Compare commits

...

12 Commits

Author SHA1 Message Date
amlrelsa-ms
0814eee151 update samples from Release-167 as a part of SDK release 2022-11-08 01:17:48 +00:00
Harneet Virk
f45b815221 Merge pull request #1848 from Azure/release_update/Release-166
update samples from Release-166 as a part of  SDK release
2022-10-26 12:04:10 -07:00
amlrelsa-ms
bd629ae454 update samples from Release-166 as a part of SDK release 2022-10-26 18:46:34 +00:00
Harneet Virk
41de75a584 Merge pull request #1846 from Azure/release_update_stablev2/Release-156
update samples from Release-156 as a part of 1.47.0 SDK stable release
2022-10-25 21:01:03 -07:00
amlrelsa-ms
96a426dc36 update samples from Release-156 as a part of 1.47.0 SDK stable release 2022-10-25 21:28:24 +00:00
Harneet Virk
824dd40f7e Merge pull request #1836 from Azure/release_update/Release-165
update samples from Release-165 as a part of  SDK release
2022-10-11 13:07:26 -07:00
amlrelsa-ms
fa2e649fe8 update samples from Release-165 as a part of SDK release 2022-10-11 19:33:50 +00:00
Harneet Virk
e25e8e3a41 Merge pull request #1832 from Azure/release_update/Release-164
update samples from Release-164 as a part of  SDK release
2022-10-05 11:29:47 -07:00
amlrelsa-ms
aa3670a902 update samples from Release-164 as a part of SDK release 2022-10-05 17:31:10 +00:00
Harneet Virk
ef1f9205ac Merge pull request #1831 from Azure/release_update_stablev2/Release-153
update samples from Release-153 as a part of 1.46.0 SDK stable release
2022-10-04 15:04:25 -07:00
amlrelsa-ms
3228bbfc63 update samples from Release-153 as a part of 1.46.0 SDK stable release 2022-09-30 17:30:23 +00:00
Harneet Virk
f18a0dfc4d Merge pull request #1825 from Azure/release_update/Release-163
update samples from Release-163 as a part of  SDK release
2022-09-20 14:12:22 -07:00
153 changed files with 592 additions and 834 deletions

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -367,9 +367,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -525,9 +525,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -599,9 +599,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -6,7 +6,7 @@ dependencies:
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- protobuf==3.20.0

View File

@@ -523,9 +523,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -6,7 +6,7 @@ dependencies:
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- protobuf==3.20.0

View File

@@ -10,27 +10,27 @@ dependencies:
- python>=3.6,<3.9
- matplotlib==3.2.1
- py-xgboost==1.3.3
- pytorch::pytorch=1.4.0
- pytorch::pytorch=1.11.0
- conda-forge::fbprophet==0.7.1
- cudatoolkit=10.1.243
- scipy==1.5.3
- notebook
- pywin32==227
- PySocks==1.7.1
- conda-forge::pyqt==5.12.3
- jsonschema==4.15.0
- jinja2<=2.11.2
- markupsafe<2.1.0
- tqdm==4.64.0
- tqdm==4.64.1
- jsonschema==4.16.0
- websocket-client==1.4.1
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0
- azureml-defaults~=1.45.0
- azureml-widgets~=1.47.0
- azureml-defaults~=1.47.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_win32_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.47.0/validated_win32_requirements.txt [--no-deps]
- arch==4.14
- wasabi==0.9.1

View File

@@ -6,10 +6,8 @@ channels:
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.6.0 and later.
- pip==20.2.4
- pip==20.1.1
- python>=3.6,<3.9
- boto3==1.20.19
- botocore<=1.23.19
- matplotlib==3.2.1
- numpy>=1.21.6,<=1.22.3
- cython==0.29.14
@@ -19,18 +17,19 @@ dependencies:
- py-xgboost<=1.3.3
- holidays==0.10.3
- conda-forge::fbprophet==0.7.1
- pytorch::pytorch=1.4.0
- pytorch::pytorch=1.11.0
- cudatoolkit=10.1.243
- notebook
- jinja2<=2.11.2
- markupsafe<2.1.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0
- azureml-defaults~=1.45.0
- azureml-widgets~=1.47.0
- azureml-defaults~=1.47.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_linux_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.47.0/validated_linux_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -6,11 +6,8 @@ channels:
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.6.0 and later.
- pip==20.2.4
- nomkl
- pip==20.1.1
- python>=3.6,<3.9
- boto3==1.20.19
- botocore<=1.23.19
- matplotlib==3.2.1
- numpy>=1.21.6,<=1.22.3
- cython==0.29.14
@@ -20,18 +17,19 @@ dependencies:
- py-xgboost<=1.3.3
- holidays==0.10.3
- conda-forge::fbprophet==0.7.1
- pytorch::pytorch=1.4.0
- pytorch::pytorch=1.11.0
- cudatoolkit=9.0
- notebook
- jinja2<=2.11.2
- markupsafe<2.1.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.45.0
- azureml-defaults~=1.45.0
- azureml-widgets~=1.47.0
- azureml-defaults~=1.47.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.45.0/validated_darwin_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.47.0/validated_darwin_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -33,6 +33,8 @@ if not errorlevel 1 (
call conda env create -f %automl_env_file% -n %conda_env_name%
)
python "%conda_prefix%\scripts\pywin32_postinstall.py" -install
call conda activate %conda_env_name% 2>nul:
if errorlevel 1 goto ErrorExit

View File

@@ -1,4 +1,4 @@
from distutils.version import LooseVersion
from setuptools._vendor.packaging import version
import platform
try:
@@ -17,7 +17,7 @@ if architecture != "64bit":
minimumVersion = "4.7.8"
versionInvalid = (LooseVersion(conda.__version__) < LooseVersion(minimumVersion))
versionInvalid = (version.parse(conda.__version__) < version.parse(minimumVersion))
if versionInvalid:
print('Setup requires conda version ' + minimumVersion + ' or higher.')

