Compare commits

...

6 Commits

Author SHA1 Message Date
amlrelsa-ms
fa2e649fe8 update samples from Release-165 as a part of SDK release 2022-10-11 19:33:50 +00:00
Harneet Virk
e25e8e3a41 Merge pull request #1832 from Azure/release_update/Release-164
update samples from Release-164 as a part of  SDK release
2022-10-05 11:29:47 -07:00
amlrelsa-ms
aa3670a902 update samples from Release-164 as a part of SDK release 2022-10-05 17:31:10 +00:00
Harneet Virk
ef1f9205ac Merge pull request #1831 from Azure/release_update_stablev2/Release-153
update samples from Release-153 as a part of 1.46.0 SDK stable release
2022-10-04 15:04:25 -07:00
amlrelsa-ms
3228bbfc63 update samples from Release-153 as a part of 1.46.0 SDK stable release 2022-09-30 17:30:23 +00:00
Harneet Virk
f18a0dfc4d Merge pull request #1825 from Azure/release_update/Release-163
update samples from Release-163 as a part of  SDK release
2022-09-20 14:12:22 -07:00
143 changed files with 393 additions and 469 deletions

View File

@@ -103,7 +103,7 @@
"source": [ "source": [
"import azureml.core\n", "import azureml.core\n",
"\n", "\n",
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -367,9 +367,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -525,9 +525,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -599,9 +599,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -6,7 +6,7 @@ dependencies:
- fairlearn>=0.6.2 - fairlearn>=0.6.2
- joblib - joblib
- liac-arff - liac-arff
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0
- protobuf==3.20.0 - protobuf==3.20.0

View File

@@ -523,9 +523,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -6,7 +6,7 @@ dependencies:
- fairlearn>=0.6.2 - fairlearn>=0.6.2
- joblib - joblib
- liac-arff - liac-arff
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0
- protobuf==3.20.0 - protobuf==3.20.0

View File

@@ -18,19 +18,19 @@ dependencies:
- pywin32==227 - pywin32==227
- PySocks==1.7.1 - PySocks==1.7.1
- conda-forge::pyqt==5.12.3 - conda-forge::pyqt==5.12.3
- jsonschema==4.15.0
- jinja2<=2.11.2 - jinja2<=2.11.2
- markupsafe<2.1.0 - markupsafe<2.1.0
- tqdm==4.64.0 - tqdm==4.64.1
- jsonschema==4.16.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0 - azureml-widgets~=1.46.0
- azureml-defaults~=1.45.0 - azureml-defaults~=1.46.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.2.4 - spacy==2.2.4
- pystan==2.19.1.1 - pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_win32_requirements.txt [--no-deps] - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.46.0/validated_win32_requirements.txt [--no-deps]
- arch==4.14 - arch==4.14
- wasabi==0.9.1 - wasabi==0.9.1

View File

@@ -23,14 +23,15 @@ dependencies:
- cudatoolkit=10.1.243 - cudatoolkit=10.1.243
- jinja2<=2.11.2 - jinja2<=2.11.2
- markupsafe<2.1.0 - markupsafe<2.1.0
- jsonschema==4.15.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0 - azureml-widgets~=1.46.0
- azureml-defaults~=1.45.0 - azureml-defaults~=1.46.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.2.4 - spacy==2.2.4
- pystan==2.19.1.1 - pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_linux_requirements.txt [--no-deps] - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.46.0/validated_linux_requirements.txt [--no-deps]
- arch==4.14 - arch==4.14

View File

@@ -24,14 +24,15 @@ dependencies:
- cudatoolkit=9.0 - cudatoolkit=9.0
- jinja2<=2.11.2 - jinja2<=2.11.2
- markupsafe<2.1.0 - markupsafe<2.1.0
- jsonschema==4.15.0
- pip: - pip:
# Required packages for AzureML execution, history, and data preparation. # Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0 - azureml-widgets~=1.46.0
- azureml-defaults~=1.45.0 - azureml-defaults~=1.46.0
- pytorch-transformers==1.0.0 - pytorch-transformers==1.0.0
- spacy==2.2.4 - spacy==2.2.4
- pystan==2.19.1.1 - pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz - https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_darwin_requirements.txt [--no-deps] - -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.46.0/validated_darwin_requirements.txt [--no-deps]
- arch==4.14 - arch==4.14

