Compare commits

...

40 Commits

Author SHA1 Message Date
amlrelsa-ms
3c02102691 update samples from Release-62 as a part of SDK release 2020-08-27 23:28:05 +00:00
Sheri Gilley
07e1676762 Merge pull request #1010 from GinSiuCheng/patch-1
Include additional details on user authentication
2020-08-25 11:45:58 -05:00
Sheri Gilley
919a3c078f fix code blocks 2020-08-25 11:13:24 -05:00
Sheri Gilley
9b53c924ed add code block for better formatting 2020-08-25 11:09:56 -05:00
Sheri Gilley
04ad58056f fix quotes 2020-08-25 11:06:18 -05:00
Sheri Gilley
576bf386b5 fix quotes 2020-08-25 11:05:25 -05:00
Cody
7e62d1cfd6 Merge pull request #891 from Fokko/patch-1
Don't print the access token
2020-08-22 18:28:33 -07:00
Cody
ec67a569af Merge pull request #804 from omartin2010/patch-3
typo
2020-08-17 14:35:55 -07:00
Cody
6d1e80bcef Merge pull request #1031 from hyoshioka0128/patch-1
Typo "Mircosoft"→"Microsoft"
2020-08-17 14:32:44 -07:00
mx-iao
db00d9ad3c Merge pull request #1100 from Azure/lostmygithubaccount-patch-1
fix minor typo in how-to-use-azureml/README.md
2020-08-17 14:30:18 -07:00
Harneet Virk
d33c75abc3 Merge pull request #1104 from Azure/release_update/Release-61
update samples from Release-61 as a part of  SDK release
2020-08-17 10:59:39 -07:00
amlrelsa-ms
d0dc4836ae update samples from Release-61 as a part of SDK release 2020-08-17 17:45:26 +00:00
Cody
982f8fcc1d Update README.md 2020-08-14 15:25:39 -07:00
Akshaya Annavajhala
79739b5e1b Remove broken links (#1095)
* Remove broken links

* Update README.md
2020-08-10 19:35:41 -04:00
Harneet Virk
aac4fa1fb9 Merge pull request #1081 from Azure/release_update/Release-60
update samples from Release-60 as a part of  SDK 1.11.0 release
2020-08-04 00:04:38 -07:00
amlrelsa-ms
5b684070e1 update samples from Release-60 as a part of SDK release 2020-08-04 06:12:06 +00:00
Harneet Virk
0ab8b141ee Merge pull request #1078 from Azure/release_update/Release-59
update samples from Release-59 as a part of  SDK release
2020-07-31 10:52:22 -07:00
amlrelsa-ms
b9ef23ad4b update samples from Release-59 as a part of SDK release 2020-07-31 17:23:17 +00:00
Harneet Virk
7e2c1ca152 Merge pull request #1063 from Azure/release_update/Release-58
update samples from Release-58 as a part of  SDK release
2020-07-20 13:46:37 -07:00
amlrelsa-ms
d096535e48 update samples from Release-58 as a part of SDK release 2020-07-20 20:44:42 +00:00
Harneet Virk
f80512a6db Merge pull request #1056 from wchill/wchill-patch-1
Update README.md with KeyError: brand workaround
2020-07-15 10:22:18 -07:00
Eric Ahn
b54111620e Update README.md 2020-07-14 17:47:23 -07:00
Harneet Virk
8dd52ee2df Merge pull request #1036 from Azure/release_update/Release-57
update samples from Release-57 as a part of  SDK release
2020-07-06 15:06:14 -07:00
amlrelsa-ms
6c629f1eda update samples from Release-57 as a part of SDK release 2020-07-06 22:05:24 +00:00
Hiroshi Yoshioka
9c32ca9db5 Typo "Mircosoft"→"Microsoft"
https://docs.microsoft.com/en-us/samples/azure/machinelearningnotebooks/azure-machine-learning-service-example-notebooks/
2020-06-29 12:21:23 +09:00
Harneet Virk
053efde8c9 Merge pull request #1022 from Azure/release_update/Release-56
update samples from Release-56 as a part of  SDK release
2020-06-22 11:12:31 -07:00
amlrelsa-ms
5189691f06 update samples from Release-56 as a part of SDK release 2020-06-22 18:11:40 +00:00
Gin
745b4f0624 Include additional details on user authentication
Additional details should be included for user authentication esp. for enterprise users who may have more than one single aad tenant linked to a user.
2020-06-13 21:24:56 -04:00
Harneet Virk
fb900916e3 Update README.md 2020-06-11 13:26:04 -07:00
Harneet Virk
738347f3da Merge pull request #996 from Azure/release_update/Release-55
update samples from Release-55 as a part of  SDK release
2020-06-08 15:31:35 -07:00
amlrelsa-ms
34a67c1f8b update samples from Release-55 as a part of SDK release 2020-06-08 22:28:25 +00:00
Harneet Virk
34898828be Merge pull request #992 from Azure/release_update/Release-54
update samples from Release-54 as a part of  SDK release
2020-06-02 14:42:02 -07:00
vizhur
a7c3a0fdb8 update samples from Release-54 as a part of SDK release 2020-06-02 21:34:10 +00:00
Harneet Virk
6d11cdfa0a Merge pull request #984 from Azure/release_update/Release-53
update samples from Release-53 as a part of  SDK release
2020-05-26 19:59:58 -07:00
vizhur
11e8ed2bab update samples from Release-53 as a part of SDK release 2020-05-27 02:45:07 +00:00
Harneet Virk
12c06a4168 Merge pull request #978 from ahcan76/patch-1
Fix image paths in tutorial-1st-experiment-sdk-train.ipynb
2020-05-18 12:58:21 -07:00
ahcan76
1f75dc9725 Update tutorial-1st-experiment-sdk-train.ipynb
Fix the image path
2020-05-18 22:40:54 +03:00
Harneet Virk
1a1a42d525 Merge pull request #977 from Azure/release_update/Release-52
update samples from Release-52 as a part of  SDK release
2020-05-18 12:22:48 -07:00
Fokko Driesprong
119fd0a8f6 Don't print the access token
That's never a good idea, no exceptions :)
2020-03-31 08:14:05 +02:00
Olivier Martin
d4a486827d typo 2020-02-17 17:16:47 -05:00
194 changed files with 9404 additions and 19832 deletions

View File

@@ -40,6 +40,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
---
## Documentation

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -0,0 +1,564 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/fairness/fairlearn-azureml-mitigation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Unfairness Mitigation with Fairlearn and Azure Machine Learning\n",
"**This notebook shows how to upload results from Fairlearn's GridSearch mitigation algorithm into a dashboard in Azure Machine Learning Studio**\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Loading the Data](#LoadingData)\n",
"1. [Training an Unmitigated Model](#UnmitigatedModel)\n",
"1. [Mitigation with GridSearch](#Mitigation)\n",
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
" 1. Registering models\n",
" 1. Computing Fairness Metrics\n",
" 1. Uploading to Azure\n",
"1. [Conclusion](#Conclusion)\n",
"\n",
"<a id=\"Introduction\"></a>\n",
"## Introduction\n",
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.github.io) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.github.io/).\n",
"\n",
"We will apply the [grid search algorithm](https://fairlearn.github.io/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
"\n",
"### Setup\n",
"\n",
"To use this notebook, an Azure Machine Learning workspace is required.\n",
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6`\n",
"* `joblib`\n",
"* `shap`\n",
"\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairlearn.reductions import GridSearch, DemographicParity, ErrorRate\n",
"from fairlearn.widget import FairlearnDashboard\n",
"from sklearn import svm\n",
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"import pandas as pd\n",
"import shap"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now load and inspect the data from the `shap` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_raw, Y = shap.datasets.adult()\n",
"X_raw[\"Race\"].value_counts().to_dict()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are going to treat the sex of each individual as a protected attribute (where 0 indicates female and 1 indicates male), and in this particular case we are going separate this attribute out and drop it from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). We also separate out the Race column, but we will not perform any mitigation based on it. Finally, we perform some standard data preprocessing steps to convert the data into a format suitable for the ML algorithms"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['Sex','Race']]\n",
"X = X_raw.drop(labels=['Sex', 'Race'],axis = 1)\n",
"X = pd.get_dummies(X)\n",
"\n",
"\n",
"le = LabelEncoder()\n",
"Y = le.fit_transform(Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With our data prepared, we can make the conventional split in to 'test' and 'train' subsets:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_raw, \n",
" Y, \n",
" A,\n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=Y)\n",
"\n",
"# Work around indexing issue\n",
"X_train = X_train.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)\n",
"\n",
"# Improve labels\n",
"A_test.Sex.loc[(A_test['Sex'] == 0)] = 'female'\n",
"A_test.Sex.loc[(A_test['Sex'] == 1)] = 'male'\n",
"\n",
"\n",
"A_test.Race.loc[(A_test['Race'] == 0)] = 'Amer-Indian-Eskimo'\n",
"A_test.Race.loc[(A_test['Race'] == 1)] = 'Asian-Pac-Islander'\n",
"A_test.Race.loc[(A_test['Race'] == 2)] = 'Black'\n",
"A_test.Race.loc[(A_test['Race'] == 3)] = 'Other'\n",
"A_test.Race.loc[(A_test['Race'] == 4)] = 'White'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"UnmitigatedModel\"></a>\n",
"## Training an Unmitigated Model\n",
"\n",
"So we have a point of comparison, we first train a model (specifically, logistic regression from scikit-learn) on the raw data, without applying any mitigation algorithm:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"unmitigated_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"unmitigated_predictor.fit(X_train, Y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can view this model in the fairness dashboard, and see the disparities which appear:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"FairlearnDashboard(sensitive_features=A_test, sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test,\n",
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking at the disparity in accuracy when we select 'Sex' as the sensitive feature, we see that males have an error rate about three times greater than the females. More interesting is the disparity in opportunitiy - males are offered loans at three times the rate of females.\n",
"\n",
"Despite the fact that we removed the feature from the training data, our predictor still discriminates based on sex. This demonstrates that simply ignoring a protected attribute when fitting a predictor rarely eliminates unfairness. There will generally be enough other features correlated with the removed attribute to lead to disparate impact."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Mitigation\"></a>\n",
"## Mitigation with GridSearch\n",
"\n",
"The `GridSearch` class in `Fairlearn` implements a simplified version of the exponentiated gradient reduction of [Agarwal et al. 2018](https://arxiv.org/abs/1803.02453). The user supplies a standard ML estimator, which is treated as a blackbox - for this simple example, we shall use the logistic regression estimator from scikit-learn. `GridSearch` works by generating a sequence of relabellings and reweightings, and trains a predictor for each.\n",
"\n",
"For this example, we specify demographic parity (on the protected attribute of sex) as the fairness metric. Demographic parity requires that individuals are offered the opportunity (a loan in this example) independent of membership in the protected class (i.e., females and males should be offered loans at the same rate). *We are using this metric for the sake of simplicity* in this example; the appropriate fairness metric can only be selected after *careful examination of the broader context* in which the model is to be used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sweep = GridSearch(LogisticRegression(solver='liblinear', fit_intercept=True),\n",
" constraints=DemographicParity(),\n",
" grid_size=71)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With our estimator created, we can fit it to the data. After `fit()` completes, we extract the full set of predictors from the `GridSearch` object.\n",
"\n",
"The following cell trains a many copies of the underlying estimator, and may take a minute or two to run:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sweep.fit(X_train, Y_train,\n",
" sensitive_features=A_train.Sex)\n",
"\n",
"predictors = sweep._predictors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We could load these predictors into the Fairness dashboard now. However, the plot would be somewhat confusing due to their number. In this case, we are going to remove the predictors which are dominated in the error-disparity space by others from the sweep (note that the disparity will only be calculated for the protected attribute; other potentially protected attributes will *not* be mitigated). In general, one might not want to do this, since there may be other considerations beyond the strict optimisation of error and disparity (of the given protected attribute)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"errors, disparities = [], []\n",
"for m in predictors:\n",
" classifier = lambda X: m.predict(X)\n",
" \n",
" error = ErrorRate()\n",
" error.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.Sex)\n",
" disparity = DemographicParity()\n",
" disparity.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.Sex)\n",
" \n",
" errors.append(error.gamma(classifier)[0])\n",
" disparities.append(disparity.gamma(classifier).max())\n",
" \n",
"all_results = pd.DataFrame( {\"predictor\": predictors, \"error\": errors, \"disparity\": disparities})\n",
"\n",
"dominant_models_dict = dict()\n",
"base_name_format = \"census_gs_model_{0}\"\n",
"row_id = 0\n",
"for row in all_results.itertuples():\n",
" model_name = base_name_format.format(row_id)\n",
" errors_for_lower_or_eq_disparity = all_results[\"error\"][all_results[\"disparity\"]<=row.disparity]\n",
" if row.error <= errors_for_lower_or_eq_disparity.min():\n",
" dominant_models_dict[model_name] = row.predictor\n",
" row_id = row_id + 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can construct predictions for the dominant models (we include the unmitigated predictor as well, for comparison):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions_dominant = {\"census_unmitigated\": unmitigated_predictor.predict(X_test)}\n",
"models_dominant = {\"census_unmitigated\": unmitigated_predictor}\n",
"for name, predictor in dominant_models_dict.items():\n",
" value = predictor.predict(X_test)\n",
" predictions_dominant[name] = value\n",
" models_dominant[name] = predictor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These predictions may then be viewed in the fairness dashboard. We include the race column from the dataset, as an alternative basis for assessing the models. However, since we have not based our mitigation on it, the variation in the models with respect to race can be large."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"FairlearnDashboard(sensitive_features=A_test, \n",
" sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test.tolist(),\n",
" y_pred=predictions_dominant)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using sex as the sensitive feature, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
"\n",
"By clicking on individual models on the plot, we can inspect their metrics for disparity and accuracy in greater detail. In a real example, we would then pick the model which represented the best trade-off between accuracy and disparity given the relevant business constraints."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"AzureUpload\"></a>\n",
"## Uploading a Fairness Dashboard to Azure\n",
"\n",
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
"1. Register the dominant models\n",
"1. Precompute all the required metrics\n",
"1. Upload to Azure\n",
"\n",
"Before that, we need to connect to Azure Machine Learning Studio:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Experiment, Model\n",
"\n",
"ws = Workspace.from_config()\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"RegisterModels\"></a>\n",
"### Registering Models\n",
"\n",
"The fairness dashboard is designed to integrate with registered models, so we need to do this for the models we want in the Studio portal. The assumption is that the names of the models specified in the dashboard dictionary correspond to the `id`s (i.e. `<name>:<version>` pairs) of registered models in the workspace. We register each of the models in the `models_dominant` dictionary into the workspace. For this, we have to save each model to a file, and then register that file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import os\n",
"\n",
"os.makedirs('models', exist_ok=True)\n",
"def register_model(name, model):\n",
" print(\"Registering \", name)\n",
" model_path = \"models/{0}.pkl\".format(name)\n",
" joblib.dump(value=model, filename=model_path)\n",
" registered_model = Model.register(model_path=model_path,\n",
" model_name=name,\n",
" workspace=ws)\n",
" print(\"Registered \", registered_model.id)\n",
" return registered_model.id\n",
"\n",
"model_name_id_mapping = dict()\n",
"for name, model in models_dominant.items():\n",
" m_id = register_model(name, model)\n",
" model_name_id_mapping[name] = m_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, produce new predictions dictionaries, with the updated names:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictions_dominant_ids = dict()\n",
"for name, y_pred in predictions_dominant.items():\n",
" predictions_dominant_ids[model_name_id_mapping[name]] = y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"PrecomputeMetrics\"></a>\n",
"### Precomputing Metrics\n",
"\n",
"We create a _dashboard dictionary_ using Fairlearn's `metrics` package. The `_create_group_metric_set` method has arguments similar to the Dashboard constructor, except that the sensitive features are passed as a dictionary (to ensure that names are available), and we must specify the type of prediction. Note that we use the `predictions_dominant_ids` dictionary we just created:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf = { 'sex': A_test.Sex, 'race': A_test.Race }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
" predictions=predictions_dominant_ids,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"DashboardUpload\"></a>\n",
"### Uploading the Dashboard\n",
"\n",
"Now, we import our `contrib` package which contains the routine to perform the upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.fairness import upload_dashboard_dictionary, download_dashboard_by_upload_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can create an Experiment, then a Run, and upload our dashboard to it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp = Experiment(ws, \"Test_Fairlearn_GridSearch_Census_Demo\")\n",
"print(exp)\n",
"\n",
"run = exp.start_logging()\n",
"try:\n",
" dashboard_title = \"Dominant Models from GridSearch\"\n",
" upload_id = upload_dashboard_dictionary(run,\n",
" dash_dict,\n",
" dashboard_name=dashboard_title)\n",
" print(\"\\nUploaded to id: {0}\\n\".format(upload_id))\n",
"\n",
" downloaded_dict = download_dashboard_by_upload_id(run, upload_id)\n",
"finally:\n",
" run.complete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dashboard can be viewed in the Run Details page.\n",
"\n",
"Finally, we can verify that the dashboard dictionary which we downloaded matches our upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dash_dict == downloaded_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Conclusion\"></a>\n",
"## Conclusion\n",
"\n",
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.github.io/) provides that discussion"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "riedgar"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,507 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/fairness/upload-fairness-dashboard.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Upload a Fairness Dashboard to Azure Machine Learning Studio\n",
"**This notebook shows how to generate and upload a fairness assessment dashboard from Fairlearn to AzureML Studio**\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
"1. [Loading the Data](#LoadingData)\n",
"1. [Processing the Data](#ProcessingData)\n",
"1. [Training Models](#TrainingModels)\n",
"1. [Logging in to AzureML](#LoginAzureML)\n",
"1. [Registering the Models](#RegisterModels)\n",
"1. [Using the Fairlearn Dashboard](#LocalDashboard)\n",
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
" 1. Computing Fairness Metrics\n",
" 1. Uploading to Azure\n",
"1. [Conclusion](#Conclusion)\n",
" \n",
"\n",
"<a id=\"Introduction\"></a>\n",
"## Introduction\n",
"\n",
"In this notebook, we walk through a simple example of using the `azureml-contrib-fairness` package to upload a collection of fairness statistics for a fairness dashboard. It is an example of integrating the [open source Fairlearn package](https://www.github.com/fairlearn/fairlearn) with Azure Machine Learning. This is not an example of fairness analysis or mitigation - this notebook simply shows how to get a fairness dashboard into the Azure Machine Learning portal. We will load the data and train a couple of simple models. We will then use Fairlearn to generate data for a Fairness dashboard, which we can upload to Azure Machine Learning portal and view there.\n",
"\n",
"### Setup\n",
"\n",
"To use this notebook, an Azure Machine Learning workspace is required.\n",
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6`\n",
"* `joblib`\n",
"* `shap`\n",
"\n",
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import svm\n",
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"import pandas as pd\n",