View File

@@ -1060,9 +1060,9 @@
"name": "python3-azureml"
},
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -456,9 +456,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -567,9 +567,9 @@
"friendly_name": "DNN Text Featurization",
"index_order": 2,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -564,9 +564,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -324,9 +324,9 @@
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
},
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -713,9 +713,9 @@
"hash": "adb464b67752e4577e3dc163235ced27038d19b7d88def00d75d1975bde5d9ab"
},
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -7,9 +7,8 @@ dependencies:
- cython==0.29.14
- urllib3==1.26.7
- PyJWT < 2.0.0
- numpy==1.21.6
- numpy==1.22.3
- pywin32==227
- cryptography<37.0.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
@@ -21,3 +20,4 @@ dependencies:
- azureml-mlflow
- pandas
- mlflow
- docker<6.0.0

View File

@@ -11,7 +11,6 @@ dependencies:
- urllib3==1.26.7
- PyJWT < 2.0.0
- numpy>=1.21.6,<=1.22.3
- cryptography<37.0.0
- pip:
# Required packages for AzureML execution, history, and data preparation.

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -354,7 +354,7 @@
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
@@ -389,9 +389,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -91,7 +91,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -448,9 +448,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -406,7 +406,7 @@
" compute_target=compute_target,\n",
" node_count=2,\n",
" process_count_per_node=2,\n",
" run_invocation_timeout=920,\n",
" run_invocation_timeout=1200,\n",
" train_pipeline_parameters=mm_paramters,\n",
")"
]
@@ -706,9 +706,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -43,11 +43,20 @@ def init():
global output_dir
global automl_settings
global model_uid
global forecast_quantiles
logger.info("Initialization of the run.")
parser = argparse.ArgumentParser("Parsing input arguments.")
parser.add_argument("--output-dir", dest="out", required=True)
parser.add_argument("--model-name", dest="model", default=None)
parser.add_argument("--model-uid", dest="model_uid", default=None)
parser.add_argument(
"--forecast_quantiles",
nargs="*",
type=float,
help="forecast quantiles list",
default=None,
)
parsed_args, _ = parser.parse_known_args()
model_name = parsed_args.model
@@ -55,6 +64,7 @@ def init():
target_column_name = automl_settings.get("label_column_name")
output_dir = parsed_args.out
model_uid = parsed_args.model_uid
forecast_quantiles = parsed_args.forecast_quantiles
os.makedirs(output_dir, exist_ok=True)
os.environ["AUTOML_IGNORE_PACKAGE_VERSION_INCOMPATIBILITIES".lower()] = "True"
@@ -126,23 +136,18 @@ def run_backtest(data_input_name: str, file_name: str, experiment: Experiment):
)
print(f"The model {best_run.properties['model_name']} was registered.")
_, x_pred = fitted_model.forecast(X_test)
x_pred.reset_index(inplace=True, drop=False)
columns = [automl_settings[constants.TimeSeries.TIME_COLUMN_NAME]]
if automl_settings.get(constants.TimeSeries.GRAIN_COLUMN_NAMES):
# We know that fitted_model.grain_column_names is a list.
columns.extend(fitted_model.grain_column_names)
columns.append(constants.TimeSeriesInternal.DUMMY_TARGET_COLUMN)
# Remove featurized columns.
x_pred = x_pred[columns]
x_pred.rename(
{constants.TimeSeriesInternal.DUMMY_TARGET_COLUMN: "predicted_level"},
axis=1,
inplace=True,
)
# By default we will have forecast quantiles of 0.5, which is our target
if forecast_quantiles:
if 0.5 not in forecast_quantiles:
forecast_quantiles.append(0.5)
fitted_model.quantiles = forecast_quantiles
x_pred = fitted_model.forecast_quantiles(X_test)
x_pred["actual_level"] = y_test
x_pred["backtest_iteration"] = f"iteration_{last_training_date}"
x_pred.rename({0.5: "predicted_level"}, axis=1, inplace=True)
date_safe = RE_INVALID_SYMBOLS.sub("_", last_training_date)
x_pred.to_csv(os.path.join(output_dir, f"iteration_{date_safe}.csv"), index=False)
return x_pred

View File

@@ -365,6 +365,7 @@
" step_size=BACKTESTING_PERIOD,\n",
" step_number=NUMBER_OF_BACKTESTS,\n",
" model_uid=model_uid,\n",
" forecast_quantiles=[0.025, 0.975], # Optional\n",
")"
]
},
@@ -590,6 +591,7 @@
" step_size=BACKTESTING_PERIOD,\n",
" step_number=NUMBER_OF_BACKTESTS,\n",
" model_name=model_name,\n",
" forecast_quantiles=[0.025, 0.975],\n",
")"
]
},
@@ -700,9 +702,9 @@
"Azure ML AutoML"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -31,6 +31,7 @@ def get_backtest_pipeline(
step_number: int,
model_name: Optional[str] = None,
model_uid: Optional[str] = None,
forecast_quantiles: Optional[list] = None,
) -> Pipeline:
"""
:param experiment: The experiment used to run the pipeline.
@@ -44,6 +45,7 @@ def get_backtest_pipeline(
:param step_size: The number of periods to step back in backtesting.
:param step_number: The number of backtesting iterations.
:param model_uid: The uid to mark models from this run of the experiment.
:param forecast_quantiles: The forecast quantiles that are required in the inference.
:return: The pipeline to be used for model retraining.
**Note:** The output will be uploaded in the pipeline output
called 'score'.
@@ -135,6 +137,9 @@ def get_backtest_pipeline(
if model_uid is not None:
prs_args.append("--model-uid")
prs_args.append(model_uid)
if forecast_quantiles:
prs_args.append("--forecast_quantiles")
prs_args.extend(forecast_quantiles)
backtest_prs = ParallelRunStep(
name=parallel_step_name,
parallel_run_config=back_test_config,