View File

@@ -1060,9 +1060,9 @@
"name": "python3-azureml" "name": "python3-azureml"
}, },
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -456,9 +456,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML", "friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5, "index_order": 5,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -567,9 +567,9 @@
"friendly_name": "DNN Text Featurization", "friendly_name": "DNN Text Featurization",
"index_order": 2, "index_order": 2,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -564,9 +564,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -97,7 +97,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -324,9 +324,9 @@
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab" "hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
}, },
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -97,7 +97,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -713,9 +713,9 @@
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab" "hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
}, },
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -7,7 +7,7 @@ dependencies:
- cython==0.29.14 - cython==0.29.14
- urllib3==1.26.7 - urllib3==1.26.7
- PyJWT < 2.0.0 - PyJWT < 2.0.0
- numpy==1.21.6 - numpy==1.22.3
- pywin32==227 - pywin32==227
- cryptography<37.0.0 - cryptography<37.0.0
@@ -21,3 +21,4 @@ dependencies:
- azureml-mlflow - azureml-mlflow
- pandas - pandas
- mlflow - mlflow
- docker<6.0.0

View File

@@ -92,7 +92,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -354,7 +354,7 @@
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n", "This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n", "\n",
"\n", "\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n", "The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net and the page of the DefeatFraud project\n",
"Please cite the following works: \n", "Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n", "\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n", "\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
@@ -389,9 +389,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML", "friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5, "index_order": 5,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -91,7 +91,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -448,9 +448,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -706,9 +706,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -700,9 +700,9 @@
"Azure ML AutoML" "Azure ML AutoML"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -697,9 +697,9 @@
"friendly_name": "Forecasting BikeShare Demand", "friendly_name": "Forecasting BikeShare Demand",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -767,9 +767,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -866,9 +866,9 @@
"friendly_name": "Forecasting away from training data", "friendly_name": "Forecasting away from training data",
"index_order": 3, "index_order": 3,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -681,9 +681,9 @@
], ],
"hide_code_all_hidden": false, "hide_code_all_hidden": false,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -620,9 +620,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -837,9 +837,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -821,9 +821,9 @@
"friendly_name": "Forecasting orange juice sales with deployment", "friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -799,9 +799,9 @@
"friendly_name": "Forecasting orange juice sales with deployment", "friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -472,9 +472,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -572,9 +572,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -870,9 +870,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML", "friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5, "index_order": 5,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -895,9 +895,9 @@
"friendly_name": "Automated ML run with featurization and model explainability.", "friendly_name": "Automated ML run with featurization and model explainability.",
"index_order": 5, "index_order": 5,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -449,9 +449,9 @@
"automated-machine-learning" "automated-machine-learning"
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -429,9 +429,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -557,9 +557,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -161,9 +161,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -215,9 +215,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -482,9 +482,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -302,9 +302,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -86,7 +86,7 @@
"source": [ "source": [
"In this example, we will be using and registering two models. \n", "In this example, we will be using and registering two models. \n",
"\n", "\n",
"First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory." "First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory."
] ]
}, },
{ {
@@ -373,9 +373,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -541,7 +541,7 @@
" - To run a local web service, see the [notebook on deployment to a local Docker container](../deploy-to-local/register-model-deploy-local.ipynb).\n", " - To run a local web service, see the [notebook on deployment to a local Docker container](../deploy-to-local/register-model-deploy-local.ipynb).\n",
" - For more information on datasets, see the [notebook on training with datasets](../../work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb).\n", " - For more information on datasets, see the [notebook on training with datasets](../../work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb).\n",
