifacts_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find checkpoints and last checkpoint number\n",
|
||||
"checkpoint_numbers = []\n",
|
||||
"for file in checkpoint_files:\n",
|
||||
" checkpoint_numbers.append(int(file.split('-')[1]))\n",
|
||||
" file = os.path.basename(file)\n",
|
||||
" if file.startswith('checkpoint-') and not file.endswith('.tune_metadata'):\n",
|
||||
" checkpoint_numbers.append(int(file.split('-')[-1]))\n",
|
||||
"\n",
|
||||
"print(\"Checkpoints:\", checkpoint_numbers)\n",
|
||||
"\n",
|
||||
@@ -719,6 +646,20 @@
|
||||
"print(\"Last checkpoint number:\", last_checkpoint_number)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Upload the checkpoint files and create a DataSet\n",
|
||||
"from azureml.core import Dataset\n",
|
||||
"\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"checkpoint_dataref = datastore.upload_files(checkpoint_files, target_path='cartpole_checkpoints_' + run_id, overwrite=True)\n",
|
||||
"checkpoint_ds = Dataset.File.from_files(checkpoint_dataref)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -794,8 +735,8 @@
|
||||
" \n",
|
||||
" # Data inputs\n",
|
||||
" inputs=[\n",
|
||||
" training_artifacts_ds.as_named_input('artifacts_dataset'),\n",
|
||||
" training_artifacts_ds.as_named_input('artifacts_path').as_mount()],\n",
|
||||
" checkpoint_ds.as_named_input('artifacts_dataset'),\n",
|
||||
" checkpoint_ds.as_named_input('artifacts_path').as_mount()],\n",
|
||||
" \n",
|
||||
" # The Azure Machine Learning compute target set up for Ray head nodes\n",
|
||||
" compute_target=compute_target,\n",
|
||||
@@ -877,16 +818,15 @@
|
||||
"print('Number of child runs:', len(child_runs))\n",
|
||||
"child_run_0 = child_runs[0]\n",
|
||||
"\n",
|
||||
"run_id = child_run_0.id # Or set to run id of a completed run (e.g. 'rl-cartpole-v0_1587572312_06e04ace_head')\n",
|
||||
"run_artifacts_path = os.path.join('azureml', run_id)\n",
|
||||
"print(\"Run artifacts path:\", run_artifacts_path)\n",
|
||||
"# Download rollout artifacts\n",
|
||||
"rollout_artifacts_path = path.join(\"logs\", \"rollout\")\n",
|
||||
"print(\"Rollout artifacts path:\", rollout_artifacts_path)\n",
|
||||
"\n",
|
||||
"# Create a file dataset object from the files stored on default datastore\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"rollout_artifacts_ds = Dataset.File.from_files(datastore.path(os.path.join(run_artifacts_path, '**')))\n",
|
||||
"if path.exists(rollout_artifacts_path):\n",
|
||||
" dir_util.remove_tree(rollout_artifacts_path)\n",
|
||||
"\n",
|
||||
"artifacts_paths = rollout_artifacts_ds.to_path()\n",
|
||||
"print(\"Number of files in dataset:\", len(artifacts_paths))"
|
||||
"# Download videos to local compute\n",
|
||||
"child_run_0.download_files(\"logs/video\", output_directory = rollout_artifacts_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -902,20 +842,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find last movie\n",
|
||||
"mp4_files = [file for file in rollout_artifacts_ds.to_path() if file.endswith('.mp4')]\n",
|
||||
"mp4_files.sort()\n",
|
||||
"\n",
|
||||
"last_movie = mp4_files[-1] if len(mp4_files) > 1 else None\n",
|
||||
"print(\"Last movie:\", last_movie)\n",
|
||||
"\n",
|
||||
"# Download last movie\n",
|
||||
"rollout_movies_path = path.join(\"rollout\", \"videos\")\n",
|
||||
"download_movies(rollout_artifacts_ds, [last_movie], rollout_movies_path)\n",
|
||||
"\n",
|
||||
"# Look for the downloaded movie in local directory\n",
|
||||
"mp4_files = find_movies(rollout_movies_path)\n",
|
||||
"mp4_files.sort()"
|
||||
"mp4_files = find_movies(rollout_artifacts_path)\n",
|
||||
"mp4_files.sort()\n",
|
||||
"last_movie = mp4_files[-1] if len(mp4_files) > 1 else None\n",
|
||||
"print(\"Last movie:\", last_movie)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -958,16 +889,12 @@
|
||||
"#compute_target.delete()\n",
|
||||
"\n",
|
||||
"# To delete downloaded training artifacts\n",
|
||||
"#if os.path.exists(path_prefix):\n",
|
||||
"# dir_util.remove_tree(path_prefix)\n",
|
||||
"\n",
|
||||
"# To delete downloaded training videos\n",
|
||||
"#if path.exists(training_movies_path):\n",
|
||||
"# dir_util.remove_tree(training_movies_path)\n",
|
||||
"#if os.path.exists(training_artifacts_path):\n",
|