View File

@@ -575,7 +575,32 @@
"outputs": [],
"source": [
"remote_run.download_file(\"outputs/predictions.csv\", \"predictions.csv\")\n",
"df_all = pd.read_csv(\"predictions.csv\")"
"fcst_df = pd.read_csv(\"predictions.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the rolling forecast can contain multiple predictions for each date, each from a different forecast origin. For example, consider 2012-09-05:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fcst_df[fcst_df.date == \"2012-09-05\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here, the forecast origin refers to the latest date of actuals available for a given forecast. The earliest origin in the rolling forecast, 2012-08-31, is the last day in the training data. For origin date 2012-09-01, the forecasts use actual recorded counts from the training data *and* the actual count recorded on 2012-09-01. Note that the model is not retrained for origin dates later than 2012-08-31, but the values for model features, such as lagged values of daily count, are updated.\n",
"\n",
"Let's calculate the metrics over all rolling forecasts:"
]
},
{
@@ -587,29 +612,17 @@
"from azureml.automl.core.shared import constants\n",
"from azureml.automl.runtime.shared.score import scoring\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
"from matplotlib import pyplot as plt\n",
"\n",
"# use automl metrics module\n",
"scores = scoring.score_regression(\n",
" y_test=df_all[target_column_name],\n",
" y_pred=df_all[\"predicted\"],\n",
" y_test=fcst_df[target_column_name],\n",
" y_pred=fcst_df[\"predicted\"],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET),\n",
")\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items():\n",
" print(\"{}: {:.3f}\".format(key, value))\n",
"\n",
"# Plot outputs\n",
"%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all[\"predicted\"], color=\"b\")\n",
"test_test = plt.scatter(\n",
" df_all[target_column_name], df_all[target_column_name], color=\"g\"\n",
")\n",
"plt.legend(\n",
" (test_pred, test_test), (\"prediction\", \"truth\"), loc=\"upper left\", fontsize=8\n",
")\n",
"plt.show()"
" print(\"{}: {:.3f}\".format(key, value))"
]
},
{
@@ -618,36 +631,15 @@
"source": [
"For more details on what metrics are included and how they are calculated, please refer to [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics). You could also calculate residuals, like described [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
"\n",
"\n",
"Since we did a rolling evaluation on the test set, we can analyze the predictions by their forecast horizon relative to the rolling origin. The model was initially trained at a forecast horizon of 14, so each prediction from the model is associated with a horizon value from 1 to 14. The horizon values are in a column named, \"horizon_origin,\" in the prediction set. For example, we can calculate some of the error metrics grouped by the horizon:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from metrics_helper import MAPE, APE\n",
"\n",
"df_all.groupby(\"horizon_origin\").apply(\n",
" lambda df: pd.Series(\n",
" {\n",
" \"MAPE\": MAPE(df[target_column_name], df[\"predicted\"]),\n",
" \"RMSE\": np.sqrt(\n",
" mean_squared_error(df[target_column_name], df[\"predicted\"])\n",
" ),\n",
" \"MAE\": mean_absolute_error(df[target_column_name], df[\"predicted\"]),\n",
" }\n",
" )\n",
")"
"The rolling forecast metric values are very high in comparison to the validation metrics reported by the AutoML job. What's going on here? We will investigate in the following cells!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To drill down more, we can look at the distributions of APE (absolute percentage error) by horizon. From the chart, it is clear that the overall MAPE is being skewed by one particular point where the actual value is of small absolute value."
"### Forecast versus actuals plot\n",
"We will plot predictions and actuals on a time series plot. Since there are many forecasts for each date, we select the 14-day-ahead forecast from each forecast origin for our comparison."
]
},
{
@@ -656,21 +648,55 @@
"metadata": {},
"outputs": [],
"source": [
"df_all_APE = df_all.assign(APE=APE(df_all[target_column_name], df_all[\"predicted\"]))\n",
"APEs = [\n",
" df_all_APE[df_all[\"horizon_origin\"] == h].APE.values\n",
" for h in range(1, forecast_horizon + 1)\n",
"]\n",
"from matplotlib import pyplot as plt\n",
"\n",
"%matplotlib inline\n",
"plt.boxplot(APEs)\n",
"plt.yscale(\"log\")\n",
"plt.xlabel(\"horizon\")\n",
"plt.ylabel(\"APE (%)\")\n",
"plt.title(\"Absolute Percentage Errors by Forecast Horizon\")\n",
"\n",
"fcst_df_h14 = (\n",
" fcst_df.groupby(\"forecast_origin\", as_index=False)\n",
" .last()\n",
" .drop(columns=[\"forecast_origin\"])\n",
")\n",
"fcst_df_h14.set_index(time_column_name, inplace=True)\n",
"plt.plot(fcst_df_h14[[target_column_name, \"predicted\"]])\n",
"plt.xticks(rotation=45)\n",
"plt.title(f\"Predicted vs. Actuals\")\n",
"plt.legend([\"actual\", \"14-day-ahead forecast\"])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the plot, there are two clear issues:\n",
"1. An anomalously low count value on October 29th, 2012.\n",
"2. End-of-year holidays (Thanksgiving and Christmas) in late November and late December.\n",
"\n",
"What happened on Oct. 29th, 2012? That day, Hurricane Sandy brought severe storm surge flooding to the east coast of the United States, particularly around New York City. This is certainly an anomalous event that the model did not account for!\n",
"\n",
"As for the late year holidays, the model apparently did not learn to account for the full reduction of bike share rentals on these major holidays. The training data covers 2011 and early 2012, so the model fit only had access to a single occurrence of these holidays. This makes it challenging to resolve holiday effects; however, a larger AutoML model search may result in a better model that is more holiday-aware.\n",
"\n",
"If we filter the predictions prior to the Thanksgiving holiday and remove the anomalous day of 2012-10-29, the metrics are closer to validation levels:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"date_filter = (fcst_df.date != \"2012-10-29\") & (fcst_df.date < \"2012-11-22\")\n",
"scores = scoring.score_regression(\n",
" y_test=fcst_df[date_filter][target_column_name],\n",
" y_pred=fcst_df[date_filter][\"predicted\"],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET),\n",
")\n",
"\n",
"print(\"[Test data scores (filtered)]\\n\")\n",
"for key, value in scores.items():\n",
" print(\"{}: {:.3f}\".format(key, value))"
]
}
],
"metadata": {
@@ -697,9 +723,9 @@
"friendly_name": "Forecasting BikeShare Demand",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
@@ -711,7 +737,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.7.13"
},
"mimetype": "text/x-python",
"name": "python",