" - For more information on environments, see the [notebook on using environments](../../training/using-environments/using-environments.ipynb).\n", " - For more information on environments, see the [notebook on using environments](../../training/using-environments/using-environments.ipynb).\n",
" - For information on all the available deployment targets, see [&ldquo;How and where to deploy models&rdquo;](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#choose-a-compute-target)." " - For information on all the available deployment targets, see [&ldquo;How and where to deploy models&rdquo;](https://docs.microsoft.com/azure/machine-learning/v1/how-to-deploy-and-where#choose-a-compute-target)."
] ]
} }
], ],
@@ -568,9 +568,9 @@
"friendly_name": "Register model and deploy as webservice", "friendly_name": "Register model and deploy as webservice",
"index_order": 3, "index_order": 3,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -473,9 +473,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -529,9 +529,9 @@
"friendly_name": "Register a model and deploy locally", "friendly_name": "Register a model and deploy locally",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -344,9 +344,9 @@
"friendly_name": "Deploy models to AKS using controlled roll out", "friendly_name": "Deploy models to AKS using controlled roll out",
"index_order": 3, "index_order": 3,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -476,9 +476,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -405,9 +405,9 @@
"friendly_name": "Convert and deploy TinyYolo with ONNX Runtime", "friendly_name": "Convert and deploy TinyYolo with ONNX Runtime",
"index_order": 5, "index_order": 5,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -773,9 +773,9 @@
"friendly_name": "Deploy Facial Expression Recognition (FER+) with ONNX Runtime", "friendly_name": "Deploy Facial Expression Recognition (FER+) with ONNX Runtime",
"index_order": 2, "index_order": 2,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -750,9 +750,9 @@
"friendly_name": "Deploy MNIST digit recognition with ONNX Runtime", "friendly_name": "Deploy MNIST digit recognition with ONNX Runtime",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -206,9 +206,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -389,9 +389,9 @@
"friendly_name": "Deploy ResNet50 with ONNX Runtime", "friendly_name": "Deploy ResNet50 with ONNX Runtime",
"index_order": 4, "index_order": 4,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -564,9 +564,9 @@
"friendly_name": "Train MNIST in PyTorch, convert, and deploy with ONNX Runtime", "friendly_name": "Train MNIST in PyTorch, convert, and deploy with ONNX Runtime",
"index_order": 3, "index_order": 3,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -329,9 +329,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -213,7 +213,7 @@
"\n", "\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n", "> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n", "\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details" "See code snippet below. Check the documentation [here](https://docs.microsoft.com/azure/machine-learning/v1/how-to-secure-web-service) for more details"
] ]
}, },
{ {
@@ -334,9 +334,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -366,7 +366,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Create AKS Cluster in an existing virtual network (optional)\n", "# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details." "See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-network-security-overview) for more details."
] ]
}, },
{ {
@@ -397,7 +397,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Enable SSL on the AKS Cluster (optional)\n", "# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details" "See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-network-security-overview#secure-the-inferencing-environment-v1) for more details"
] ]
}, },
{ {
@@ -603,9 +603,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -327,9 +327,9 @@
], ],
"friendly_name": "Register Spark model and deploy as webservice", "friendly_name": "Register Spark model and deploy as webservice",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -106,7 +106,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n", "print(\"This notebook was created using version 1.46.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")" "print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
] ]
}, },
@@ -241,6 +241,8 @@
"for dist in list(available_packages):\n", "for dist in list(available_packages):\n",
" if dist.key == 'pandas':\n", " if dist.key == 'pandas':\n",
" pandas_ver = dist.version\n", " pandas_ver = dist.version\n",
" if dist.key == 'numpy':\n",
" numpy_ver = dist.version\n",
"pandas_dep = 'pandas'\n", "pandas_dep = 'pandas'\n",
"numpy_dep = 'numpy'\n", "numpy_dep = 'numpy'\n",
"if pandas_ver:\n", "if pandas_ver:\n",
@@ -286,7 +288,7 @@
"pip uninstall -y xgboost && \\\n", "pip uninstall -y xgboost && \\\n",
"conda install py-xgboost==1.3.3 && \\\n", "conda install py-xgboost==1.3.3 && \\\n",
"pip uninstall -y numpy && \\\n", "pip uninstall -y numpy && \\\n",
"conda install {numpy_dep} \\\n", "pip install {numpy_dep} \\\n",
"\"\"\"\n", "\"\"\"\n",
"\n", "\n",
"env.python.user_managed_dependencies = True\n", "env.python.user_managed_dependencies = True\n",
@@ -481,9 +483,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -10,7 +10,7 @@ dependencies:
- ipython - ipython
- matplotlib - matplotlib
- ipywidgets - ipywidgets
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0
- scipy>=1.5.3 - scipy>=1.5.3