||||
"# dir_util.remove_tree(training_artifacts_path)\n",
|
||||
"\n",
|
||||
"# To delete downloaded rollout videos\n",
|
||||
"#if path.exists(rollout_movies_path):\n",
|
||||
"# dir_util.remove_tree(rollout_movies_path)"
|
||||
"#if path.exists(rollout_artifacts_path):\n",
|
||||
"# dir_util.remove_tree(rollout_artifacts_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -984,6 +911,9 @@
|
||||
"authors": [
|
||||
{
|
||||
"name": "hoazari"
|
||||
},
|
||||
{
|
||||
"name": "dasommer"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
@@ -8,7 +8,7 @@ from azureml.core import Run
|
||||
def on_train_result(info):
|
||||
'''Callback on train result to record metrics returned by trainer.
|
||||
'''
|
||||
run = Run.get_context()
|
||||
run = Run.get_context().parent
|
||||
run.log(
|
||||
name='episode_reward_mean',
|
||||
value=info["result"]["episode_reward_mean"])
|
||||
|
||||
@@ -138,6 +138,8 @@
|
||||
"\n",
|
||||
"A compute target is a designated compute resource where you run your training script. For more information, see [What are compute targets in Azure Machine Learning service?](https://docs.microsoft.com/en-us/azure/machine-learning/concept-compute-target).\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### CPU target for Ray head\n",
|
||||
"\n",
|
||||
"In the experiment setup for this tutorial, the Ray head node will\n",
|
||||
|
||||
@@ -35,7 +35,7 @@
|
||||
"source": [
|
||||
"## Install required packages\n",
|
||||
"\n",
|
||||
"This notebook works with Fairlearn v0.4.6, and not later versions. If needed, please uncomment and run the following cell:"
|
||||
"This notebook works with Fairlearn v0.6.1, but not with versions pre-v0.5.0. If needed, please uncomment and run the following cell:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -44,7 +44,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# %pip install --upgrade fairlearn==0.4.6"
|
||||
"# %pip install --upgrade fairlearn>=0.6.2"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -70,24 +70,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.reductions import GridSearch\n",
|
||||
"from fairlearn.reductions import DemographicParity, ErrorRate\n",
|
||||
"from fairlearn.reductions import DemographicParity\n",
|
||||
"\n",
|
||||
"from sklearn import svm, neighbors, tree\n",
|
||||
"from sklearn.compose import ColumnTransformer, make_column_selector\n",
|
||||
"from sklearn.preprocessing import LabelEncoder,StandardScaler\n",
|
||||
"from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.svm import SVC\n",
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"from sklearn.datasets import fetch_openml\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# SHAP Tabular Explainer\n",
|
||||
"from interpret.ext.blackbox import KernelExplainer\n",
|
||||
"from interpret.ext.blackbox import MimicExplainer\n",
|
||||
"from interpret.ext.glassbox import LGBMExplainableModel"
|
||||
]
|
||||
@@ -105,7 +99,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dataset = fetch_openml(data_id=1590, as_frame=True)\n",
|
||||
"from utilities import fetch_census_dataset\n",
|
||||
"\n",
|
||||
"dataset = fetch_census_dataset()\n",
|
||||
"X_raw, y = dataset['data'], dataset['target']\n",
|
||||
"X_raw[\"race\"].value_counts().to_dict()"
|
||||
]
|
||||
@@ -341,13 +337,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.widget import FairlearnDashboard\n",
|
||||
"from raiwidgets import FairnessDashboard\n",
|
||||
"\n",
|
||||
"y_pred = model.predict(X_test)\n",
|
||||
"\n",
|
||||
"FairlearnDashboard(sensitive_features=sensitive_features_test,\n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred=y_pred)"
|
||||
"FairnessDashboard(sensitive_features=sensitive_features_test,\n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred=y_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -403,7 +399,7 @@
|
||||
"sweep.fit(X_train_prep, y_train,\n",
|
||||
" sensitive_features=sensitive_features_train.sex)\n",
|
||||
"\n",
|
||||
"predictors = sweep._predictors"
|
||||
"predictors = sweep.predictors_"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -469,7 +465,7 @@
|
||||
"for name, predictor in dominant_models_dict.items():\n",
|
||||
" dominant_all[name] = predictor.predict(X_test_prep)\n",
|
||||
"\n",
|