View File

@@ -36,18 +36,18 @@ y_test_df = (
fitted_model = joblib.load("model.pkl")
y_pred, X_trans = fitted_model.rolling_evaluation(X_test_df, y_test_df.values)
X_rf = fitted_model.rolling_forecast(X_test_df, y_test_df.values, step=1)
# Add predictions, actuals, and horizon relative to rolling origin to the test feature data
assign_dict = {
"horizon_origin": X_trans["horizon_origin"].values,
"predicted": y_pred,
target_column_name: y_test_df[target_column_name].values,
fitted_model.forecast_origin_column_name: "forecast_origin",
fitted_model.forecast_column_name: "predicted",
fitted_model.actual_column_name: target_column_name,
}
df_all = X_test_df.assign(**assign_dict)
X_rf.rename(columns=assign_dict, inplace=True)
file_name = "outputs/predictions.csv"
export_csv = df_all.to_csv(file_name, header=True)
export_csv = X_rf.to_csv(file_name, header=True)
# Upload the predictions into artifacts
run.upload_file(name=file_name, path_or_stream=file_name)

View File

@@ -767,9 +767,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -758,7 +758,15 @@
"metadata": {},
"source": [
"## Forecasting farther than the forecast horizon <a id=\"recursive forecasting\"></a>\n",
"When the forecast destination, or the latest date in the prediction data frame, is farther into the future than the specified forecast horizon, the `forecast()` function will still make point predictions out to the later date using a recursive operation mode. Internally, the method recursively applies the regular forecaster to generate context so that we can forecast further into the future. \n",
"When the forecast destination, or the latest date in the prediction data frame, is farther into the future than the specified forecast horizon, the forecaster must be iteratively applied. Here, we advance the forecast origin on each iteration over the prediction window, predicting `max_horizon` periods ahead on each iteration. There are two choices for the context data to use as the forecaster advances into the prediction window:\n",
"\n",
"1. We can use forecasted values from previous iterations (recursive forecast),\n",
"2. We can use known, actual values of the target if they are available (rolling forecast).\n",
"\n",
"The first method is useful in a true forecasting scenario when we do not yet know the actual target values while the second is useful in an evaluation scenario where we want to compute accuracy metrics for the `max_horizon`-period-ahead forecaster over a long test set. We refer to the first as a **recursive forecast** since we apply the forecaster recursively over the prediction window and the second as a **rolling forecast** since we roll forward over known actuals.\n",
"\n",
"### Recursive forecasting\n",
"By default, the `forecast()` function will make point predictions out to the later date using a recursive operation mode. Internally, the method recursively applies the regular forecaster to generate context so that we can forecast further into the future. \n",
"\n",
"To illustrate the use-case and operation of recursive forecasting, we'll consider an example with a single time-series where the forecasting period directly follows the training period and is twice as long as the forecasting horizon given at training time.\n",
"\n",
@@ -818,6 +826,35 @@
"np.array_equal(y_pred_all, y_pred_long)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Rolling forecasts\n",
"A rolling forecast is a similar concept to the recursive forecasts described above except that we use known actual values of the target for our context data. We have provided a different, public method for this called `rolling_forecast`. In addition to test data and actuals (`X_test` and `y_test`), `rolling_forecast` also accepts an optional `step` parameter that controls how far the origin advances on each iteration. The recursive forecast mode uses a fixed step of `max_horizon` while `rolling_forecast` defaults to a step size of 1, but can be set to any integer from 1 to `max_horizon`, inclusive.\n",
"\n",
"Let's see what the rolling forecast looks like on the long test set with the step set to 1:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_rf = fitted_model.rolling_forecast(X_test_long, y_test_long, step=1)\n",
"X_rf.head(n=12)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice that `rolling_forecast` has returned a single DataFrame containing all results and has generated some new columns: `_automl_forecast_origin`, `_automl_forecast_y`, and `_automl_actual_y`. These are the origin date for each forecast, the forecasted value and the actual value, respectively. Note that \"y\" in the forecast and actual column names will generally be replaced by the target column name supplied to AutoML.\n",
"\n",
"The output above shows forecasts for two prediction windows, the first with origin at the end of the training set and the second including the first observation in the test set (2000-01-01 06:00:00). Since the forecast windows overlap, there are multiple forecasts for most dates which are associated with different origin dates."
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -866,9 +903,9 @@
"friendly_name": "Forecasting away from training data",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
@@ -880,7 +917,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
"version": "3.7.13"
},
"tags": [
"Forecasting",
@@ -894,5 +931,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -325,7 +325,7 @@
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 12 periods (i.e. 12 months). Notice that this is much shorter than the number of months in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