"import shap"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can load the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_raw, Y = shap.datasets.adult()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can take a look at some of the data. For example, the next cells shows the counts of the different races identified in the dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(X_raw[\"Race\"].value_counts().to_dict())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"ProcessingData\"></a>\n",
"## Processing the Data\n",
"\n",
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and put the rest of the feature data into `X`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['Sex','Race']]\n",
"X = X_raw.drop(labels=['Sex', 'Race'],axis = 1)\n",
"X = pd.get_dummies(X)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we apply a standard set of scalings:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sc = StandardScaler()\n",
"X_scaled = sc.fit_transform(X)\n",
"X_scaled = pd.DataFrame(X_scaled, columns=X.columns)\n",
"\n",
"le = LabelEncoder()\n",
"Y = le.fit_transform(Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can then split our data into training and test sets, and also make the labels on our test portion of `A` human-readable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_scaled, \n",
" Y, \n",
" A,\n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=Y)\n",
"\n",
"# Work around indexing issue\n",
"X_train = X_train.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)\n",
"\n",
"# Improve labels\n",
"A_test.Sex.loc[(A_test['Sex'] == 0)] = 'female'\n",
"A_test.Sex.loc[(A_test['Sex'] == 1)] = 'male'\n",
"\n",
"\n",
"A_test.Race.loc[(A_test['Race'] == 0)] = 'Amer-Indian-Eskimo'\n",
"A_test.Race.loc[(A_test['Race'] == 1)] = 'Asian-Pac-Islander'\n",
"A_test.Race.loc[(A_test['Race'] == 2)] = 'Black'\n",
"A_test.Race.loc[(A_test['Race'] == 3)] = 'Other'\n",
"A_test.Race.loc[(A_test['Race'] == 4)] = 'White'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"TrainingModels\"></a>\n",
"## Training Models\n",
"\n",
"We now train a couple of different models on our data. The `adult` census dataset is a classification problem - the goal is to predict whether a particular individual exceeds an income threshold. For the purpose of generating a dashboard to upload, it is sufficient to train two basic classifiers. First, a logistic regression classifier:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"lr_predictor.fit(X_train, Y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And for comparison, a support vector classifier:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"svm_predictor = svm.SVC()\n",
"\n",
"svm_predictor.fit(X_train, Y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoginAzureML\"></a>\n",
"## Logging in to AzureML\n",
"\n",
"With our two classifiers trained, we can log into our AzureML workspace:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Experiment, Model\n",
"\n",
"ws = Workspace.from_config()\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"RegisterModels\"></a>\n",
"## Registering the Models\n",
"\n",
"Next, we register our models. By default, the subroutine which uploads the models checks that the names provided correspond to registered models in the workspace. We define a utility routine to do the registering:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import os\n",
"\n",
"os.makedirs('models', exist_ok=True)\n",
"def register_model(name, model):\n",
" print(\"Registering \", name)\n",
" model_path = \"models/{0}.pkl\".format(name)\n",
" joblib.dump(value=model, filename=model_path)\n",
" registered_model = Model.register(model_path=model_path,\n",
" model_name=name,\n",
" workspace=ws)\n",
" print(\"Registered \", registered_model.id)\n",
" return registered_model.id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we register the models. For convenience in subsequent method calls, we store the results in a dictionary, which maps the `id` of the registered model (a string in `name:version` format) to the predictor itself:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_dict = {}\n",
"\n",
"lr_reg_id = register_model(\"fairness_linear_regression\", lr_predictor)\n",
"model_dict[lr_reg_id] = lr_predictor\n",
"svm_reg_id = register_model(\"fairness_svm\", svm_predictor)\n",
"model_dict[svm_reg_id] = svm_predictor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LocalDashboard\"></a>\n",
"## Using the Fairlearn Dashboard\n",
"\n",
"We can now examine the fairness of the two models we have training, both as a function of race and (binary) sex. Before uploading the dashboard to the AzureML portal, we will first instantiate a local instance of the Fairlearn dashboard.\n",
"\n",
"Regardless of the viewing location, the dashboard is based on three things - the true values, the model predictions and the sensitive feature values. The dashboard can use predictions from multiple models and multiple sensitive features if desired (as we are doing here).\n",
"\n",
"Our first step is to generate a dictionary mapping the `id` of the registered model to the corresponding array of predictions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ys_pred = {}\n",
"for n, p in model_dict.items():\n",
" ys_pred[n] = p.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can examine these predictions in a locally invoked Fairlearn dashboard. This can be compared to the dashboard uploaded to the portal (in the next section):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairlearn.widget import FairlearnDashboard\n",
"\n",
"FairlearnDashboard(sensitive_features=A_test, \n",
" sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test.tolist(),\n",
" y_pred=ys_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"AzureUpload\"></a>\n",
"## Uploading a Fairness Dashboard to Azure\n",
"\n",
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
"1. Precompute all the required metrics\n",
"1. Upload to Azure\n",
"\n",
"\n",
"### Computing Fairness Metrics\n",
"We use Fairlearn to create a dictionary which contains all the data required to display a dashboard. This includes both the raw data (true values, predicted values and sensitive features), and also the fairness metrics. The API is similar to that used to invoke the Dashboard locally. However, there are a few minor changes to the API, and the type of problem being examined (binary classification, regression etc.) needs to be specified explicitly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf = { 'Race': A_test.Race, 'Sex': A_test.Sex }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
" predictions=ys_pred,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `_create_group_metric_set()` method is currently underscored since its exact design is not yet final in Fairlearn."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uploading to Azure\n",
"\n",
"We can now import the `azureml.contrib.fairness` package itself. We will round-trip the data, so there are two required subroutines:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.fairness import upload_dashboard_dictionary, download_dashboard_by_upload_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can upload the generated dictionary to AzureML. The upload method requires a run, so we first create an experiment and a run. The uploaded dashboard can be seen on the corresponding Run Details page in AzureML Studio. For completeness, we also download the dashboard dictionary which we uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp = Experiment(ws, \"notebook-01\")\n",
"print(exp)\n",
"\n",
"run = exp.start_logging()\n",
"try:\n",
" dashboard_title = \"Sample notebook upload\"\n",
" upload_id = upload_dashboard_dictionary(run,\n",
" dash_dict,\n",
" dashboard_name=dashboard_title)\n",
" print(\"\\nUploaded to id: {0}\\n\".format(upload_id))\n",
"\n",
" downloaded_dict = download_dashboard_by_upload_id(run, upload_id)\n",
"finally:\n",
" run.complete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can verify that the dashboard dictionary which we downloaded matches our upload:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dash_dict == downloaded_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"Conclusion\"></a>\n",
"## Conclusion\n",
"\n",
"In this notebook we have demonstrated how to generate and upload a fairness dashboard to AzureML Studio. We have not discussed how to analyse the results and apply mitigations. Those topics will be covered elsewhere."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "riedgar"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@@ -1,500 +0,0 @@
1 0.644 0.247 -0.447 0.862 0.374 0.854 -1.126 -0.790 2.173 1.015 -0.201 1.400 0.000 1.575 1.807 1.607 0.000 1.585 -0.190 -0.744 3.102 0.958 1.061 0.980 0.875 0.581 0.905 0.796
0 0.385 1.800 1.037 1.044 0.349 1.502 -0.966 1.734 0.000 0.966 -1.960 -0.249 0.000 1.501 0.465 -0.354 2.548 0.834 -0.440 0.638 3.102 0.695 0.909 0.981 0.803 0.813 1.149 1.116
0 1.214 -0.166 0.004 0.505 1.434 0.628 -1.174 -1.230 1.087 0.579 -1.047 -0.118 0.000 0.835 0.340 1.234 2.548 0.711 -1.383 1.355 0.000 0.848 0.911 1.043 0.931 1.058 0.744 0.696
1 0.420 1.111 0.137 1.516 -1.657 0.854 0.623 1.605 1.087 1.511 -1.297 0.251 0.000 0.872 -0.368 -0.721 0.000 0.543 0.731 1.424 3.102 1.597 1.282 1.105 0.730 0.148 1.231 1.234
0 0.897 -1.703 -1.306 1.022 -0.729 0.836 0.859 -0.333 2.173 1.336 -0.965 0.972 2.215 0.671 1.021 -1.439 0.000 0.493 -2.019 -0.289 0.000 0.805 0.930 0.984 1.430 2.198 1.934 1.684
0 0.756 1.126 -0.945 2.355 -0.555 0.889 0.800 1.440 0.000 0.585 0.271 0.631 2.215 0.722 1.744 1.051 0.000 0.618 0.924 0.698 1.551 0.976 0.864 0.988 0.803 0.234 0.822 0.911
0 1.141 -0.741 0.953 1.478 -0.524 1.197 -0.871 1.689 2.173 0.875 1.321 -0.518 1.107 0.540 0.037 -0.987 0.000 0.879 1.187 0.245 0.000 0.888 0.701 1.747 1.358 2.479 1.491 1.223
1 0.606 -0.936 -0.384 1.257 -1.162 2.719 -0.600 0.100 2.173 3.303 -0.284 1.561 1.107 0.689 1.786 -0.326 0.000 0.780 -0.532 1.216 0.000 0.936 2.022 0.985 1.574 4.323 2.263 1.742
1 0.603 0.429 -0.279 1.448 1.301 1.008 2.423 -1.295 0.000 0.452 1.305 0.533 0.000 1.076 1.011 1.256 2.548 2.021 1.260 -0.343 0.000 0.890 0.969 1.281 0.763 0.652 0.827 0.785
0 1.171 -0.962 0.521 0.841 -0.315 1.196 -0.744 -0.882 2.173 0.726 -1.305 1.377 1.107 0.643 -1.790 -1.264 0.000 1.257 0.222 0.817 0.000 0.862 0.911 0.987 0.846 1.293 0.899 0.756
1 1.392 -0.358 0.235 1.494 -0.461 0.895 -0.848 1.549 2.173 0.841 -0.384 0.666 1.107 1.199 2.509 -0.891 0.000 1.109 -0.364 -0.945 0.000 0.693 2.135 1.170 1.362 0.959 2.056 1.842
1 1.024 1.076 -0.886 0.851 1.530 0.673 -0.449 0.187 1.087 0.628 -0.895 1.176 2.215 0.696 -0.232 -0.875 0.000 0.411 1.501 0.048 0.000 0.842 0.919 1.063 1.193 0.777 0.964 0.807
1 0.890 -0.760 1.182 1.369 0.751 0.696 -0.959 -0.710 1.087 0.775 -0.130 -1.409 2.215 0.701 -0.110 -0.739 0.000 0.508 -0.451 0.390 0.000 0.762 0.738 0.998 1.126 0.788 0.940 0.790
1 0.460 0.537 0.636 1.442 -0.269 0.585 0.323 -1.731 2.173 0.503 1.034 -0.927 0.000 0.928 -1.024 1.006 2.548 0.513 -0.618 -1.336 0.000 0.802 0.831 0.992 1.019 0.925 1.056 0.833
1 0.364 1.648 0.560 1.720 0.829 1.110 0.811 -0.588 0.000 0.408 1.045 1.054 2.215 0.319 -1.138 1.545 0.000 0.423 1.025 -1.265 3.102 1.656 0.928 1.003 0.544 0.327 0.670 0.746
1 0.525 -0.096 1.206 0.948 -1.103 1.519 -0.582 0.606 2.173 1.274 -0.572 -0.934 0.000 0.855 -1.028 -1.222 0.000 0.578 -1.000 -1.725 3.102 0.896 0.878 0.981 0.498 0.909 0.772 0.668
0 0.536 -0.821 -1.029 0.703 1.113 0.363 -0.711 0.022 1.087 0.325 1.503 1.249 2.215 0.673 1.041 -0.401 0.000 0.480 2.127 1.681 0.000 0.767 1.034 0.990 0.671 0.836 0.669 0.663
1 1.789 -0.583 1.641 0.897 0.799 0.515 -0.100 -1.483 0.000 1.101 0.031 -0.326 2.215 1.195 0.001 0.126 2.548 0.768 -0.148 0.601 0.000 0.916 0.921 1.207 1.069 0.483 0.934 0.795
1 1.332 -0.571 0.986 0.580 1.508 0.582 0.634 -0.746 1.087 1.084 -0.964 -0.489 0.000 0.785 0.274 0.343 2.548 0.779 0.721 1.489 0.000 1.733 1.145 0.990 1.270 0.715 0.897 0.915
0 1.123 0.629 -1.708 0.597 -0.882 0.752 0.195 1.522 2.173 1.671 1.515 -0.003 0.000 0.778 0.514 0.139 1.274 0.801 1.260 1.600 0.000 1.495 0.976 0.988 0.676 0.921 1.010 0.943
0 1.816 -0.515 0.171 0.980 -0.454 0.870 0.202 -1.399 2.173 1.130 1.066 -1.593 0.000 0.844 0.735 1.275 2.548 1.125 -1.133 0.348 0.000 0.837 0.693 0.988 1.112 0.784 1.009 0.974
1 0.364 0.694 0.445 1.862 0.159 0.963 -1.356 1.260 1.087 0.887 -0.540 -1.533 2.215 0.658 -2.544 -1.236 0.000 0.516 -0.807 0.039 0.000 0.891 1.004 0.991 1.092 0.976 1.000 0.953
1 0.790 -1.175 0.475 1.846 0.094 0.999 -1.090 0.257 0.000 1.422 0.854 1.112 2.215 1.302 1.004 -1.702 1.274 2.557 -0.787 -1.048 0.000 0.890 1.429 0.993 2.807 0.840 2.248 1.821
1 0.765 -0.500 -0.603 1.843 -0.560 1.068 0.007 0.746 2.173 1.154 -0.017 1.329 0.000 1.165 1.791 -1.585 0.000 1.116 0.441 -0.886 0.000 0.774 0.982 0.989 1.102 0.633 1.178 1.021
1 1.407 1.293 -1.418 0.502 -1.527 2.005 -2.122 0.622 0.000 1.699 1.508 -0.649 2.215 1.665 0.748 -0.755 0.000 2.555 0.811 1.423 1.551 7.531 5.520 0.985 1.115 1.881 4.487 3.379
1 0.772 -0.186 -1.372 0.823 -0.140 0.781 0.763 0.046 2.173 1.128 0.516 1.380 0.000 0.797 -0.640 -0.134 2.548 2.019 -0.972 -1.670 0.000 2.022 1.466 0.989 0.856 0.808 1.230 0.991
1 0.546 -0.954 0.715 1.335 -1.689 0.783 -0.443 -1.735 2.173 1.081 0.185 -0.435 0.000 1.433 -0.662 -0.389 0.000 0.969 0.924 1.099 0.000 0.910 0.879 0.988 0.683 0.753 0.878 0.865
1 0.596 0.276 -1.054 1.358 1.355 1.444 1.813 -0.208 0.000 1.175 -0.949 -1.573 0.000 0.855 -1.228 -0.925 2.548 1.837 -0.400 0.913 0.000 0.637 0.901 1.028 0.553 0.790 0.679 0.677
0 0.458 2.292 1.530 0.291 1.283 0.749 -0.930 -0.198 0.000 0.300 -1.560 0.990 0.000 0.811 -0.176 0.995 2.548 1.085 -0.178 -1.213 3.102 0.891 0.648 0.999 0.732 0.655 0.619 0.620
0 0.638 -0.575 -1.048 0.125 0.178 0.846 -0.753 -0.339 1.087 0.799 -0.727 1.182 0.000 0.888 0.283 0.717 0.000 1.051 -1.046 -1.557 3.102 0.889 0.871 0.989 0.884 0.923 0.836 0.779
1 0.434 -1.119 -0.313 2.427 0.461 0.497 0.261 -1.177 2.173 0.618 -0.737 -0.688 0.000 1.150 -1.237 -1.652 2.548 0.757 -0.054 1.700 0.000 0.809 0.741 0.982 1.450 0.936 1.086 0.910
1 0.431 -1.144 -1.030 0.778 -0.655 0.490 0.047 -1.546 0.000 1.583 -0.014 0.891 2.215 0.516 0.956 0.567 2.548 0.935 -1.123 -0.082 0.000 0.707 0.995 0.995 0.700 0.602 0.770 0.685
1 1.894 0.222 1.224 1.578 1.715 0.966 2.890 -0.013 0.000 0.922 -0.703 -0.844 0.000 0.691 2.056 1.039 0.000 0.900 -0.733 -1.240 3.102 1.292 1.992 1.026 0.881 0.684 1.759 1.755
0 0.985 -0.316 0.141 1.067 -0.946 0.819 -1.177 1.307 2.173 1.080 -0.429 0.557 1.107 1.726 1.435 -1.075 0.000 1.100 1.547 -0.647 0.000 0.873 1.696 1.179 1.146 1.015 1.538 1.270
0 0.998 -0.187 -0.236 0.882 0.755 0.468 0.950 -0.439 2.173 0.579 -0.550 -0.624 0.000 1.847 1.196 1.384 1.274 0.846 1.273 -1.072 0.000 1.194 0.797 1.013 1.319 1.174 0.963 0.898
0 0.515 0.246 -0.593 1.082 1.591 0.912 -0.623 -0.957 2.173 0.858 0.418 0.844 0.000 0.948 2.519 1.599 0.000 1.158 1.385 -0.095 3.102 0.973 1.033 0.988 0.998 1.716 1.054 0.901
0 0.919 -1.001 1.506 1.389 0.653 0.507 -0.616 -0.689 2.173 0.808 0.536 -0.467 2.215 0.496 2.187 -0.859 0.000 0.822 0.807 1.163 0.000 0.876 0.861 1.088 0.947 0.614 0.911 1.087
0 0.794 0.051 1.477 1.504 -1.695 0.716 0.315 0.264 1.087 0.879 -0.135 -1.094 2.215 1.433 -0.741 0.201 0.000 1.566 0.534 -0.989 0.000 0.627 0.882 0.974 0.807 1.130 0.929 0.925
1 0.455 -0.946 -1.175 1.453 -0.580 0.763 -0.856 0.840 0.000 0.829 1.223 1.174 2.215 0.714 0.638 -0.466 0.000 1.182 0.223 -1.333 0.000 0.977 0.938 0.986 0.713 0.714 0.796 0.843
1 0.662 -0.296 -1.287 1.212 -0.707 0.641 1.457 0.222 0.000 0.600 0.525 -1.700 2.215 0.784 -0.835 -0.961 2.548 0.865 1.131 1.162 0.000 0.854 0.877 0.978 0.740 0.734 0.888 0.811
0 0.390 0.698 -1.629 1.888 0.298 0.990 1.614 -1.572 0.000 1.666 0.170 0.719 2.215 1.590 1.064 -0.886 1.274 0.952 0.305 -1.216 0.000 1.048 0.897 1.173 0.891 1.936 1.273 1.102
0 1.014 0.117 1.384 0.686 -1.047 0.609 -1.245 -0.850 0.000 1.076 -1.158 0.814 1.107 1.598 -0.389 -0.111 0.000 0.907 1.688 -1.673 0.000 1.333 0.866 0.989 0.975 0.442 0.797 0.788
0 1.530 -1.408 -0.207 0.440 -1.357 0.902 -0.647 1.325 1.087 1.320 -0.819 0.246 1.107 0.503 1.407 -1.683 0.000 1.189 -0.972 -0.925 0.000 0.386 1.273 0.988 0.829 1.335 1.173 1.149
1 1.689 -0.590 0.915 2.076 1.202 0.644 -0.478 -0.238 0.000 0.809 -1.660 -1.184 0.000 1.227 -0.224 -0.808 2.548 1.655 1.047 -0.623 0.000 0.621 1.192 0.988 1.309 0.866 0.924 1.012
0 1.102 0.402 -1.622 1.262 1.022 0.576 0.271 -0.269 0.000 0.591 0.495 -1.278 0.000 1.271 0.209 0.575 2.548 0.941 0.964 -0.685 3.102 0.989 0.963 1.124 0.857 0.858 0.716 0.718
0 2.491 0.825 0.581 1.593 0.205 0.782 -0.815 1.499 0.000 1.179 -0.999 -1.509 0.000 0.926 0.920 -0.522 2.548 2.068 -1.021 -1.050 3.102 0.874 0.943 0.980 0.945 1.525 1.570 1.652
0 0.666 0.254 1.601 1.303 -0.250 1.236 -1.929 0.793 0.000 1.074 0.447 -0.871 0.000 0.991 1.059 -0.342 0.000 1.703 -0.393 -1.419 3.102 0.921 0.945 1.285 0.931 0.462 0.770 0.729
0 0.937 -1.126 1.424 1.395 1.743 0.760 0.428 -0.238 2.173 0.846 0.494 1.320 2.215 0.872 -1.826 -0.507 0.000 0.612 1.860 1.403 0.000 3.402 2.109 0.985 1.298 1.165 1.404 1.240
1 0.881 -1.086 -0.870 0.513 0.266 2.049 -1.870 1.160 0.000 2.259 -0.428 -0.935 2.215 1.321 -0.655 -0.449 2.548 1.350 -1.766 -0.108 0.000 0.911 1.852 0.987 1.167 0.820 1.903 1.443
0 0.410 0.835 -0.819 1.257 1.112 0.871 -1.737 -0.401 0.000 0.927 0.158 1.253 0.000 1.183 0.405 -1.570 0.000 0.807 -0.704 -0.438 3.102 0.932 0.962 0.987 0.653 0.315 0.616 0.648
1 0.634 0.196 -1.679 1.379 -0.967 2.260 -0.273 1.114 0.000 1.458 1.070 -0.278 1.107 1.195 0.110 -0.688 2.548 0.907 0.298 -1.359 0.000 0.949 1.129 0.984 0.675 0.877 0.938 0.824
1 0.632 -1.254 1.201 0.496 -0.106 0.235 2.731 -0.955 0.000 0.615 -0.805 0.600 0.000 0.633 -0.934 1.641 0.000 1.407 -0.483 -0.962 1.551 0.778 0.797 0.989 0.578 0.722 0.576 0.539
0 0.714 1.122 1.566 2.399 -1.431 1.665 0.299 0.323 0.000 1.489 1.087 -0.861 2.215 1.174 0.140 1.083 2.548 0.404 -0.968 1.105 0.000 0.867 0.969 0.981 1.039 1.552 1.157 1.173
1 0.477 -0.321 -0.471 1.966 1.034 2.282 1.359 -0.874 0.000 1.672 -0.258 1.109 0.000 1.537 0.604 0.231 2.548 1.534 -0.640 0.827 0.000 0.746 1.337 1.311 0.653 0.721 0.795 0.742
1 1.351 0.460 0.031 1.194 -1.185 0.670 -1.157 -1.637 2.173 0.599 -0.823 0.680 0.000 0.478 0.373 1.716 0.000 0.809 -0.919 0.010 1.551 0.859 0.839 1.564 0.994 0.777 0.971 0.826
1 0.520 -1.442 -0.348 0.840 1.654 1.273 -0.760 1.317 0.000 0.861 2.579 -0.791 0.000 1.779 0.257 -0.703 0.000 2.154 1.928 0.457 0.000 1.629 3.194 0.992 0.730 1.107 2.447 2.747
0 0.700 -0.308 0.920 0.438 -0.879 0.516 1.409 1.101 0.000 0.960 0.701 -0.049 2.215 1.442 -0.416 -1.439 2.548 0.628 1.009 -0.364 0.000 0.848 0.817 0.987 0.759 1.421 0.937 0.920
1 0.720 1.061 -0.546 0.798 -1.521 1.066 0.173 0.271 1.087 1.453 0.114 1.336 1.107 0.702 0.616 -0.367 0.000 0.543 -0.386 -1.301 0.000 0.653 0.948 0.989 1.031 1.500 0.965 0.790
1 0.735 -0.416 0.588 1.308 -0.382 1.042 0.344 1.609 0.000 0.926 0.163 -0.520 1.107 1.050 -0.427 1.159 2.548 0.834 0.613 0.948 0.000 0.848 1.189 1.042 0.844 1.099 0.829 0.843
1 0.777 -0.396 1.540 1.608 0.638 0.955 0.040 0.918 2.173 1.315 1.116 -0.823 0.000 0.781 -0.762 0.564 2.548 0.945 -0.573 1.379 0.000 0.679 0.706 1.124 0.608 0.593 0.515 0.493
1 0.934 0.319 -0.257 0.970 -0.980 0.726 0.774 0.731 0.000 0.896 0.038 -1.465 1.107 0.773 -0.055 -0.831 2.548 1.439 -0.229 0.698 0.000 0.964 1.031 0.995 0.845 0.480 0.810 0.762
0 0.461 0.771 0.019 2.055 -1.288 1.043 0.147 0.261 2.173 0.833 -0.156 1.425 0.000 0.832 0.805 -0.491 2.548 0.589 1.252 1.414 0.000 0.850 0.906 1.245 1.364 0.850 0.908 0.863
1 0.858 -0.116 -0.937 0.966 1.167 0.825 -0.108 1.111 1.087 0.733 1.163 -0.634 0.000 0.894 0.771 0.020 0.000 0.846 -1.124 -1.195 3.102 0.724 1.194 1.195 0.813 0.969 0.985 0.856
0 0.720 -0.335 -0.307 1.445 0.540 1.108 -0.034 -1.691 1.087 0.883 -1.356 -0.678 2.215 0.440 1.093 0.253 0.000 0.389 -1.582 -1.097 0.000 1.113 1.034 0.988 1.256 1.572 1.062 0.904
1 0.750 -0.811 -0.542 0.985 0.408 0.471 0.477 0.355 0.000 1.347 -0.875 -1.556 2.215 0.564 1.082 -0.724 0.000 0.793 -0.958 -0.020 3.102 0.836 0.825 0.986 1.066 0.924 0.927 0.883
0 0.392 -0.468 -0.216 0.680 1.565 1.086 -0.765 -0.581 1.087 1.264 -1.035 1.189 2.215 0.986 -0.338 0.747 0.000 0.884 -1.328 -0.965 0.000 1.228 0.988 0.982 1.135 1.741 1.108 0.956
1 0.434 -1.269 0.643 0.713 0.608 0.597 0.832 1.627 0.000 0.708 -0.422 0.079 2.215 1.533 -0.823 -1.127 2.548 0.408 -1.357 -0.828 0.000 1.331 1.087 0.999 1.075 1.015 0.875 0.809
0 0.828 -1.803 0.342 0.847 -0.162 1.585 -1.128 -0.272 2.173 1.974 0.039 -1.717 0.000 0.900 0.764 -1.741 0.000 1.349 -0.079 1.035 3.102 0.984 0.815 0.985 0.780 1.661 1.403 1.184
1 1.089 -0.350 -0.747 1.472 0.792 1.087 -0.069 -1.192 0.000 0.512 -0.841 -1.284 0.000 2.162 -0.821 0.545 2.548 1.360 2.243 -0.183 0.000 0.977 0.628 1.725 1.168 0.635 0.823 0.822
1 0.444 0.451 -1.332 1.176 -0.247 0.898 0.194 0.007 0.000 1.958 0.576 -1.618 2.215 0.584 1.203 0.268 0.000 0.939 1.033 1.264 3.102 0.829 0.886 0.985 1.265 0.751 1.032 0.948
0 0.629 0.114 1.177 0.917 -1.204 0.845 0.828 -0.088 0.000 0.962 -1.302 0.823 2.215 0.732 0.358 -1.334 2.548 0.538 0.582 1.561 0.000 1.028 0.834 0.988 0.904 1.205 1.039 0.885
1 1.754 -1.259 -0.573 0.959 -1.483 0.358 0.448 -1.452 0.000 0.711 0.313 0.499 2.215 1.482 -0.390 1.474 2.548 1.879 -1.540 0.668 0.000 0.843 0.825 1.313 1.315 0.939 1.048 0.871
1 0.549 0.706 -1.437 0.894 0.891 0.680 -0.762 -1.568 0.000 0.981 0.499 -0.425 2.215 1.332 0.678 0.485 1.274 0.803 0.022 -0.893 0.000 0.793 1.043 0.987 0.761 0.899 0.915 0.794
0 0.475 0.542 -0.987 1.569 0.069 0.551 1.543 -1.488 0.000 0.608 0.301 1.734 2.215 0.277 0.499 -0.522 0.000 1.375 1.212 0.696 3.102 0.652 0.756 0.987 0.828 0.830 0.715 0.679
1 0.723 0.049 -1.153 1.300 0.083 0.723 -0.749 0.630 0.000 1.126 0.412 -0.384 0.000 1.272 1.256 1.358 2.548 3.108 0.777 -1.486 3.102 0.733 1.096 1.206 1.269 0.899 1.015 0.903