View File

@@ -496,9 +496,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -10,7 +10,7 @@ dependencies:
- matplotlib - matplotlib
- azureml-dataset-runtime - azureml-dataset-runtime
- ipywidgets - ipywidgets
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0
- scipy>=1.5.3 - scipy>=1.5.3

View File

@@ -595,9 +595,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -9,7 +9,7 @@ dependencies:
- ipython - ipython
- matplotlib - matplotlib
- ipywidgets - ipywidgets
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- packaging>=20.9 - packaging>=20.9
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0

View File

@@ -516,9 +516,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -9,7 +9,7 @@ dependencies:
- ipython - ipython
- matplotlib - matplotlib
- ipywidgets - ipywidgets
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- packaging>=20.9 - packaging>=20.9
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0

View File

@@ -576,9 +576,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -11,7 +11,7 @@ dependencies:
- azureml-dataset-runtime - azureml-dataset-runtime
- azureml-core - azureml-core
- ipywidgets - ipywidgets
- raiwidgets~=0.21.0 - raiwidgets~=0.22.0
- itsdangerous==2.0.1 - itsdangerous==2.0.1
- markupsafe<2.1.0 - markupsafe<2.1.0
- scipy>=1.5.3 - scipy>=1.5.3

View File

@@ -579,9 +579,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipeline with DataTranferStep", "friendly_name": "Azure Machine Learning Pipeline with DataTranferStep",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -632,9 +632,9 @@
], ],
"friendly_name": "Getting Started with Azure Machine Learning Pipelines", "friendly_name": "Getting Started with Azure Machine Learning Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -384,9 +384,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipeline with AzureBatchStep", "friendly_name": "Azure Machine Learning Pipeline with AzureBatchStep",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -470,9 +470,9 @@
], ],
"friendly_name": "How to use ModuleStep with AML Pipelines", "friendly_name": "How to use ModuleStep with AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -261,9 +261,9 @@
], ],
"friendly_name": "How to use Pipeline Drafts to create a Published Pipeline", "friendly_name": "How to use Pipeline Drafts to create a Published Pipeline",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -292,7 +292,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')" "tf_env = Environment.get(ws, name='AzureML-tensorflow-2.6-ubuntu20.04-py38-cuda11-gpu')"
] ]
}, },
{ {
@@ -595,9 +595,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipeline with HyperDriveStep", "friendly_name": "Azure Machine Learning Pipeline with HyperDriveStep",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -443,9 +443,9 @@
], ],
"friendly_name": "How to Publish a Pipeline and Invoke the REST endpoint", "friendly_name": "How to Publish a Pipeline and Invoke the REST endpoint",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -432,7 +432,7 @@
"This schedule will run when additions or modifications are made to Blobs in the Datastore.\n", "This schedule will run when additions or modifications are made to Blobs in the Datastore.\n",
"By default, the Datastore container is monitored for changes. Use the path_on_datastore parameter to instead specify a path on the Datastore to monitor for changes. Note: the path_on_datastore will be under the container for the datastore, so the actual path monitored will be container/path_on_datastore. Changes made to subfolders in the container/path will not trigger the schedule.\n", "By default, the Datastore container is monitored for changes. Use the path_on_datastore parameter to instead specify a path on the Datastore to monitor for changes. Note: the path_on_datastore will be under the container for the datastore, so the actual path monitored will be container/path_on_datastore. Changes made to subfolders in the container/path will not trigger the schedule.\n",
"Note: Only Blob Datastores are supported.\n", "Note: Only Blob Datastores are supported.\n",
"Note: Not supported for CMK workspaces. Please review these [instructions](https://docs.microsoft.com/azure/machine-learning/how-to-trigger-published-pipeline) in order to setup a blob trigger submission schedule with CMK enabled. Also see those instructions to bring your own LogicApp to avoid the schedule triggers per month limit." "Note: Not supported for CMK workspaces. Please review these [instructions](https://docs.microsoft.com/azure/machine-learning/v1/how-to-trigger-published-pipeline) in order to setup a blob trigger submission schedule with CMK enabled. Also see those instructions to bring your own LogicApp to avoid the schedule triggers per month limit."
] ]
}, },
{ {
@@ -637,9 +637,9 @@
], ],
"friendly_name": "How to Setup a Schedule for a Published Pipeline or Pipeline Endpoint", "friendly_name": "How to Setup a Schedule for a Published Pipeline or Pipeline Endpoint",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -581,9 +581,9 @@
], ],
"friendly_name": "How to setup a versioned Pipeline Endpoint", "friendly_name": "How to setup a versioned Pipeline Endpoint",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -500,9 +500,9 @@