"The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 14 periods (i.e. 14 days). Notice that this is much shorter than the number of months in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
]
},
{
@@ -337,7 +337,7 @@
},
"outputs": [],
"source": [
"forecast_horizon = 12"
"forecast_horizon = 14"
]
},
{
@@ -681,9 +681,9 @@
],
"hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
@@ -699,5 +699,5 @@
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -4,7 +4,6 @@ import os
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset
from sklearn.externals import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
@@ -19,219 +18,8 @@ except ImportError:
_torch_present = False
def align_outputs(
y_predicted,
X_trans,
X_test,
y_test,
predicted_column_name="predicted",
horizon_colname="horizon_origin",
):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if horizon_colname in X_trans:
df_fcst = pd.DataFrame(
{
predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname],
}
)
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns="index")
together = df_fcst.merge(X_test_full, how="right")
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[
together[[target_column_name, predicted_column_name]].notnull().all(axis=1)
]
return clean
def do_rolling_forecast_with_lookback(
fitted_model, X_test, y_test, max_horizon, X_lookback, y_lookback, freq="D"
):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
print("Using lookback of size: ", y_lookback.size)
df_list = []
origin_time = X_test[time_column_name].min()
X = X_lookback.append(X_test)
y = np.concatenate((y_lookback, y_test), axis=0)
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X[time_column_name] < horizon_time
X_test_expand = X[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(float)
y_query_expand.fill(np.NaN)
if origin_time != X[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
# y_fcst, X_trans = y_query_expand, X_test_expand
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within
# the current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X[test_roll_wind],
y[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq="D"):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = X_test[time_column_name] < horizon_time
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = X_test[time_column_name] < origin_time
context_expand_wind = X_test_expand[time_column_name] < origin_time
y_query_expand[context_expand_wind] = y_test[test_context_expand_wind]
# Print some debug info
print(
"Horizon_time:",
horizon_time,
" origin_time: ",
origin_time,
" max_horizon: ",
max_horizon,
" freq: ",
freq,
)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X_test)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
df_list.append(
align_outputs(
y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
)
)
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def map_location_cuda(storage, loc):
return storage.cuda()
def APE(actual, pred):
@@ -254,10 +42,6 @@ def MAPE(actual, pred):
return np.mean(APE(actual_safe, pred_safe))
def map_location_cuda(storage, loc):
return storage.cuda()
parser = argparse.ArgumentParser()
parser.add_argument(
"--max_horizon",
@@ -303,7 +87,6 @@ print(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets["test_data"]
lookback_dataset = run.input_datasets["lookback_data"]
grain_column_names = []
@@ -312,15 +95,8 @@ df = test_dataset.to_pandas_dataframe()
print("Read df")
print(df)
X_test_df = test_dataset.drop_columns(columns=[target_column_name])
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
y_lookback_df = lookback_dataset.with_timestamp_columns(None).keep_columns(
columns=[target_column_name]
)
X_test_df = df
y_test = df.pop(target_column_name).to_numpy()
_, ext = os.path.splitext(model_path)
if ext == ".pt":
@@ -336,37 +112,20 @@ else:
# Load the sklearn pipeline.
fitted_model = joblib.load(model_path)
if hasattr(fitted_model, "get_lookback"):
lookback = fitted_model.get_lookback()
df_all = do_rolling_forecast_with_lookback(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
X_lookback_df.to_pandas_dataframe()[-lookback:],
y_lookback_df.to_pandas_dataframe().values.T[0][-lookback:],
freq,
)
else:
df_all = do_rolling_forecast(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
freq,
)
X_rf = fitted_model.rolling_forecast(X_test_df, y_test, step=1)
assign_dict = {
fitted_model.forecast_origin_column_name: "forecast_origin",
fitted_model.forecast_column_name: "predicted",
fitted_model.actual_column_name: target_column_name,
}
X_rf.rename(columns=assign_dict, inplace=True)
print(df_all)
print("target values:::")
print(df_all[target_column_name])
print("predicted values:::")
print(df_all["predicted"])
print(X_rf.head())
# Use the AutoML scoring module
regression_metrics = list(constants.REGRESSION_SCALAR_SET)
y_test = np.array(df_all[target_column_name])
y_pred = np.array(df_all["predicted"])
y_test = np.array(X_rf[target_column_name])
y_pred = np.array(X_rf["predicted"])
scores = scoring.score_regression(y_test, y_pred, regression_metrics)
print("scores:")
@@ -376,11 +135,11 @@ for key, value in scores.items():
run.log(key, value)
print("Simple forecasting model")
rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all["predicted"]))
rmse = np.sqrt(mean_squared_error(X_rf[target_column_name], X_rf["predicted"]))
print("[Test Data] \nRoot Mean squared error: %.2f" % rmse)
mae = mean_absolute_error(df_all[target_column_name], df_all["predicted"])
mae = mean_absolute_error(X_rf[target_column_name], X_rf["predicted"])
print("mean_absolute_error score: %.2f" % mae)
print("MAPE: %.2f" % MAPE(df_all[target_column_name], df_all["predicted"]))
print("MAPE: %.2f" % MAPE(X_rf[target_column_name], X_rf["predicted"]))
run.log("rmse", rmse)
run.log("mae", mae)