1 1.062 0.296 0.725 0.285 -0.531 0.819 1.277 -0.667 0.000 0.687 0.829 -0.092 0.000 1.158 0.447 1.047 2.548 1.444 -0.186 -1.491 3.102 0.863 1.171 0.986 0.769 0.828 0.919 0.840
0 0.572 -0.349 1.396 2.023 0.795 0.577 0.457 -0.533 0.000 1.351 0.701 -1.091 0.000 0.724 -1.012 -0.182 2.548 0.923 -0.012 0.789 3.102 0.936 1.025 0.985 1.002 0.600 0.828 0.909
1 0.563 0.387 0.412 0.553 1.050 0.723 -0.992 -0.447 0.000 0.748 0.948 0.546 2.215 1.761 -0.559 -1.183 0.000 1.114 -0.251 1.192 3.102 0.936 0.912 0.976 0.578 0.722 0.829 0.892
1 1.632 1.577 -0.697 0.708 -1.263 0.863 0.012 1.197 2.173 0.498 0.990 -0.806 0.000 0.627 2.387 -1.283 0.000 0.607 1.290 -0.174 3.102 0.916 1.328 0.986 0.557 0.971 0.935 0.836
1 0.562 -0.360 0.399 0.803 -1.334 1.443 -0.116 1.628 2.173 0.750 0.987 0.135 1.107 0.795 0.298 -0.556 0.000 1.150 -0.113 -0.093 0.000 0.493 1.332 0.985 1.001 1.750 1.013 0.886
1 0.987 0.706 -0.492 0.861 0.607 0.593 0.088 -0.184 0.000 0.802 0.894 1.608 2.215 0.782 -0.471 1.500 2.548 0.521 0.772 -0.960 0.000 0.658 0.893 1.068 0.877 0.664 0.709 0.661
1 1.052 0.883 -0.581 1.566 0.860 0.931 1.515 -0.873 0.000 0.493 0.145 -0.672 0.000 1.133 0.935 1.581 2.548 1.630 0.695 0.923 3.102 1.105 1.087 1.713 0.948 0.590 0.872 0.883
1 2.130 -0.516 -0.291 0.776 -1.230 0.689 -0.257 0.800 2.173 0.730 -0.274 -1.437 0.000 0.615 0.241 1.083 0.000 0.834 0.757 1.613 3.102 0.836 0.806 1.333 1.061 0.730 0.889 0.783
1 0.742 0.797 1.628 0.311 -0.418 0.620 0.685 -1.457 0.000 0.683 1.774 -1.082 0.000 1.700 1.104 0.225 2.548 0.382 -2.184 -1.307 0.000 0.945 1.228 0.984 0.864 0.931 0.988 0.838
0 0.311 -1.249 -0.927 1.272 -1.262 0.642 -1.228 -0.136 0.000 1.220 -0.804 -1.558 2.215 0.950 -0.828 0.495 1.274 2.149 -1.672 0.634 0.000 1.346 0.887 0.981 0.856 1.101 1.001 1.106
0 0.660 -1.834 -0.667 0.601 1.236 0.932 -0.933 -0.135 2.173 1.373 -0.122 1.429 0.000 0.654 -0.034 -0.847 2.548 0.711 0.911 0.703 0.000 1.144 0.942 0.984 0.822 0.739 0.992 0.895
0 3.609 -0.590 0.851 0.615 0.455 1.280 0.003 -0.866 1.087 1.334 0.708 -1.131 0.000 0.669 0.480 0.092 0.000 0.975 0.983 -1.429 3.102 1.301 1.089 0.987 1.476 0.934 1.469 1.352
1 0.905 -0.403 1.567 2.651 0.953 1.194 -0.241 -0.567 1.087 0.308 -0.384 -0.007 0.000 0.608 -0.175 -1.163 2.548 0.379 0.941 1.662 0.000 0.580 0.721 1.126 0.895 0.544 1.097 0.836
1 0.983 0.255 1.093 0.905 -0.874 0.863 0.060 -0.368 0.000 0.824 -0.747 -0.633 0.000 0.614 0.961 1.052 0.000 0.792 -0.260 1.632 3.102 0.874 0.883 1.280 0.663 0.406 0.592 0.645
1 1.160 -1.027 0.274 0.460 0.322 2.085 -1.623 -0.840 0.000 1.634 -1.046 1.182 2.215 0.492 -0.367 1.174 0.000 0.824 -0.998 1.617 0.000 0.943 0.884 1.001 1.209 1.313 1.034 0.866
0 0.299 0.028 -1.372 1.930 -0.661 0.840 -0.979 0.664 1.087 0.535 -2.041 1.434 0.000 1.087 -1.797 0.344 0.000 0.485 -0.560 -1.105 3.102 0.951 0.890 0.980 0.483 0.684 0.730 0.706
0 0.293 1.737 -1.418 2.074 0.794 0.679 1.024 -1.457 0.000 1.034 1.094 -0.168 1.107 0.506 1.680 -0.661 0.000 0.523 -0.042 -1.274 3.102 0.820 0.944 0.987 0.842 0.694 0.761 0.750
0 0.457 -0.393 1.560 0.738 -0.007 0.475 -0.230 0.246 0.000 0.776 -1.264 -0.606 2.215 0.865 -0.731 -1.576 2.548 1.153 0.343 1.436 0.000 1.060 0.883 0.988 0.972 0.703 0.758 0.720
0 0.935 -0.582 0.240 2.401 0.818 1.231 -0.618 -1.289 0.000 0.799 0.544 -0.228 2.215 0.525 -1.494 -0.969 0.000 0.609 -1.123 1.168 3.102 0.871 0.767 1.035 1.154 0.919 0.868 1.006
1 0.902 -0.745 -1.215 1.174 -0.501 1.215 0.167 1.162 0.000 0.896 1.217 -0.976 0.000 0.585 -0.429 1.036 0.000 1.431 -0.416 0.151 3.102 0.524 0.952 0.990 0.707 0.271 0.592 0.826
1 0.653 0.337 -0.320 1.118 -0.934 1.050 0.745 0.529 1.087 1.075 1.742 -1.538 0.000 0.585 1.090 0.973 0.000 1.091 -0.187 1.160 1.551 1.006 1.108 0.978 1.121 0.838 0.947 0.908
0 1.157 1.401 0.340 0.395 -1.218 0.945 1.928 -0.876 0.000 1.384 0.320 1.002 1.107 1.900 1.177 -0.462 2.548 1.122 1.316 1.720 0.000 1.167 1.096 0.989 0.937 1.879 1.307 1.041
0 0.960 0.355 -0.152 0.872 -0.338 0.391 0.348 0.956 1.087 0.469 2.664 1.409 0.000 0.756 -1.561 1.500 0.000 0.525 1.436 1.728 3.102 1.032 0.946 0.996 0.929 0.470 0.698 0.898
1 1.038 0.274 0.825 1.198 0.963 1.078 -0.496 -1.014 2.173 0.739 -0.727 -0.151 2.215 1.035 -0.799 0.398 0.000 1.333 -0.872 -1.498 0.000 0.849 1.033 0.985 0.886 0.936 0.975 0.823
0 0.490 0.277 0.318 1.303 0.694 1.333 -1.620 -0.563 0.000 1.459 -1.326 1.140 0.000 0.779 -0.673 -1.324 2.548 0.860 -1.247 0.043 0.000 0.857 0.932 0.992 0.792 0.278 0.841 1.498
0 1.648 -0.688 -1.386 2.790 0.995 1.087 1.359 -0.687 0.000 1.050 -0.223 -0.261 2.215 0.613 -0.889 1.335 0.000 1.204 0.827 0.309 3.102 0.464 0.973 2.493 1.737 0.827 1.319 1.062
0 1.510 -0.662 1.668 0.860 0.280 0.705 0.974 -1.647 1.087 0.662 -0.393 -0.225 0.000 0.610 -0.996 0.532 2.548 0.464 1.305 0.102 0.000 0.859 1.057 1.498 0.799 1.260 0.946 0.863
1 0.850 -1.185 -0.117 0.943 -0.449 1.142 0.875 -0.030 0.000 2.223 -0.461 1.627 2.215 0.767 -1.761 -1.692 0.000 1.012 -0.727 0.639 3.102 3.649 2.062 0.985 1.478 1.087 1.659 1.358
0 0.933 1.259 0.130 0.326 -0.890 0.306 1.136 1.142 0.000 0.964 0.705 -1.373 2.215 0.546 -0.196 -0.001 0.000 0.578 -1.169 1.004 3.102 0.830 0.836 0.988 0.837 1.031 0.749 0.655
0 0.471 0.697 1.570 1.109 0.201 1.248 0.348 -1.448 0.000 2.103 0.773 0.686 2.215 1.451 -0.087 -0.453 2.548 1.197 -0.045 -1.026 0.000 0.793 1.094 0.987 0.851 1.804 1.378 1.089
1 2.446 -0.701 -1.568 0.059 0.822 1.401 -0.600 -0.044 2.173 0.324 -0.001 1.344 2.215 0.913 -0.818 1.049 0.000 0.442 -1.088 -0.005 0.000 0.611 1.062 0.979 0.562 0.988 0.998 0.806
0 0.619 2.029 0.933 0.528 -0.903 0.974 0.760 -0.311 2.173 0.825 0.658 -1.466 1.107 0.894 1.594 0.370 0.000 0.882 -0.258 1.661 0.000 1.498 1.088 0.987 0.867 1.139 0.900 0.779
1 0.674 -0.131 -0.362 0.518 -1.574 0.876 0.442 0.145 1.087 0.497 -1.526 -1.704 0.000 0.680 2.514 -1.374 0.000 0.792 -0.479 0.773 1.551 0.573 1.198 0.984 0.800 0.667 0.987 0.832
1 1.447 1.145 -0.937 0.307 -1.458 0.478 1.264 0.816 1.087 0.558 1.015 -0.101 2.215 0.937 -0.190 1.177 0.000 0.699 0.954 -1.512 0.000 0.877 0.838 0.990 0.873 0.566 0.646 0.713
1 0.976 0.308 -0.844 0.436 0.610 1.253 0.149 -1.585 2.173 1.415 0.568 0.096 2.215 0.953 -0.855 0.441 0.000 0.867 -0.650 1.643 0.000 0.890 1.234 0.988 0.796 2.002 1.179 0.977
0 0.697 0.401 -0.718 0.920 0.735 0.958 -0.172 0.168 2.173 0.872 -0.097 -1.335 0.000 0.513 -1.192 -1.710 1.274 0.426 -1.637 1.368 0.000 0.997 1.227 1.072 0.800 1.013 0.786 0.749
1 1.305 -2.157 1.740 0.661 -0.912 0.705 -0.516 0.759 2.173 0.989 -0.716 -0.300 2.215 0.627 -1.052 -1.736 0.000 0.467 -2.467 0.568 0.000 0.807 0.964 0.988 1.427 1.012 1.165 0.926
0 1.847 1.663 -0.618 0.280 1.258 1.462 -0.054 1.371 0.000 0.900 0.309 -0.544 0.000 0.331 -2.149 -0.341 0.000 1.091 -0.833 0.710 3.102 1.496 0.931 0.989 1.549 0.115 1.140 1.150
0 0.410 -0.323 1.069 2.160 0.010 0.892 0.942 -1.640 2.173 0.946 0.938 1.314 0.000 1.213 -1.099 -0.794 2.548 0.650 0.053 0.056 0.000 1.041 0.916 1.063 0.985 1.910 1.246 1.107
1 0.576 1.092 -0.088 0.777 -1.579 0.757 0.271 0.109 0.000 0.819 0.827 -1.554 2.215 1.313 2.341 -1.568 0.000 2.827 0.239 -0.338 0.000 0.876 0.759 0.986 0.692 0.457 0.796 0.791
1 0.537 0.925 -1.406 0.306 -0.050 0.906 1.051 0.037 0.000 1.469 -0.177 -1.320 2.215 1.872 0.723 1.158 0.000 1.313 0.227 -0.501 3.102 0.953 0.727 0.978 0.755 0.892 0.932 0.781
0 0.716 -0.065 -0.484 1.313 -1.563 0.596 -0.242 0.678 2.173 0.426 -1.909 0.616 0.000 0.885 -0.406 -1.343 2.548 0.501 -1.327 -0.340 0.000 0.470 0.728 1.109 0.919 0.881 0.665 0.692
1 0.624 -0.389 0.128 1.636 -1.110 1.025 0.573 -0.843 2.173 0.646 -0.697 1.064 0.000 0.632 -1.442 0.961 0.000 0.863 -0.106 1.717 0.000 0.825 0.917 1.257 0.983 0.713 0.890 0.824
0 0.484 2.101 1.714 1.131 -0.823 0.750 0.583 -1.304 1.087 0.894 0.421 0.559 2.215 0.921 -0.063 0.282 0.000 0.463 -0.474 -1.387 0.000 0.742 0.886 0.995 0.993 1.201 0.806 0.754
0 0.570 0.339 -1.478 0.528 0.439 0.978 1.479 -1.411 2.173 0.763 1.541 -0.734 0.000 1.375 0.840 0.903 0.000 0.965 1.599 0.364 0.000 0.887 1.061 0.992 1.322 1.453 1.013 0.969
0 0.940 1.303 1.636 0.851 -1.732 0.803 -0.030 -0.177 0.000 0.480 -0.125 -0.954 0.000 0.944 0.709 0.296 2.548 1.342 -0.418 1.197 3.102 0.853 0.989 0.979 0.873 0.858 0.719 0.786
1 0.599 0.544 -0.238 0.816 1.043 0.857 0.660 1.128 2.173 0.864 -0.624 -0.843 0.000 1.159 0.367 0.174 0.000 1.520 -0.543 -1.508 0.000 0.842 0.828 0.984 0.759 0.895 0.918 0.791
1 1.651 1.897 -0.914 0.423 0.315 0.453 0.619 -1.607 2.173 0.532 -0.424 0.209 1.107 0.369 2.479 0.034 0.000 0.701 0.217 0.984 0.000 0.976 0.951 1.035 0.879 0.825 0.915 0.798
1 0.926 -0.574 -0.763 0.285 1.094 0.672 2.314 1.545 0.000 1.124 0.415 0.809 0.000 1.387 0.270 -0.949 2.548 1.547 -0.631 -0.200 3.102 0.719 0.920 0.986 0.889 0.933 0.797 0.777
0 0.677 1.698 -0.890 0.641 -0.449 0.607 1.754 1.720 0.000 0.776 0.372 0.782 2.215 0.511 1.491 -0.480 0.000 0.547 -0.341 0.853 3.102 0.919 1.026 0.997 0.696 0.242 0.694 0.687
0 1.266 0.602 0.958 0.487 1.256 0.709 0.843 -1.196 0.000 0.893 1.303 -0.594 1.107 1.090 1.320 0.354 0.000 0.797 1.846 1.139 0.000 0.780 0.896 0.986 0.661 0.709 0.790 0.806
1 0.628 -0.616 -0.329 0.764 -1.150 0.477 -0.715 1.187 2.173 1.250 0.607 1.026 2.215 0.983 -0.023 -0.583 0.000 0.377 1.344 -1.015 0.000 0.744 0.954 0.987 0.837 0.841 0.795 0.694
1 1.035 -0.828 -1.358 1.870 -1.060 1.075 0.130 0.448 2.173 0.660 0.697 0.641 0.000 0.425 1.006 -1.035 0.000 0.751 1.055 1.364 3.102 0.826 0.822 0.988 0.967 0.901 1.077 0.906
1 0.830 0.265 -0.150 0.660 1.105 0.592 -0.557 0.908 2.173 0.670 -1.419 -0.671 0.000 1.323 -0.409 1.644 2.548 0.850 -0.033 -0.615 0.000 0.760 0.967 0.984 0.895 0.681 0.747 0.770
1 1.395 1.100 1.167 1.088 0.218 0.400 -0.132 0.024 2.173 0.743 0.530 -1.361 2.215 0.341 -0.691 -0.238 0.000 0.396 -1.426 -0.933 0.000 0.363 0.472 1.287 0.922 0.810 0.792 0.656
1 1.070 1.875 -1.298 1.215 -0.106 0.767 0.795 0.514 1.087 0.401 2.780 1.276 0.000 0.686 1.127 1.721 2.548 0.391 -0.259 -1.167 0.000 1.278 1.113 1.389 0.852 0.824 0.838 0.785
0 1.114 -0.071 1.719 0.399 -1.383 0.849 0.254 0.481 0.000 0.958 -0.579 0.742 0.000 1.190 -0.140 -0.862 2.548 0.479 1.390 0.856 0.000 0.952 0.988 0.985 0.764 0.419 0.835 0.827
0 0.714 0.376 -0.568 1.578 -1.165 0.648 0.141 0.639 2.173 0.472 0.569 1.449 1.107 0.783 1.483 0.361 0.000 0.540 -0.790 0.032 0.000 0.883 0.811 0.982 0.775 0.572 0.760 0.745
0 0.401 -1.731 0.765 0.974 1.648 0.652 -1.024 0.191 0.000 0.544 -0.366 -1.246 2.215 0.627 0.140 1.008 2.548 0.810 0.409 0.429 0.000 0.950 0.934 0.977 0.621 0.580 0.677 0.650
1 0.391 1.679 -1.298 0.605 -0.832 0.549 1.338 0.522 2.173 1.244 0.884 1.070 0.000 1.002 0.846 -1.345 2.548 0.783 -2.464 -0.237 0.000 4.515 2.854 0.981 0.877 0.939 1.942 1.489
1 0.513 -0.220 -0.444 1.699 0.479 1.109 0.181 -0.999 2.173 0.883 -0.335 -1.716 2.215 1.075 -0.380 1.352 0.000 0.857 0.048 0.147 0.000 0.937 0.758 0.986 1.206 0.958 0.949 0.876
0 1.367 -0.388 0.798 1.158 1.078 0.811 -1.024 -1.628 0.000 1.504 0.097 -0.999 2.215 1.652 -0.860 0.054 2.548 0.573 -0.142 -1.401 0.000 0.869 0.833 1.006 1.412 1.641 1.214 1.041
1 1.545 -0.533 -1.517 1.177 1.289 2.331 -0.370 -0.073 0.000 1.295 -0.358 -0.891 2.215 0.476 0.756 0.985 0.000 1.945 -0.016 -1.651 3.102 1.962 1.692 1.073 0.656 0.941 1.312 1.242
0 0.858 0.978 -1.258 0.286 0.161 0.729 1.230 1.087 2.173 0.561 2.670 -0.109 0.000 0.407 2.346 0.938 0.000 1.078 0.729 -0.658 3.102 0.597 0.921 0.982 0.579 0.954 0.733 0.769
1 1.454 -1.384 0.870 0.067 0.394 1.033 -0.673 0.318 0.000 1.166 -0.763 -1.533 2.215 2.848 -0.045 -0.856 2.548 0.697 -0.140 1.134 0.000 0.931 1.293 0.977 1.541 1.326 1.201 1.078
1 0.559 -0.913 0.486 1.104 -0.321 1.073 -0.348 1.345 0.000 0.901 -0.827 -0.842 0.000 0.739 0.047 -0.415 2.548 0.433 -1.132 1.268 0.000 0.797 0.695 0.985 0.868 0.346 0.674 0.623
1 1.333 0.780 -0.964 0.916 1.202 1.822 -0.071 0.742 2.173 1.486 -0.399 -0.824 0.000 0.740 0.568 -0.134 0.000 0.971 -0.070 -1.589 3.102 1.278 0.929 1.421 1.608 1.214 1.215 1.137
1 2.417 0.631 -0.317 0.323 0.581 0.841 1.524 -1.738 0.000 0.543 1.176 -0.325 0.000 0.827 0.700 0.866 0.000 0.834 -0.262 -1.702 3.102 0.932 0.820 0.988 0.646 0.287 0.595 0.589
0 0.955 -1.242 0.938 1.104 0.474 0.798 -0.743 1.535 0.000 1.356 -1.357 -1.080 2.215 1.320 -1.396 -0.132 2.548 0.728 -0.529 -0.633 0.000 0.832 0.841 0.988 0.923 1.077 0.988 0.816
1 1.305 -1.918 0.391 1.161 0.063 0.724 2.593 1.481 0.000 0.592 -1.207 -0.329 0.000 0.886 -0.836 -1.168 2.548 1.067 -1.481 -1.440 0.000 0.916 0.688 0.991 0.969 0.550 0.665 0.638
0 1.201 0.071 -1.123 2.242 -1.533 0.702 -0.256 0.688 0.000 0.967 0.491 1.040 2.215 1.271 -0.558 0.095 0.000 1.504 0.676 -0.383 3.102 0.917 1.006 0.985 1.017 1.057 0.928 1.057
0 0.994 -1.607 1.596 0.774 -1.391 0.625 -0.134 -0.862 2.173 0.746 -0.765 -0.316 2.215 1.131 -0.320 0.869 0.000 0.607 0.826 0.301 0.000 0.798 0.967 0.999 0.880 0.581 0.712 0.774
1 0.482 -0.467 0.729 1.419 1.458 0.824 0.376 -0.242 0.000 1.368 0.023 1.459 2.215 0.826 0.669 -1.079 2.548 0.936 2.215 -0.309 0.000 1.883 1.216 0.997 1.065 0.946 1.224 1.526
1 0.383 1.588 1.611 0.748 1.194 0.866 -0.279 -0.636 0.000 0.707 0.536 0.801 2.215 1.647 -1.155 0.367 0.000 1.292 0.303 -1.681 3.102 2.016 1.581 0.986 0.584 0.684 1.107 0.958
0 0.629 0.203 0.736 0.671 -0.271 1.350 -0.486 0.761 2.173 0.496 -0.805 -1.718 0.000 2.393 0.044 -1.046 1.274 0.651 -0.116 -0.541 0.000 0.697 1.006 0.987 1.069 2.317 1.152 0.902
0 0.905 -0.564 -0.570 0.263 1.096 1.219 -1.397 -1.414 1.087 1.164 -0.533 -0.208 0.000 1.459 1.965 0.784 0.000 2.220 -1.421 0.452 0.000 0.918 1.360 0.993 0.904 0.389 2.118 1.707
1 1.676 1.804 1.171 0.529 1.175 1.664 0.354 -0.530 0.000 1.004 0.691 -1.280 2.215 0.838 0.373 0.626 2.548 1.094 1.774 0.501 0.000 0.806 1.100 0.991 0.769 0.976 0.807 0.740
1 1.364 -1.936 0.020 1.327 0.428 1.021 -1.665 -0.907 2.173 0.818 -2.701 1.303 0.000 0.716 -0.590 -1.629 2.548 0.895 -2.280 -1.602 0.000 1.211 0.849 0.989 1.320 0.864 1.065 0.949
0 0.629 -0.626 0.609 1.828 1.280 0.644 -0.856 -0.873 2.173 0.555 1.066 -0.640 0.000 0.477 -1.364 -1.021 2.548 1.017 0.036 0.380 0.000 0.947 0.941 0.994 1.128 0.241 0.793 0.815
1 1.152 -0.843 0.926 1.802 0.800 2.493 -1.449 -1.127 0.000 1.737 0.833 0.488 0.000 1.026 0.929 -0.990 2.548 1.408 0.689 1.142 3.102 1.171 0.956 0.993 2.009 0.867 1.499 1.474
0 2.204 0.081 0.008 1.021 -0.679 2.676 0.090 1.163 0.000 2.210 -1.686 -1.195 0.000 1.805 0.891 -0.148 2.548 0.450 -0.502 -1.295 3.102 6.959 3.492 1.205 0.908 0.845 2.690 2.183
1 0.957 0.954 1.702 0.043 -0.503 1.113 0.033 -0.308 0.000 0.757 -0.363 -1.129 2.215 1.635 0.068 1.048 1.274 0.415 -2.098 0.061 0.000 1.010 0.979 0.992 0.704 1.125 0.761 0.715
0 1.222 0.418 1.059 1.303 1.442 0.282 -1.499 -1.286 0.000 1.567 0.016 -0.164 2.215 0.451 2.229 -1.229 0.000 0.660 -0.513 -0.296 3.102 2.284 1.340 0.985 1.531 0.314 1.032 1.094
1 0.603 1.675 -0.973 0.703 -1.709 1.023 0.652 1.296 2.173 1.078 0.363 -0.263 0.000 0.734 -0.457 -0.745 1.274 0.561 1.434 -0.042 0.000 0.888 0.771 0.984 0.847 1.234 0.874 0.777
0 0.897 0.949 -0.848 1.115 -0.085 0.522 -1.267 -1.418 0.000 0.684 -0.599 1.474 0.000 1.176 0.922 0.641 2.548 0.470 0.103 0.148 3.102 0.775 0.697 0.984 0.839 0.358 0.847 1.008
1 0.987 1.013 -1.504 0.468 -0.259 1.160 0.476 -0.971 2.173 1.266 0.919 0.780 0.000 0.634 1.695 0.233 0.000 0.487 -0.082 0.719 3.102 0.921 0.641 0.991 0.730 0.828 0.952 0.807
1 0.847 1.581 -1.397 1.629 1.529 1.053 0.816 -0.344 2.173 0.895 0.779 0.332 0.000 0.750 1.311 0.419 2.548 1.604 0.844 1.367 0.000 1.265 0.798 0.989 1.328 0.783 0.930 0.879
1 0.805 1.416 -1.327 0.397 0.589 0.488 0.982 0.843 0.000 0.664 -0.999 0.129 0.000 0.624 0.613 -0.558 0.000 1.431 -0.667 -1.561 3.102 0.959 1.103 0.989 0.590 0.632 0.926 0.798
0 1.220 -0.313 -0.489 1.759 0.201 1.698 -0.220 0.241 2.173 1.294 1.390 -1.682 0.000 1.447 -1.623 -1.296 0.000 1.710 0.872 -1.356 3.102 1.198 0.981 1.184 0.859 2.165 1.807 1.661
0 0.772 -0.611 -0.549 0.465 -1.528 1.103 -0.140 0.001 2.173 0.854 -0.406 1.655 0.000 0.733 -1.250 1.072 0.000 0.883 0.627 -1.132 3.102 0.856 0.927 0.987 1.094 1.013 0.938 0.870
1 1.910 0.771 0.828 0.231 1.267 1.398 1.455 -0.295 2.173 0.837 -2.564 0.770 0.000 0.540 2.189 1.287 0.000 1.345 1.311 -1.151 0.000 0.861 0.869 0.984 1.359 1.562 1.105 0.963
1 0.295 0.832 1.399 1.222 -0.517 2.480 0.013 1.591 0.000 2.289 0.436 0.287 2.215 1.995 -0.367 -0.409 1.274 0.375 1.367 -1.716 0.000 1.356 2.171 0.990 1.467 1.664 1.855 1.705
1 1.228 0.339 -0.575 0.417 1.474 0.480 -1.416 -1.498 2.173 0.614 -0.933 -0.961 0.000 1.189 1.690 1.003 0.000 1.690 -1.065 0.106 3.102 0.963 1.147 0.987 1.086 0.948 0.930 0.866
0 2.877 -1.014 1.440 0.782 0.483 1.134 -0.735 -0.196 2.173 1.123 0.084 -0.596 0.000 1.796 -0.356 1.044 2.548 1.406 1.582 -0.991 0.000 0.939 1.178 1.576 0.996 1.629 1.216 1.280
1 2.178 0.259 1.107 0.256 1.222 0.979 -0.440 -0.538 1.087 0.496 -0.760 -0.049 0.000 1.471 1.683 -1.486 0.000 0.646 0.695 -1.577 3.102 1.093 1.070 0.984 0.608 0.889 0.962 0.866
1 0.604 0.592 1.295 0.964 0.348 1.178 -0.016 0.832 2.173 1.626 -0.420 -0.760 0.000 0.748 0.461 -0.906 0.000 0.728 0.309 -1.269 1.551 0.852 0.604 0.989 0.678 0.949 1.021 0.878
0 0.428 -1.352 -0.912 1.713 0.797 1.894 -1.452 0.191 2.173 2.378 2.113 -1.190 0.000 0.860 2.174 0.949 0.000 1.693 0.759 1.426 3.102 0.885 1.527 1.186 1.090 3.294 4.492 3.676
0 0.473 0.485 0.154 1.433 -1.504 0.766 1.257 -1.302 2.173 0.414 0.119 0.238 0.000 0.805 0.242 -0.691 2.548 0.734 0.749 0.753 0.000 0.430 0.893 1.137 0.686 0.724 0.618 0.608
1 0.763 -0.601 0.876 0.182 -1.678 0.818 0.599 0.481 2.173 0.658 -0.737 -0.553 0.000 0.857 -1.138 -1.435 0.000 1.540 -1.466 -0.447 0.000 0.870 0.566 0.989 0.728 0.658 0.821 0.726
0 0.619 -0.273 -0.143 0.992 -1.267 0.566 0.876 -1.396 2.173 0.515 0.892 0.618 0.000 0.434 -0.902 0.862 2.548 0.490 -0.539 0.549 0.000 0.568 0.794 0.984 0.667 0.867 0.597 0.578
0 0.793 0.970 0.324 0.570 0.816 0.761 -0.550 1.519 2.173 1.150 0.496 -0.447 0.000 0.925 0.724 1.008 1.274 1.135 -0.275 -0.843 0.000 0.829 1.068 0.978 1.603 0.892 1.041 1.059
1 0.480 0.364 -0.067 1.906 -1.582 1.397 1.159 0.140 0.000 0.639 0.398 -1.102 0.000 1.597 -0.668 1.607 2.548 1.306 -0.797 0.288 3.102 0.856 1.259 1.297 1.022 1.032 1.049 0.939
0 0.514 1.304 1.490 1.741 -0.220 0.648 0.155 0.535 0.000 0.562 -1.016 0.837 0.000 0.863 -0.780 -0.815 2.548 1.688 -0.130 -1.545 3.102 0.887 0.980 1.309 1.269 0.654 1.044 1.035
0 1.225 0.333 0.656 0.893 0.859 1.037 -0.876 1.603 1.087 1.769 0.272 -0.227 2.215 1.000 0.579 -1.690 0.000 1.385 0.471 -0.860 0.000 0.884 1.207 0.995 1.097 2.336 1.282 1.145
0 2.044 -1.472 -0.294 0.392 0.369 0.927 0.718 1.492 1.087 1.619 -0.736 0.047 2.215 1.884 -0.101 -1.540 0.000 0.548 -0.441 1.117 0.000 0.798 0.877 0.981 0.750 2.272 1.469 1.276
0 1.037 -0.276 0.735 3.526 1.156 2.498 0.401 -0.590 1.087 0.714 -1.203 1.393 2.215 0.681 0.629 1.534 0.000 0.719 -0.355 -0.706 0.000 0.831 0.857 0.988 2.864 2.633 1.988 1.466
1 0.651 -1.218 -0.791 0.770 -1.449 0.610 -0.535 0.960 2.173 0.380 -1.072 -0.031 2.215 0.415 2.123 -1.100 0.000 0.776 0.217 0.420 0.000 0.986 1.008 1.001 0.853 0.588 0.799 0.776
0 1.586 -0.409 0.085 3.258 0.405 1.647 -0.674 -1.519 0.000 0.640 -1.027 -1.681 0.000 1.452 -0.444 -0.957 2.548 0.927 -0.017 1.215 3.102 0.519 0.866 0.992 0.881 0.847 1.018 1.278
0 0.712 0.092 -0.466 0.688 1.236 0.921 -1.217 -1.022 2.173 2.236 -1.167 0.868 2.215 0.851 -1.892 -0.753 0.000 0.475 -1.216 -0.383 0.000 0.668 0.758 0.988 1.180 2.093 1.157 0.934
0 0.419 0.471 0.974 2.805 0.235 1.473 -0.198 1.255 1.087 0.931 1.083 -0.712 0.000 1.569 1.358 -1.179 2.548 2.506 0.199 -0.842 0.000 0.929 0.991 0.992 1.732 2.367 1.549 1.430
1 0.667 1.003 1.504 0.368 1.061 0.885 -0.318 -0.353 0.000 1.438 -1.939 0.710 0.000 1.851 0.277 -1.460 2.548 1.403 0.517 -0.157 0.000 0.883 1.019 1.000 0.790 0.859 0.938 0.841
1 1.877 -0.492 0.372 0.441 0.955 1.034 -1.220 -0.846 1.087 0.952 -0.320 1.125 0.000 0.542 0.308 -1.261 2.548 1.018 -1.415 -1.547 0.000 1.280 0.932 0.991 1.273 0.878 0.921 0.906
0 1.052 0.901 1.176 1.280 1.517 0.562 -1.150 -0.079 2.173 1.228 -0.308 -0.354 0.000 0.790 -1.492 -0.963 0.000 0.942 -0.672 -1.588 3.102 1.116 0.902 0.988 1.993 0.765 1.375 1.325
1 0.518 -0.254 1.642 0.865 0.725 0.980 0.734 0.023 0.000 1.448 0.780 -1.736 2.215 0.955 0.513 -0.519 0.000 0.365 -0.444 -0.243 3.102 0.833 0.555 0.984 0.827 0.795 0.890 0.786
0 0.870 0.815 -0.506 0.663 -0.518 0.935 0.289 -1.675 2.173 1.188 0.005 0.635 0.000 0.580 0.066 -1.455 2.548 0.580 -0.634 -0.199 0.000 0.852 0.788 0.979 1.283 0.208 0.856 0.950
0 0.628 1.382 0.135 0.683 0.571 1.097 0.564 -0.950 2.173 0.617 -0.326 0.371 0.000 1.093 0.918 1.667 2.548 0.460 1.221 0.708 0.000 0.743 0.861 0.975 1.067 1.007 0.843 0.762
0 4.357 0.816 -1.609 1.845 -1.288 3.292 0.726 0.324 2.173 1.528 0.583 -0.801 2.215 0.605 0.572 1.406 0.000 0.794 -0.791 0.122 0.000 0.967 1.132 1.124 3.602 2.811 2.460 1.861
0 0.677 -1.265 1.559 0.866 -0.618 0.823 0.260 0.185 0.000 1.133 0.337 1.589 2.215 0.563 -0.830 0.510 0.000 0.777 0.117 -0.941 3.102 0.839 0.763 0.986 1.182 0.649 0.796 0.851
0 2.466 -1.838 -1.648 1.717 1.533 1.676 -1.553 -0.109 2.173 0.670 -0.666 0.284 0.000 0.334 -2.480 0.316 0.000 0.366 -0.804 -1.298 3.102 0.875 0.894 0.997 0.548 0.770 1.302 1.079
1 1.403 0.129 -1.307 0.688 0.306 0.579 0.753 0.814 1.087 0.474 0.694 -1.400 0.000 0.520 1.995 0.185 0.000 0.929 -0.504 1.270 3.102 0.972 0.998 1.353 0.948 0.650 0.688 0.724
1 0.351 1.188 -0.360 0.254 -0.346 1.129 0.545 1.691 0.000 0.652 -0.039 -0.258 2.215 1.089 0.655 0.472 2.548 0.554 -0.493 1.366 0.000 0.808 1.045 0.992 0.570 0.649 0.809 0.744
0 1.875 -0.013 -0.128 0.236 1.163 0.902 0.426 0.590 2.173 1.251 -1.210 -0.616 0.000 1.035 1.534 0.912 0.000 1.944 1.789 -1.691 0.000 0.974 1.113 0.990 0.925 1.120 0.956 0.912