||||
"FairlearnDashboard(sensitive_features=sensitive_features_test, \n",
|
||||
"FairnessDashboard(sensitive_features=sensitive_features_test, \n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred=dominant_all)"
|
||||
]
|
||||
@@ -564,7 +560,7 @@
|
||||
"source": [
|
||||
"import joblib\n",
|
||||
"import os\n",
|
||||
"from azureml.core import Model, Experiment, Run\n",
|
||||
"from azureml.core import Model, Experiment\n",
|
||||
"\n",
|
||||
"os.makedirs('models', exist_ok=True)\n",
|
||||
"def register_model(name, model):\n",
|
||||
|
||||
@@ -4,9 +4,9 @@ dependencies:
|
||||
- azureml-sdk
|
||||
- azureml-interpret
|
||||
- azureml-contrib-fairness
|
||||
- interpret-community[visualization]
|
||||
- fairlearn==0.4.6
|
||||
- fairlearn>=0.6.2
|
||||
- matplotlib
|
||||
- azureml-dataset-runtime
|
||||
- ipywidgets
|
||||
- raiwidgets
|
||||
- raiwidgets==0.4.0
|
||||
- liac-arff
|
||||
|
||||
@@ -0,0 +1,93 @@
|
||||
# ---------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# ---------------------------------------------------------
|
||||
|
||||
"""Utilities for azureml-contrib-fairness notebooks."""
|
||||
|
||||
import arff
|
||||
from collections import OrderedDict
|
||||
from contextlib import closing
|
||||
import gzip
|
||||
import pandas as pd
|
||||
from sklearn.utils import Bunch
|
||||
from time import sleep
|
||||
|
||||
|
||||
def _is_gzip_encoded(_fsrc):
|
||||
return _fsrc.info().get('Content-Encoding', '') == 'gzip'
|
||||
|
||||
|
||||
_categorical_columns = [
|
||||
'workclass',
|
||||
'education',
|
||||
'marital-status',
|
||||
'occupation',
|
||||
'relationship',
|
||||
'race',
|
||||
'sex',
|
||||
'native-country'
|
||||
]
|
||||
|
||||
|
||||
def fetch_census_dataset():
|
||||
"""Fetch the Adult Census Dataset.
|
||||
|
||||
This uses a particular URL for the Adult Census dataset. The code
|
||||
is a simplified version of fetch_openml() in sklearn.
|
||||
|
||||
The data are copied from:
|
||||
https://openml.org/data/v1/download/1595261.gz
|
||||
(as of 2021-03-31)
|
||||
"""
|
||||
try:
|
||||
from urllib import urlretrieve
|
||||
except ImportError:
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
filename = "1595261.gz"
|
||||
data_url = "https://rainotebookscdn.blob.core.windows.net/datasets/"
|
||||
|
||||
remaining_attempts = 5
|
||||
sleep_duration = 10
|
||||
while remaining_attempts > 0:
|
||||
try:
|
||||
urlretrieve(data_url + filename, filename)
|
||||
|
||||
http_stream = gzip.GzipFile(filename=filename, mode='rb')
|
||||
|
||||
with closing(http_stream):
|
||||
def _stream_generator(response):
|
||||
for line in response:
|
||||
yield line.decode('utf-8')
|
||||
|
||||
stream = _stream_generator(http_stream)
|
||||
data = arff.load(stream)
|
||||
except Exception as exc: # noqa: B902
|
||||
remaining_attempts -= 1
|
||||
print("Error downloading dataset from {} ({} attempt(s) remaining)"
|
||||
.format(data_url, remaining_attempts))
|
||||
print(exc)
|
||||
sleep(sleep_duration)
|
||||
sleep_duration *= 2
|
||||
continue
|
||||
else:
|
||||
# dataset successfully downloaded
|
||||
break
|
||||
else:
|
||||
raise Exception("Could not retrieve dataset from {}.".format(data_url))
|
||||
|
||||
attributes = OrderedDict(data['attributes'])
|
||||
arff_columns = list(attributes)
|
||||
raw_df = pd.DataFrame(data=data['data'], columns=arff_columns)
|
||||
|
||||
target_column_name = 'class'
|
||||
target = raw_df.pop(target_column_name)
|
||||
for col_name in _categorical_columns:
|
||||
dtype = pd.api.types.CategoricalDtype(attributes[col_name])
|
||||
raw_df[col_name] = raw_df[col_name].astype(dtype, copy=False)
|
||||
|
||||
result = Bunch()
|
||||
result.data = raw_df
|
||||
result.target = target
|
||||
|
||||
return result
|
||||
@@ -100,7 +100,7 @@
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using SDK version 1.24.0, you are currently running version\", azureml.core.VERSION)"
|
||||
"print(\"This notebook was created using SDK version 1.31.0, you are currently running version\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -390,7 +390,9 @@
|
||||
"source": [
|
||||
"## Once more, with an AmlCompute cluster\n",
|
||||
"\n",
|
||||
"Just to prove we can, let's create an AmlCompute CPU cluster, and run our demo there, as well."