], ],
"friendly_name": "How to use DataPath as a PipelineParameter", "friendly_name": "How to use DataPath as a PipelineParameter",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -496,9 +496,9 @@
], ],
"friendly_name": "How to use Dataset as a PipelineParameter", "friendly_name": "How to use Dataset as a PipelineParameter",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -377,9 +377,9 @@
], ],
"friendly_name": "How to use AdlaStep with AML Pipelines", "friendly_name": "How to use AdlaStep with AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -20,7 +20,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n", "# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n", "To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n", "\n",
"The notebook will show:\n", "The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n", "1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
@@ -180,10 +180,9 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Data Connections with Inputs and Outputs\n", "## Data Connections with Inputs and Outputs\n",
"The DatabricksStep supports DBFS, Azure Blob and ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.azuredatabricks.net/user-guide/secrets/index.html) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n", "The DatabricksStep supports DBFS, Azure Blob and ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.microsoft.com/azure/databricks/security/access-control/secret-acl) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"\n", "\n",
"- Databricks documentation on [Azure Blob](https://docs.azuredatabricks.net/spark/latest/data-sources/azure/azure-storage.html)\n", "- Databricks documentation on [Azure Storage](https://docs.microsoft.com/azure/databricks/data/data-sources/azure/azure-storage)\n",
"- Databricks documentation on [ADLS](https://docs.databricks.com/spark/latest/data-sources/azure/azure-datalake.html)\n",
"\n", "\n",
"### Type of Data Access\n", "### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n", "Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
@@ -415,7 +414,7 @@
"### 1. Running the demo notebook already added to the Databricks workspace\n", "### 1. Running the demo notebook already added to the Databricks workspace\n",
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable\u00c2\u00a0notebook_path\u00c2\u00a0when you run the code cell below:\n", "Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable\u00c2\u00a0notebook_path\u00c2\u00a0when you run the code cell below:\n",
"\n", "\n",
"your notebook's path in Azure Databricks UI by hovering over to notebook's title. A typical path of notebook looks like this `/Users/example@databricks.com/example`. See [Databricks Workspace](https://docs.azuredatabricks.net/user-guide/workspace.html) to learn about the folder structure.\n", "your notebook's path in Azure Databricks UI by hovering over to notebook's title. A typical path of notebook looks like this `/Users/example@databricks.com/example`. See [Databricks Workspace](https://docs.microsoft.com/azure/databricks/workspace) to learn about the folder structure.\n",
"\n", "\n",
"Note: DataPath `PipelineParameter` should be provided in list of inputs. Such parameters can be accessed by the datapath `name`." "Note: DataPath `PipelineParameter` should be provided in list of inputs. Such parameters can be accessed by the datapath `name`."
] ]
@@ -487,7 +486,7 @@
"### 2. Running a Python script from DBFS\n", "### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n", "This shows how to run a Python script in DBFS. \n",
"\n", "\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n", "To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.microsoft.com/azure/databricks/dbfs). The CLI command is given below:\n",
"\n", "\n",
"```\n", "```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n", "dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
@@ -630,7 +629,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 4. Running a JAR job that is alreay added in DBFS\n", "### 4. Running a JAR job that is alreay added in DBFS\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n", "To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.microsoft.com/azure/databricks/dbfs).\n",
"\n", "\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n", "The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n",
"\n", "\n",
@@ -704,7 +703,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5. Running demo notebook already added to the Databricks workspace using existing cluster\n", "### 5. Running demo notebook already added to the Databricks workspace using existing cluster\n",
"First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n", "First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.microsoft.com/azure/databricks/dbfs).\n",
"\n", "\n",
"Find existing_cluster_id by opeing Azure Databricks UI with Clusters page and in url you will find a string connected with '-' right after \"clusters/\"." "Find existing_cluster_id by opeing Azure Databricks UI with Clusters page and in url you will find a string connected with '-' right after \"clusters/\"."
] ]
@@ -941,9 +940,9 @@
], ],
"friendly_name": "How to use DatabricksStep with AML Pipelines", "friendly_name": "How to use DatabricksStep with AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -244,9 +244,9 @@