0 0.298 0.750 -0.507 1.555 1.463 0.804 1.200 -0.665 0.000 0.439 -0.829 -0.252 1.107 0.770 -1.090 0.947 2.548 1.165 -0.166 -0.763 0.000 1.140 0.997 0.988 1.330 0.555 1.005 1.012
0 0.647 0.342 0.245 4.340 -0.157 2.229 0.068 1.170 2.173 2.133 -0.201 -1.441 0.000 1.467 0.697 -0.532 1.274 1.457 0.583 -1.640 0.000 0.875 1.417 0.976 2.512 2.390 1.794 1.665
1 1.731 -0.803 -1.013 1.492 -0.020 1.646 -0.541 1.121 2.173 0.459 -1.251 -1.495 2.215 0.605 -1.711 -0.232 0.000 0.658 0.634 -0.068 0.000 1.214 0.886 1.738 1.833 1.024 1.192 1.034
0 0.515 1.416 -1.089 1.697 1.426 1.414 0.941 0.027 0.000 1.480 0.133 -1.595 2.215 1.110 0.752 0.760 2.548 1.062 0.697 -0.492 0.000 0.851 0.955 0.994 1.105 1.255 1.175 1.095
0 1.261 0.858 1.465 0.757 0.305 2.310 0.679 1.080 2.173 1.544 2.518 -0.464 0.000 2.326 0.270 -0.841 0.000 2.163 0.839 -0.500 3.102 0.715 0.825 1.170 0.980 2.371 1.527 1.221
1 1.445 1.509 1.471 0.414 -1.285 0.767 0.864 -0.677 2.173 0.524 1.388 0.171 0.000 0.826 0.190 0.121 2.548 0.572 1.691 -1.603 0.000 0.870 0.935 0.994 0.968 0.735 0.783 0.777
1 0.919 -0.264 -1.245 0.681 -1.722 1.022 1.010 0.097 2.173 0.685 0.403 -1.351 0.000 1.357 -0.429 1.262 1.274 0.687 1.021 -0.563 0.000 0.953 0.796 0.991 0.873 1.749 1.056 0.917
1 0.293 -2.258 -1.427 1.191 1.202 0.394 -2.030 1.438 0.000 0.723 0.596 -0.024 2.215 0.525 -1.678 -0.290 0.000 0.788 -0.824 -1.029 3.102 0.821 0.626 0.976 1.080 0.810 0.842 0.771
0 3.286 0.386 1.688 1.619 -1.620 1.392 -0.009 0.280 0.000 1.179 -0.776 -0.110 2.215 1.256 0.248 -1.114 2.548 0.777 0.825 -0.156 0.000 1.026 1.065 0.964 0.909 1.249 1.384 1.395
1 1.075 0.603 0.561 0.656 -0.685 0.985 0.175 0.979 2.173 1.154 0.584 -0.886 0.000 1.084 -0.354 -1.004 2.548 0.865 1.224 1.269 0.000 1.346 1.073 1.048 0.873 1.310 1.003 0.865
1 1.098 -0.091 1.466 1.558 0.915 0.649 1.314 -1.182 2.173 0.791 0.073 0.351 0.000 0.517 0.940 1.195 0.000 1.150 1.187 -0.692 3.102 0.866 0.822 0.980 1.311 0.394 1.119 0.890
1 0.481 -1.042 0.148 1.135 -1.249 1.202 -0.344 0.308 1.087 0.779 -1.431 1.581 0.000 0.860 -0.860 -1.125 0.000 0.785 0.303 1.199 3.102 0.878 0.853 0.988 1.072 0.827 0.936 0.815
0 1.348 0.497 0.318 0.806 0.976 1.393 -0.152 0.632 2.173 2.130 0.515 -1.054 0.000 0.908 0.062 -0.780 0.000 1.185 0.687 1.668 1.551 0.720 0.898 0.985 0.683 1.292 1.320 1.131
0 2.677 -0.420 -1.685 1.828 1.433 2.040 -0.718 -0.039 0.000 0.400 -0.873 0.472 0.000 0.444 0.340 -0.830 2.548 0.431 0.768 -1.417 3.102 0.869 0.917 0.996 0.707 0.193 0.728 1.154
1 1.300 0.586 -0.122 1.306 0.609 0.727 -0.556 -1.652 2.173 0.636 0.720 1.393 2.215 0.328 1.280 -0.390 0.000 0.386 0.752 -0.905 0.000 0.202 0.751 1.106 0.864 0.799 0.928 0.717
0 0.637 -0.176 1.737 1.322 -0.414 0.702 -0.964 -0.680 0.000 1.054 -0.461 0.889 2.215 0.861 -0.267 0.225 0.000 1.910 -1.888 1.027 0.000 0.919 0.899 1.186 0.993 1.109 0.862 0.775
1 0.723 -0.104 1.572 0.428 -0.840 0.655 0.544 1.401 2.173 1.522 -0.154 -0.452 2.215 0.996 0.190 0.273 0.000 1.906 -0.176 0.966 0.000 0.945 0.894 0.990 0.981 1.555 0.988 0.893
0 2.016 -0.570 1.612 0.798 0.441 0.334 0.191 -0.909 0.000 0.939 0.146 0.021 2.215 0.553 -0.444 1.156 2.548 0.781 -1.545 -0.520 0.000 0.922 0.956 1.528 0.722 0.699 0.778 0.901
0 1.352 -0.707 1.284 0.665 0.580 0.694 -1.040 -0.899 2.173 0.692 -2.048 0.029 0.000 0.545 -2.042 1.259 0.000 0.661 -0.808 -1.251 3.102 0.845 0.991 0.979 0.662 0.225 0.685 0.769
1 1.057 -1.561 -0.411 0.952 -0.681 1.236 -1.107 1.045 2.173 1.288 -2.521 -0.521 0.000 1.361 -1.239 1.546 0.000 0.373 -1.540 0.028 0.000 0.794 0.782 0.987 0.889 0.832 0.972 0.828
0 1.118 -0.017 -1.227 1.077 1.256 0.714 0.624 -0.811 0.000 0.800 0.704 0.387 1.107 0.604 0.234 0.986 0.000 1.306 -0.456 0.094 3.102 0.828 0.984 1.195 0.987 0.672 0.774 0.748
1 0.602 2.201 0.212 0.119 0.182 0.474 2.130 1.270 0.000 0.370 2.088 -0.573 0.000 0.780 -0.725 -1.033 0.000 1.642 0.598 0.303 3.102 0.886 0.988 0.985 0.644 0.756 0.651 0.599
0 1.677 -0.844 1.581 0.585 0.887 1.012 -2.315 0.752 0.000 1.077 0.748 -0.195 0.000 0.718 0.832 -1.337 1.274 1.181 -0.557 -1.006 3.102 1.018 1.247 0.988 0.908 0.651 1.311 1.120
1 1.695 0.259 1.224 1.344 1.067 0.718 -1.752 -0.215 0.000 0.473 0.991 -0.993 0.000 0.891 1.285 -1.500 2.548 0.908 -0.131 0.288 0.000 0.945 0.824 0.979 1.009 0.951 0.934 0.833
0 0.793 0.628 0.432 1.707 0.302 0.919 1.045 -0.784 0.000 1.472 0.175 -1.284 2.215 1.569 0.155 0.971 2.548 0.435 0.735 1.625 0.000 0.801 0.907 0.992 0.831 1.446 1.082 1.051
1 0.537 -0.664 -0.244 1.104 1.272 1.154 0.394 1.633 0.000 1.527 0.963 0.559 2.215 1.744 0.650 -0.912 0.000 1.097 0.730 -0.368 3.102 1.953 1.319 1.045 1.309 0.869 1.196 1.126
1 0.585 -1.469 1.005 0.749 -1.060 1.224 -0.717 -0.323 2.173 1.012 -0.201 1.268 0.000 0.359 -0.567 0.476 0.000 1.117 -1.124 1.557 3.102 0.636 1.281 0.986 0.616 1.289 0.890 0.881
1 0.354 -1.517 0.667 2.534 -1.298 1.020 -0.375 1.254 0.000 1.119 -0.060 -1.538 2.215 1.059 -0.395 -0.140 0.000 2.609 0.199 -0.778 1.551 0.957 0.975 1.286 1.666 1.003 1.224 1.135
1 0.691 -1.619 -1.380 0.361 1.727 1.493 -1.093 -0.289 0.000 1.447 -0.640 1.341 0.000 1.453 -0.617 -1.456 1.274 1.061 -1.481 -0.091 0.000 0.744 0.649 0.987 0.596 0.727 0.856 0.797
0 1.336 1.293 -1.359 0.357 0.067 1.110 -0.058 -0.515 0.000 0.976 1.498 1.207 0.000 1.133 0.437 1.053 2.548 0.543 1.374 0.171 0.000 0.764 0.761 0.984 0.827 0.553 0.607 0.612
0 0.417 -1.111 1.661 2.209 -0.683 1.931 -0.642 0.959 1.087 1.514 -2.032 -0.686 0.000 1.521 -0.539 1.344 0.000 0.978 -0.866 0.363 1.551 2.813 1.850 1.140 1.854 0.799 1.600 1.556
0 1.058 0.390 -0.591 0.134 1.149 0.346 -1.550 0.186 0.000 1.108 -0.999 0.843 1.107 1.124 0.415 -1.514 0.000 1.067 -0.426 -1.000 3.102 1.744 1.050 0.985 1.006 1.010 0.883 0.789
1 1.655 0.253 1.216 0.270 1.703 0.500 -0.006 -1.418 2.173 0.690 -0.350 0.170 2.215 1.045 -0.924 -0.774 0.000 0.996 -0.745 -0.123 0.000 0.839 0.820 0.993 0.921 0.869 0.725 0.708
0 1.603 -0.850 0.564 0.829 0.093 1.270 -1.113 -1.155 2.173 0.853 -1.021 1.248 2.215 0.617 -1.270 1.733 0.000 0.935 -0.092 0.136 0.000 1.011 1.074 0.977 0.823 1.269 1.054 0.878
0 1.568 -0.792 1.005 0.545 0.896 0.895 -1.698 -0.988 0.000 0.608 -1.634 1.705 0.000 0.826 0.208 0.618 1.274 2.063 -1.743 -0.520 0.000 0.939 0.986 0.990 0.600 0.435 1.033 1.087
0 0.489 -1.335 -1.102 1.738 1.028 0.628 -0.992 -0.627 0.000 0.652 -0.064 -0.215 0.000 1.072 0.173 -1.251 2.548 1.042 0.057 0.841 3.102 0.823 0.895 1.200 1.164 0.770 0.837 0.846
1 1.876 0.870 1.234 0.556 -1.262 1.764 0.855 -0.467 2.173 1.079 1.351 0.852 0.000 0.773 0.383 0.874 0.000 1.292 0.829 -1.228 3.102 0.707 0.969 1.102 1.601 1.017 1.112 1.028
0 1.033 0.407 -0.374 0.705 -1.254 0.690 -0.231 1.502 2.173 0.433 -2.009 -0.057 0.000 0.861 1.151 0.334 0.000 0.960 -0.839 1.299 3.102 2.411 1.480 0.982 0.995 0.377 1.012 0.994
0 1.092 0.653 -0.801 0.463 0.426 0.529 -1.055 0.040 0.000 0.663 0.999 1.255 1.107 0.749 -1.106 1.185 2.548 0.841 -0.745 -1.029 0.000 0.841 0.743 0.988 0.750 1.028 0.831 0.868
1 0.799 -0.285 -0.011 0.531 1.392 1.063 0.854 0.494 2.173 1.187 -1.065 -0.851 0.000 0.429 -0.296 1.072 0.000 0.942 -1.985 1.172 0.000 0.873 0.693 0.992 0.819 0.689 1.131 0.913
0 0.503 1.973 -0.377 1.515 -1.514 0.708 1.081 -0.313 2.173 1.110 -0.417 0.839 0.000 0.712 -1.153 1.165 0.000 0.675 -0.303 -0.930 1.551 0.709 0.761 1.032 0.986 0.698 0.963 1.291
0 0.690 -0.574 -1.608 1.182 1.118 0.557 -2.243 0.144 0.000 0.969 0.216 -1.383 1.107 1.054 0.888 -0.709 2.548 0.566 1.663 -0.550 0.000 0.752 1.528 0.987 1.408 0.740 1.290 1.123
1 0.890 1.501 0.786 0.779 -0.615 1.126 0.716 1.541 2.173 0.887 0.728 -0.673 2.215 1.216 0.332 -0.020 0.000 0.965 1.828 0.101 0.000 0.827 0.715 1.099 1.088 1.339 0.924 0.878
0 0.566 0.883 0.655 1.600 0.034 1.155 2.028 -1.499 0.000 0.723 -0.871 0.763 0.000 1.286 -0.696 -0.676 2.548 1.134 -0.113 1.207 3.102 4.366 2.493 0.984 0.960 0.962 1.843 1.511
0 1.146 1.086 -0.911 0.838 1.298 0.821 0.127 -0.145 0.000 1.352 0.474 -1.580 2.215 1.619 -0.081 0.675 2.548 1.382 -0.748 0.127 0.000 0.958 0.976 1.239 0.876 1.481 1.116 1.076
0 1.739 -0.326 -1.661 0.420 -1.705 1.193 -0.031 -1.212 2.173 1.783 -0.442 0.522 0.000 1.064 -0.692 0.027 0.000 1.314 0.359 -0.037 3.102 0.968 0.897 0.986 0.907 1.196 1.175 1.112
1 0.669 0.194 -0.703 0.657 -0.260 0.899 -2.511 0.311 0.000 1.482 0.773 0.974 2.215 3.459 0.037 -1.299 1.274 2.113 0.067 1.516 0.000 0.740 0.871 0.979 1.361 2.330 1.322 1.046
1 1.355 -1.033 -1.173 0.552 -0.048 0.899 -0.482 -1.287 2.173 1.422 -1.227 0.390 1.107 1.937 -0.028 0.914 0.000 0.849 -0.230 -1.734 0.000 0.986 1.224 1.017 1.051 1.788 1.150 1.009
1 0.511 -0.202 1.029 0.780 1.154 0.816 0.532 -0.731 0.000 0.757 0.517 0.749 2.215 1.302 0.289 -1.188 0.000 0.584 1.211 -0.350 0.000 0.876 0.943 0.995 0.963 0.256 0.808 0.891
1 1.109 0.572 1.484 0.753 1.543 1.711 -0.145 -0.746 1.087 1.759 0.631 0.845 2.215 0.945 0.542 0.003 0.000 0.378 -1.150 -0.044 0.000 0.764 1.042 0.992 1.045 2.736 1.441 1.140
0 0.712 -0.025 0.553 0.928 -0.711 1.304 0.045 -0.300 0.000 0.477 0.720 0.969 0.000 1.727 -0.474 1.328 1.274 1.282 2.222 1.684 0.000 0.819 0.765 1.023 0.961 0.657 0.799 0.744
1 1.131 -0.302 1.079 0.901 0.236 0.904 -0.249 1.694 2.173 1.507 -0.702 -1.128 0.000 0.774 0.565 0.284 2.548 1.802 1.446 -0.192 0.000 3.720 2.108 0.986 0.930 1.101 1.484 1.238
0 1.392 1.253 0.118 0.864 -1.358 0.922 -0.447 -1.243 1.087 1.969 1.031 0.774 2.215 1.333 -0.359 -0.681 0.000 1.099 -0.257 1.473 0.000 1.246 0.909 1.475 1.234 2.531 1.449 1.306
0 1.374 2.291 -0.479 1.339 -0.243 0.687 2.345 1.310 0.000 0.467 1.081 0.772 0.000 0.656 1.155 -1.636 2.548 0.592 0.536 -1.269 3.102 0.981 0.821 1.010 0.877 0.217 0.638 0.758
1 0.401 -1.516 0.909 2.738 0.519 0.887 0.566 -1.202 0.000 0.909 -0.176 1.682 0.000 2.149 -0.878 -0.514 2.548 0.929 -0.563 -1.555 3.102 1.228 0.803 0.980 1.382 0.884 1.025 1.172
1 0.430 -1.589 1.417 2.158 1.226 1.180 -0.829 -0.781 2.173 0.798 1.400 -0.111 0.000 0.939 -0.878 1.076 2.548 0.576 1.335 -0.826 0.000 0.861 0.970 0.982 1.489 1.308 1.015 0.992
1 1.943 -0.391 -0.840 0.621 -1.613 2.026 1.734 1.025 0.000 0.930 0.573 -0.912 0.000 1.326 0.847 -0.220 1.274 1.181 0.079 0.709 3.102 1.164 1.007 0.987 1.094 0.821 0.857 0.786
1 0.499 0.436 0.887 0.859 1.509 0.733 -0.559 1.111 1.087 1.011 -0.796 0.279 2.215 1.472 -0.510 -0.982 0.000 1.952 0.379 -0.733 0.000 1.076 1.358 0.991 0.589 0.879 1.068 0.922
0 0.998 -0.407 -1.711 0.139 0.652 0.810 -0.331 -0.721 0.000 0.471 -0.533 0.442 0.000 0.531 -1.405 0.120 2.548 0.707 0.098 -1.176 1.551 1.145 0.809 0.988 0.529 0.612 0.562 0.609
1 1.482 0.872 0.638 1.288 0.362 0.856 0.900 -0.511 1.087 1.072 1.061 -1.432 2.215 1.770 -2.292 -1.547 0.000 1.131 1.374 0.783 0.000 6.316 4.381 1.002 1.317 1.048 2.903 2.351
1 2.084 -0.422 1.289 1.125 0.735 1.104 -0.518 -0.326 2.173 0.413 -0.719 -0.699 0.000 0.857 0.108 -1.631 0.000 0.527 0.641 -1.362 3.102 0.791 0.952 1.016 0.776 0.856 0.987 0.836
0 0.464 0.674 0.025 0.430 -1.703 0.982 -1.311 -0.808 2.173 1.875 1.060 0.821 2.215 0.954 -0.480 -1.677 0.000 0.567 0.702 -0.939 0.000 0.781 1.076 0.989 1.256 3.632 1.652 1.252
1 0.457 -1.944 -1.010 1.409 0.931 1.098 -0.742 -0.415 0.000 1.537 -0.834 0.945 2.215 1.752 -0.287 -1.269 2.548 0.692 -1.537 -0.223 0.000 0.801 1.192 1.094 1.006 1.659 1.175 1.122
0 3.260 -0.943 1.737 0.920 1.309 0.946 -0.139 -0.271 2.173 0.994 -0.952 -0.311 0.000 0.563 -0.136 -0.881 0.000 1.236 -0.507 0.906 1.551 0.747 0.869 0.985 1.769 1.034 1.179 1.042
0 0.615 -0.778 0.246 1.861 1.619 0.560 -0.943 -0.204 2.173 0.550 -0.759 -1.342 2.215 0.578 0.076 -0.973 0.000 0.939 0.035 0.680 0.000 0.810 0.747 1.401 0.772 0.702 0.719 0.662
1 2.370 -0.064 -0.237 1.737 0.154 2.319 -1.838 -1.673 0.000 1.053 -1.305 -0.075 0.000 0.925 0.149 0.318 1.274 0.851 -0.922 0.981 3.102 0.919 0.940 0.989 0.612 0.598 1.219 1.626
1 1.486 0.311 -1.262 1.354 -0.847 0.886 -0.158 1.213 2.173 1.160 -0.218 0.239 0.000 1.166 0.494 0.278 2.548 0.575 1.454 -1.701 0.000 0.429 1.129 0.983 1.111 1.049 1.006 0.920
1 1.294 1.587 -0.864 0.487 -0.312 0.828 1.051 -0.031 1.087 2.443 1.216 1.609 2.215 1.167 0.813 0.921 0.000 1.751 -0.415 0.119 0.000 1.015 1.091 0.974 1.357 2.093 1.178 1.059
1 0.984 0.465 -1.661 0.379 -0.554 0.977 0.237 0.365 0.000 0.510 0.143 1.101 0.000 1.099 -0.662 -1.593 2.548 1.104 -0.197 -0.648 3.102 0.925 0.922 0.986 0.642 0.667 0.806 0.722
1 0.930 -0.009 0.047 0.667 1.367 1.065 -0.231 0.815 0.000 1.199 -1.114 -0.877 2.215 0.940 0.824 -1.583 0.000 1.052 -0.407 -0.076 1.551 1.843 1.257 1.013 1.047 0.751 1.158 0.941
0 0.767 -0.011 -0.637 0.341 -1.437 1.438 -0.425 -0.450 2.173 1.073 -0.718 1.341 2.215 0.633 -1.394 0.486 0.000 0.603 -1.945 -1.626 0.000 0.703 0.790 0.984 1.111 1.848 1.129 1.072
1 1.779 0.017 0.432 0.402 1.022 0.959 1.480 1.595 2.173 1.252 1.365 0.006 0.000 1.188 -0.174 -1.107 0.000 1.181 0.518 -0.258 0.000 1.057 0.910 0.991 1.616 0.779 1.158 1.053
0 0.881 0.630 1.029 1.990 0.508 1.102 0.742 -1.298 2.173 1.565 1.085 0.686 2.215 2.691 1.391 -0.904 0.000 0.499 1.388 -1.199 0.000 0.347 0.861 0.997 0.881 1.920 1.233 1.310
0 1.754 -0.266 0.389 0.347 -0.030 0.462 -1.408 -0.957 2.173 0.515 -2.341 -1.700 0.000 0.588 -0.797 1.355 2.548 0.608 0.329 -1.389 0.000 1.406 0.909 0.988 0.760 0.593 0.768 0.847
0 1.087 0.311 -1.447 0.173 0.567 0.854 0.362 0.584 0.000 1.416 -0.716 -1.211 2.215 0.648 -0.358 -0.692 1.274 0.867 -0.513 0.206 0.000 0.803 0.813 0.984 1.110 0.491 0.921 0.873
0 0.279 1.114 -1.190 3.004 -0.738 1.233 0.896 1.092 2.173 0.454 -0.374 0.117 2.215 0.357 0.119 1.270 0.000 0.458 1.343 0.316 0.000 0.495 0.540 0.988 1.715 1.139 1.618 1.183
1 1.773 -0.694 -1.518 2.306 -1.200 3.104 0.749 0.362 0.000 1.871 0.230 -1.686 2.215 0.805 -0.179 -0.871 1.274 0.910 0.607 -0.246 0.000 1.338 1.598 0.984 1.050 0.919 1.678 1.807
0 0.553 0.683 0.827 0.973 -0.706 1.488 0.149 1.140 2.173 1.788 0.447 -0.478 0.000 0.596 1.043 1.607 0.000 0.373 -0.868 -1.308 1.551 1.607 1.026 0.998 1.134 0.808 1.142 0.936
1 0.397 1.101 -1.139 1.688 0.146 0.972 0.541 1.518 0.000 1.549 -0.873 -1.012 0.000 2.282 -0.151 0.314 2.548 1.174 0.033 -1.368 0.000 0.937 0.776 1.039 1.143 0.959 0.986 1.013
1 0.840 1.906 -0.959 0.869 0.576 0.642 0.554 -1.351 0.000 0.756 0.923 -0.823 2.215 1.251 1.130 0.545 2.548 1.513 0.410 1.073 0.000 1.231 0.985 1.163 0.812 0.987 0.816 0.822
1 0.477 1.665 0.814 0.763 -0.382 0.828 -0.008 0.280 2.173 1.213 -0.001 1.560 0.000 1.136 0.311 -1.289 0.000 0.797 1.091 -0.616 3.102 1.026 0.964 0.992 0.772 0.869 0.916 0.803
0 2.655 0.020 0.273 1.464 0.482 1.709 -0.107 -1.456 2.173 0.825 0.141 -0.386 0.000 1.342 -0.592 1.635 1.274 0.859 -0.175 -0.874 0.000 0.829 0.946 1.003 2.179 0.836 1.505 1.176
0 0.771 -1.992 -0.720 0.732 -1.464 0.869 -1.290 0.388 2.173 0.926 -1.072 -1.489 2.215 0.640 -1.232 0.840 0.000 0.528 -2.440 -0.446 0.000 0.811 0.868 0.993 0.995 1.317 0.809 0.714
0 1.357 1.302 0.076 0.283 -1.060 0.783 1.559 -0.994 0.000 0.947 1.212 1.617 0.000 1.127 0.311 0.442 2.548 0.582 -0.052 1.186 1.551 1.330 0.995 0.985 0.846 0.404 0.858 0.815
0 0.442 -0.381 -0.424 1.244 0.591 0.731 0.605 -0.713 2.173 0.629 2.762 1.040 0.000 0.476 2.693 -0.617 0.000 0.399 0.442 1.486 3.102 0.839 0.755 0.988 0.869 0.524 0.877 0.918
0 0.884 0.422 0.055 0.818 0.624 0.950 -0.763 1.624 0.000 0.818 -0.609 -1.166 0.000 1.057 -0.528 1.070 2.548 1.691 -0.124 -0.335 3.102 1.104 0.933 0.985 0.913 1.000 0.863 1.056
0 1.276 0.156 1.714 1.053 -1.189 0.672 -0.464 -0.030 2.173 0.469 -2.483 0.442 0.000 0.564 2.580 -0.253 0.000 0.444 -0.628 1.080 1.551 5.832 2.983 0.985 1.162 0.494 1.809 1.513
0 1.106 -0.556 0.406 0.573 -1.400 0.769 -0.518 1.457 2.173 0.743 -0.352 -0.010 0.000 1.469 -0.550 -0.930 2.548 0.540 1.236 -0.571 0.000 0.962 0.970 1.101 0.805 1.107 0.873 0.773
0 0.539 -0.964 -0.464 1.371 -1.606 0.667 -0.160 0.655 0.000 0.952 0.352 -0.740 2.215 0.952 0.007 1.123 0.000 1.061 -0.505 1.389 3.102 1.063 0.991 1.019 0.633 0.967 0.732 0.799
1 0.533 -0.989 -1.608 0.462 -1.723 1.204 -0.598 -0.098 2.173 1.343 -0.460 1.632 2.215 0.577 0.221 -0.492 0.000 0.628 -0.073 0.472 0.000 0.518 0.880 0.988 1.179 1.874 1.041 0.813
1 1.024 1.075 -0.795 0.286 -1.436 1.365 0.857 -0.309 2.173 0.804 1.532 1.435 0.000 1.511 0.722 1.494 0.000 1.778 0.903 0.753 1.551 0.686 0.810 0.999 0.900 1.360 1.133 0.978
1 2.085 -0.269 -1.423 0.789 1.298 0.281 1.652 0.187 0.000 0.658 -0.760 -0.042 2.215 0.663 0.024 0.120 0.000 0.552 -0.299 -0.428 3.102 0.713 0.811 1.130 0.705 0.218 0.675 0.743
1 0.980 -0.443 0.813 0.785 -1.253 0.719 0.448 -1.458 0.000 1.087 0.595 0.635 1.107 1.428 0.029 -0.995 0.000 1.083 1.562 -0.092 0.000 0.834 0.891 1.165 0.967 0.661 0.880 0.817
1 0.903 -0.733 -0.980 0.634 -0.639 0.780 0.266 -0.287 2.173 1.264 -0.936 1.004 0.000 1.002 -0.056 -1.344 2.548 1.183 -0.098 1.169 0.000 0.733 1.002 0.985 0.711 0.916 0.966 0.875
0 0.734 -0.304 -1.175 2.851 1.674 0.904 -0.634 0.412 2.173 1.363 -1.050 -0.282 0.000 1.476 -1.603 0.103 0.000 2.231 -0.718 1.708 3.102 0.813 0.896 1.088 0.686 1.392 1.033 1.078
1 1.680 0.591 -0.243 0.111 -0.478 0.326 -0.079 -1.555 2.173 0.711 0.714 0.922 2.215 0.355 0.858 1.682 0.000 0.727 1.620 1.360 0.000 0.334 0.526 1.001 0.862 0.633 0.660 0.619
1 1.163 0.225 -0.202 0.501 -0.979 1.609 -0.938 1.424 0.000 1.224 -0.118 -1.274 0.000 2.034 1.241 -0.254 0.000 1.765 0.536 0.237 3.102 0.894 0.838 0.988 0.693 0.579 0.762 0.726
0 1.223 1.232 1.471 0.489 1.728 0.703 -0.111 0.411 0.000 1.367 1.014 -1.294 1.107 1.524 -0.414 -0.164 2.548 1.292 0.833 0.316 0.000 0.861 0.752 0.994 0.836 1.814 1.089 0.950
0 0.816 1.637 -1.557 1.036 -0.342 0.913 1.333 0.949 2.173 0.812 0.756 -0.628 2.215 1.333 0.470 1.495 0.000 1.204 -2.222 -1.675 0.000 1.013 0.924 1.133 0.758 1.304 0.855 0.860
0 0.851 -0.564 -0.691 0.692 1.345 1.219 1.014 0.318 0.000 1.422 -0.262 -1.635 2.215 0.531 1.802 0.008 0.000 0.508 0.515 -1.267 3.102 0.821 0.787 1.026 0.783 0.432 1.149 1.034
0 0.800 -0.599 0.204 0.552 -0.484 0.974 0.413 0.961 2.173 1.269 -0.984 -1.039 2.215 0.380 -1.213 1.371 0.000 0.551 0.332 -0.659 0.000 0.694 0.852 0.984 1.057 2.037 1.096 0.846
0 0.744 -0.071 -0.255 0.638 0.512 1.125 0.407 0.844 2.173 0.860 -0.481 -0.677 0.000 1.102 0.181 -1.194 0.000 1.011 -1.081 -1.713 3.102 0.854 0.862 0.982 1.111 1.372 1.042 0.920
1 0.400 1.049 -0.625 0.880 -0.407 1.040 2.150 -1.359 0.000 0.747 -0.144 0.847 2.215 0.560 -1.829 0.698 0.000 1.663 -0.668 0.267 0.000 0.845 0.964 0.996 0.820 0.789 0.668 0.668
0 1.659 -0.705 -1.057 1.803 -1.436 1.008 0.693 0.005 0.000 0.895 -0.007 0.681 1.107 1.085 0.125 1.476 2.548 1.214 1.068 0.486 0.000 0.867 0.919 0.986 1.069 0.692 1.026 1.313
0 0.829 -0.153 0.861 0.615 -0.548 0.589 1.077 -0.041 2.173 1.056 0.763 -1.737 0.000 0.639 0.970 0.725 0.000 0.955 1.227 -0.799 3.102 1.020 1.024 0.985 0.750 0.525 0.685 0.671
1 0.920 -0.806 -0.840 1.048 0.278 0.973 -0.077 -1.364 2.173 1.029 0.309 0.133 0.000 1.444 1.484 1.618 1.274 1.419 -0.482 0.417 0.000 0.831 1.430 1.151 1.829 1.560 1.343 1.224
1 0.686 0.249 -0.905 0.343 -1.731 0.724 -2.823 -0.901 0.000 0.982 0.303 1.312 1.107 1.016 0.245 0.610 0.000 1.303 -0.557 -0.360 3.102 1.384 1.030 0.984 0.862 1.144 0.866 0.779
0 1.603 0.444 0.508 0.586 0.401 0.610 0.467 -1.735 2.173 0.914 0.626 -1.019 0.000 0.812 0.422 -0.408 2.548 0.902 1.679 1.490 0.000 1.265 0.929 0.990 1.004 0.816 0.753 0.851
1 0.623 0.780 -0.203 0.056 0.015 0.899 0.793 1.326 1.087 0.803 1.478 -1.499 2.215 1.561 1.492 -0.120 0.000 0.904 0.795 0.137 0.000 0.548 1.009 0.850 0.924 0.838 0.914 0.860
0 1.654 -2.032 -1.160 0.859 -1.583 0.689 -1.965 0.891 0.000 0.646 -1.014 -0.288 2.215 0.630 -0.815 0.402 0.000 0.638 0.316 0.655 3.102 0.845 0.879 0.993 1.067 0.625 1.041 0.958
1 0.828 -1.269 -1.203 0.744 -0.213 0.626 -1.017 -0.404 0.000 1.281 -0.931 1.733 2.215 0.699 -0.351 1.287 0.000 1.251 -1.171 0.197 0.000 0.976 1.186 0.987 0.646 0.655 0.733 0.671
1 0.677 0.111 1.090 1.580 1.591 1.560 0.654 -0.341 2.173 0.794 -0.266 0.702 0.000 0.823 0.651 -1.239 2.548 0.730 1.467 -1.530 0.000 1.492 1.023 0.983 1.909 1.022 1.265 1.127
1 0.736 0.882 -1.060 0.589 0.168 1.663 0.781 1.022 2.173 2.025 1.648 -1.292 0.000 1.240 0.924 -0.421 1.274 1.354 0.065 0.501 0.000 0.316 0.925 0.988 0.664 1.736 0.992 0.807
1 1.040 -0.822 1.638 0.974 -0.674 0.393 0.830 0.011 2.173 0.770 -0.140 -0.402 0.000 0.294 -0.133 0.030 0.000 1.220 0.807 0.638 0.000 0.826 1.063 1.216 1.026 0.705 0.934 0.823
1 0.711 0.602 0.048 1.145 0.966 0.934 0.263 -1.589 2.173 0.971 -0.496 -0.421 1.107 0.628 -0.865 0.845 0.000 0.661 -0.008 -0.565 0.000 0.893 0.705 0.988 0.998 1.339 0.908 0.872
1 0.953 -1.651 -0.167 0.885 1.053 1.013 -1.239 0.133 0.000 1.884 -1.122 1.222 2.215 1.906 -0.860 -1.184 1.274 1.413 -0.668 -1.647 0.000 1.873 1.510 1.133 1.050 1.678 1.246 1.061
1 0.986 -0.892 -1.380 0.917 1.134 0.950 -1.162 -0.469 0.000 0.569 -1.393 0.215 0.000 0.320 2.667 1.712 0.000 1.570 -0.375 1.457 3.102 0.925 1.128 1.011 0.598 0.824 0.913 0.833
1 1.067 0.099 1.154 0.527 -0.789 1.085 0.623 -1.602 2.173 1.511 -0.230 0.022 2.215 0.269 -0.377 0.883 0.000 0.571 -0.540 -0.512 0.000 0.414 0.803 1.022 0.959 2.053 1.041 0.780
0 0.825 -2.118 0.217 1.453 -0.493 0.819 0.313 -0.942 0.000 2.098 -0.725 1.096 2.215 0.484 1.336 1.458 0.000 0.482 0.100 1.163 0.000 0.913 0.536 0.990 1.679 0.957 1.095 1.143
1 1.507 0.054 1.120 0.698 -1.340 0.912 0.384 0.015 1.087 0.720 0.247 -0.820 0.000 0.286 0.154 1.578 2.548 0.629 1.582 -0.576 0.000 0.828 0.893 1.136 0.514 0.632 0.699 0.709
1 0.610 1.180 -0.993 0.816 0.301 0.932 0.758 1.539 0.000 0.726 -0.830 0.248 2.215 0.883 0.857 -1.305 0.000 1.338 1.009 -0.252 3.102 0.901 1.074 0.987 0.875 1.159 1.035 0.858
1 1.247 -1.360 1.502 1.525 -1.332 0.618 1.063 0.755 0.000 0.582 -0.155 0.473 2.215 1.214 -0.422 -0.551 2.548 0.838 -1.171 -1.166 0.000 2.051 1.215 1.062 1.091 0.725 0.896 1.091
0 0.373 -0.600 1.291 2.573 0.207 0.765 -0.209 1.667 0.000 0.668 0.724 -1.499 0.000 1.045 -0.338 -0.754 2.548 0.558 -0.469 0.029 3.102 0.868 0.939 1.124 0.519 0.383 0.636 0.838