View File

@@ -365,6 +365,7 @@
" node_count=2,\n",
" process_count_per_node=8,\n",
" train_pipeline_parameters=hts_parameters,\n",
" run_invocation_timeout=3900,\n",
")"
]
},
@@ -620,9 +621,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {
@@ -634,7 +635,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.7.13"
},
"vscode": {
"interpreter": {
"hash": "6db9c8d9f0cce2d9127e384e15560d42c3b661994c9f717d0553d1d8985ab1ea"
}
}
},
"nbformat": 4,

View File

@@ -517,7 +517,7 @@
" compute_target=compute_target,\n",
" node_count=2,\n",
" process_count_per_node=8,\n",
" run_invocation_timeout=920,\n",
" run_invocation_timeout=1200,\n",
" train_pipeline_parameters=mm_paramters,\n",
")"
]
@@ -837,9 +837,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -821,9 +821,9 @@
"friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -799,9 +799,9 @@
"friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -472,9 +472,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -572,9 +572,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -870,9 +870,9 @@
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -895,9 +895,9 @@
"friendly_name": "Automated ML run with featurization and model explainability.",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -449,9 +449,9 @@
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -429,9 +429,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -557,9 +557,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -161,9 +161,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -215,9 +215,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -482,9 +482,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -302,9 +302,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -86,7 +86,7 @@
"source": [
"In this example, we will be using and registering two models. \n",
"\n",
"First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory."
"First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory."
]
},
{
@@ -373,9 +373,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -541,7 +541,7 @@
" - To run a local web service, see the [notebook on deployment to a local Docker container](../deploy-to-local/register-model-deploy-local.ipynb).\n",
" - For more information on datasets, see the [notebook on training with datasets](../../work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb).\n",
" - For more information on environments, see the [notebook on using environments](../../training/using-environments/using-environments.ipynb).\n",
" - For information on all the available deployment targets, see [&ldquo;How and where to deploy models&rdquo;](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#choose-a-compute-target)."
" - For information on all the available deployment targets, see [&ldquo;How and where to deploy models&rdquo;](https://docs.microsoft.com/azure/machine-learning/v1/how-to-deploy-and-where#choose-a-compute-target)."
]
}
],
@@ -568,9 +568,9 @@
"friendly_name": "Register model and deploy as webservice",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -473,9 +473,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -529,9 +529,9 @@
"friendly_name": "Register a model and deploy locally",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -344,9 +344,9 @@
"friendly_name": "Deploy models to AKS using controlled roll out",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -476,9 +476,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -405,9 +405,9 @@
"friendly_name": "Convert and deploy TinyYolo with ONNX Runtime",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -773,9 +773,9 @@
"friendly_name": "Deploy Facial Expression Recognition (FER+) with ONNX Runtime",
"index_order": 2,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -750,9 +750,9 @@
"friendly_name": "Deploy MNIST digit recognition with ONNX Runtime",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -206,9 +206,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -389,9 +389,9 @@
"friendly_name": "Deploy ResNet50 with ONNX Runtime",
"index_order": 4,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -564,9 +564,9 @@
"friendly_name": "Train MNIST in PyTorch, convert, and deploy with ONNX Runtime",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -329,9 +329,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -213,7 +213,7 @@
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/azure/machine-learning/v1/how-to-secure-web-service) for more details"
]
},
{
@@ -334,9 +334,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -366,7 +366,7 @@
"metadata": {},
"source": [
"# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-network-security-overview) for more details."
]
},
{
@@ -397,7 +397,7 @@
"metadata": {},
"source": [
"# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-network-security-overview#secure-the-inferencing-environment-v1) for more details"
]
},
{
@@ -603,9 +603,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -327,9 +327,9 @@
],
"friendly_name": "Register Spark model and deploy as webservice",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -106,7 +106,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.45.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.47.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -241,6 +241,8 @@
"for dist in list(available_packages):\n",
" if dist.key == 'pandas':\n",
" pandas_ver = dist.version\n",
" if dist.key == 'numpy':\n",
" numpy_ver = dist.version\n",
"pandas_dep = 'pandas'\n",
"numpy_dep = 'numpy'\n",
"if pandas_ver:\n",
@@ -286,7 +288,7 @@
"pip uninstall -y xgboost && \\\n",
"conda install py-xgboost==1.3.3 && \\\n",
"pip uninstall -y numpy && \\\n",
"conda install {numpy_dep} \\\n",
"pip install {numpy_dep} \\\n",
"\"\"\"\n",
"\n",
"env.python.user_managed_dependencies = True\n",
@@ -481,9 +483,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -10,7 +10,7 @@ dependencies:
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3

View File

@@ -496,9 +496,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -10,7 +10,7 @@ dependencies:
- matplotlib
- azureml-dataset-runtime
- ipywidgets
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3