|
||||
"Just to prove we can, let's create an AmlCompute CPU cluster, and run our demo there, as well.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -67,7 +67,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's also create a Machine Learning Compute cluster for submitting the remote run. "
|
||||
"Let's also create a Machine Learning Compute cluster for submitting the remote run. \n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -182,12 +184,10 @@
|
||||
"\n",
|
||||
"env = Environment(name=\"mlflow-env\")\n",
|
||||
"\n",
|
||||
"env.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# Specify conda dependencies with scikit-learn and temporary pointers to mlflow extensions\n",
|
||||
"cd = CondaDependencies.create(\n",
|
||||
" conda_packages=[\"scikit-learn\", \"matplotlib\"],\n",
|
||||
" pip_packages=[\"azureml-mlflow\", \"numpy\"]\n",
|
||||
" pip_packages=[\"azureml-mlflow\", \"pandas\", \"numpy\"]\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"env.python.conda_dependencies = cd"
|
||||
|
||||
@@ -179,12 +179,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Environment\n",
|
||||
"from azureml.core.runconfig import DockerConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"myenv = Environment(\"myenv\")\n",
|
||||
"myenv.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn', 'packaging'])\n",
|
||||
"\n",
|
||||
"myenv.docker.enabled = True\n",
|
||||
"myenv.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn', 'packaging'])"
|
||||
"# Enable Docker\n",
|
||||
"docker_config = DockerConfiguration(use_docker=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -193,6 +195,8 @@
|
||||
"source": [
|
||||
"### Provision as a persistent compute target (Basic)\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can provision a persistent AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
|
||||
"\n",
|
||||
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
|
||||
@@ -245,7 +249,8 @@
|
||||
"src = ScriptRunConfig(source_directory=project_folder, \n",
|
||||
" script='train.py', \n",
|
||||
" compute_target=cpu_cluster, \n",
|
||||
" environment=myenv)\n",
|
||||
" environment=myenv,\n",
|
||||
" docker_runtime_config=docker_config)\n",
|
||||
" \n",
|
||||
"run = experiment.submit(config=src)\n",
|
||||
"run"
|
||||
@@ -284,6 +289,8 @@
|
||||
"source": [
|
||||
"### Provision as a persistent compute target (Advanced)\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can also specify additional properties or change defaults while provisioning AmlCompute using a more advanced configuration. This is useful when you want a dedicated cluster of 4 nodes (for example you can set the min_nodes and max_nodes to 4), or want the compute to be within an existing VNet in your subscription.\n",
|
||||
"\n",
|
||||
"In addition to `vm_size` and `max_nodes`, you can specify:\n",
|
||||
|
||||
@@ -162,6 +162,8 @@
|
||||
"source": [
|
||||
"## Create compute target\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"Create an Azure Machine Learning compute cluster to run the data drift monitor and associated runs. The below cell will create a compute cluster named `'cpu-cluster'`. "
|
||||
]
|
||||
},
|
||||
@@ -431,7 +433,7 @@
|
||||
"Azure ML"
|
||||
],
|
||||
"friendly_name": "Data drift quickdemo",
|
||||
"index_order": 1.0,
|
||||
"index_order": 1,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
|
||||
@@ -1,402 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Introduction to labeled datasets\n",
|
||||
"\n",
|
||||
"Labeled datasets are output from Azure Machine Learning [labeling projects](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-create-labeling-projects). It captures the reference to the data (e.g. image files) and its labels. \n",
|
||||
"\n",
|
||||
"This tutorial introduces the capabilities of labeled datasets and how to use it in training.\n",
|
||||
"\n",
|
||||
"Learn how-to:\n",
|
||||
"\n",
|
||||
"> * Set up your development environment\n",
|
||||
"> * Explore labeled datasets\n",
|
||||
"> * Train a simple deep learning neural network on a remote cluster\n",
|
||||
"\n",
|
||||
"## Prerequisite:\n",
|
||||
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
|
||||
"* Go through Azure Machine Learning [labeling projects](https://docs.microsoft.com/azure/machine-learning/service/how-to-create-labeling-projects) and export the labels as an Azure Machine Learning dataset\n",
|
||||
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
|
||||
" * install the latest version of azureml-sdk\n",
|
||||