0 0.791 0.336 -0.307 0.494 1.213 1.158 0.336 1.081 2.173 0.918 1.289 -0.449 0.000 0.735 -0.521 -0.969 0.000 1.052 0.499 -1.188 3.102 0.699 1.013 0.987 0.622 1.050 0.712 0.661
0 1.321 0.856 0.464 0.202 0.901 1.144 0.120 -1.651 0.000 0.803 0.577 -0.509 2.215 0.695 -0.114 0.423 2.548 0.621 1.852 -0.420 0.000 0.697 0.964 0.983 0.527 0.659 0.719 0.729
0 0.563 2.081 0.913 0.982 -0.533 0.549 -0.481 -1.730 0.000 0.962 0.921 0.569 2.215 0.731 1.184 -0.679 1.274 0.918 0.931 -1.432 0.000 1.008 0.919 0.993 0.895 0.819 0.810 0.878
1 1.148 0.345 0.953 0.921 0.617 0.991 1.103 -0.484 0.000 0.970 1.978 1.525 0.000 1.150 0.689 -0.757 2.548 0.517 0.995 1.245 0.000 1.093 1.140 0.998 1.006 0.756 0.864 0.838
1 1.400 0.128 -1.695 1.169 1.070 1.094 -0.345 -0.249 0.000 1.224 0.364 -0.036 2.215 1.178 0.530 -1.544 0.000 1.334 0.933 1.604 0.000 0.560 1.267 1.073 0.716 0.780 0.832 0.792
0 0.330 -2.133 1.403 0.628 0.379 1.686 -0.995 0.030 1.087 2.071 0.127 -0.457 0.000 4.662 -0.855 1.477 0.000 2.072 -0.917 -1.416 3.102 5.403 3.074 0.977 0.936 1.910 2.325 1.702
0 0.989 0.473 0.968 1.970 1.368 0.844 0.574 -0.290 2.173 0.866 -0.345 -1.019 0.000 1.130 0.605 -0.752 0.000 0.956 -0.888 0.870 3.102 0.885 0.886 0.982 1.157 1.201 1.100 1.068
1 0.773 0.418 0.753 1.388 1.070 1.104 -0.378 -0.758 0.000 1.027 0.397 -0.496 2.215 1.234 0.027 1.084 2.548 0.936 0.209 1.677 0.000 1.355 1.020 0.983 0.550 1.206 0.916 0.931
0 0.319 2.015 1.534 0.570 -1.134 0.632 0.124 0.757 0.000 0.477 0.598 -1.109 1.107 0.449 0.438 -0.755 2.548 0.574 -0.659 0.691 0.000 0.440 0.749 0.985 0.517 0.158 0.505 0.522
0 1.215 1.453 -1.386 1.276 1.298 0.643 0.570 -0.196 2.173 0.588 2.104 0.498 0.000 0.617 -0.296 -0.801 2.548 0.452 0.110 0.313 0.000 0.815 0.953 1.141 1.166 0.547 0.892 0.807
1 1.257 -1.869 -0.060 0.265 0.653 1.527 -0.346 1.163 2.173 0.758 -2.119 -0.604 0.000 1.473 -1.133 -1.290 2.548 0.477 -0.428 -0.066 0.000 0.818 0.841 0.984 1.446 1.729 1.211 1.054
1 1.449 0.464 1.585 1.418 -1.488 1.540 0.942 0.087 0.000 0.898 0.402 -0.631 2.215 0.753 0.039 -1.729 0.000 0.859 0.849 -1.054 0.000 0.791 0.677 0.995 0.687 0.527 0.703 0.606
1 1.084 -1.997 0.900 1.333 1.024 0.872 -0.864 -1.500 2.173 1.072 -0.813 -0.421 2.215 0.924 0.478 0.304 0.000 0.992 -0.398 -1.022 0.000 0.741 1.085 0.980 1.221 1.176 1.032 0.961
0 1.712 1.129 0.125 1.120 -1.402 1.749 0.951 -1.575 2.173 1.711 0.445 0.578 0.000 1.114 0.234 -1.011 0.000 1.577 -0.088 0.086 3.102 2.108 1.312 1.882 1.597 2.009 1.441 1.308
0 0.530 0.248 1.622 1.450 -1.012 1.221 -1.154 -0.763 2.173 1.698 -0.586 0.733 0.000 0.889 1.042 1.038 1.274 0.657 0.008 0.701 0.000 0.430 1.005 0.983 0.930 2.264 1.357 1.146
1 0.921 1.735 0.883 0.699 -1.614 0.821 1.463 0.319 1.087 1.099 0.814 -1.600 2.215 1.375 0.702 -0.691 0.000 0.869 1.326 -0.790 0.000 0.980 0.900 0.988 0.832 1.452 0.816 0.709
0 2.485 -0.823 -0.297 0.886 -1.404 0.989 0.835 1.615 2.173 0.382 0.588 -0.224 0.000 1.029 -0.456 1.546 2.548 0.613 -0.359 -0.789 0.000 0.768 0.977 1.726 2.007 0.913 1.338 1.180
1 0.657 -0.069 -0.078 1.107 1.549 0.804 1.335 -1.630 2.173 1.271 0.481 0.153 1.107 1.028 0.144 -0.762 0.000 1.098 0.132 1.570 0.000 0.830 0.979 1.175 1.069 1.624 1.000 0.868
1 2.032 0.329 -1.003 0.493 -0.136 1.159 -0.224 0.750 1.087 0.396 0.546 0.587 0.000 0.620 1.805 0.982 0.000 1.236 0.744 -1.621 0.000 0.930 1.200 0.988 0.482 0.771 0.887 0.779
0 0.524 -1.319 0.634 0.471 1.221 0.599 -0.588 -0.461 0.000 1.230 -1.504 -1.517 1.107 1.436 -0.035 0.104 2.548 0.629 1.997 -1.282 0.000 2.084 1.450 0.984 1.084 1.827 1.547 1.213
1 0.871 0.618 -1.544 0.718 0.186 1.041 -1.180 0.434 2.173 1.133 1.558 -1.301 0.000 0.452 -0.595 0.522 0.000 0.665 0.567 0.130 3.102 1.872 1.114 1.095 1.398 0.979 1.472 1.168
1 3.308 1.037 -0.634 0.690 -0.619 1.975 0.949 1.280 0.000 0.826 0.546 -0.139 2.215 0.635 -0.045 0.427 0.000 1.224 0.112 1.339 3.102 1.756 1.050 0.992 0.738 0.903 0.968 1.238
0 0.588 2.104 -0.872 1.136 1.743 0.842 0.638 0.015 0.000 0.481 0.928 1.000 2.215 0.595 0.125 1.429 0.000 0.951 -1.140 -0.511 3.102 1.031 1.057 0.979 0.673 1.064 1.001 0.891
0 0.289 0.823 0.013 0.615 -1.601 0.177 2.403 -0.015 0.000 0.258 1.151 1.036 2.215 0.694 0.553 -1.326 2.548 0.411 0.366 0.106 0.000 0.482 0.562 0.989 0.670 0.404 0.516 0.561
1 0.294 -0.660 -1.162 1.752 0.384 0.860 0.513 1.119 0.000 2.416 0.107 -1.342 0.000 1.398 0.361 -0.350 2.548 1.126 -0.902 0.040 1.551 0.650 1.125 0.988 0.531 0.843 0.912 0.911
0 0.599 -0.616 1.526 1.381 0.507 0.955 -0.646 -0.085 2.173 0.775 -0.533 1.116 2.215 0.789 -0.136 -1.176 0.000 2.449 1.435 -1.433 0.000 1.692 1.699 1.000 0.869 1.119 1.508 1.303
1 1.100 -1.174 -1.114 1.601 -1.576 1.056 -1.343 0.547 2.173 0.555 0.367 0.592 2.215 0.580 -1.862 -0.914 0.000 0.904 0.508 -0.444 0.000 1.439 1.105 0.986 1.408 1.104 1.190 1.094
1 2.237 -0.701 1.470 0.719 -0.199 0.745 -0.132 -0.737 1.087 0.976 -0.227 0.093 2.215 0.699 0.057 1.133 0.000 0.661 0.573 -0.679 0.000 0.785 0.772 1.752 1.235 0.856 0.990 0.825
1 0.455 -0.880 -1.482 1.260 -0.178 1.499 0.158 1.022 0.000 1.867 -0.435 -0.675 2.215 1.234 0.783 1.586 0.000 0.641 -0.454 -0.409 3.102 1.002 0.964 0.986 0.761 0.240 1.190 0.995
1 1.158 -0.778 -0.159 0.823 1.641 1.341 -0.830 -1.169 2.173 0.840 -1.554 0.934 0.000 0.693 0.488 -1.218 2.548 1.042 1.395 0.276 0.000 0.946 0.785 1.350 1.079 0.893 1.267 1.151
1 0.902 -0.078 -0.055 0.872 -0.012 0.843 1.276 1.739 2.173 0.838 1.492 0.918 0.000 0.626 0.904 -0.648 2.548 0.412 -2.027 -0.883 0.000 2.838 1.664 0.988 1.803 0.768 1.244 1.280
1 0.649 -1.028 -1.521 1.097 0.774 1.216 -0.383 -0.318 2.173 1.643 -0.285 -1.705 0.000 0.911 -0.091 0.341 0.000 0.592 0.537 0.732 3.102 0.911 0.856 1.027 1.160 0.874 0.986 0.893
1 1.192 1.846 -0.781 1.326 -0.747 1.550 1.177 1.366 0.000 1.196 0.151 0.387 2.215 0.527 2.261 -0.190 0.000 0.390 1.474 0.381 0.000 0.986 1.025 1.004 1.392 0.761 0.965 1.043
0 0.438 -0.358 -1.549 0.836 0.436 0.818 0.276 -0.708 2.173 0.707 0.826 0.392 0.000 1.050 1.741 -1.066 0.000 1.276 -1.583 0.842 0.000 1.475 1.273 0.986 0.853 1.593 1.255 1.226
1 1.083 0.142 1.701 0.605 -0.253 1.237 0.791 1.183 2.173 0.842 2.850 -0.082 0.000 0.724 -0.464 -0.694 0.000 1.499 0.456 -0.226 3.102 0.601 0.799 1.102 0.995 1.389 1.013 0.851
0 0.828 1.897 -0.615 0.572 -0.545 0.572 0.461 0.464 2.173 0.393 0.356 1.069 2.215 1.840 0.088 1.500 0.000 0.407 -0.663 -0.787 0.000 0.950 0.965 0.979 0.733 0.363 0.618 0.733
0 0.735 1.438 1.197 1.123 -0.214 0.641 0.949 0.858 0.000 1.162 0.524 -0.896 2.215 0.992 0.454 -1.475 2.548 0.902 1.079 0.019 0.000 0.822 0.917 1.203 1.032 0.569 0.780 0.764
0 0.437 -2.102 0.044 1.779 -1.042 1.231 -0.181 -0.515 1.087 2.666 0.863 1.466 2.215 1.370 0.345 -1.371 0.000 0.906 0.363 1.611 0.000 1.140 1.362 1.013 3.931 3.004 2.724 2.028
1 0.881 1.814 -0.987 0.384 0.800 2.384 1.422 0.640 0.000 1.528 0.292 -0.962 1.107 2.126 -0.371 -1.401 2.548 0.700 0.109 0.203 0.000 0.450 0.813 0.985 0.956 1.013 0.993 0.774
1 0.630 0.408 0.152 0.194 0.316 0.710 -0.824 -0.358 2.173 0.741 0.535 -0.851 2.215 0.933 0.406 1.148 0.000 0.523 -0.479 -0.625 0.000 0.873 0.960 0.988 0.830 0.921 0.711 0.661
1 0.870 -0.448 -1.134 0.616 0.135 0.600 0.649 -0.622 2.173 0.768 0.709 -0.123 0.000 1.308 0.500 1.468 0.000 1.973 -0.286 1.462 3.102 0.909 0.944 0.990 0.835 1.250 0.798 0.776
0 1.290 0.552 1.330 0.615 -1.353 0.661 0.240 -0.393 0.000 0.531 0.053 -1.588 0.000 0.675 0.839 -0.345 1.274 1.597 0.020 0.536 3.102 1.114 0.964 0.987 0.783 0.675 0.662 0.675
1 0.943 0.936 1.068 1.373 0.671 2.170 -2.011 -1.032 0.000 0.640 0.361 -0.806 0.000 2.239 -0.083 0.590 2.548 1.224 0.646 -1.723 0.000 0.879 0.834 0.981 1.436 0.568 0.916 0.931
1 0.431 1.686 -1.053 0.388 1.739 0.457 -0.471 -0.743 2.173 0.786 1.432 -0.547 2.215 0.537 -0.413 1.256 0.000 0.413 2.311 -0.408 0.000 1.355 1.017 0.982 0.689 1.014 0.821 0.715
0 1.620 -0.055 -0.862 1.341 -1.571 0.634 -0.906 0.935 2.173 0.501 -2.198 -0.525 0.000 0.778 -0.708 -0.060 0.000 0.988 -0.621 0.489 3.102 0.870 0.956 1.216 0.992 0.336 0.871 0.889
1 0.549 0.304 -1.443 1.309 -0.312 1.116 0.644 1.519 2.173 1.078 -0.303 -0.736 0.000 1.261 0.387 0.628 2.548 0.945 -0.190 0.090 0.000 0.893 1.043 1.000 1.124 1.077 1.026 0.886
0 0.412 -0.618 -1.486 1.133 -0.665 0.646 0.436 1.520 0.000 0.993 0.976 0.106 2.215 0.832 0.091 0.164 2.548 0.672 -0.650 1.256 0.000 0.695 1.131 0.991 1.017 0.455 1.226 1.087
0 1.183 -0.084 1.644 1.389 0.967 0.843 0.938 -0.670 0.000 0.480 0.256 0.123 2.215 0.437 1.644 0.491 0.000 0.501 -0.416 0.101 3.102 1.060 0.804 1.017 0.775 0.173 0.535 0.760
0 1.629 -1.486 -0.683 2.786 -0.492 1.347 -2.638 1.453 0.000 1.857 0.208 0.873 0.000 0.519 -1.265 -1.602 1.274 0.903 -1.102 -0.329 1.551 6.892 3.522 0.998 0.570 0.477 2.039 2.006
1 2.045 -0.671 -1.235 0.490 -0.952 0.525 -1.252 1.289 0.000 1.088 -0.993 0.648 2.215 0.975 -0.109 -0.254 2.548 0.556 -1.095 -0.194 0.000 0.803 0.861 0.980 1.282 0.945 0.925 0.811
0 0.448 -0.058 -0.974 0.945 -1.633 1.181 -1.139 0.266 2.173 1.118 -0.761 1.502 1.107 1.706 0.585 -0.680 0.000 0.487 -1.951 0.945 0.000 2.347 1.754 0.993 1.161 1.549 1.414 1.176
0 0.551 0.519 0.448 2.183 1.293 1.220 0.628 -0.627 2.173 1.019 -0.002 -0.652 0.000 1.843 -0.386 1.042 2.548 0.400 -1.102 -1.014 0.000 0.648 0.792 1.049 0.888 2.132 1.262 1.096
0 1.624 0.488 1.403 0.760 0.559 0.812 0.777 -1.244 2.173 0.613 0.589 -0.030 2.215 0.692 1.058 0.683 0.000 1.054 1.165 -0.765 0.000 0.915 0.875 1.059 0.821 0.927 0.792 0.721
1 0.774 0.444 1.257 0.515 -0.689 0.515 1.448 -1.271 0.000 0.793 0.118 0.811 1.107 0.679 0.326 -0.426 0.000 1.066 -0.865 -0.049 3.102 0.960 1.046 0.986 0.716 0.772 0.855 0.732
1 2.093 -1.240 1.615 0.918 -1.202 1.412 -0.541 0.640 1.087 2.019 0.872 -0.639 0.000 0.672 -0.936 0.972 0.000 0.896 0.235 0.212 0.000 0.810 0.700 1.090 0.797 0.862 1.049 0.874
1 0.908 1.069 0.283 0.400 1.293 0.609 1.452 -1.136 0.000 0.623 0.417 -0.098 2.215 1.023 0.775 1.054 1.274 0.706 2.346 -1.305 0.000 0.744 1.006 0.991 0.606 0.753 0.796 0.753
0 0.403 -1.328 -0.065 0.901 1.052 0.708 -0.354 -0.718 2.173 0.892 0.633 1.684 2.215 0.999 -1.205 0.941 0.000 0.930 1.072 -0.809 0.000 2.105 1.430 0.989 0.838 1.147 1.042 0.883
0 1.447 0.453 0.118 1.731 0.650 0.771 0.446 -1.564 0.000 0.973 -2.014 0.354 0.000 1.949 -0.643 -1.531 1.274 1.106 -0.334 -1.163 0.000 0.795 0.821 1.013 1.699 0.918 1.118 1.018
1 1.794 0.123 -0.454 0.057 1.489 0.966 -1.190 1.090 1.087 0.539 -0.535 1.035 0.000 1.096 -1.069 -1.236 2.548 0.659 -1.196 -0.283 0.000 0.803 0.756 0.985 1.343 1.109 0.993 0.806
0 1.484 -2.047 0.813 0.591 -0.295 0.923 0.312 -1.164 2.173 0.654 -0.316 0.752 2.215 0.599 1.966 -1.128 0.000 0.626 -0.304 -1.431 0.000 1.112 0.910 1.090 0.986 1.189 1.350 1.472
0 0.417 -2.016 0.849 1.817 0.040 1.201 -1.676 -1.394 0.000 0.792 0.537 0.641 2.215 0.794 -1.222 0.187 0.000 0.825 -0.217 1.334 3.102 1.470 0.931 0.987 1.203 0.525 0.833 0.827
1 0.603 1.009 0.033 0.486 1.225 0.884 -0.617 -1.058 0.000 0.500 -1.407 -0.567 0.000 1.476 -0.876 0.605 2.548 0.970 0.560 1.092 3.102 0.853 1.153 0.988 0.846 0.920 0.944 0.835
1 1.381 -0.326 0.552 0.417 -0.027 1.030 -0.835 -1.287 2.173 0.941 -0.421 1.519 2.215 0.615 -1.650 0.377 0.000 0.606 0.644 0.650 0.000 1.146 0.970 0.990 1.191 0.884 0.897 0.826
1 0.632 1.200 -0.703 0.438 -1.700 0.779 -0.731 0.958 1.087 0.605 0.393 -1.376 0.000 0.670 -0.827 -1.315 2.548 0.626 -0.501 0.417 0.000 0.904 0.903 0.998 0.673 0.803 0.722 0.640
1 1.561 -0.569 1.580 0.329 0.237 1.059 0.731 0.415 2.173 0.454 0.016 -0.828 0.000 0.587 0.008 -0.291 1.274 0.597 1.119 1.191 0.000 0.815 0.908 0.988 0.733 0.690 0.892 0.764
1 2.102 0.087 0.449 1.164 -0.390 1.085 -0.408 -1.116 2.173 0.578 0.197 -0.137 0.000 1.202 0.917 1.523 0.000 0.959 -0.832 1.404 3.102 1.380 1.109 1.486 1.496 0.886 1.066 1.025
1 1.698 -0.489 -0.552 0.976 -1.009 1.620 -0.721 0.648 1.087 1.481 -1.860 -1.354 0.000 1.142 -1.140 1.401 2.548 1.000 -1.274 -0.158 0.000 1.430 1.130 0.987 1.629 1.154 1.303 1.223
1 1.111 -0.249 -1.457 0.421 0.939 0.646 -2.076 0.362 0.000 1.315 0.796 -1.436 2.215 0.780 0.130 0.055 0.000 1.662 -0.834 0.461 0.000 0.920 0.948 0.990 1.046 0.905 1.493 1.169
1 0.945 0.390 -1.159 1.675 0.437 0.356 0.261 0.543 1.087 0.574 0.838 1.599 2.215 0.496 -1.220 -0.022 0.000 0.558 -2.454 1.440 0.000 0.763 0.983 1.728 1.000 0.578 0.922 1.003
1 2.076 0.014 -1.314 0.854 -0.306 3.446 1.341 0.598 0.000 2.086 0.227 -0.747 2.215 1.564 -0.216 1.649 2.548 0.965 -0.857 -1.062 0.000 0.477 0.734 1.456 1.003 1.660 1.001 0.908
1 1.992 0.192 -0.103 0.108 -1.599 0.938 0.595 -1.360 2.173 0.869 -1.012 1.432 0.000 1.302 0.850 0.436 2.548 0.487 1.051 -1.027 0.000 0.502 0.829 0.983 1.110 1.394 0.904 0.836
0 0.460 1.625 1.485 1.331 1.242 0.675 -0.329 -1.039 1.087 0.671 -1.028 -0.514 0.000 1.265 -0.788 0.415 1.274 0.570 -0.683 -1.738 0.000 0.725 0.758 1.004 1.024 1.156 0.944 0.833
0 0.871 0.839 -1.536 0.428 1.198 0.875 -1.256 -0.466 1.087 0.684 -0.768 0.150 0.000 0.556 -1.793 0.389 0.000 0.942 -1.126 1.339 1.551 0.624 0.734 0.986 1.357 0.960 1.474 1.294
1 0.951 1.651 0.576 1.273 1.495 0.834 0.048 -0.578 2.173 0.386 -0.056 -1.448 0.000 0.597 -0.196 0.162 2.548 0.524 1.649 1.625 0.000 0.737 0.901 1.124 1.014 0.556 1.039 0.845
1 1.049 -0.223 0.685 0.256 -1.191 2.506 0.238 -0.359 0.000 1.510 -0.904 1.158 1.107 2.733 -0.902 1.679 2.548 0.407 -0.474 -1.572 0.000 1.513 2.472 0.982 1.238 0.978 1.985 1.510
0 0.455 -0.028 0.265 1.286 1.373 0.459 0.331 -0.922 0.000 0.343 0.634 0.430 0.000 0.279 -0.084 -0.272 0.000 0.475 0.926 -0.123 3.102 0.803 0.495 0.987 0.587 0.211 0.417 0.445
1 2.074 0.388 0.878 1.110 1.557 1.077 -0.226 -0.295 2.173 0.865 -0.319 -1.116 2.215 0.707 -0.835 0.722 0.000 0.632 -0.608 -0.728 0.000 0.715 0.802 1.207 1.190 0.960 1.143 0.926
1 1.390 0.265 1.196 0.919 -1.371 1.858 0.506 0.786 0.000 1.280 -1.367 -0.720 2.215 1.483 -0.441 -0.675 2.548 1.076 0.294 -0.539 0.000 1.126 0.830 1.155 1.551 0.702 1.103 0.933
1 1.014 -0.079 1.597 1.038 -0.281 1.135 -0.722 -0.177 2.173 0.544 -1.475 -1.501 0.000 1.257 -1.315 1.212 0.000 0.496 -0.060 1.180 1.551 0.815 0.611 1.411 1.110 0.792 0.846 0.853
0 0.335 1.267 -1.154 2.011 -0.574 0.753 0.618 1.411 0.000 0.474 0.748 0.681 2.215 0.608 -0.446 -0.354 2.548 0.399 1.295 -0.581 0.000 0.911 0.882 0.975 0.832 0.598 0.580 0.678
1 0.729 -0.189 1.182 0.293 1.310 0.412 0.459 -0.632 0.000 0.869 -1.128 -0.625 2.215 1.173 -0.893 0.478 2.548 0.584 -2.394 -1.727 0.000 2.016 1.272 0.995 1.034 0.905 0.966 1.038
1 1.225 -1.215 -0.088 0.881 -0.237 0.600 -0.976 1.462 2.173 0.876 0.506 1.583 2.215 0.718 1.228 -0.031 0.000 0.653 -1.292 1.216 0.000 0.838 1.108 0.981 1.805 0.890 1.251 1.197
1 2.685 -0.444 0.847 0.253 0.183 0.641 -1.541 -0.873 2.173 0.417 2.874 -0.551 0.000 0.706 -1.431 0.764 0.000 1.390 -0.596 -1.397 0.000 0.894 0.829 0.993 0.789 0.654 0.883 0.746
0 0.638 -0.481 0.683 1.457 -1.024 0.707 -1.338 1.498 0.000 0.980 0.518 0.289 2.215 0.964 -0.531 -0.423 0.000 0.694 -0.654 -1.314 3.102 0.807 1.283 1.335 0.658 0.907 0.797 0.772
1 1.789 -0.765 -0.732 0.421 -0.020 1.142 -1.353 1.439 2.173 0.725 -1.518 -1.261 0.000 0.812 -2.597 -0.463 0.000 1.203 -0.120 1.001 0.000 0.978 0.673 0.985 1.303 1.400 1.078 0.983
1 0.784 -1.431 1.724 0.848 0.559 0.615 -1.643 -1.456 0.000 1.339 -0.513 0.040 2.215 0.394 -2.483 1.304 0.000 0.987 0.889 -0.339 0.000 0.732 0.713 0.987 0.973 0.705 0.875 0.759
1 0.911 1.098 -1.289 0.421 0.823 1.218 -0.503 0.431 0.000 0.775 0.432 -1.680 0.000 0.855 -0.226 -0.460 2.548 0.646 -0.947 -1.243 1.551 2.201 1.349 0.985 0.730 0.451 0.877 0.825
1 0.959 0.372 -0.269 1.255 0.702 1.151 0.097 0.805 2.173 0.993 1.011 0.767 2.215 1.096 0.185 0.381 0.000 1.001 -0.205 0.059 0.000 0.979 0.997 1.168 0.796 0.771 0.839 0.776
0 0.283 -1.864 -1.663 0.219 1.624 0.955 -1.213 0.932 2.173 0.889 0.395 -0.268 0.000 0.597 -1.083 -0.921 2.548 0.584 1.325 -1.072 0.000 0.856 0.927 0.996 0.937 0.936 1.095 0.892
0 2.017 -0.488 -0.466 1.029 -0.870 3.157 0.059 -0.343 2.173 3.881 0.872 1.502 1.107 3.631 1.720 0.963 0.000 0.633 -1.264 -1.734 0.000 4.572 3.339 1.005 1.407 5.590 3.614 3.110
1 1.088 0.414 -0.841 0.485 0.605 0.860 1.110 -0.568 0.000 1.152 -0.325 1.203 2.215 0.324 1.652 -0.104 0.000 0.510 1.095 -1.728 0.000 0.880 0.722 0.989 0.977 0.711 0.888 0.762
0 0.409 -1.717 0.712 0.809 -1.301 0.701 -1.529 -1.411 0.000 1.191 -0.582 0.438 2.215 1.147 0.813 -0.571 2.548 1.039 0.543 0.892 0.000 0.636 0.810 0.986 0.861 1.411 0.907 0.756
1 1.094 1.577 -0.988 0.497 -0.149 0.891 -2.459 1.034 0.000 0.646 0.792 -1.022 0.000 1.573 0.254 -0.053 2.548 1.428 0.190 -1.641 3.102 4.322 2.687 0.985 0.881 1.135 1.907 1.831
1 0.613 1.993 -0.280 0.544 0.931 0.909 1.526 1.559 0.000 0.840 1.473 -0.483 2.215 0.856 0.352 0.408 2.548 1.058 1.733 -1.396 0.000 0.801 1.066 0.984 0.639 0.841 0.871 0.748
0 0.958 -1.202 0.600 0.434 0.170 0.783 -0.214 1.319 0.000 0.835 -0.454 -0.615 2.215 0.658 -1.858 -0.891 0.000 0.640 0.172 -1.204 3.102 1.790 1.086 0.997 0.804 0.403 0.793 0.756
1 1.998 -0.238 0.972 0.058 0.266 0.759 1.576 -0.357 2.173 1.004 -0.349 -0.747 2.215 0.962 0.490 -0.453 0.000 1.592 0.661 -1.405 0.000 0.874 1.086 0.990 1.436 1.527 1.177 0.993
1 0.796 -0.171 -0.818 0.574 -1.625 1.201 -0.737 1.451 2.173 0.651 0.404 -0.452 0.000 1.150 -0.652 -0.120 0.000 1.008 -0.093 0.531 3.102 0.884 0.706 0.979 1.193 0.937 0.943 0.881
1 0.773 1.023 0.527 1.537 -0.201 2.967 -0.574 -1.534 2.173 2.346 -0.307 0.394 2.215 1.393 0.135 -0.027 0.000 3.015 0.187 0.516 0.000 0.819 1.260 0.982 2.552 3.862 2.179 1.786
0 1.823 1.008 -1.489 0.234 -0.962 0.591 0.461 0.996 2.173 0.568 -1.297 -0.410 0.000 0.887 2.157 1.194 0.000 2.079 0.369 -0.085 3.102 0.770 0.945 0.995 1.179 0.971 0.925 0.983
0 0.780 0.640 0.490 0.680 -1.301 0.715 -0.137 0.152 2.173 0.616 -0.831 1.668 0.000 1.958 0.528 -0.982 2.548 0.966 -1.551 0.462 0.000 1.034 1.079 1.008 0.827 1.369 1.152 0.983
1 0.543 0.801 1.543 1.134 -0.772 0.954 -0.849 0.410 1.087 0.851 -1.988 1.686 0.000 0.799 -0.912 -1.156 0.000 0.479 0.097 1.334 0.000 0.923 0.597 0.989 1.231 0.759 0.975 0.867
0 1.241 -0.014 0.129 1.158 0.670 0.445 -0.732 1.739 2.173 0.918 0.659 -1.340 2.215 0.557 2.410 -1.404 0.000 0.966 -1.545 -1.120 0.000 0.874 0.918 0.987 1.001 0.798 0.904 0.937
0 1.751 -0.266 -1.575 0.489 1.292 1.112 1.533 0.137 2.173 1.204 -0.414 -0.928 0.000 0.879 1.237 -0.415 2.548 1.479 1.469 0.913 0.000 2.884 1.747 0.989 1.742 0.600 1.363 1.293
1 1.505 1.208 -1.476 0.995 -0.836 2.800 -1.600 0.111 0.000 2.157 1.241 1.110 2.215 1.076 2.619 -0.913 0.000 1.678 2.204 -1.575 0.000 0.849 1.224 0.990 1.412 0.976 1.271 1.105
0 0.816 0.611 0.779 1.694 0.278 0.575 -0.787 1.592 2.173 1.148 1.076 -0.831 2.215 0.421 1.316 0.632 0.000 0.589 0.452 -1.466 0.000 0.779 0.909 0.990 1.146 1.639 1.236 0.949
1 0.551 -0.808 0.330 1.188 -0.294 0.447 -0.035 -0.993 0.000 0.432 -0.276 -0.481 2.215 1.959 -0.288 1.195 2.548 0.638 0.583 1.107 0.000 0.832 0.924 0.993 0.723 0.976 0.968 0.895
0 1.316 -0.093 0.995 0.860 -0.621 0.593 -0.560 -1.599 2.173 0.524 -0.318 -0.240 2.215 0.566 0.759 -0.368 0.000 0.483 -2.030 -1.104 0.000 1.468 1.041 1.464 0.811 0.778 0.690 0.722
1 1.528 0.067 -0.855 0.959 -1.464 1.143 -0.082 1.023 0.000 0.702 -0.763 -0.244 0.000 0.935 -0.881 0.206 2.548 0.614 -0.831 1.657 3.102 1.680 1.105 0.983 1.078 0.559 0.801 0.809
0 0.558 -0.833 -0.598 1.436 -1.724 1.316 -0.661 1.593 2.173 1.148 -0.503 -0.132 1.107 1.584 -0.125 0.380 0.000 1.110 -1.216 -0.181 0.000 1.258 0.860 1.053 0.790 1.814 1.159 1.007
1 0.819 0.879 1.221 0.598 -1.450 0.754 0.417 -0.369 2.173 0.477 1.199 0.274 0.000 1.073 0.368 0.273 2.548 1.599 2.047 1.690 0.000 0.933 0.984 0.983 0.788 0.613 0.728 0.717
0 0.981 -1.007 0.489 0.923 1.261 0.436 -0.698 -0.506 2.173 0.764 -1.105 -1.241 2.215 0.577 -2.573 -0.036 0.000 0.565 -1.628 1.610 0.000 0.688 0.801 0.991 0.871 0.554 0.691 0.656
0 2.888 0.568 -1.416 1.461 -1.157 1.756 -0.900 0.522 0.000 0.657 0.409 1.076 2.215 1.419 0.672 -0.019 0.000 1.436 -0.184 -0.980 3.102 0.946 0.919 0.995 1.069 0.890 0.834 0.856
1 0.522 1.805 -0.963 1.136 0.418 0.727 -0.195 -1.695 2.173 0.309 2.559 -0.178 0.000 0.521 1.794 0.919 0.000 0.788 0.174 -0.406 3.102 0.555 0.729 1.011 1.385 0.753 0.927 0.832
1 0.793 -0.162 -1.643 0.634 0.337 0.898 -0.633 1.689 0.000 0.806 -0.826 -0.356 2.215 0.890 -0.142 -1.268 0.000 1.293 0.574 0.725 0.000 0.833 1.077 0.988 0.721 0.679 0.867 0.753
0 1.298 1.098 0.280 0.371 -0.373 0.855 -0.306 -1.186 0.000 0.977 -0.421 1.003 0.000 0.978 0.956 -1.249 2.548 0.735 0.577 -0.037 3.102 0.974 1.002 0.992 0.549 0.587 0.725 0.954
1 0.751 -0.520 -1.653 0.168 -0.419 0.878 -1.023 -1.364 2.173 1.310 -0.667 0.863 0.000 1.196 -0.827 0.358 0.000 1.154 -0.165 -0.360 1.551 0.871 0.950 0.983 0.907 0.955 0.959 0.874
0 1.730 0.666 -1.432 0.446 1.302 0.921 -0.203 0.621 0.000 1.171 -0.365 -0.611 1.107 0.585 0.807 1.150 0.000 0.415 -0.843 1.311 0.000 0.968 0.786 0.986 1.059 0.371 0.790 0.848
1 0.596 -1.486 0.690 1.045 -1.344 0.928 0.867 0.820 2.173 0.610 0.999 -1.329 2.215 0.883 -0.001 -0.106 0.000 1.145 2.184 -0.808 0.000 2.019 1.256 1.056 1.751 1.037 1.298 1.518
1 0.656 -1.993 -0.519 1.643 -0.143 0.815 0.256 1.220 1.087 0.399 -1.184 -1.458 0.000 0.738 1.361 -1.443 0.000 0.842 0.033 0.293 0.000 0.910 0.891 0.993 0.668 0.562 0.958 0.787
1 1.127 -0.542 0.645 0.318 -1.496 0.661 -0.640 0.369 2.173 0.992 0.358 1.702 0.000 1.004 0.316 -1.109 0.000 1.616 -0.936 -0.707 1.551 0.875 1.191 0.985 0.651 0.940 0.969 0.834
0 0.916 -1.423 -1.490 1.248 -0.538 0.625 -0.535 -0.174 0.000 0.769 -0.389 1.608 2.215 0.667 -1.138 -1.738 1.274 0.877 -0.019 0.482 0.000 0.696 0.917 1.121 0.678 0.347 0.647 0.722
1 2.756 -0.637 -1.715 1.331 1.124 0.913 -0.296 -0.491 0.000 0.983 -0.831 0.000 2.215 1.180 -0.428 0.742 0.000 1.113 0.005 -1.157 1.551 1.681 1.096 1.462 0.976 0.917 1.009 1.040
0 0.755 1.754 0.701 2.111 0.256 1.243 0.057 -1.502 2.173 0.565 -0.034 -1.078 1.107 0.529 1.696 -1.090 0.000 0.665 0.292 0.107 0.000 0.870 0.780 0.990 2.775 0.465 1.876 1.758