View File

@@ -595,9 +595,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -9,7 +9,7 @@ dependencies:
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- packaging>=20.9
- itsdangerous==2.0.1
- markupsafe<2.1.0

View File

@@ -516,9 +516,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -9,7 +9,7 @@ dependencies:
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- packaging>=20.9
- itsdangerous==2.0.1
- markupsafe<2.1.0

View File

@@ -576,9 +576,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -11,7 +11,7 @@ dependencies:
- azureml-dataset-runtime
- azureml-core
- ipywidgets
- raiwidgets~=0.21.0
- raiwidgets~=0.22.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3

View File

@@ -579,9 +579,9 @@
],
"friendly_name": "Azure Machine Learning Pipeline with DataTranferStep",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -632,9 +632,9 @@
],
"friendly_name": "Getting Started with Azure Machine Learning Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -384,9 +384,9 @@
],
"friendly_name": "Azure Machine Learning Pipeline with AzureBatchStep",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -470,9 +470,9 @@
],
"friendly_name": "How to use ModuleStep with AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -261,9 +261,9 @@
],
"friendly_name": "How to use Pipeline Drafts to create a Published Pipeline",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -292,7 +292,7 @@
"metadata": {},
"outputs": [],
"source": [
"tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')"
"tf_env = Environment.get(ws, name='AzureML-tensorflow-2.6-ubuntu20.04-py38-cuda11-gpu')"
]
},
{
@@ -595,9 +595,9 @@
],
"friendly_name": "Azure Machine Learning Pipeline with HyperDriveStep",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -443,9 +443,9 @@
],
"friendly_name": "How to Publish a Pipeline and Invoke the REST endpoint",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -432,7 +432,7 @@
"This schedule will run when additions or modifications are made to Blobs in the Datastore.\n",
"By default, the Datastore container is monitored for changes. Use the path_on_datastore parameter to instead specify a path on the Datastore to monitor for changes. Note: the path_on_datastore will be under the container for the datastore, so the actual path monitored will be container/path_on_datastore. Changes made to subfolders in the container/path will not trigger the schedule.\n",
"Note: Only Blob Datastores are supported.\n",
"Note: Not supported for CMK workspaces. Please review these [instructions](https://docs.microsoft.com/azure/machine-learning/how-to-trigger-published-pipeline) in order to setup a blob trigger submission schedule with CMK enabled. Also see those instructions to bring your own LogicApp to avoid the schedule triggers per month limit."
"Note: Not supported for CMK workspaces. Please review these [instructions](https://docs.microsoft.com/azure/machine-learning/v1/how-to-trigger-published-pipeline) in order to setup a blob trigger submission schedule with CMK enabled. Also see those instructions to bring your own LogicApp to avoid the schedule triggers per month limit."
]
},
{
@@ -637,9 +637,9 @@
],
"friendly_name": "How to Setup a Schedule for a Published Pipeline or Pipeline Endpoint",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -581,9 +581,9 @@
],
"friendly_name": "How to setup a versioned Pipeline Endpoint",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -500,9 +500,9 @@
],
"friendly_name": "How to use DataPath as a PipelineParameter",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -496,9 +496,9 @@
],
"friendly_name": "How to use Dataset as a PipelineParameter",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -377,9 +377,9 @@
],
"friendly_name": "How to use AdlaStep with AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -20,7 +20,7 @@
"metadata": {},
"source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n",
"The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
@@ -180,10 +180,9 @@
"metadata": {},
"source": [
"## Data Connections with Inputs and Outputs\n",
"The DatabricksStep supports DBFS, Azure Blob and ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.azuredatabricks.net/user-guide/secrets/index.html) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"The DatabricksStep supports DBFS, Azure Blob and ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.microsoft.com/azure/databricks/security/access-control/secret-acl) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"\n",
"- Databricks documentation on [Azure Blob](https://docs.azuredatabricks.net/spark/latest/data-sources/azure/azure-storage.html)\n",
"- Databricks documentation on [ADLS](https://docs.databricks.com/spark/latest/data-sources/azure/azure-datalake.html)\n",
"- Databricks documentation on [Azure Storage](https://docs.microsoft.com/azure/databricks/data/data-sources/azure/azure-storage)\n",
"\n",
"### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
@@ -415,7 +414,7 @@
"### 1. Running the demo notebook already added to the Databricks workspace\n",
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable\u00c2\u00a0notebook_path\u00c2\u00a0when you run the code cell below:\n",
"\n",
"your notebook's path in Azure Databricks UI by hovering over to notebook's title. A typical path of notebook looks like this `/Users/example@databricks.com/example`. See [Databricks Workspace](https://docs.azuredatabricks.net/user-guide/workspace.html) to learn about the folder structure.\n",
"your notebook's path in Azure Databricks UI by hovering over to notebook's title. A typical path of notebook looks like this `/Users/example@databricks.com/example`. See [Databricks Workspace](https://docs.microsoft.com/azure/databricks/workspace) to learn about the folder structure.\n",
"\n",
"Note: DataPath `PipelineParameter` should be provided in list of inputs. Such parameters can be accessed by the datapath `name`."
]
@@ -487,7 +486,7 @@
"### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n",
"\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.microsoft.com/azure/databricks/dbfs). The CLI command is given below:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
@@ -630,7 +629,7 @@
"metadata": {},
"source": [
"### 4. Running a JAR job that is alreay added in DBFS\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.microsoft.com/azure/databricks/dbfs).\n",
"\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n",
"\n",
@@ -704,7 +703,7 @@
"metadata": {},
"source": [