" * install the latest version of azureml-contrib-dataset\n",
|
||||
" * install [PyTorch](https://pytorch.org/)\n",
|
||||
" * create a workspace and its configuration file (`config.json`)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up your development environment\n",
|
||||
"\n",
|
||||
"All the setup for your development work can be accomplished in a Python notebook. Setup includes:\n",
|
||||
"\n",
|
||||
"* Importing Python packages\n",
|
||||
"* Connecting to a workspace to enable communication between your local computer and remote resources\n",
|
||||
"* Creating an experiment to track all your runs\n",
|
||||
"* Creating a remote compute target to use for training\n",
|
||||
"\n",
|
||||
"### Import packages\n",
|
||||
"\n",
|
||||
"Import Python packages you need in this session. Also display the Azure Machine Learning SDK version."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import azureml.core\n",
|
||||
"import azureml.contrib.dataset\n",
|
||||
"from azureml.core import Dataset, Workspace, Experiment\n",
|
||||
"from azureml.contrib.dataset import FileHandlingOption\n",
|
||||
"\n",
|
||||
"# check core SDK version number\n",
|
||||
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)\n",
|
||||
"print(\"Azure ML Contrib Version\", azureml.contrib.dataset.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Connect to workspace\n",
|
||||
"\n",
|
||||
"Create a workspace object from the existing workspace. `Workspace.from_config()` reads the file **config.json** and loads the details into an object named `workspace`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load workspace\n",
|
||||
"workspace = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + workspace.name, \n",
|
||||
" 'Azure region: ' + workspace.location, \n",
|
||||
" 'Subscription id: ' + workspace.subscription_id, \n",
|
||||
" 'Resource group: ' + workspace.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create experiment and a directory\n",
|
||||
"\n",
|
||||
"Create an experiment to track the runs in your workspace and a directory to deliver the necessary code from your computer to the remote resource."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create an ML experiment\n",
|
||||
"exp = Experiment(workspace=workspace, name='labeled-datasets')\n",
|
||||
"\n",
|
||||
"# create a directory\n",
|
||||
"script_folder = './labeled-datasets'\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create or Attach existing compute resource\n",
|
||||
"By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you will create Azure Machine Learning Compute as your training environment. The code below creates the compute clusters for you if they don't already exist in your workspace.\n",
|
||||
"\n",
|
||||
"**Creation of compute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace the code will skip the creation process."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"cluster_name = \"openhack\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" compute_target = ComputeTarget(workspace=workspace, name=cluster_name)\n",
|
||||
" print('Found existing compute target')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(workspace, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
" # can poll for a minimum number of nodes and for a specific timeout. \n",
|
||||
" # if no min node count is provided it uses the scale settings for the cluster\n",
|
||||
" compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
|
||||
"\n",
|
||||
"# use get_status() to get a detailed status for the current cluster. \n",
|
||||
"print(compute_target.get_status().serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore labeled datasets\n",
|
||||
"\n",
|
||||
"**Note**: How to create labeled datasets is not covered in this tutorial. To create labeled datasets, you can go through [labeling projects](https://docs.microsoft.com/azure/machine-learning/service/how-to-create-labeling-projects) and export the output labels as Azure Machine Lerning datasets. \n",
|
||||
"\n",
|
||||
"`animal_labels` used in this tutorial section is the output from a labeling project, with the task type of \"Object Identification\"."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get animal_labels dataset from the workspace\n",
|
||||
"animal_labels = Dataset.get_by_name(workspace, 'animal_labels')\n",
|
||||
"animal_labels"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can load labeled datasets into pandas DataFrame. There are 3 file handling option that you can choose to load the data files referenced by the labeled datasets:\n",