1 0.593 -0.762 1.743 0.908 0.442 0.773 -1.357 -0.768 2.173 0.432 1.421 1.236 0.000 0.579 0.291 -0.403 0.000 0.966 -0.309 1.016 3.102 0.893 0.743 0.989 0.857 1.030 0.943 0.854
1 0.891 -1.151 -1.269 0.504 -0.622 0.893 -0.549 0.700 0.000 0.828 -0.825 0.154 2.215 1.083 0.632 -1.141 0.000 1.059 -0.557 1.526 3.102 2.117 1.281 0.987 0.819 0.802 0.917 0.828
1 2.358 -0.248 0.080 0.747 -0.975 1.019 1.374 1.363 0.000 0.935 0.127 -1.707 2.215 0.312 -0.827 0.017 0.000 0.737 1.059 -0.327 0.000 0.716 0.828 1.495 0.953 0.704 0.880 0.745
0 0.660 -0.017 -1.138 0.453 1.002 0.645 0.518 0.703 2.173 0.751 0.705 -0.592 2.215 0.744 -0.909 -1.596 0.000 0.410 -1.135 0.481 0.000 0.592 0.922 0.989 0.897 0.948 0.777 0.701
1 0.718 0.518 0.225 1.710 -0.022 1.888 -0.424 1.092 0.000 4.134 0.185 -1.366 0.000 1.415 1.293 0.242 2.548 2.351 0.264 -0.057 3.102 0.830 1.630 0.976 1.215 0.890 1.422 1.215
1 1.160 0.203 0.941 0.594 0.212 0.636 -0.556 0.679 2.173 1.089 -0.481 -1.008 1.107 1.245 -0.056 -1.357 0.000 0.587 1.007 0.056 0.000 1.106 0.901 0.987 0.786 1.224 0.914 0.837
1 0.697 0.542 0.619 0.985 1.481 0.745 0.415 1.644 2.173 0.903 0.495 -0.958 2.215 1.165 1.195 0.346 0.000 1.067 -0.881 -0.264 0.000 0.830 1.025 0.987 0.690 0.863 0.894 0.867
0 1.430 0.190 -0.700 0.246 0.518 1.302 0.660 -0.247 2.173 1.185 -0.539 1.504 0.000 1.976 -0.401 1.079 0.000 0.855 -0.958 -1.110 3.102 0.886 0.953 0.993 0.889 1.400 1.376 1.119
1 1.122 -0.795 0.202 0.397 -1.553 0.597 -1.459 -0.734 2.173 0.522 1.044 1.027 2.215 0.783 -1.243 1.701 0.000 0.371 1.737 0.199 0.000 1.719 1.176 0.988 0.723 1.583 1.063 0.914
0 1.153 0.526 1.236 0.266 0.001 1.139 -1.236 -0.585 2.173 1.337 -0.215 -1.356 2.215 1.780 1.129 0.902 0.000 1.608 -0.391 -0.161 0.000 1.441 1.633 0.990 1.838 1.516 1.635 1.373
1 0.760 1.012 0.758 0.937 0.051 0.941 0.687 -1.247 2.173 1.288 -0.743 0.822 0.000 1.552 1.782 -1.533 0.000 0.767 1.349 0.168 0.000 0.716 0.862 0.988 0.595 0.359 0.697 0.623
1 1.756 -1.469 1.395 1.345 -1.595 0.817 0.017 -0.741 2.173 0.483 -0.008 0.293 0.000 1.768 -0.663 0.438 1.274 1.202 -1.387 -0.222 0.000 1.022 1.058 0.992 1.407 1.427 1.356 1.133
0 0.397 0.582 -0.758 1.260 -1.735 0.889 -0.515 1.139 2.173 0.973 1.616 0.460 0.000 1.308 1.001 -0.709 2.548 0.858 0.995 -0.231 0.000 0.749 0.888 0.979 1.487 1.804 1.208 1.079
0 0.515 -0.984 0.425 1.114 -0.439 1.999 0.818 1.561 0.000 1.407 0.009 -0.380 0.000 1.332 0.230 0.397 0.000 1.356 -0.616 -1.057 3.102 0.978 1.017 0.990 1.118 0.862 0.835 0.919
1 1.368 -0.921 -0.866 0.842 -0.598 0.456 -1.176 1.219 1.087 0.419 -1.974 -0.819 0.000 0.791 -1.640 0.881 0.000 1.295 -0.782 0.442 3.102 0.945 0.761 0.974 0.915 0.535 0.733 0.651
0 2.276 0.134 0.399 2.525 0.376 1.111 -1.078 -1.571 0.000 0.657 2.215 -0.900 0.000 1.183 -0.662 -0.508 2.548 1.436 -0.517 0.960 3.102 0.569 0.931 0.993 1.170 0.967 0.879 1.207
0 0.849 0.907 0.124 0.652 1.585 0.715 0.355 -1.200 0.000 0.599 -0.892 1.301 0.000 1.106 1.151 0.582 0.000 1.895 -0.279 -0.568 3.102 0.881 0.945 0.998 0.559 0.649 0.638 0.660
1 2.105 0.248 -0.797 0.530 0.206 1.957 -2.175 0.797 0.000 1.193 0.637 -1.646 2.215 0.881 1.111 -1.046 0.000 0.872 -0.185 1.085 1.551 0.986 1.343 1.151 1.069 0.714 2.063 1.951
1 1.838 1.060 1.637 1.017 1.370 0.913 0.461 -0.609 1.087 0.766 -0.461 0.303 2.215 0.724 -0.061 0.886 0.000 0.941 1.123 -0.745 0.000 0.858 0.847 0.979 1.313 1.083 1.094 0.910
0 0.364 1.274 1.066 1.570 -0.394 0.485 0.012 -1.716 0.000 0.317 -1.233 0.534 2.215 0.548 -2.165 0.762 0.000 0.729 0.169 -0.318 3.102 0.892 0.944 1.013 0.594 0.461 0.688 0.715
1 0.503 1.343 -0.031 1.134 -1.204 0.590 -0.309 0.174 2.173 0.408 2.372 -0.628 0.000 1.850 0.400 1.147 2.548 0.664 -0.458 -0.885 0.000 1.445 1.283 0.989 1.280 1.118 1.127 1.026
0 1.873 0.258 0.103 2.491 0.530 1.678 0.644 -1.738 2.173 1.432 0.848 -1.340 0.000 0.621 1.323 -1.316 0.000 0.628 0.789 -0.206 1.551 0.426 0.802 1.125 0.688 1.079 1.338 1.239
1 0.826 -0.732 1.587 0.582 -1.236 0.495 0.757 -0.741 2.173 0.940 1.474 0.354 2.215 0.474 1.055 -1.657 0.000 0.415 1.758 0.841 0.000 0.451 0.578 0.984 0.757 0.922 0.860 0.696
0 0.935 -1.614 -0.597 0.299 1.223 0.707 -0.853 -1.026 0.000 0.751 0.007 -1.691 0.000 1.062 -0.125 0.976 2.548 0.877 1.275 0.646 0.000 0.962 1.074 0.980 0.608 0.726 0.741 0.662
1 0.643 0.542 -1.285 0.474 -0.366 0.667 -0.446 1.195 2.173 1.076 0.145 -0.126 0.000 0.970 -0.661 0.394 1.274 1.218 -0.184 -1.722 0.000 1.331 1.019 0.985 1.192 0.677 0.973 0.910
0 0.713 0.164 1.080 1.427 -0.460 0.960 -0.152 -0.940 2.173 1.427 -0.901 1.036 1.107 0.440 -1.269 -0.194 0.000 0.452 1.932 -0.532 0.000 1.542 1.210 1.374 1.319 1.818 1.220 1.050
0 0.876 -0.463 -1.224 2.458 -1.689 1.007 -0.752 0.398 0.000 2.456 -1.285 -0.152 1.107 1.641 1.838 1.717 0.000 0.458 0.194 0.488 3.102 4.848 2.463 0.986 1.981 0.974 2.642 2.258
1 0.384 -0.275 0.387 1.403 -0.994 0.620 -1.529 1.685 0.000 1.091 -1.644 1.078 0.000 0.781 -1.311 0.326 2.548 1.228 -0.728 -0.633 1.551 0.920 0.854 0.987 0.646 0.609 0.740 0.884
0 0.318 -1.818 -1.008 0.977 1.268 0.457 2.451 -1.522 0.000 0.881 1.351 0.461 2.215 0.929 0.239 -0.380 2.548 0.382 -0.613 1.330 0.000 1.563 1.193 0.994 0.829 0.874 0.901 1.026
1 0.612 -1.120 1.098 0.402 -0.480 0.818 0.188 1.511 0.000 0.800 -0.253 0.977 0.000 1.175 0.271 -1.289 1.274 2.531 0.226 -0.409 3.102 0.889 0.947 0.979 1.486 0.940 1.152 1.119
1 0.587 -0.737 -0.228 0.970 1.119 0.823 0.184 1.594 0.000 1.104 0.301 -0.818 2.215 0.819 0.712 -0.560 0.000 2.240 -0.419 0.340 3.102 1.445 1.103 0.988 0.715 1.363 1.019 0.926
0 1.030 -0.694 -1.638 0.893 -1.074 1.160 -0.766 0.485 0.000 1.632 -0.698 -1.142 2.215 1.050 -1.092 0.952 0.000 1.475 0.286 0.125 3.102 0.914 1.075 0.982 0.732 1.493 1.219 1.079
1 2.142 0.617 1.517 0.387 -0.862 0.345 1.203 -1.014 2.173 0.609 1.092 0.275 0.000 1.331 0.582 -0.183 2.548 0.557 1.540 -1.642 0.000 0.801 0.737 1.060 0.715 0.626 0.749 0.674
0 1.076 0.240 -0.246 0.871 -1.241 0.496 0.282 0.746 2.173 1.095 -0.648 1.100 2.215 0.446 -1.756 0.764 0.000 0.434 0.788 -0.991 0.000 1.079 0.868 1.047 0.818 0.634 0.795 0.733
0 1.400 0.901 -1.617 0.625 -0.163 0.661 -0.411 -1.616 2.173 0.685 0.524 0.425 0.000 0.881 -0.766 0.312 0.000 0.979 0.255 -0.667 3.102 0.898 1.105 1.253 0.730 0.716 0.738 0.795
0 3.302 1.132 1.051 0.658 0.768 1.308 0.251 -0.374 1.087 1.673 0.015 -0.898 0.000 0.688 -0.535 1.363 1.274 0.871 1.325 -1.583 0.000 1.646 1.249 0.995 1.919 1.288 1.330 1.329
0 1.757 0.202 0.750 0.767 -0.362 0.932 -1.033 -1.366 0.000 1.529 -1.012 -0.771 0.000 1.161 -0.287 0.059 0.000 2.185 1.147 1.099 3.102 0.795 0.529 1.354 1.144 1.491 1.319 1.161
0 1.290 0.905 -1.711 1.017 -0.695 1.008 -1.038 0.693 2.173 1.202 -0.595 0.187 0.000 1.011 0.139 -1.607 0.000 0.789 -0.613 -1.041 3.102 1.304 0.895 1.259 1.866 0.955 1.211 1.200
1 1.125 -0.004 1.694 0.373 0.329 0.978 0.640 -0.391 0.000 1.122 -0.376 1.521 2.215 0.432 2.413 -1.259 0.000 0.969 0.730 0.512 3.102 0.716 0.773 0.991 0.624 0.977 0.981 0.875
0 1.081 0.861 1.252 1.621 1.474 1.293 0.600 0.630 0.000 1.991 -0.090 -0.675 2.215 0.861 1.105 -0.201 0.000 1.135 2.489 -1.659 0.000 1.089 0.657 0.991 2.179 0.412 1.334 1.071
1 0.652 -0.294 1.241 1.034 0.490 1.033 0.551 -0.963 2.173 0.661 1.031 -1.654 2.215 1.376 -0.018 0.843 0.000 0.943 -0.329 -0.269 0.000 1.085 1.067 0.991 1.504 0.773 1.135 0.993
1 1.408 -1.028 -1.018 0.252 -0.242 0.465 -0.364 -0.200 0.000 1.466 0.669 0.739 1.107 1.031 0.415 -1.468 2.548 0.457 -1.091 -1.722 0.000 0.771 0.811 0.979 1.459 1.204 1.041 0.866
1 0.781 -1.143 -0.659 0.961 1.266 1.183 -0.686 0.119 2.173 1.126 -0.064 1.447 0.000 0.730 1.430 -1.535 0.000 1.601 0.513 1.658 0.000 0.871 1.345 1.184 1.058 0.620 1.107 0.978
1 1.300 -0.616 1.032 0.751 -0.731 0.961 -0.716 1.592 0.000 2.079 -1.063 -0.271 2.215 0.475 0.518 1.695 1.274 0.395 -2.204 0.349 0.000 1.350 0.983 1.369 1.265 1.428 1.135 0.982
1 0.833 0.809 1.657 1.637 1.019 0.705 1.077 -0.968 2.173 1.261 0.114 -0.298 1.107 1.032 0.017 0.236 0.000 0.640 -0.026 -1.598 0.000 0.894 0.982 0.981 1.250 1.054 1.018 0.853
1 1.686 -1.090 -0.301 0.890 0.557 1.304 -0.284 -1.393 2.173 0.388 2.118 0.513 0.000 0.514 -0.015 0.891 0.000 0.460 0.547 0.627 3.102 0.942 0.524 1.186 1.528 0.889 1.015 1.122
1 0.551 0.911 0.879 0.379 -0.796 1.154 -0.808 -0.966 0.000 1.168 -0.513 0.355 2.215 0.646 -1.309 0.773 0.000 0.544 -0.283 1.301 3.102 0.847 0.705 0.990 0.772 0.546 0.790 0.719
1 1.597 0.793 -1.119 0.691 -1.455 0.370 0.337 1.354 0.000 0.646 -1.005 0.732 2.215 1.019 0.040 0.209 0.000 0.545 0.958 0.239 3.102 0.962 0.793 0.994 0.719 0.745 0.812 0.739
0 1.033 -1.193 -0.452 0.247 0.970 0.503 -1.424 1.362 0.000 1.062 -0.416 -1.156 2.215 0.935 -0.023 0.555 2.548 0.410 -1.766 0.379 0.000 0.590 0.953 0.991 0.717 1.081 0.763 0.690
1 0.859 -1.004 1.521 0.781 -0.993 0.677 0.643 -0.338 2.173 0.486 0.409 1.283 0.000 0.679 0.110 0.285 0.000 0.715 -0.735 -0.157 1.551 0.702 0.773 0.984 0.627 0.633 0.694 0.643
0 0.612 -1.127 1.074 1.225 -0.426 0.927 -2.141 -0.473 0.000 1.290 -0.927 -1.085 2.215 1.183 1.981 -1.687 0.000 2.176 0.406 -1.581 0.000 0.945 0.651 1.170 0.895 1.604 1.179 1.142
1 0.535 0.321 -1.095 0.281 -0.960 0.876 -0.709 -0.076 0.000 1.563 -0.666 1.536 2.215 0.773 -0.321 0.435 0.000 0.682 -0.801 -0.952 3.102 0.711 0.667 0.985 0.888 0.741 0.872 0.758
1 0.745 1.586 1.578 0.863 -1.423 0.530 1.714 1.085 0.000 1.174 0.679 1.015 0.000 1.158 0.609 -1.186 2.548 1.851 0.832 -0.248 3.102 0.910 1.164 0.983 0.947 0.858 0.928 0.823
0 0.677 -1.014 -1.648 1.455 1.461 0.596 -2.358 0.517 0.000 0.800 0.849 -0.743 2.215 1.024 -0.282 -1.004 0.000 1.846 -0.977 0.378 3.102 2.210 1.423 0.982 1.074 1.623 1.417 1.258
1 0.815 -1.263 0.057 1.018 -0.208 0.339 -0.347 -1.646 2.173 1.223 0.600 -1.658 2.215 1.435 0.042 0.926 0.000 0.777 1.698 -0.698 0.000 1.022 1.058 1.000 0.784 0.477 0.886 0.836
0 3.512 -1.094 -0.220 0.338 -0.328 1.962 -1.099 1.544 1.087 1.461 -1.305 -0.922 2.215 1.219 -1.289 0.400 0.000 0.731 0.155 1.249 0.000 1.173 1.366 0.993 2.259 2.000 1.626 1.349
0 0.904 1.248 0.325 0.317 -1.624 0.685 -0.538 1.665 2.173 0.685 -2.145 -1.106 0.000 0.632 -1.460 1.017 0.000 1.085 -0.182 0.162 3.102 0.885 0.801 0.989 0.930 0.904 1.012 0.961

File diff suppressed because it is too large Load Diff

View File

@@ -1,500 +0,0 @@
1 0.644 0.247 -0.447 0.862 0.374 0.854 -1.126 -0.790 2.173 1.015 -0.201 1.400 0.000 1.575 1.807 1.607 0.000 1.585 -0.190 -0.744 3.102 0.958 1.061 0.980 0.875 0.581 0.905 0.796
0 0.385 1.800 1.037 1.044 0.349 1.502 -0.966 1.734 0.000 0.966 -1.960 -0.249 0.000 1.501 0.465 -0.354 2.548 0.834 -0.440 0.638 3.102 0.695 0.909 0.981 0.803 0.813 1.149 1.116
0 1.214 -0.166 0.004 0.505 1.434 0.628 -1.174 -1.230 1.087 0.579 -1.047 -0.118 0.000 0.835 0.340 1.234 2.548 0.711 -1.383 1.355 0.000 0.848 0.911 1.043 0.931 1.058 0.744 0.696
1 0.420 1.111 0.137 1.516 -1.657 0.854 0.623 1.605 1.087 1.511 -1.297 0.251 0.000 0.872 -0.368 -0.721 0.000 0.543 0.731 1.424 3.102 1.597 1.282 1.105 0.730 0.148 1.231 1.234
0 0.897 -1.703 -1.306 1.022 -0.729 0.836 0.859 -0.333 2.173 1.336 -0.965 0.972 2.215 0.671 1.021 -1.439 0.000 0.493 -2.019 -0.289 0.000 0.805 0.930 0.984 1.430 2.198 1.934 1.684
0 0.756 1.126 -0.945 2.355 -0.555 0.889 0.800 1.440 0.000 0.585 0.271 0.631 2.215 0.722 1.744 1.051 0.000 0.618 0.924 0.698 1.551 0.976 0.864 0.988 0.803 0.234 0.822 0.911
0 1.141 -0.741 0.953 1.478 -0.524 1.197 -0.871 1.689 2.173 0.875 1.321 -0.518 1.107 0.540 0.037 -0.987 0.000 0.879 1.187 0.245 0.000 0.888 0.701 1.747 1.358 2.479 1.491 1.223
1 0.606 -0.936 -0.384 1.257 -1.162 2.719 -0.600 0.100 2.173 3.303 -0.284 1.561 1.107 0.689 1.786 -0.326 0.000 0.780 -0.532 1.216 0.000 0.936 2.022 0.985 1.574 4.323 2.263 1.742
1 0.603 0.429 -0.279 1.448 1.301 1.008 2.423 -1.295 0.000 0.452 1.305 0.533 0.000 1.076 1.011 1.256 2.548 2.021 1.260 -0.343 0.000 0.890 0.969 1.281 0.763 0.652 0.827 0.785
0 1.171 -0.962 0.521 0.841 -0.315 1.196 -0.744 -0.882 2.173 0.726 -1.305 1.377 1.107 0.643 -1.790 -1.264 0.000 1.257 0.222 0.817 0.000 0.862 0.911 0.987 0.846 1.293 0.899 0.756
1 1.392 -0.358 0.235 1.494 -0.461 0.895 -0.848 1.549 2.173 0.841 -0.384 0.666 1.107 1.199 2.509 -0.891 0.000 1.109 -0.364 -0.945 0.000 0.693 2.135 1.170 1.362 0.959 2.056 1.842
1 1.024 1.076 -0.886 0.851 1.530 0.673 -0.449 0.187 1.087 0.628 -0.895 1.176 2.215 0.696 -0.232 -0.875 0.000 0.411 1.501 0.048 0.000 0.842 0.919 1.063 1.193 0.777 0.964 0.807
1 0.890 -0.760 1.182 1.369 0.751 0.696 -0.959 -0.710 1.087 0.775 -0.130 -1.409 2.215 0.701 -0.110 -0.739 0.000 0.508 -0.451 0.390 0.000 0.762 0.738 0.998 1.126 0.788 0.940 0.790
1 0.460 0.537 0.636 1.442 -0.269 0.585 0.323 -1.731 2.173 0.503 1.034 -0.927 0.000 0.928 -1.024 1.006 2.548 0.513 -0.618 -1.336 0.000 0.802 0.831 0.992 1.019 0.925 1.056 0.833
1 0.364 1.648 0.560 1.720 0.829 1.110 0.811 -0.588 0.000 0.408 1.045 1.054 2.215 0.319 -1.138 1.545 0.000 0.423 1.025 -1.265 3.102 1.656 0.928 1.003 0.544 0.327 0.670 0.746
1 0.525 -0.096 1.206 0.948 -1.103 1.519 -0.582 0.606 2.173 1.274 -0.572 -0.934 0.000 0.855 -1.028 -1.222 0.000 0.578 -1.000 -1.725 3.102 0.896 0.878 0.981 0.498 0.909 0.772 0.668
0 0.536 -0.821 -1.029 0.703 1.113 0.363 -0.711 0.022 1.087 0.325 1.503 1.249 2.215 0.673 1.041 -0.401 0.000 0.480 2.127 1.681 0.000 0.767 1.034 0.990 0.671 0.836 0.669 0.663
1 1.789 -0.583 1.641 0.897 0.799 0.515 -0.100 -1.483 0.000 1.101 0.031 -0.326 2.215 1.195 0.001 0.126 2.548 0.768 -0.148 0.601 0.000 0.916 0.921 1.207 1.069 0.483 0.934 0.795
1 1.332 -0.571 0.986 0.580 1.508 0.582 0.634 -0.746 1.087 1.084 -0.964 -0.489 0.000 0.785 0.274 0.343 2.548 0.779 0.721 1.489 0.000 1.733 1.145 0.990 1.270 0.715 0.897 0.915
0 1.123 0.629 -1.708 0.597 -0.882 0.752 0.195 1.522 2.173 1.671 1.515 -0.003 0.000 0.778 0.514 0.139 1.274 0.801 1.260 1.600 0.000 1.495 0.976 0.988 0.676 0.921 1.010 0.943
0 1.816 -0.515 0.171 0.980 -0.454 0.870 0.202 -1.399 2.173 1.130 1.066 -1.593 0.000 0.844 0.735 1.275 2.548 1.125 -1.133 0.348 0.000 0.837 0.693 0.988 1.112 0.784 1.009 0.974
1 0.364 0.694 0.445 1.862 0.159 0.963 -1.356 1.260 1.087 0.887 -0.540 -1.533 2.215 0.658 -2.544 -1.236 0.000 0.516 -0.807 0.039 0.000 0.891 1.004 0.991 1.092 0.976 1.000 0.953
1 0.790 -1.175 0.475 1.846 0.094 0.999 -1.090 0.257 0.000 1.422 0.854 1.112 2.215 1.302 1.004 -1.702 1.274 2.557 -0.787 -1.048 0.000 0.890 1.429 0.993 2.807 0.840 2.248 1.821
1 0.765 -0.500 -0.603 1.843 -0.560 1.068 0.007 0.746 2.173 1.154 -0.017 1.329 0.000 1.165 1.791 -1.585 0.000 1.116 0.441 -0.886 0.000 0.774 0.982 0.989 1.102 0.633 1.178 1.021
1 1.407 1.293 -1.418 0.502 -1.527 2.005 -2.122 0.622 0.000 1.699 1.508 -0.649 2.215 1.665 0.748 -0.755 0.000 2.555 0.811 1.423 1.551 7.531 5.520 0.985 1.115 1.881 4.487 3.379
1 0.772 -0.186 -1.372 0.823 -0.140 0.781 0.763 0.046 2.173 1.128 0.516 1.380 0.000 0.797 -0.640 -0.134 2.548 2.019 -0.972 -1.670 0.000 2.022 1.466 0.989 0.856 0.808 1.230 0.991
1 0.546 -0.954 0.715 1.335 -1.689 0.783 -0.443 -1.735 2.173 1.081 0.185 -0.435 0.000 1.433 -0.662 -0.389 0.000 0.969 0.924 1.099 0.000 0.910 0.879 0.988 0.683 0.753 0.878 0.865
1 0.596 0.276 -1.054 1.358 1.355 1.444 1.813 -0.208 0.000 1.175 -0.949 -1.573 0.000 0.855 -1.228 -0.925 2.548 1.837 -0.400 0.913 0.000 0.637 0.901 1.028 0.553 0.790 0.679 0.677
0 0.458 2.292 1.530 0.291 1.283 0.749 -0.930 -0.198 0.000 0.300 -1.560 0.990 0.000 0.811 -0.176 0.995 2.548 1.085 -0.178 -1.213 3.102 0.891 0.648 0.999 0.732 0.655 0.619 0.620
0 0.638 -0.575 -1.048 0.125 0.178 0.846 -0.753 -0.339 1.087 0.799 -0.727 1.182 0.000 0.888 0.283 0.717 0.000 1.051 -1.046 -1.557 3.102 0.889 0.871 0.989 0.884 0.923 0.836 0.779
1 0.434 -1.119 -0.313 2.427 0.461 0.497 0.261 -1.177 2.173 0.618 -0.737 -0.688 0.000 1.150 -1.237 -1.652 2.548 0.757 -0.054 1.700 0.000 0.809 0.741 0.982 1.450 0.936 1.086 0.910
1 0.431 -1.144 -1.030 0.778 -0.655 0.490 0.047 -1.546 0.000 1.583 -0.014 0.891 2.215 0.516 0.956 0.567 2.548 0.935 -1.123 -0.082 0.000 0.707 0.995 0.995 0.700 0.602 0.770 0.685
1 1.894 0.222 1.224 1.578 1.715 0.966 2.890 -0.013 0.000 0.922 -0.703 -0.844 0.000 0.691 2.056 1.039 0.000 0.900 -0.733 -1.240 3.102 1.292 1.992 1.026 0.881 0.684 1.759 1.755
0 0.985 -0.316 0.141 1.067 -0.946 0.819 -1.177 1.307 2.173 1.080 -0.429 0.557 1.107 1.726 1.435 -1.075 0.000 1.100 1.547 -0.647 0.000 0.873 1.696 1.179 1.146 1.015 1.538 1.270
0 0.998 -0.187 -0.236 0.882 0.755 0.468 0.950 -0.439 2.173 0.579 -0.550 -0.624 0.000 1.847 1.196 1.384 1.274 0.846 1.273 -1.072 0.000 1.194 0.797 1.013 1.319 1.174 0.963 0.898
0 0.515 0.246 -0.593 1.082 1.591 0.912 -0.623 -0.957 2.173 0.858 0.418 0.844 0.000 0.948 2.519 1.599 0.000 1.158 1.385 -0.095 3.102 0.973 1.033 0.988 0.998 1.716 1.054 0.901
0 0.919 -1.001 1.506 1.389 0.653 0.507 -0.616 -0.689 2.173 0.808 0.536 -0.467 2.215 0.496 2.187 -0.859 0.000 0.822 0.807 1.163 0.000 0.876 0.861 1.088 0.947 0.614 0.911 1.087
0 0.794 0.051 1.477 1.504 -1.695 0.716 0.315 0.264 1.087 0.879 -0.135 -1.094 2.215 1.433 -0.741 0.201 0.000 1.566 0.534 -0.989 0.000 0.627 0.882 0.974 0.807 1.130 0.929 0.925
1 0.455 -0.946 -1.175 1.453 -0.580 0.763 -0.856 0.840 0.000 0.829 1.223 1.174 2.215 0.714 0.638 -0.466 0.000 1.182 0.223 -1.333 0.000 0.977 0.938 0.986 0.713 0.714 0.796 0.843
1 0.662 -0.296 -1.287 1.212 -0.707 0.641 1.457 0.222 0.000 0.600 0.525 -1.700 2.215 0.784 -0.835 -0.961 2.548 0.865 1.131 1.162 0.000 0.854 0.877 0.978 0.740 0.734 0.888 0.811
0 0.390 0.698 -1.629 1.888 0.298 0.990 1.614 -1.572 0.000 1.666 0.170 0.719 2.215 1.590 1.064 -0.886 1.274 0.952 0.305 -1.216 0.000 1.048 0.897 1.173 0.891 1.936 1.273 1.102
0 1.014 0.117 1.384 0.686 -1.047 0.609 -1.245 -0.850 0.000 1.076 -1.158 0.814 1.107 1.598 -0.389 -0.111 0.000 0.907 1.688 -1.673 0.000 1.333 0.866 0.989 0.975 0.442 0.797 0.788
0 1.530 -1.408 -0.207 0.440 -1.357 0.902 -0.647 1.325 1.087 1.320 -0.819 0.246 1.107 0.503 1.407 -1.683 0.000 1.189 -0.972 -0.925 0.000 0.386 1.273 0.988 0.829 1.335 1.173 1.149
1 1.689 -0.590 0.915 2.076 1.202 0.644 -0.478 -0.238 0.000 0.809 -1.660 -1.184 0.000 1.227 -0.224 -0.808 2.548 1.655 1.047 -0.623 0.000 0.621 1.192 0.988 1.309 0.866 0.924 1.012
0 1.102 0.402 -1.622 1.262 1.022 0.576 0.271 -0.269 0.000 0.591 0.495 -1.278 0.000 1.271 0.209 0.575 2.548 0.941 0.964 -0.685 3.102 0.989 0.963 1.124 0.857 0.858 0.716 0.718
0 2.491 0.825 0.581 1.593 0.205 0.782 -0.815 1.499 0.000 1.179 -0.999 -1.509 0.000 0.926 0.920 -0.522 2.548 2.068 -1.021 -1.050 3.102 0.874 0.943 0.980 0.945 1.525 1.570 1.652
0 0.666 0.254 1.601 1.303 -0.250 1.236 -1.929 0.793 0.000 1.074 0.447 -0.871 0.000 0.991 1.059 -0.342 0.000 1.703 -0.393 -1.419 3.102 0.921 0.945 1.285 0.931 0.462 0.770 0.729
0 0.937 -1.126 1.424 1.395 1.743 0.760 0.428 -0.238 2.173 0.846 0.494 1.320 2.215 0.872 -1.826 -0.507 0.000 0.612 1.860 1.403 0.000 3.402 2.109 0.985 1.298 1.165 1.404 1.240
1 0.881 -1.086 -0.870 0.513 0.266 2.049 -1.870 1.160 0.000 2.259 -0.428 -0.935 2.215 1.321 -0.655 -0.449 2.548 1.350 -1.766 -0.108 0.000 0.911 1.852 0.987 1.167 0.820 1.903 1.443
0 0.410 0.835 -0.819 1.257 1.112 0.871 -1.737 -0.401 0.000 0.927 0.158 1.253 0.000 1.183 0.405 -1.570 0.000 0.807 -0.704 -0.438 3.102 0.932 0.962 0.987 0.653 0.315 0.616 0.648
1 0.634 0.196 -1.679 1.379 -0.967 2.260 -0.273 1.114 0.000 1.458 1.070 -0.278 1.107 1.195 0.110 -0.688 2.548 0.907 0.298 -1.359 0.000 0.949 1.129 0.984 0.675 0.877 0.938 0.824
1 0.632 -1.254 1.201 0.496 -0.106 0.235 2.731 -0.955 0.000 0.615 -0.805 0.600 0.000 0.633 -0.934 1.641 0.000 1.407 -0.483 -0.962 1.551 0.778 0.797 0.989 0.578 0.722 0.576 0.539
0 0.714 1.122 1.566 2.399 -1.431 1.665 0.299 0.323 0.000 1.489 1.087 -0.861 2.215 1.174 0.140 1.083 2.548 0.404 -0.968 1.105 0.000 0.867 0.969 0.981 1.039 1.552 1.157 1.173
1 0.477 -0.321 -0.471 1.966 1.034 2.282 1.359 -0.874 0.000 1.672 -0.258 1.109 0.000 1.537 0.604 0.231 2.548 1.534 -0.640 0.827 0.000 0.746 1.337 1.311 0.653 0.721 0.795 0.742
1 1.351 0.460 0.031 1.194 -1.185 0.670 -1.157 -1.637 2.173 0.599 -0.823 0.680 0.000 0.478 0.373 1.716 0.000 0.809 -0.919 0.010 1.551 0.859 0.839 1.564 0.994 0.777 0.971 0.826
1 0.520 -1.442 -0.348 0.840 1.654 1.273 -0.760 1.317 0.000 0.861 2.579 -0.791 0.000 1.779 0.257 -0.703 0.000 2.154 1.928 0.457 0.000 1.629 3.194 0.992 0.730 1.107 2.447 2.747
0 0.700 -0.308 0.920 0.438 -0.879 0.516 1.409 1.101 0.000 0.960 0.701 -0.049 2.215 1.442 -0.416 -1.439 2.548 0.628 1.009 -0.364 0.000 0.848 0.817 0.987 0.759 1.421 0.937 0.920
1 0.720 1.061 -0.546 0.798 -1.521 1.066 0.173 0.271 1.087 1.453 0.114 1.336 1.107 0.702 0.616 -0.367 0.000 0.543 -0.386 -1.301 0.000 0.653 0.948 0.989 1.031 1.500 0.965 0.790
1 0.735 -0.416 0.588 1.308 -0.382 1.042 0.344 1.609 0.000 0.926 0.163 -0.520 1.107 1.050 -0.427 1.159 2.548 0.834 0.613 0.948 0.000 0.848 1.189 1.042 0.844 1.099 0.829 0.843
1 0.777 -0.396 1.540 1.608 0.638 0.955 0.040 0.918 2.173 1.315 1.116 -0.823 0.000 0.781 -0.762 0.564 2.548 0.945 -0.573 1.379 0.000 0.679 0.706 1.124 0.608 0.593 0.515 0.493
1 0.934 0.319 -0.257 0.970 -0.980 0.726 0.774 0.731 0.000 0.896 0.038 -1.465 1.107 0.773 -0.055 -0.831 2.548 1.439 -0.229 0.698 0.000 0.964 1.031 0.995 0.845 0.480 0.810 0.762
0 0.461 0.771 0.019 2.055 -1.288 1.043 0.147 0.261 2.173 0.833 -0.156 1.425 0.000 0.832 0.805 -0.491 2.548 0.589 1.252 1.414 0.000 0.850 0.906 1.245 1.364 0.850 0.908 0.863
1 0.858 -0.116 -0.937 0.966 1.167 0.825 -0.108 1.111 1.087 0.733 1.163 -0.634 0.000 0.894 0.771 0.020 0.000 0.846 -1.124 -1.195 3.102 0.724 1.194 1.195 0.813 0.969 0.985 0.856
0 0.720 -0.335 -0.307 1.445 0.540 1.108 -0.034 -1.691 1.087 0.883 -1.356 -0.678 2.215 0.440 1.093 0.253 0.000 0.389 -1.582 -1.097 0.000 1.113 1.034 0.988 1.256 1.572 1.062 0.904
1 0.750 -0.811 -0.542 0.985 0.408 0.471 0.477 0.355 0.000 1.347 -0.875 -1.556 2.215 0.564 1.082 -0.724 0.000 0.793 -0.958 -0.020 3.102 0.836 0.825 0.986 1.066 0.924 0.927 0.883