], ],
"friendly_name": "How to use KustoStep with AML Pipelines", "friendly_name": "How to use KustoStep with AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -498,9 +498,9 @@
], ],
"friendly_name": "How to use AutoMLStep with AML Pipelines", "friendly_name": "How to use AutoMLStep with AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -315,9 +315,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipeline with CommandStep for R", "friendly_name": "Azure Machine Learning Pipeline with CommandStep for R",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -278,9 +278,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipeline with CommandStep", "friendly_name": "Azure Machine Learning Pipeline with CommandStep",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -545,9 +545,9 @@
], ],
"friendly_name": "Azure Machine Learning Pipelines with Data Dependency", "friendly_name": "Azure Machine Learning Pipelines with Data Dependency",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -409,9 +409,9 @@
], ],
"friendly_name": "How to use run a notebook as a step in AML Pipelines", "friendly_name": "How to use run a notebook as a step in AML Pipelines",
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -84,9 +84,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -1046,9 +1046,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n", "In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n", "\n",
"> **Tip**\n", "> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n", "If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n", "\n",
"In this example will be take a digit identification model already-trained on MNIST dataset using the [AzureML training with deep learning example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb), and run that trained model on some of the MNIST test images in batch. \n", "In this example will be take a digit identification model already-trained on MNIST dataset using the [AzureML training with deep learning example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb), and run that trained model on some of the MNIST test images in batch. \n",
"\n", "\n",
@@ -277,7 +277,7 @@
"### Register the model with Workspace\n", "### Register the model with Workspace\n",
"A registered model is a logical container for one or more files that make up your model. For example, if you have a model that's stored in multiple files, you can register them as a single model in the workspace. After you register the files, you can then download or deploy the registered model and receive all the files that you registered.\n", "A registered model is a logical container for one or more files that make up your model. For example, if you have a model that's stored in multiple files, you can register them as a single model in the workspace. After you register the files, you can then download or deploy the registered model and receive all the files that you registered.\n",
"\n", "\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-deploy-and-where#registermodel) " "Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/azure/machine-learning/v1/how-to-deploy-and-where#registermodel) "
] ]
}, },
{ {
@@ -581,16 +581,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "joringer" "name": "prsbjdev"
},
{
"name": "asraniwa"
},
{
"name": "pansav"
},
{
"name": "tracych"
} }
], ],
"category": "Other notebooks", "category": "Other notebooks",
@@ -610,9 +601,9 @@
"friendly_name": "MNIST data inferencing using ParallelRunStep", "friendly_name": "MNIST data inferencing using ParallelRunStep",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n", "In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n", "\n",
"> **Tip**\n", "> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n", "If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n", "\n",
"This example will create a sample dataset with nested folder structure, where the folder name corresponds to the attribute of the files inside it. The Batch Inference job would split the files inside the dataset according to their attributes, so that all files with identical value on the specified attribute will form up a single mini-batch to be processed.\n", "This example will create a sample dataset with nested folder structure, where the folder name corresponds to the attribute of the files inside it. The Batch Inference job would split the files inside the dataset according to their attributes, so that all files with identical value on the specified attribute will form up a single mini-batch to be processed.\n",
"\n", "\n",
@@ -356,13 +356,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "pansav" "name": "prsbjdev"
},
{
"name": "tracych"
},
{
"name": "migu"
} }
], ],
"category": "Other notebooks", "category": "Other notebooks",
@@ -382,9 +376,9 @@
"friendly_name": "Batch inferencing file data partitioned by folder using ParallelRunStep", "friendly_name": "Batch inferencing file data partitioned by folder using ParallelRunStep",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n", "In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n", "\n",
"> **Tip**\n", "> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n", "If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n", "\n",