|
||||
"* Streaming: The default option to load data files.\n",
|
||||
"* Download: Download your data files to a local path.\n",
|
||||
"* Mount: Mount your data files to a mount point. Mount only works for Linux-based compute, including Azure Machine Learning notebook VM and Azure Machine Learning Compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"animal_pd = animal_labels.to_pandas_dataframe(file_handling_option=FileHandlingOption.DOWNLOAD, target_path='./download/', overwrite_download=True)\n",
|
||||
"animal_pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import matplotlib.image as mpimg\n",
|
||||
"\n",
|
||||
"# read images from downloaded path\n",
|
||||
"img = mpimg.imread(animal_pd.loc[0,'image_url'])\n",
|
||||
"imgplot = plt.imshow(img)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also load labeled datasets into [torchvision datasets](https://pytorch.org/docs/stable/torchvision/datasets.html), so that you can leverage on the open source libraries provided by PyTorch for image transformation and training."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from torchvision.transforms import functional as F\n",
|
||||
"\n",
|
||||
"# load animal_labels dataset into torchvision dataset\n",
|
||||
"pytorch_dataset = animal_labels.to_torchvision()\n",
|
||||
"img = pytorch_dataset[0][0]\n",
|
||||
"print(type(img))\n",
|
||||
"\n",
|
||||
"# use methods from torchvision to transform the img into grayscale\n",
|
||||
"pil_image = F.to_pil_image(img)\n",
|
||||
"gray_image = F.to_grayscale(pil_image, num_output_channels=3)\n",
|
||||
"\n",
|
||||
"imgplot = plt.imshow(gray_image)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train an image classification model\n",
|
||||
"\n",
|
||||
" `crack_labels` dataset used in this tutorial section is the output from a labeling project, with the task type of \"Image Classification Multi-class\". We will use this dataset to train an image classification model that classify whether an image has cracks or not."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get crack_labels dataset from the workspace\n",
|
||||
"crack_labels = Dataset.get_by_name(workspace, 'crack_labels')\n",
|
||||
"crack_labels"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure training job\n",
|
||||
"\n",
|
||||
"You can ask the system to build a conda environment based on your dependency specification. Once the environment is built, and if you don't change your dependencies, it will be reused in subsequent runs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Environment\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"conda_env = Environment('conda-env')\n",
|
||||
"conda_env.python.conda_dependencies = CondaDependencies.create(pip_packages=['azureml-sdk',\n",
|
||||
" 'azureml-contrib-dataset',\n",
|
||||
" 'torch','torchvision',\n",
|
||||
" 'azureml-dataset-runtime[pandas]'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"A ScriptRunConfig object is used to submit the run. Create a ScriptRunConfig by specifying\n",
|
||||
"\n",
|
||||
"* The directory that contains your scripts. All the files in this directory are uploaded into the cluster nodes for execution. \n",
|
||||
"* The training script name, train.py\n",
|
||||
"* The input dataset for training\n",
|
||||
"* The compute target. In this case you will use the AmlCompute you created\n",
|
||||
"* The environment for the experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"src = ScriptRunConfig(source_directory=script_folder,\n",
|
||||
" script='train.py',\n",
|
||||
" arguments=[crack_labels.as_named_input('crack_labels')],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" enviroment=conda_env)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit job to run\n",
|
||||
"\n",
|
||||
"Submit the ScriptRunConfig to the Azure ML experiment to kick off the execution."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run = exp.submit(src)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "sihhu"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"Remote"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"Azure ML"
|
||||
],
|
||||
"friendly_name": "Introduction to labeled datasets",
|
||||
"index_order": 1,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.9"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "nteract-front-end@1.0.0"
|
||||
},
|
||||
"star_tag": [
|
||||
"featured"
|
||||
],
|
||||
"tags": [
|
||||
"Dataset",
|
||||
"label",
|
||||
"Estimator"
|
||||
],
|
||||
"task": "Train"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user