0 0.392 -0.468 -0.216 0.680 1.565 1.086 -0.765 -0.581 1.087 1.264 -1.035 1.189 2.215 0.986 -0.338 0.747 0.000 0.884 -1.328 -0.965 0.000 1.228 0.988 0.982 1.135 1.741 1.108 0.956
1 0.434 -1.269 0.643 0.713 0.608 0.597 0.832 1.627 0.000 0.708 -0.422 0.079 2.215 1.533 -0.823 -1.127 2.548 0.408 -1.357 -0.828 0.000 1.331 1.087 0.999 1.075 1.015 0.875 0.809
0 0.828 -1.803 0.342 0.847 -0.162 1.585 -1.128 -0.272 2.173 1.974 0.039 -1.717 0.000 0.900 0.764 -1.741 0.000 1.349 -0.079 1.035 3.102 0.984 0.815 0.985 0.780 1.661 1.403 1.184
1 1.089 -0.350 -0.747 1.472 0.792 1.087 -0.069 -1.192 0.000 0.512 -0.841 -1.284 0.000 2.162 -0.821 0.545 2.548 1.360 2.243 -0.183 0.000 0.977 0.628 1.725 1.168 0.635 0.823 0.822
1 0.444 0.451 -1.332 1.176 -0.247 0.898 0.194 0.007 0.000 1.958 0.576 -1.618 2.215 0.584 1.203 0.268 0.000 0.939 1.033 1.264 3.102 0.829 0.886 0.985 1.265 0.751 1.032 0.948
0 0.629 0.114 1.177 0.917 -1.204 0.845 0.828 -0.088 0.000 0.962 -1.302 0.823 2.215 0.732 0.358 -1.334 2.548 0.538 0.582 1.561 0.000 1.028 0.834 0.988 0.904 1.205 1.039 0.885
1 1.754 -1.259 -0.573 0.959 -1.483 0.358 0.448 -1.452 0.000 0.711 0.313 0.499 2.215 1.482 -0.390 1.474 2.548 1.879 -1.540 0.668 0.000 0.843 0.825 1.313 1.315 0.939 1.048 0.871
1 0.549 0.706 -1.437 0.894 0.891 0.680 -0.762 -1.568 0.000 0.981 0.499 -0.425 2.215 1.332 0.678 0.485 1.274 0.803 0.022 -0.893 0.000 0.793 1.043 0.987 0.761 0.899 0.915 0.794
0 0.475 0.542 -0.987 1.569 0.069 0.551 1.543 -1.488 0.000 0.608 0.301 1.734 2.215 0.277 0.499 -0.522 0.000 1.375 1.212 0.696 3.102 0.652 0.756 0.987 0.828 0.830 0.715 0.679
1 0.723 0.049 -1.153 1.300 0.083 0.723 -0.749 0.630 0.000 1.126 0.412 -0.384 0.000 1.272 1.256 1.358 2.548 3.108 0.777 -1.486 3.102 0.733 1.096 1.206 1.269 0.899 1.015 0.903
1 1.062 0.296 0.725 0.285 -0.531 0.819 1.277 -0.667 0.000 0.687 0.829 -0.092 0.000 1.158 0.447 1.047 2.548 1.444 -0.186 -1.491 3.102 0.863 1.171 0.986 0.769 0.828 0.919 0.840
0 0.572 -0.349 1.396 2.023 0.795 0.577 0.457 -0.533 0.000 1.351 0.701 -1.091 0.000 0.724 -1.012 -0.182 2.548 0.923 -0.012 0.789 3.102 0.936 1.025 0.985 1.002 0.600 0.828 0.909
1 0.563 0.387 0.412 0.553 1.050 0.723 -0.992 -0.447 0.000 0.748 0.948 0.546 2.215 1.761 -0.559 -1.183 0.000 1.114 -0.251 1.192 3.102 0.936 0.912 0.976 0.578 0.722 0.829 0.892
1 1.632 1.577 -0.697 0.708 -1.263 0.863 0.012 1.197 2.173 0.498 0.990 -0.806 0.000 0.627 2.387 -1.283 0.000 0.607 1.290 -0.174 3.102 0.916 1.328 0.986 0.557 0.971 0.935 0.836
1 0.562 -0.360 0.399 0.803 -1.334 1.443 -0.116 1.628 2.173 0.750 0.987 0.135 1.107 0.795 0.298 -0.556 0.000 1.150 -0.113 -0.093 0.000 0.493 1.332 0.985 1.001 1.750 1.013 0.886
1 0.987 0.706 -0.492 0.861 0.607 0.593 0.088 -0.184 0.000 0.802 0.894 1.608 2.215 0.782 -0.471 1.500 2.548 0.521 0.772 -0.960 0.000 0.658 0.893 1.068 0.877 0.664 0.709 0.661
1 1.052 0.883 -0.581 1.566 0.860 0.931 1.515 -0.873 0.000 0.493 0.145 -0.672 0.000 1.133 0.935 1.581 2.548 1.630 0.695 0.923 3.102 1.105 1.087 1.713 0.948 0.590 0.872 0.883
1 2.130 -0.516 -0.291 0.776 -1.230 0.689 -0.257 0.800 2.173 0.730 -0.274 -1.437 0.000 0.615 0.241 1.083 0.000 0.834 0.757 1.613 3.102 0.836 0.806 1.333 1.061 0.730 0.889 0.783
1 0.742 0.797 1.628 0.311 -0.418 0.620 0.685 -1.457 0.000 0.683 1.774 -1.082 0.000 1.700 1.104 0.225 2.548 0.382 -2.184 -1.307 0.000 0.945 1.228 0.984 0.864 0.931 0.988 0.838
0 0.311 -1.249 -0.927 1.272 -1.262 0.642 -1.228 -0.136 0.000 1.220 -0.804 -1.558 2.215 0.950 -0.828 0.495 1.274 2.149 -1.672 0.634 0.000 1.346 0.887 0.981 0.856 1.101 1.001 1.106
0 0.660 -1.834 -0.667 0.601 1.236 0.932 -0.933 -0.135 2.173 1.373 -0.122 1.429 0.000 0.654 -0.034 -0.847 2.548 0.711 0.911 0.703 0.000 1.144 0.942 0.984 0.822 0.739 0.992 0.895
0 3.609 -0.590 0.851 0.615 0.455 1.280 0.003 -0.866 1.087 1.334 0.708 -1.131 0.000 0.669 0.480 0.092 0.000 0.975 0.983 -1.429 3.102 1.301 1.089 0.987 1.476 0.934 1.469 1.352
1 0.905 -0.403 1.567 2.651 0.953 1.194 -0.241 -0.567 1.087 0.308 -0.384 -0.007 0.000 0.608 -0.175 -1.163 2.548 0.379 0.941 1.662 0.000 0.580 0.721 1.126 0.895 0.544 1.097 0.836
1 0.983 0.255 1.093 0.905 -0.874 0.863 0.060 -0.368 0.000 0.824 -0.747 -0.633 0.000 0.614 0.961 1.052 0.000 0.792 -0.260 1.632 3.102 0.874 0.883 1.280 0.663 0.406 0.592 0.645
1 1.160 -1.027 0.274 0.460 0.322 2.085 -1.623 -0.840 0.000 1.634 -1.046 1.182 2.215 0.492 -0.367 1.174 0.000 0.824 -0.998 1.617 0.000 0.943 0.884 1.001 1.209 1.313 1.034 0.866
0 0.299 0.028 -1.372 1.930 -0.661 0.840 -0.979 0.664 1.087 0.535 -2.041 1.434 0.000 1.087 -1.797 0.344 0.000 0.485 -0.560 -1.105 3.102 0.951 0.890 0.980 0.483 0.684 0.730 0.706
0 0.293 1.737 -1.418 2.074 0.794 0.679 1.024 -1.457 0.000 1.034 1.094 -0.168 1.107 0.506 1.680 -0.661 0.000 0.523 -0.042 -1.274 3.102 0.820 0.944 0.987 0.842 0.694 0.761 0.750
0 0.457 -0.393 1.560 0.738 -0.007 0.475 -0.230 0.246 0.000 0.776 -1.264 -0.606 2.215 0.865 -0.731 -1.576 2.548 1.153 0.343 1.436 0.000 1.060 0.883 0.988 0.972 0.703 0.758 0.720
0 0.935 -0.582 0.240 2.401 0.818 1.231 -0.618 -1.289 0.000 0.799 0.544 -0.228 2.215 0.525 -1.494 -0.969 0.000 0.609 -1.123 1.168 3.102 0.871 0.767 1.035 1.154 0.919 0.868 1.006
1 0.902 -0.745 -1.215 1.174 -0.501 1.215 0.167 1.162 0.000 0.896 1.217 -0.976 0.000 0.585 -0.429 1.036 0.000 1.431 -0.416 0.151 3.102 0.524 0.952 0.990 0.707 0.271 0.592 0.826
1 0.653 0.337 -0.320 1.118 -0.934 1.050 0.745 0.529 1.087 1.075 1.742 -1.538 0.000 0.585 1.090 0.973 0.000 1.091 -0.187 1.160 1.551 1.006 1.108 0.978 1.121 0.838 0.947 0.908
0 1.157 1.401 0.340 0.395 -1.218 0.945 1.928 -0.876 0.000 1.384 0.320 1.002 1.107 1.900 1.177 -0.462 2.548 1.122 1.316 1.720 0.000 1.167 1.096 0.989 0.937 1.879 1.307 1.041
0 0.960 0.355 -0.152 0.872 -0.338 0.391 0.348 0.956 1.087 0.469 2.664 1.409 0.000 0.756 -1.561 1.500 0.000 0.525 1.436 1.728 3.102 1.032 0.946 0.996 0.929 0.470 0.698 0.898
1 1.038 0.274 0.825 1.198 0.963 1.078 -0.496 -1.014 2.173 0.739 -0.727 -0.151 2.215 1.035 -0.799 0.398 0.000 1.333 -0.872 -1.498 0.000 0.849 1.033 0.985 0.886 0.936 0.975 0.823
0 0.490 0.277 0.318 1.303 0.694 1.333 -1.620 -0.563 0.000 1.459 -1.326 1.140 0.000 0.779 -0.673 -1.324 2.548 0.860 -1.247 0.043 0.000 0.857 0.932 0.992 0.792 0.278 0.841 1.498
0 1.648 -0.688 -1.386 2.790 0.995 1.087 1.359 -0.687 0.000 1.050 -0.223 -0.261 2.215 0.613 -0.889 1.335 0.000 1.204 0.827 0.309 3.102 0.464 0.973 2.493 1.737 0.827 1.319 1.062
0 1.510 -0.662 1.668 0.860 0.280 0.705 0.974 -1.647 1.087 0.662 -0.393 -0.225 0.000 0.610 -0.996 0.532 2.548 0.464 1.305 0.102 0.000 0.859 1.057 1.498 0.799 1.260 0.946 0.863
1 0.850 -1.185 -0.117 0.943 -0.449 1.142 0.875 -0.030 0.000 2.223 -0.461 1.627 2.215 0.767 -1.761 -1.692 0.000 1.012 -0.727 0.639 3.102 3.649 2.062 0.985 1.478 1.087 1.659 1.358
0 0.933 1.259 0.130 0.326 -0.890 0.306 1.136 1.142 0.000 0.964 0.705 -1.373 2.215 0.546 -0.196 -0.001 0.000 0.578 -1.169 1.004 3.102 0.830 0.836 0.988 0.837 1.031 0.749 0.655
0 0.471 0.697 1.570 1.109 0.201 1.248 0.348 -1.448 0.000 2.103 0.773 0.686 2.215 1.451 -0.087 -0.453 2.548 1.197 -0.045 -1.026 0.000 0.793 1.094 0.987 0.851 1.804 1.378 1.089
1 2.446 -0.701 -1.568 0.059 0.822 1.401 -0.600 -0.044 2.173 0.324 -0.001 1.344 2.215 0.913 -0.818 1.049 0.000 0.442 -1.088 -0.005 0.000 0.611 1.062 0.979 0.562 0.988 0.998 0.806
0 0.619 2.029 0.933 0.528 -0.903 0.974 0.760 -0.311 2.173 0.825 0.658 -1.466 1.107 0.894 1.594 0.370 0.000 0.882 -0.258 1.661 0.000 1.498 1.088 0.987 0.867 1.139 0.900 0.779
1 0.674 -0.131 -0.362 0.518 -1.574 0.876 0.442 0.145 1.087 0.497 -1.526 -1.704 0.000 0.680 2.514 -1.374 0.000 0.792 -0.479 0.773 1.551 0.573 1.198 0.984 0.800 0.667 0.987 0.832
1 1.447 1.145 -0.937 0.307 -1.458 0.478 1.264 0.816 1.087 0.558 1.015 -0.101 2.215 0.937 -0.190 1.177 0.000 0.699 0.954 -1.512 0.000 0.877 0.838 0.990 0.873 0.566 0.646 0.713
1 0.976 0.308 -0.844 0.436 0.610 1.253 0.149 -1.585 2.173 1.415 0.568 0.096 2.215 0.953 -0.855 0.441 0.000 0.867 -0.650 1.643 0.000 0.890 1.234 0.988 0.796 2.002 1.179 0.977
0 0.697 0.401 -0.718 0.920 0.735 0.958 -0.172 0.168 2.173 0.872 -0.097 -1.335 0.000 0.513 -1.192 -1.710 1.274 0.426 -1.637 1.368 0.000 0.997 1.227 1.072 0.800 1.013 0.786 0.749
1 1.305 -2.157 1.740 0.661 -0.912 0.705 -0.516 0.759 2.173 0.989 -0.716 -0.300 2.215 0.627 -1.052 -1.736 0.000 0.467 -2.467 0.568 0.000 0.807 0.964 0.988 1.427 1.012 1.165 0.926
0 1.847 1.663 -0.618 0.280 1.258 1.462 -0.054 1.371 0.000 0.900 0.309 -0.544 0.000 0.331 -2.149 -0.341 0.000 1.091 -0.833 0.710 3.102 1.496 0.931 0.989 1.549 0.115 1.140 1.150
0 0.410 -0.323 1.069 2.160 0.010 0.892 0.942 -1.640 2.173 0.946 0.938 1.314 0.000 1.213 -1.099 -0.794 2.548 0.650 0.053 0.056 0.000 1.041 0.916 1.063 0.985 1.910 1.246 1.107
1 0.576 1.092 -0.088 0.777 -1.579 0.757 0.271 0.109 0.000 0.819 0.827 -1.554 2.215 1.313 2.341 -1.568 0.000 2.827 0.239 -0.338 0.000 0.876 0.759 0.986 0.692 0.457 0.796 0.791
1 0.537 0.925 -1.406 0.306 -0.050 0.906 1.051 0.037 0.000 1.469 -0.177 -1.320 2.215 1.872 0.723 1.158 0.000 1.313 0.227 -0.501 3.102 0.953 0.727 0.978 0.755 0.892 0.932 0.781
0 0.716 -0.065 -0.484 1.313 -1.563 0.596 -0.242 0.678 2.173 0.426 -1.909 0.616 0.000 0.885 -0.406 -1.343 2.548 0.501 -1.327 -0.340 0.000 0.470 0.728 1.109 0.919 0.881 0.665 0.692
1 0.624 -0.389 0.128 1.636 -1.110 1.025 0.573 -0.843 2.173 0.646 -0.697 1.064 0.000 0.632 -1.442 0.961 0.000 0.863 -0.106 1.717 0.000 0.825 0.917 1.257 0.983 0.713 0.890 0.824
0 0.484 2.101 1.714 1.131 -0.823 0.750 0.583 -1.304 1.087 0.894 0.421 0.559 2.215 0.921 -0.063 0.282 0.000 0.463 -0.474 -1.387 0.000 0.742 0.886 0.995 0.993 1.201 0.806 0.754
0 0.570 0.339 -1.478 0.528 0.439 0.978 1.479 -1.411 2.173 0.763 1.541 -0.734 0.000 1.375 0.840 0.903 0.000 0.965 1.599 0.364 0.000 0.887 1.061 0.992 1.322 1.453 1.013 0.969
0 0.940 1.303 1.636 0.851 -1.732 0.803 -0.030 -0.177 0.000 0.480 -0.125 -0.954 0.000 0.944 0.709 0.296 2.548 1.342 -0.418 1.197 3.102 0.853 0.989 0.979 0.873 0.858 0.719 0.786
1 0.599 0.544 -0.238 0.816 1.043 0.857 0.660 1.128 2.173 0.864 -0.624 -0.843 0.000 1.159 0.367 0.174 0.000 1.520 -0.543 -1.508 0.000 0.842 0.828 0.984 0.759 0.895 0.918 0.791
1 1.651 1.897 -0.914 0.423 0.315 0.453 0.619 -1.607 2.173 0.532 -0.424 0.209 1.107 0.369 2.479 0.034 0.000 0.701 0.217 0.984 0.000 0.976 0.951 1.035 0.879 0.825 0.915 0.798
1 0.926 -0.574 -0.763 0.285 1.094 0.672 2.314 1.545 0.000 1.124 0.415 0.809 0.000 1.387 0.270 -0.949 2.548 1.547 -0.631 -0.200 3.102 0.719 0.920 0.986 0.889 0.933 0.797 0.777
0 0.677 1.698 -0.890 0.641 -0.449 0.607 1.754 1.720 0.000 0.776 0.372 0.782 2.215 0.511 1.491 -0.480 0.000 0.547 -0.341 0.853 3.102 0.919 1.026 0.997 0.696 0.242 0.694 0.687
0 1.266 0.602 0.958 0.487 1.256 0.709 0.843 -1.196 0.000 0.893 1.303 -0.594 1.107 1.090 1.320 0.354 0.000 0.797 1.846 1.139 0.000 0.780 0.896 0.986 0.661 0.709 0.790 0.806
1 0.628 -0.616 -0.329 0.764 -1.150 0.477 -0.715 1.187 2.173 1.250 0.607 1.026 2.215 0.983 -0.023 -0.583 0.000 0.377 1.344 -1.015 0.000 0.744 0.954 0.987 0.837 0.841 0.795 0.694
1 1.035 -0.828 -1.358 1.870 -1.060 1.075 0.130 0.448 2.173 0.660 0.697 0.641 0.000 0.425 1.006 -1.035 0.000 0.751 1.055 1.364 3.102 0.826 0.822 0.988 0.967 0.901 1.077 0.906
1 0.830 0.265 -0.150 0.660 1.105 0.592 -0.557 0.908 2.173 0.670 -1.419 -0.671 0.000 1.323 -0.409 1.644 2.548 0.850 -0.033 -0.615 0.000 0.760 0.967 0.984 0.895 0.681 0.747 0.770
1 1.395 1.100 1.167 1.088 0.218 0.400 -0.132 0.024 2.173 0.743 0.530 -1.361 2.215 0.341 -0.691 -0.238 0.000 0.396 -1.426 -0.933 0.000 0.363 0.472 1.287 0.922 0.810 0.792 0.656
1 1.070 1.875 -1.298 1.215 -0.106 0.767 0.795 0.514 1.087 0.401 2.780 1.276 0.000 0.686 1.127 1.721 2.548 0.391 -0.259 -1.167 0.000 1.278 1.113 1.389 0.852 0.824 0.838 0.785
0 1.114 -0.071 1.719 0.399 -1.383 0.849 0.254 0.481 0.000 0.958 -0.579 0.742 0.000 1.190 -0.140 -0.862 2.548 0.479 1.390 0.856 0.000 0.952 0.988 0.985 0.764 0.419 0.835 0.827
0 0.714 0.376 -0.568 1.578 -1.165 0.648 0.141 0.639 2.173 0.472 0.569 1.449 1.107 0.783 1.483 0.361 0.000 0.540 -0.790 0.032 0.000 0.883 0.811 0.982 0.775 0.572 0.760 0.745
0 0.401 -1.731 0.765 0.974 1.648 0.652 -1.024 0.191 0.000 0.544 -0.366 -1.246 2.215 0.627 0.140 1.008 2.548 0.810 0.409 0.429 0.000 0.950 0.934 0.977 0.621 0.580 0.677 0.650
1 0.391 1.679 -1.298 0.605 -0.832 0.549 1.338 0.522 2.173 1.244 0.884 1.070 0.000 1.002 0.846 -1.345 2.548 0.783 -2.464 -0.237 0.000 4.515 2.854 0.981 0.877 0.939 1.942 1.489
1 0.513 -0.220 -0.444 1.699 0.479 1.109 0.181 -0.999 2.173 0.883 -0.335 -1.716 2.215 1.075 -0.380 1.352 0.000 0.857 0.048 0.147 0.000 0.937 0.758 0.986 1.206 0.958 0.949 0.876
0 1.367 -0.388 0.798 1.158 1.078 0.811 -1.024 -1.628 0.000 1.504 0.097 -0.999 2.215 1.652 -0.860 0.054 2.548 0.573 -0.142 -1.401 0.000 0.869 0.833 1.006 1.412 1.641 1.214 1.041
1 1.545 -0.533 -1.517 1.177 1.289 2.331 -0.370 -0.073 0.000 1.295 -0.358 -0.891 2.215 0.476 0.756 0.985 0.000 1.945 -0.016 -1.651 3.102 1.962 1.692 1.073 0.656 0.941 1.312 1.242
0 0.858 0.978 -1.258 0.286 0.161 0.729 1.230 1.087 2.173 0.561 2.670 -0.109 0.000 0.407 2.346 0.938 0.000 1.078 0.729 -0.658 3.102 0.597 0.921 0.982 0.579 0.954 0.733 0.769
1 1.454 -1.384 0.870 0.067 0.394 1.033 -0.673 0.318 0.000 1.166 -0.763 -1.533 2.215 2.848 -0.045 -0.856 2.548 0.697 -0.140 1.134 0.000 0.931 1.293 0.977 1.541 1.326 1.201 1.078
1 0.559 -0.913 0.486 1.104 -0.321 1.073 -0.348 1.345 0.000 0.901 -0.827 -0.842 0.000 0.739 0.047 -0.415 2.548 0.433 -1.132 1.268 0.000 0.797 0.695 0.985 0.868 0.346 0.674 0.623
1 1.333 0.780 -0.964 0.916 1.202 1.822 -0.071 0.742 2.173 1.486 -0.399 -0.824 0.000 0.740 0.568 -0.134 0.000 0.971 -0.070 -1.589 3.102 1.278 0.929 1.421 1.608 1.214 1.215 1.137
1 2.417 0.631 -0.317 0.323 0.581 0.841 1.524 -1.738 0.000 0.543 1.176 -0.325 0.000 0.827 0.700 0.866 0.000 0.834 -0.262 -1.702 3.102 0.932 0.820 0.988 0.646 0.287 0.595 0.589
0 0.955 -1.242 0.938 1.104 0.474 0.798 -0.743 1.535 0.000 1.356 -1.357 -1.080 2.215 1.320 -1.396 -0.132 2.548 0.728 -0.529 -0.633 0.000 0.832 0.841 0.988 0.923 1.077 0.988 0.816
1 1.305 -1.918 0.391 1.161 0.063 0.724 2.593 1.481 0.000 0.592 -1.207 -0.329 0.000 0.886 -0.836 -1.168 2.548 1.067 -1.481 -1.440 0.000 0.916 0.688 0.991 0.969 0.550 0.665 0.638
0 1.201 0.071 -1.123 2.242 -1.533 0.702 -0.256 0.688 0.000 0.967 0.491 1.040 2.215 1.271 -0.558 0.095 0.000 1.504 0.676 -0.383 3.102 0.917 1.006 0.985 1.017 1.057 0.928 1.057
0 0.994 -1.607 1.596 0.774 -1.391 0.625 -0.134 -0.862 2.173 0.746 -0.765 -0.316 2.215 1.131 -0.320 0.869 0.000 0.607 0.826 0.301 0.000 0.798 0.967 0.999 0.880 0.581 0.712 0.774
1 0.482 -0.467 0.729 1.419 1.458 0.824 0.376 -0.242 0.000 1.368 0.023 1.459 2.215 0.826 0.669 -1.079 2.548 0.936 2.215 -0.309 0.000 1.883 1.216 0.997 1.065 0.946 1.224 1.526
1 0.383 1.588 1.611 0.748 1.194 0.866 -0.279 -0.636 0.000 0.707 0.536 0.801 2.215 1.647 -1.155 0.367 0.000 1.292 0.303 -1.681 3.102 2.016 1.581 0.986 0.584 0.684 1.107 0.958
0 0.629 0.203 0.736 0.671 -0.271 1.350 -0.486 0.761 2.173 0.496 -0.805 -1.718 0.000 2.393 0.044 -1.046 1.274 0.651 -0.116 -0.541 0.000 0.697 1.006 0.987 1.069 2.317 1.152 0.902
0 0.905 -0.564 -0.570 0.263 1.096 1.219 -1.397 -1.414 1.087 1.164 -0.533 -0.208 0.000 1.459 1.965 0.784 0.000 2.220 -1.421 0.452 0.000 0.918 1.360 0.993 0.904 0.389 2.118 1.707
1 1.676 1.804 1.171 0.529 1.175 1.664 0.354 -0.530 0.000 1.004 0.691 -1.280 2.215 0.838 0.373 0.626 2.548 1.094 1.774 0.501 0.000 0.806 1.100 0.991 0.769 0.976 0.807 0.740
1 1.364 -1.936 0.020 1.327 0.428 1.021 -1.665 -0.907 2.173 0.818 -2.701 1.303 0.000 0.716 -0.590 -1.629 2.548 0.895 -2.280 -1.602 0.000 1.211 0.849 0.989 1.320 0.864 1.065 0.949
0 0.629 -0.626 0.609 1.828 1.280 0.644 -0.856 -0.873 2.173 0.555 1.066 -0.640 0.000 0.477 -1.364 -1.021 2.548 1.017 0.036 0.380 0.000 0.947 0.941 0.994 1.128 0.241 0.793 0.815
1 1.152 -0.843 0.926 1.802 0.800 2.493 -1.449 -1.127 0.000 1.737 0.833 0.488 0.000 1.026 0.929 -0.990 2.548 1.408 0.689 1.142 3.102 1.171 0.956 0.993 2.009 0.867 1.499 1.474
0 2.204 0.081 0.008 1.021 -0.679 2.676 0.090 1.163 0.000 2.210 -1.686 -1.195 0.000 1.805 0.891 -0.148 2.548 0.450 -0.502 -1.295 3.102 6.959 3.492 1.205 0.908 0.845 2.690 2.183
1 0.957 0.954 1.702 0.043 -0.503 1.113 0.033 -0.308 0.000 0.757 -0.363 -1.129 2.215 1.635 0.068 1.048 1.274 0.415 -2.098 0.061 0.000 1.010 0.979 0.992 0.704 1.125 0.761 0.715
0 1.222 0.418 1.059 1.303 1.442 0.282 -1.499 -1.286 0.000 1.567 0.016 -0.164 2.215 0.451 2.229 -1.229 0.000 0.660 -0.513 -0.296 3.102 2.284 1.340 0.985 1.531 0.314 1.032 1.094
1 0.603 1.675 -0.973 0.703 -1.709 1.023 0.652 1.296 2.173 1.078 0.363 -0.263 0.000 0.734 -0.457 -0.745 1.274 0.561 1.434 -0.042 0.000 0.888 0.771 0.984 0.847 1.234 0.874 0.777
0 0.897 0.949 -0.848 1.115 -0.085 0.522 -1.267 -1.418 0.000 0.684 -0.599 1.474 0.000 1.176 0.922 0.641 2.548 0.470 0.103 0.148 3.102 0.775 0.697 0.984 0.839 0.358 0.847 1.008
1 0.987 1.013 -1.504 0.468 -0.259 1.160 0.476 -0.971 2.173 1.266 0.919 0.780 0.000 0.634 1.695 0.233 0.000 0.487 -0.082 0.719 3.102 0.921 0.641 0.991 0.730 0.828 0.952 0.807
1 0.847 1.581 -1.397 1.629 1.529 1.053 0.816 -0.344 2.173 0.895 0.779 0.332 0.000 0.750 1.311 0.419 2.548 1.604 0.844 1.367 0.000 1.265 0.798 0.989 1.328 0.783 0.930 0.879
1 0.805 1.416 -1.327 0.397 0.589 0.488 0.982 0.843 0.000 0.664 -0.999 0.129 0.000 0.624 0.613 -0.558 0.000 1.431 -0.667 -1.561 3.102 0.959 1.103 0.989 0.590 0.632 0.926 0.798
0 1.220 -0.313 -0.489 1.759 0.201 1.698 -0.220 0.241 2.173 1.294 1.390 -1.682 0.000 1.447 -1.623 -1.296 0.000 1.710 0.872 -1.356 3.102 1.198 0.981 1.184 0.859 2.165 1.807 1.661
0 0.772 -0.611 -0.549 0.465 -1.528 1.103 -0.140 0.001 2.173 0.854 -0.406 1.655 0.000 0.733 -1.250 1.072 0.000 0.883 0.627 -1.132 3.102 0.856 0.927 0.987 1.094 1.013 0.938 0.870
1 1.910 0.771 0.828 0.231 1.267 1.398 1.455 -0.295 2.173 0.837 -2.564 0.770 0.000 0.540 2.189 1.287 0.000 1.345 1.311 -1.151 0.000 0.861 0.869 0.984 1.359 1.562 1.105 0.963
1 0.295 0.832 1.399 1.222 -0.517 2.480 0.013 1.591 0.000 2.289 0.436 0.287 2.215 1.995 -0.367 -0.409 1.274 0.375 1.367 -1.716 0.000 1.356 2.171 0.990 1.467 1.664 1.855 1.705
1 1.228 0.339 -0.575 0.417 1.474 0.480 -1.416 -1.498 2.173 0.614 -0.933 -0.961 0.000 1.189 1.690 1.003 0.000 1.690 -1.065 0.106 3.102 0.963 1.147 0.987 1.086 0.948 0.930 0.866
0 2.877 -1.014 1.440 0.782 0.483 1.134 -0.735 -0.196 2.173 1.123 0.084 -0.596 0.000 1.796 -0.356 1.044 2.548 1.406 1.582 -0.991 0.000 0.939 1.178 1.576 0.996 1.629 1.216 1.280
1 2.178 0.259 1.107 0.256 1.222 0.979 -0.440 -0.538 1.087 0.496 -0.760 -0.049 0.000 1.471 1.683 -1.486 0.000 0.646 0.695 -1.577 3.102 1.093 1.070 0.984 0.608 0.889 0.962 0.866
1 0.604 0.592 1.295 0.964 0.348 1.178 -0.016 0.832 2.173 1.626 -0.420 -0.760 0.000 0.748 0.461 -0.906 0.000 0.728 0.309 -1.269 1.551 0.852 0.604 0.989 0.678 0.949 1.021 0.878
0 0.428 -1.352 -0.912 1.713 0.797 1.894 -1.452 0.191 2.173 2.378 2.113 -1.190 0.000 0.860 2.174 0.949 0.000 1.693 0.759 1.426 3.102 0.885 1.527 1.186 1.090 3.294 4.492 3.676
0 0.473 0.485 0.154 1.433 -1.504 0.766 1.257 -1.302 2.173 0.414 0.119 0.238 0.000 0.805 0.242 -0.691 2.548 0.734 0.749 0.753 0.000 0.430 0.893 1.137 0.686 0.724 0.618 0.608
1 0.763 -0.601 0.876 0.182 -1.678 0.818 0.599 0.481 2.173 0.658 -0.737 -0.553 0.000 0.857 -1.138 -1.435 0.000 1.540 -1.466 -0.447 0.000 0.870 0.566 0.989 0.728 0.658 0.821 0.726
0 0.619 -0.273 -0.143 0.992 -1.267 0.566 0.876 -1.396 2.173 0.515 0.892 0.618 0.000 0.434 -0.902 0.862 2.548 0.490 -0.539 0.549 0.000 0.568 0.794 0.984 0.667 0.867 0.597 0.578
0 0.793 0.970 0.324 0.570 0.816 0.761 -0.550 1.519 2.173 1.150 0.496 -0.447 0.000 0.925 0.724 1.008 1.274 1.135 -0.275 -0.843 0.000 0.829 1.068 0.978 1.603 0.892 1.041 1.059
1 0.480 0.364 -0.067 1.906 -1.582 1.397 1.159 0.140 0.000 0.639 0.398 -1.102 0.000 1.597 -0.668 1.607 2.548 1.306 -0.797 0.288 3.102 0.856 1.259 1.297 1.022 1.032 1.049 0.939
0 0.514 1.304 1.490 1.741 -0.220 0.648 0.155 0.535 0.000 0.562 -1.016 0.837 0.000 0.863 -0.780 -0.815 2.548 1.688 -0.130 -1.545 3.102 0.887 0.980 1.309 1.269 0.654 1.044 1.035
0 1.225 0.333 0.656 0.893 0.859 1.037 -0.876 1.603 1.087 1.769 0.272 -0.227 2.215 1.000 0.579 -1.690 0.000 1.385 0.471 -0.860 0.000 0.884 1.207 0.995 1.097 2.336 1.282 1.145
0 2.044 -1.472 -0.294 0.392 0.369 0.927 0.718 1.492 1.087 1.619 -0.736 0.047 2.215 1.884 -0.101 -1.540 0.000 0.548 -0.441 1.117 0.000 0.798 0.877 0.981 0.750 2.272 1.469 1.276
0 1.037 -0.276 0.735 3.526 1.156 2.498 0.401 -0.590 1.087 0.714 -1.203 1.393 2.215 0.681 0.629 1.534 0.000 0.719 -0.355 -0.706 0.000 0.831 0.857 0.988 2.864 2.633 1.988 1.466
1 0.651 -1.218 -0.791 0.770 -1.449 0.610 -0.535 0.960 2.173 0.380 -1.072 -0.031 2.215 0.415 2.123 -1.100 0.000 0.776 0.217 0.420 0.000 0.986 1.008 1.001 0.853 0.588 0.799 0.776
0 1.586 -0.409 0.085 3.258 0.405 1.647 -0.674 -1.519 0.000 0.640 -1.027 -1.681 0.000 1.452 -0.444 -0.957 2.548 0.927 -0.017 1.215 3.102 0.519 0.866 0.992 0.881 0.847 1.018 1.278
0 0.712 0.092 -0.466 0.688 1.236 0.921 -1.217 -1.022 2.173 2.236 -1.167 0.868 2.215 0.851 -1.892 -0.753 0.000 0.475 -1.216 -0.383 0.000 0.668 0.758 0.988 1.180 2.093 1.157 0.934
0 0.419 0.471 0.974 2.805 0.235 1.473 -0.198 1.255 1.087 0.931 1.083 -0.712 0.000 1.569 1.358 -1.179 2.548 2.506 0.199 -0.842 0.000 0.929 0.991 0.992 1.732 2.367 1.549 1.430
1 0.667 1.003 1.504 0.368 1.061 0.885 -0.318 -0.353 0.000 1.438 -1.939 0.710 0.000 1.851 0.277 -1.460 2.548 1.403 0.517 -0.157 0.000 0.883 1.019 1.000 0.790 0.859 0.938 0.841
1 1.877 -0.492 0.372 0.441 0.955 1.034 -1.220 -0.846 1.087 0.952 -0.320 1.125 0.000 0.542 0.308 -1.261 2.548 1.018 -1.415 -1.547 0.000 1.280 0.932 0.991 1.273 0.878 0.921 0.906