"In this example we will take use a machine learning model already trained to predict different types of iris flowers and run that trained model on some of the data in a CSV file which has characteristics of different iris flowers. However, the same example can be extended to manipulating data to any embarrassingly-parallel processing through a python script.\n", "In this example we will take use a machine learning model already trained to predict different types of iris flowers and run that trained model on some of the data in a CSV file which has characteristics of different iris flowers. However, the same example can be extended to manipulating data to any embarrassingly-parallel processing through a python script.\n",
"\n", "\n",
@@ -487,16 +487,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "joringer" "name": "prsbjdev"
},
{
"name": "asraniwa"
},
{
"name": "pansav"
},
{
"name": "tracych"
} }
], ],
"category": "Other notebooks", "category": "Other notebooks",
@@ -516,9 +507,9 @@
"friendly_name": "IRIS data inferencing using ParallelRunStep", "friendly_name": "IRIS data inferencing using ParallelRunStep",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n", "In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n", "\n",
"> **Tip**\n", "> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n", "If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n", "\n",
"This example will create a partitioned tabular dataset by splitting the rows in a large csv file by its value on specified column. Each partition will form up a mini-batch in the parallel processing procedure.\n", "This example will create a partitioned tabular dataset by splitting the rows in a large csv file by its value on specified column. Each partition will form up a mini-batch in the parallel processing procedure.\n",
"\n", "\n",
@@ -379,13 +379,7 @@
"metadata": { "metadata": {
"authors": [ "authors": [
{ {
"name": "pansav" "name": "prsbjdev"
},
{
"name": "tracych"
},
{
"name": "migu"
} }
], ],
"category": "Other notebooks", "category": "Other notebooks",
@@ -405,9 +399,9 @@
"friendly_name": "Batch inferencing OJ Sales Data partitioned by column using ParallelRunStep", "friendly_name": "Batch inferencing OJ Sales Data partitioned by column using ParallelRunStep",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -27,7 +27,7 @@
"3. Stitch the image back into a video.\n", "3. Stitch the image back into a video.\n",
"\n", "\n",
"> **Tip**\n", "> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction." "If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction."
] ]
}, },
{ {
@@ -726,9 +726,9 @@
"friendly_name": "Style transfer using ParallelRunStep", "friendly_name": "Style transfer using ParallelRunStep",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -521,9 +521,9 @@
} }
], ],
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -332,9 +332,9 @@
"friendly_name": "Distributed Training with Chainer", "friendly_name": "Distributed Training with Chainer",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -783,9 +783,9 @@
"friendly_name": "Train a model with hyperparameter tuning", "friendly_name": "Train a model with hyperparameter tuning",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -344,9 +344,9 @@
"friendly_name": "Train a model with a custom Docker image", "friendly_name": "Train a model with a custom Docker image",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -453,7 +453,7 @@
"\n", "\n",
"# Specify a GPU base image\n", "# Specify a GPU base image\n",
"keras_env.docker.enabled = True\n", "keras_env.docker.enabled = True\n",
"keras_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi3.1.2-cuda10.0-cudnn7-ubuntu18.04'" "keras_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu20.04'"
] ]
}, },
{ {
@@ -1224,9 +1224,9 @@
"friendly_name": "Train a DNN using hyperparameter tuning and deploying with Keras", "friendly_name": "Train a DNN using hyperparameter tuning and deploying with Keras",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -471,9 +471,9 @@
"friendly_name": "Distributed training with PyTorch", "friendly_name": "Distributed training with PyTorch",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -352,9 +352,9 @@
"friendly_name": "Distributed PyTorch", "friendly_name": "Distributed PyTorch",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

View File

@@ -283,7 +283,7 @@
"\n", "\n",
"# Specify a GPU base image\n", "# Specify a GPU base image\n",
"pytorch_env.docker.enabled = True\n", "pytorch_env.docker.enabled = True\n",
"pytorch_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu18.04'" "pytorch_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu20.04'"
] ]
}, },
{ {
@@ -736,9 +736,9 @@
"friendly_name": "Training with hyperparameter tuning using PyTorch", "friendly_name": "Training with hyperparameter tuning using PyTorch",
"index_order": 1, "index_order": 1,
"kernelspec": { "kernelspec": {
"display_name": "Python 3.6", "display_name": "Python 3.8 - AzureML",
"language": "python", "language": "python",
"name": "python36" "name": "python38-azureml"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {

Some files were not shown because too many files have changed in this diff Show More