"### 5. Running demo notebook already added to the Databricks workspace using existing cluster\n",
"First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"First you need register DBFS datastore and make sure path_on_datastore does exist in databricks file system, you can browser the files by refering [this](https://docs.microsoft.com/azure/databricks/dbfs).\n",
"\n",
"Find existing_cluster_id by opeing Azure Databricks UI with Clusters page and in url you will find a string connected with '-' right after \"clusters/\"."
]
@@ -941,9 +940,9 @@
],
"friendly_name": "How to use DatabricksStep with AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -244,9 +244,9 @@
],
"friendly_name": "How to use KustoStep with AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -498,9 +498,9 @@
],
"friendly_name": "How to use AutoMLStep with AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -315,9 +315,9 @@
],
"friendly_name": "Azure Machine Learning Pipeline with CommandStep for R",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -278,9 +278,9 @@
],
"friendly_name": "Azure Machine Learning Pipeline with CommandStep",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -545,9 +545,9 @@
],
"friendly_name": "Azure Machine Learning Pipelines with Data Dependency",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -409,9 +409,9 @@
],
"friendly_name": "How to use run a notebook as a step in AML Pipelines",
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -84,9 +84,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -1046,9 +1046,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n",
"> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n",
"In this example will be take a digit identification model already-trained on MNIST dataset using the [AzureML training with deep learning example notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb), and run that trained model on some of the MNIST test images in batch. \n",
"\n",
@@ -277,7 +277,7 @@
"### Register the model with Workspace\n",
"A registered model is a logical container for one or more files that make up your model. For example, if you have a model that's stored in multiple files, you can register them as a single model in the workspace. After you register the files, you can then download or deploy the registered model and receive all the files that you registered.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-deploy-and-where#registermodel) "
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric. Learn more about registering models [here](https://docs.microsoft.com/azure/machine-learning/v1/how-to-deploy-and-where#registermodel) "
]
},
{
@@ -581,16 +581,7 @@
"metadata": {
"authors": [
{
"name": "joringer"
},
{
"name": "asraniwa"
},
{
"name": "pansav"
},
{
"name": "tracych"
"name": "prsbjdev"
}
],
"category": "Other notebooks",
@@ -610,9 +601,9 @@
"friendly_name": "MNIST data inferencing using ParallelRunStep",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n",
"> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n",
"This example will create a sample dataset with nested folder structure, where the folder name corresponds to the attribute of the files inside it. The Batch Inference job would split the files inside the dataset according to their attributes, so that all files with identical value on the specified attribute will form up a single mini-batch to be processed.\n",
"\n",
@@ -356,13 +356,7 @@
"metadata": {
"authors": [
{
"name": "pansav"
},
{
"name": "tracych"
},
{
"name": "migu"
"name": "prsbjdev"
}
],
"category": "Other notebooks",
@@ -382,9 +376,9 @@
"friendly_name": "Batch inferencing file data partitioned by folder using ParallelRunStep",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n",
"> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n",
"In this example we will take use a machine learning model already trained to predict different types of iris flowers and run that trained model on some of the data in a CSV file which has characteristics of different iris flowers. However, the same example can be extended to manipulating data to any embarrassingly-parallel processing through a python script.\n",
"\n",
@@ -487,16 +487,7 @@
"metadata": {
"authors": [
{
"name": "joringer"
},
{
"name": "asraniwa"
},
{
"name": "pansav"
},
{
"name": "tracych"
"name": "prsbjdev"
}
],
"category": "Other notebooks",
@@ -516,9 +507,9 @@
"friendly_name": "IRIS data inferencing using ParallelRunStep",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -24,7 +24,7 @@
"In this notebook, we will demonstrate how to make predictions on large quantities of data asynchronously using the ML pipelines with Azure Machine Learning. Batch inference (or batch scoring) provides cost-effective inference, with unparalleled throughput for asynchronous applications. Batch prediction pipelines can scale to perform inference on terabytes of production data. Batch prediction is optimized for high throughput, fire-and-forget predictions for a large collection of data.\n",
"\n",
"> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction.\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction.\n",
"\n",
"This example will create a partitioned tabular dataset by splitting the rows in a large csv file by its value on specified column. Each partition will form up a mini-batch in the parallel processing procedure.\n",
"\n",
@@ -379,13 +379,7 @@
"metadata": {
"authors": [
{
"name": "pansav"
},
{
"name": "tracych"
},
{
"name": "migu"
"name": "prsbjdev"
}
],
"category": "Other notebooks",
@@ -405,9 +399,9 @@
"friendly_name": "Batch inferencing OJ Sales Data partitioned by column using ParallelRunStep",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -27,7 +27,7 @@
"3. Stitch the image back into a video.\n",
"\n",
"> **Tip**\n",
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-consume-web-service) instead of batch prediction."
"If your system requires low-latency processing (to process a single document or small set of documents quickly), use [real-time scoring](https://docs.microsoft.com/en-us/azure/machine-learning/v1/how-to-consume-web-service) instead of batch prediction."
]
},
{
@@ -726,9 +726,9 @@
"friendly_name": "Style transfer using ParallelRunStep",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

View File

@@ -521,9 +521,9 @@
}
],
"kernelspec": {
"display_name": "Python 3.6",
"display_name": "Python 3.8 - AzureML",
"language": "python",
"name": "python36"
"name": "python38-azureml"
},
"language_info": {
"codemirror_mode": {

Some files were not shown because too many files have changed in this diff Show More