0 1.052 0.901 1.176 1.280 1.517 0.562 -1.150 -0.079 2.173 1.228 -0.308 -0.354 0.000 0.790 -1.492 -0.963 0.000 0.942 -0.672 -1.588 3.102 1.116 0.902 0.988 1.993 0.765 1.375 1.325
1 0.518 -0.254 1.642 0.865 0.725 0.980 0.734 0.023 0.000 1.448 0.780 -1.736 2.215 0.955 0.513 -0.519 0.000 0.365 -0.444 -0.243 3.102 0.833 0.555 0.984 0.827 0.795 0.890 0.786
0 0.870 0.815 -0.506 0.663 -0.518 0.935 0.289 -1.675 2.173 1.188 0.005 0.635 0.000 0.580 0.066 -1.455 2.548 0.580 -0.634 -0.199 0.000 0.852 0.788 0.979 1.283 0.208 0.856 0.950
0 0.628 1.382 0.135 0.683 0.571 1.097 0.564 -0.950 2.173 0.617 -0.326 0.371 0.000 1.093 0.918 1.667 2.548 0.460 1.221 0.708 0.000 0.743 0.861 0.975 1.067 1.007 0.843 0.762
0 4.357 0.816 -1.609 1.845 -1.288 3.292 0.726 0.324 2.173 1.528 0.583 -0.801 2.215 0.605 0.572 1.406 0.000 0.794 -0.791 0.122 0.000 0.967 1.132 1.124 3.602 2.811 2.460 1.861
0 0.677 -1.265 1.559 0.866 -0.618 0.823 0.260 0.185 0.000 1.133 0.337 1.589 2.215 0.563 -0.830 0.510 0.000 0.777 0.117 -0.941 3.102 0.839 0.763 0.986 1.182 0.649 0.796 0.851
0 2.466 -1.838 -1.648 1.717 1.533 1.676 -1.553 -0.109 2.173 0.670 -0.666 0.284 0.000 0.334 -2.480 0.316 0.000 0.366 -0.804 -1.298 3.102 0.875 0.894 0.997 0.548 0.770 1.302 1.079
1 1.403 0.129 -1.307 0.688 0.306 0.579 0.753 0.814 1.087 0.474 0.694 -1.400 0.000 0.520 1.995 0.185 0.000 0.929 -0.504 1.270 3.102 0.972 0.998 1.353 0.948 0.650 0.688 0.724
1 0.351 1.188 -0.360 0.254 -0.346 1.129 0.545 1.691 0.000 0.652 -0.039 -0.258 2.215 1.089 0.655 0.472 2.548 0.554 -0.493 1.366 0.000 0.808 1.045 0.992 0.570 0.649 0.809 0.744
0 1.875 -0.013 -0.128 0.236 1.163 0.902 0.426 0.590 2.173 1.251 -1.210 -0.616 0.000 1.035 1.534 0.912 0.000 1.944 1.789 -1.691 0.000 0.974 1.113 0.990 0.925 1.120 0.956 0.912
0 0.298 0.750 -0.507 1.555 1.463 0.804 1.200 -0.665 0.000 0.439 -0.829 -0.252 1.107 0.770 -1.090 0.947 2.548 1.165 -0.166 -0.763 0.000 1.140 0.997 0.988 1.330 0.555 1.005 1.012
0 0.647 0.342 0.245 4.340 -0.157 2.229 0.068 1.170 2.173 2.133 -0.201 -1.441 0.000 1.467 0.697 -0.532 1.274 1.457 0.583 -1.640 0.000 0.875 1.417 0.976 2.512 2.390 1.794 1.665
1 1.731 -0.803 -1.013 1.492 -0.020 1.646 -0.541 1.121 2.173 0.459 -1.251 -1.495 2.215 0.605 -1.711 -0.232 0.000 0.658 0.634 -0.068 0.000 1.214 0.886 1.738 1.833 1.024 1.192 1.034
0 0.515 1.416 -1.089 1.697 1.426 1.414 0.941 0.027 0.000 1.480 0.133 -1.595 2.215 1.110 0.752 0.760 2.548 1.062 0.697 -0.492 0.000 0.851 0.955 0.994 1.105 1.255 1.175 1.095
0 1.261 0.858 1.465 0.757 0.305 2.310 0.679 1.080 2.173 1.544 2.518 -0.464 0.000 2.326 0.270 -0.841 0.000 2.163 0.839 -0.500 3.102 0.715 0.825 1.170 0.980 2.371 1.527 1.221
1 1.445 1.509 1.471 0.414 -1.285 0.767 0.864 -0.677 2.173 0.524 1.388 0.171 0.000 0.826 0.190 0.121 2.548 0.572 1.691 -1.603 0.000 0.870 0.935 0.994 0.968 0.735 0.783 0.777
1 0.919 -0.264 -1.245 0.681 -1.722 1.022 1.010 0.097 2.173 0.685 0.403 -1.351 0.000 1.357 -0.429 1.262 1.274 0.687 1.021 -0.563 0.000 0.953 0.796 0.991 0.873 1.749 1.056 0.917
1 0.293 -2.258 -1.427 1.191 1.202 0.394 -2.030 1.438 0.000 0.723 0.596 -0.024 2.215 0.525 -1.678 -0.290 0.000 0.788 -0.824 -1.029 3.102 0.821 0.626 0.976 1.080 0.810 0.842 0.771
0 3.286 0.386 1.688 1.619 -1.620 1.392 -0.009 0.280 0.000 1.179 -0.776 -0.110 2.215 1.256 0.248 -1.114 2.548 0.777 0.825 -0.156 0.000 1.026 1.065 0.964 0.909 1.249 1.384 1.395
1 1.075 0.603 0.561 0.656 -0.685 0.985 0.175 0.979 2.173 1.154 0.584 -0.886 0.000 1.084 -0.354 -1.004 2.548 0.865 1.224 1.269 0.000 1.346 1.073 1.048 0.873 1.310 1.003 0.865
1 1.098 -0.091 1.466 1.558 0.915 0.649 1.314 -1.182 2.173 0.791 0.073 0.351 0.000 0.517 0.940 1.195 0.000 1.150 1.187 -0.692 3.102 0.866 0.822 0.980 1.311 0.394 1.119 0.890
1 0.481 -1.042 0.148 1.135 -1.249 1.202 -0.344 0.308 1.087 0.779 -1.431 1.581 0.000 0.860 -0.860 -1.125 0.000 0.785 0.303 1.199 3.102 0.878 0.853 0.988 1.072 0.827 0.936 0.815
0 1.348 0.497 0.318 0.806 0.976 1.393 -0.152 0.632 2.173 2.130 0.515 -1.054 0.000 0.908 0.062 -0.780 0.000 1.185 0.687 1.668 1.551 0.720 0.898 0.985 0.683 1.292 1.320 1.131
0 2.677 -0.420 -1.685 1.828 1.433 2.040 -0.718 -0.039 0.000 0.400 -0.873 0.472 0.000 0.444 0.340 -0.830 2.548 0.431 0.768 -1.417 3.102 0.869 0.917 0.996 0.707 0.193 0.728 1.154
1 1.300 0.586 -0.122 1.306 0.609 0.727 -0.556 -1.652 2.173 0.636 0.720 1.393 2.215 0.328 1.280 -0.390 0.000 0.386 0.752 -0.905 0.000 0.202 0.751 1.106 0.864 0.799 0.928 0.717
0 0.637 -0.176 1.737 1.322 -0.414 0.702 -0.964 -0.680 0.000 1.054 -0.461 0.889 2.215 0.861 -0.267 0.225 0.000 1.910 -1.888 1.027 0.000 0.919 0.899 1.186 0.993 1.109 0.862 0.775
1 0.723 -0.104 1.572 0.428 -0.840 0.655 0.544 1.401 2.173 1.522 -0.154 -0.452 2.215 0.996 0.190 0.273 0.000 1.906 -0.176 0.966 0.000 0.945 0.894 0.990 0.981 1.555 0.988 0.893
0 2.016 -0.570 1.612 0.798 0.441 0.334 0.191 -0.909 0.000 0.939 0.146 0.021 2.215 0.553 -0.444 1.156 2.548 0.781 -1.545 -0.520 0.000 0.922 0.956 1.528 0.722 0.699 0.778 0.901
0 1.352 -0.707 1.284 0.665 0.580 0.694 -1.040 -0.899 2.173 0.692 -2.048 0.029 0.000 0.545 -2.042 1.259 0.000 0.661 -0.808 -1.251 3.102 0.845 0.991 0.979 0.662 0.225 0.685 0.769
1 1.057 -1.561 -0.411 0.952 -0.681 1.236 -1.107 1.045 2.173 1.288 -2.521 -0.521 0.000 1.361 -1.239 1.546 0.000 0.373 -1.540 0.028 0.000 0.794 0.782 0.987 0.889 0.832 0.972 0.828
0 1.118 -0.017 -1.227 1.077 1.256 0.714 0.624 -0.811 0.000 0.800 0.704 0.387 1.107 0.604 0.234 0.986 0.000 1.306 -0.456 0.094 3.102 0.828 0.984 1.195 0.987 0.672 0.774 0.748
1 0.602 2.201 0.212 0.119 0.182 0.474 2.130 1.270 0.000 0.370 2.088 -0.573 0.000 0.780 -0.725 -1.033 0.000 1.642 0.598 0.303 3.102 0.886 0.988 0.985 0.644 0.756 0.651 0.599
0 1.677 -0.844 1.581 0.585 0.887 1.012 -2.315 0.752 0.000 1.077 0.748 -0.195 0.000 0.718 0.832 -1.337 1.274 1.181 -0.557 -1.006 3.102 1.018 1.247 0.988 0.908 0.651 1.311 1.120
1 1.695 0.259 1.224 1.344 1.067 0.718 -1.752 -0.215 0.000 0.473 0.991 -0.993 0.000 0.891 1.285 -1.500 2.548 0.908 -0.131 0.288 0.000 0.945 0.824 0.979 1.009 0.951 0.934 0.833
0 0.793 0.628 0.432 1.707 0.302 0.919 1.045 -0.784 0.000 1.472 0.175 -1.284 2.215 1.569 0.155 0.971 2.548 0.435 0.735 1.625 0.000 0.801 0.907 0.992 0.831 1.446 1.082 1.051
1 0.537 -0.664 -0.244 1.104 1.272 1.154 0.394 1.633 0.000 1.527 0.963 0.559 2.215 1.744 0.650 -0.912 0.000 1.097 0.730 -0.368 3.102 1.953 1.319 1.045 1.309 0.869 1.196 1.126
1 0.585 -1.469 1.005 0.749 -1.060 1.224 -0.717 -0.323 2.173 1.012 -0.201 1.268 0.000 0.359 -0.567 0.476 0.000 1.117 -1.124 1.557 3.102 0.636 1.281 0.986 0.616 1.289 0.890 0.881
1 0.354 -1.517 0.667 2.534 -1.298 1.020 -0.375 1.254 0.000 1.119 -0.060 -1.538 2.215 1.059 -0.395 -0.140 0.000 2.609 0.199 -0.778 1.551 0.957 0.975 1.286 1.666 1.003 1.224 1.135
1 0.691 -1.619 -1.380 0.361 1.727 1.493 -1.093 -0.289 0.000 1.447 -0.640 1.341 0.000 1.453 -0.617 -1.456 1.274 1.061 -1.481 -0.091 0.000 0.744 0.649 0.987 0.596 0.727 0.856 0.797
0 1.336 1.293 -1.359 0.357 0.067 1.110 -0.058 -0.515 0.000 0.976 1.498 1.207 0.000 1.133 0.437 1.053 2.548 0.543 1.374 0.171 0.000 0.764 0.761 0.984 0.827 0.553 0.607 0.612
0 0.417 -1.111 1.661 2.209 -0.683 1.931 -0.642 0.959 1.087 1.514 -2.032 -0.686 0.000 1.521 -0.539 1.344 0.000 0.978 -0.866 0.363 1.551 2.813 1.850 1.140 1.854 0.799 1.600 1.556
0 1.058 0.390 -0.591 0.134 1.149 0.346 -1.550 0.186 0.000 1.108 -0.999 0.843 1.107 1.124 0.415 -1.514 0.000 1.067 -0.426 -1.000 3.102 1.744 1.050 0.985 1.006 1.010 0.883 0.789
1 1.655 0.253 1.216 0.270 1.703 0.500 -0.006 -1.418 2.173 0.690 -0.350 0.170 2.215 1.045 -0.924 -0.774 0.000 0.996 -0.745 -0.123 0.000 0.839 0.820 0.993 0.921 0.869 0.725 0.708
0 1.603 -0.850 0.564 0.829 0.093 1.270 -1.113 -1.155 2.173 0.853 -1.021 1.248 2.215 0.617 -1.270 1.733 0.000 0.935 -0.092 0.136 0.000 1.011 1.074 0.977 0.823 1.269 1.054 0.878
0 1.568 -0.792 1.005 0.545 0.896 0.895 -1.698 -0.988 0.000 0.608 -1.634 1.705 0.000 0.826 0.208 0.618 1.274 2.063 -1.743 -0.520 0.000 0.939 0.986 0.990 0.600 0.435 1.033 1.087
0 0.489 -1.335 -1.102 1.738 1.028 0.628 -0.992 -0.627 0.000 0.652 -0.064 -0.215 0.000 1.072 0.173 -1.251 2.548 1.042 0.057 0.841 3.102 0.823 0.895 1.200 1.164 0.770 0.837 0.846
1 1.876 0.870 1.234 0.556 -1.262 1.764 0.855 -0.467 2.173 1.079 1.351 0.852 0.000 0.773 0.383 0.874 0.000 1.292 0.829 -1.228 3.102 0.707 0.969 1.102 1.601 1.017 1.112 1.028
0 1.033 0.407 -0.374 0.705 -1.254 0.690 -0.231 1.502 2.173 0.433 -2.009 -0.057 0.000 0.861 1.151 0.334 0.000 0.960 -0.839 1.299 3.102 2.411 1.480 0.982 0.995 0.377 1.012 0.994
0 1.092 0.653 -0.801 0.463 0.426 0.529 -1.055 0.040 0.000 0.663 0.999 1.255 1.107 0.749 -1.106 1.185 2.548 0.841 -0.745 -1.029 0.000 0.841 0.743 0.988 0.750 1.028 0.831 0.868
1 0.799 -0.285 -0.011 0.531 1.392 1.063 0.854 0.494 2.173 1.187 -1.065 -0.851 0.000 0.429 -0.296 1.072 0.000 0.942 -1.985 1.172 0.000 0.873 0.693 0.992 0.819 0.689 1.131 0.913
0 0.503 1.973 -0.377 1.515 -1.514 0.708 1.081 -0.313 2.173 1.110 -0.417 0.839 0.000 0.712 -1.153 1.165 0.000 0.675 -0.303 -0.930 1.551 0.709 0.761 1.032 0.986 0.698 0.963 1.291
0 0.690 -0.574 -1.608 1.182 1.118 0.557 -2.243 0.144 0.000 0.969 0.216 -1.383 1.107 1.054 0.888 -0.709 2.548 0.566 1.663 -0.550 0.000 0.752 1.528 0.987 1.408 0.740 1.290 1.123
1 0.890 1.501 0.786 0.779 -0.615 1.126 0.716 1.541 2.173 0.887 0.728 -0.673 2.215 1.216 0.332 -0.020 0.000 0.965 1.828 0.101 0.000 0.827 0.715 1.099 1.088 1.339 0.924 0.878
0 0.566 0.883 0.655 1.600 0.034 1.155 2.028 -1.499 0.000 0.723 -0.871 0.763 0.000 1.286 -0.696 -0.676 2.548 1.134 -0.113 1.207 3.102 4.366 2.493 0.984 0.960 0.962 1.843 1.511
0 1.146 1.086 -0.911 0.838 1.298 0.821 0.127 -0.145 0.000 1.352 0.474 -1.580 2.215 1.619 -0.081 0.675 2.548 1.382 -0.748 0.127 0.000 0.958 0.976 1.239 0.876 1.481 1.116 1.076
0 1.739 -0.326 -1.661 0.420 -1.705 1.193 -0.031 -1.212 2.173 1.783 -0.442 0.522 0.000 1.064 -0.692 0.027 0.000 1.314 0.359 -0.037 3.102 0.968 0.897 0.986 0.907 1.196 1.175 1.112
1 0.669 0.194 -0.703 0.657 -0.260 0.899 -2.511 0.311 0.000 1.482 0.773 0.974 2.215 3.459 0.037 -1.299 1.274 2.113 0.067 1.516 0.000 0.740 0.871 0.979 1.361 2.330 1.322 1.046
1 1.355 -1.033 -1.173 0.552 -0.048 0.899 -0.482 -1.287 2.173 1.422 -1.227 0.390 1.107 1.937 -0.028 0.914 0.000 0.849 -0.230 -1.734 0.000 0.986 1.224 1.017 1.051 1.788 1.150 1.009
1 0.511 -0.202 1.029 0.780 1.154 0.816 0.532 -0.731 0.000 0.757 0.517 0.749 2.215 1.302 0.289 -1.188 0.000 0.584 1.211 -0.350 0.000 0.876 0.943 0.995 0.963 0.256 0.808 0.891
1 1.109 0.572 1.484 0.753 1.543 1.711 -0.145 -0.746 1.087 1.759 0.631 0.845 2.215 0.945 0.542 0.003 0.000 0.378 -1.150 -0.044 0.000 0.764 1.042 0.992 1.045 2.736 1.441 1.140
0 0.712 -0.025 0.553 0.928 -0.711 1.304 0.045 -0.300 0.000 0.477 0.720 0.969 0.000 1.727 -0.474 1.328 1.274 1.282 2.222 1.684 0.000 0.819 0.765 1.023 0.961 0.657 0.799 0.744
1 1.131 -0.302 1.079 0.901 0.236 0.904 -0.249 1.694 2.173 1.507 -0.702 -1.128 0.000 0.774 0.565 0.284 2.548 1.802 1.446 -0.192 0.000 3.720 2.108 0.986 0.930 1.101 1.484 1.238
0 1.392 1.253 0.118 0.864 -1.358 0.922 -0.447 -1.243 1.087 1.969 1.031 0.774 2.215 1.333 -0.359 -0.681 0.000 1.099 -0.257 1.473 0.000 1.246 0.909 1.475 1.234 2.531 1.449 1.306
0 1.374 2.291 -0.479 1.339 -0.243 0.687 2.345 1.310 0.000 0.467 1.081 0.772 0.000 0.656 1.155 -1.636 2.548 0.592 0.536 -1.269 3.102 0.981 0.821 1.010 0.877 0.217 0.638 0.758
1 0.401 -1.516 0.909 2.738 0.519 0.887 0.566 -1.202 0.000 0.909 -0.176 1.682 0.000 2.149 -0.878 -0.514 2.548 0.929 -0.563 -1.555 3.102 1.228 0.803 0.980 1.382 0.884 1.025 1.172
1 0.430 -1.589 1.417 2.158 1.226 1.180 -0.829 -0.781 2.173 0.798 1.400 -0.111 0.000 0.939 -0.878 1.076 2.548 0.576 1.335 -0.826 0.000 0.861 0.970 0.982 1.489 1.308 1.015 0.992
1 1.943 -0.391 -0.840 0.621 -1.613 2.026 1.734 1.025 0.000 0.930 0.573 -0.912 0.000 1.326 0.847 -0.220 1.274 1.181 0.079 0.709 3.102 1.164 1.007 0.987 1.094 0.821 0.857 0.786
1 0.499 0.436 0.887 0.859 1.509 0.733 -0.559 1.111 1.087 1.011 -0.796 0.279 2.215 1.472 -0.510 -0.982 0.000 1.952 0.379 -0.733 0.000 1.076 1.358 0.991 0.589 0.879 1.068 0.922
0 0.998 -0.407 -1.711 0.139 0.652 0.810 -0.331 -0.721 0.000 0.471 -0.533 0.442 0.000 0.531 -1.405 0.120 2.548 0.707 0.098 -1.176 1.551 1.145 0.809 0.988 0.529 0.612 0.562 0.609
1 1.482 0.872 0.638 1.288 0.362 0.856 0.900 -0.511 1.087 1.072 1.061 -1.432 2.215 1.770 -2.292 -1.547 0.000 1.131 1.374 0.783 0.000 6.316 4.381 1.002 1.317 1.048 2.903 2.351
1 2.084 -0.422 1.289 1.125 0.735 1.104 -0.518 -0.326 2.173 0.413 -0.719 -0.699 0.000 0.857 0.108 -1.631 0.000 0.527 0.641 -1.362 3.102 0.791 0.952 1.016 0.776 0.856 0.987 0.836
0 0.464 0.674 0.025 0.430 -1.703 0.982 -1.311 -0.808 2.173 1.875 1.060 0.821 2.215 0.954 -0.480 -1.677 0.000 0.567 0.702 -0.939 0.000 0.781 1.076 0.989 1.256 3.632 1.652 1.252
1 0.457 -1.944 -1.010 1.409 0.931 1.098 -0.742 -0.415 0.000 1.537 -0.834 0.945 2.215 1.752 -0.287 -1.269 2.548 0.692 -1.537 -0.223 0.000 0.801 1.192 1.094 1.006 1.659 1.175 1.122
0 3.260 -0.943 1.737 0.920 1.309 0.946 -0.139 -0.271 2.173 0.994 -0.952 -0.311 0.000 0.563 -0.136 -0.881 0.000 1.236 -0.507 0.906 1.551 0.747 0.869 0.985 1.769 1.034 1.179 1.042
0 0.615 -0.778 0.246 1.861 1.619 0.560 -0.943 -0.204 2.173 0.550 -0.759 -1.342 2.215 0.578 0.076 -0.973 0.000 0.939 0.035 0.680 0.000 0.810 0.747 1.401 0.772 0.702 0.719 0.662
1 2.370 -0.064 -0.237 1.737 0.154 2.319 -1.838 -1.673 0.000 1.053 -1.305 -0.075 0.000 0.925 0.149 0.318 1.274 0.851 -0.922 0.981 3.102 0.919 0.940 0.989 0.612 0.598 1.219 1.626
1 1.486 0.311 -1.262 1.354 -0.847 0.886 -0.158 1.213 2.173 1.160 -0.218 0.239 0.000 1.166 0.494 0.278 2.548 0.575 1.454 -1.701 0.000 0.429 1.129 0.983 1.111 1.049 1.006 0.920
1 1.294 1.587 -0.864 0.487 -0.312 0.828 1.051 -0.031 1.087 2.443 1.216 1.609 2.215 1.167 0.813 0.921 0.000 1.751 -0.415 0.119 0.000 1.015 1.091 0.974 1.357 2.093 1.178 1.059
1 0.984 0.465 -1.661 0.379 -0.554 0.977 0.237 0.365 0.000 0.510 0.143 1.101 0.000 1.099 -0.662 -1.593 2.548 1.104 -0.197 -0.648 3.102 0.925 0.922 0.986 0.642 0.667 0.806 0.722
1 0.930 -0.009 0.047 0.667 1.367 1.065 -0.231 0.815 0.000 1.199 -1.114 -0.877 2.215 0.940 0.824 -1.583 0.000 1.052 -0.407 -0.076 1.551 1.843 1.257 1.013 1.047 0.751 1.158 0.941
0 0.767 -0.011 -0.637 0.341 -1.437 1.438 -0.425 -0.450 2.173 1.073 -0.718 1.341 2.215 0.633 -1.394 0.486 0.000 0.603 -1.945 -1.626 0.000 0.703 0.790 0.984 1.111 1.848 1.129 1.072
1 1.779 0.017 0.432 0.402 1.022 0.959 1.480 1.595 2.173 1.252 1.365 0.006 0.000 1.188 -0.174 -1.107 0.000 1.181 0.518 -0.258 0.000 1.057 0.910 0.991 1.616 0.779 1.158 1.053
0 0.881 0.630 1.029 1.990 0.508 1.102 0.742 -1.298 2.173 1.565 1.085 0.686 2.215 2.691 1.391 -0.904 0.000 0.499 1.388 -1.199 0.000 0.347 0.861 0.997 0.881 1.920 1.233 1.310
0 1.754 -0.266 0.389 0.347 -0.030 0.462 -1.408 -0.957 2.173 0.515 -2.341 -1.700 0.000 0.588 -0.797 1.355 2.548 0.608 0.329 -1.389 0.000 1.406 0.909 0.988 0.760 0.593 0.768 0.847
0 1.087 0.311 -1.447 0.173 0.567 0.854 0.362 0.584 0.000 1.416 -0.716 -1.211 2.215 0.648 -0.358 -0.692 1.274 0.867 -0.513 0.206 0.000 0.803 0.813 0.984 1.110 0.491 0.921 0.873
0 0.279 1.114 -1.190 3.004 -0.738 1.233 0.896 1.092 2.173 0.454 -0.374 0.117 2.215 0.357 0.119 1.270 0.000 0.458 1.343 0.316 0.000 0.495 0.540 0.988 1.715 1.139 1.618 1.183
1 1.773 -0.694 -1.518 2.306 -1.200 3.104 0.749 0.362 0.000 1.871 0.230 -1.686 2.215 0.805 -0.179 -0.871 1.274 0.910 0.607 -0.246 0.000 1.338 1.598 0.984 1.050 0.919 1.678 1.807
0 0.553 0.683 0.827 0.973 -0.706 1.488 0.149 1.140 2.173 1.788 0.447 -0.478 0.000 0.596 1.043 1.607 0.000 0.373 -0.868 -1.308 1.551 1.607 1.026 0.998 1.134 0.808 1.142 0.936
1 0.397 1.101 -1.139 1.688 0.146 0.972 0.541 1.518 0.000 1.549 -0.873 -1.012 0.000 2.282 -0.151 0.314 2.548 1.174 0.033 -1.368 0.000 0.937 0.776 1.039 1.143 0.959 0.986 1.013
1 0.840 1.906 -0.959 0.869 0.576 0.642 0.554 -1.351 0.000 0.756 0.923 -0.823 2.215 1.251 1.130 0.545 2.548 1.513 0.410 1.073 0.000 1.231 0.985 1.163 0.812 0.987 0.816 0.822
1 0.477 1.665 0.814 0.763 -0.382 0.828 -0.008 0.280 2.173 1.213 -0.001 1.560 0.000 1.136 0.311 -1.289 0.000 0.797 1.091 -0.616 3.102 1.026 0.964 0.992 0.772 0.869 0.916 0.803
0 2.655 0.020 0.273 1.464 0.482 1.709 -0.107 -1.456 2.173 0.825 0.141 -0.386 0.000 1.342 -0.592 1.635 1.274 0.859 -0.175 -0.874 0.000 0.829 0.946 1.003 2.179 0.836 1.505 1.176
0 0.771 -1.992 -0.720 0.732 -1.464 0.869 -1.290 0.388 2.173 0.926 -1.072 -1.489 2.215 0.640 -1.232 0.840 0.000 0.528 -2.440 -0.446 0.000 0.811 0.868 0.993 0.995 1.317 0.809 0.714
0 1.357 1.302 0.076 0.283 -1.060 0.783 1.559 -0.994 0.000 0.947 1.212 1.617 0.000 1.127 0.311 0.442 2.548 0.582 -0.052 1.186 1.551 1.330 0.995 0.985 0.846 0.404 0.858 0.815
0 0.442 -0.381 -0.424 1.244 0.591 0.731 0.605 -0.713 2.173 0.629 2.762 1.040 0.000 0.476 2.693 -0.617 0.000 0.399 0.442 1.486 3.102 0.839 0.755 0.988 0.869 0.524 0.877 0.918
0 0.884 0.422 0.055 0.818 0.624 0.950 -0.763 1.624 0.000 0.818 -0.609 -1.166 0.000 1.057 -0.528 1.070 2.548 1.691 -0.124 -0.335 3.102 1.104 0.933 0.985 0.913 1.000 0.863 1.056
0 1.276 0.156 1.714 1.053 -1.189 0.672 -0.464 -0.030 2.173 0.469 -2.483 0.442 0.000 0.564 2.580 -0.253 0.000 0.444 -0.628 1.080 1.551 5.832 2.983 0.985 1.162 0.494 1.809 1.513
0 1.106 -0.556 0.406 0.573 -1.400 0.769 -0.518 1.457 2.173 0.743 -0.352 -0.010 0.000 1.469 -0.550 -0.930 2.548 0.540 1.236 -0.571 0.000 0.962 0.970 1.101 0.805 1.107 0.873 0.773
0 0.539 -0.964 -0.464 1.371 -1.606 0.667 -0.160 0.655 0.000 0.952 0.352 -0.740 2.215 0.952 0.007 1.123 0.000 1.061 -0.505 1.389 3.102 1.063 0.991 1.019 0.633 0.967 0.732 0.799
1 0.533 -0.989 -1.608 0.462 -1.723 1.204 -0.598 -0.098 2.173 1.343 -0.460 1.632 2.215 0.577 0.221 -0.492 0.000 0.628 -0.073 0.472 0.000 0.518 0.880 0.988 1.179 1.874 1.041 0.813
1 1.024 1.075 -0.795 0.286 -1.436 1.365 0.857 -0.309 2.173 0.804 1.532 1.435 0.000 1.511 0.722 1.494 0.000 1.778 0.903 0.753 1.551 0.686 0.810 0.999 0.900 1.360 1.133 0.978
1 2.085 -0.269 -1.423 0.789 1.298 0.281 1.652 0.187 0.000 0.658 -0.760 -0.042 2.215 0.663 0.024 0.120 0.000 0.552 -0.299 -0.428 3.102 0.713 0.811 1.130 0.705 0.218 0.675 0.743
1 0.980 -0.443 0.813 0.785 -1.253 0.719 0.448 -1.458 0.000 1.087 0.595 0.635 1.107 1.428 0.029 -0.995 0.000 1.083 1.562 -0.092 0.000 0.834 0.891 1.165 0.967 0.661 0.880 0.817
1 0.903 -0.733 -0.980 0.634 -0.639 0.780 0.266 -0.287 2.173 1.264 -0.936 1.004 0.000 1.002 -0.056 -1.344 2.548 1.183 -0.098 1.169 0.000 0.733 1.002 0.985 0.711 0.916 0.966 0.875
0 0.734 -0.304 -1.175 2.851 1.674 0.904 -0.634 0.412 2.173 1.363 -1.050 -0.282 0.000 1.476 -1.603 0.103 0.000 2.231 -0.718 1.708 3.102 0.813 0.896 1.088 0.686 1.392 1.033 1.078
1 1.680 0.591 -0.243 0.111 -0.478 0.326 -0.079 -1.555 2.173 0.711 0.714 0.922 2.215 0.355 0.858 1.682 0.000 0.727 1.620 1.360 0.000 0.334 0.526 1.001 0.862 0.633 0.660 0.619
1 1.163 0.225 -0.202 0.501 -0.979 1.609 -0.938 1.424 0.000 1.224 -0.118 -1.274 0.000 2.034 1.241 -0.254 0.000 1.765 0.536 0.237 3.102 0.894 0.838 0.988 0.693 0.579 0.762 0.726
0 1.223 1.232 1.471 0.489 1.728 0.703 -0.111 0.411 0.000 1.367 1.014 -1.294 1.107 1.524 -0.414 -0.164 2.548 1.292 0.833 0.316 0.000 0.861 0.752 0.994 0.836 1.814 1.089 0.950
0 0.816 1.637 -1.557 1.036 -0.342 0.913 1.333 0.949 2.173 0.812 0.756 -0.628 2.215 1.333 0.470 1.495 0.000 1.204 -2.222 -1.675 0.000 1.013 0.924 1.133 0.758 1.304 0.855 0.860
0 0.851 -0.564 -0.691 0.692 1.345 1.219 1.014 0.318 0.000 1.422 -0.262 -1.635 2.215 0.531 1.802 0.008 0.000 0.508 0.515 -1.267 3.102 0.821 0.787 1.026 0.783 0.432 1.149 1.034
0 0.800 -0.599 0.204 0.552 -0.484 0.974 0.413 0.961 2.173 1.269 -0.984 -1.039 2.215 0.380 -1.213 1.371 0.000 0.551 0.332 -0.659 0.000 0.694 0.852 0.984 1.057 2.037 1.096 0.846
0 0.744 -0.071 -0.255 0.638 0.512 1.125 0.407 0.844 2.173 0.860 -0.481 -0.677 0.000 1.102 0.181 -1.194 0.000 1.011 -1.081 -1.713 3.102 0.854 0.862 0.982 1.111 1.372 1.042 0.920
1 0.400 1.049 -0.625 0.880 -0.407 1.040 2.150 -1.359 0.000 0.747 -0.144 0.847 2.215 0.560 -1.829 0.698 0.000 1.663 -0.668 0.267 0.000 0.845 0.964 0.996 0.820 0.789 0.668 0.668
0 1.659 -0.705 -1.057 1.803 -1.436 1.008 0.693 0.005 0.000 0.895 -0.007 0.681 1.107 1.085 0.125 1.476 2.548 1.214 1.068 0.486 0.000 0.867 0.919 0.986 1.069 0.692 1.026 1.313
0 0.829 -0.153 0.861 0.615 -0.548 0.589 1.077 -0.041 2.173 1.056 0.763 -1.737 0.000 0.639 0.970 0.725 0.000 0.955 1.227 -0.799 3.102 1.020 1.024 0.985 0.750 0.525 0.685 0.671
1 0.920 -0.806 -0.840 1.048 0.278 0.973 -0.077 -1.364 2.173 1.029 0.309 0.133 0.000 1.444 1.484 1.618 1.274 1.419 -0.482 0.417 0.000 0.831 1.430 1.151 1.829 1.560 1.343 1.224
1 0.686 0.249 -0.905 0.343 -1.731 0.724 -2.823 -0.901 0.000 0.982 0.303 1.312 1.107 1.016 0.245 0.610 0.000 1.303 -0.557 -0.360 3.102 1.384 1.030 0.984 0.862 1.144 0.866 0.779
0 1.603 0.444 0.508 0.586 0.401 0.610 0.467 -1.735 2.173 0.914 0.626 -1.019 0.000 0.812 0.422 -0.408 2.548 0.902 1.679 1.490 0.000 1.265 0.929 0.990 1.004 0.816 0.753 0.851
1 0.623 0.780 -0.203 0.056 0.015 0.899 0.793 1.326 1.087 0.803 1.478 -1.499 2.215 1.561 1.492 -0.120 0.000 0.904 0.795 0.137 0.000 0.548 1.009 0.850 0.924 0.838 0.914 0.860
0 1.654 -2.032 -1.160 0.859 -1.583 0.689 -1.965 0.891 0.000 0.646 -1.014 -0.288 2.215 0.630 -0.815 0.402 0.000 0.638 0.316 0.655 3.102 0.845 0.879 0.993 1.067 0.625 1.041 0.958
1 0.828 -1.269 -1.203 0.744 -0.213 0.626 -1.017 -0.404 0.000 1.281 -0.931 1.733 2.215 0.699 -0.351 1.287 0.000 1.251 -1.171 0.197 0.000 0.976 1.186 0.987 0.646 0.655 0.733 0.671
1 0.677 0.111 1.090 1.580 1.591 1.560 0.654 -0.341 2.173 0.794 -0.266 0.702 0.000 0.823 0.651 -1.239 2.548 0.730 1.467 -1.530 0.000 1.492 1.023 0.983 1.909 1.022 1.265 1.127
1 0.736 0.882 -1.060 0.589 0.168 1.663 0.781 1.022 2.173 2.025 1.648 -1.292 0.000 1.240 0.924 -0.421 1.274 1.354 0.065 0.501 0.000 0.316 0.925 0.988 0.664 1.736 0.992 0.807
1 1.040 -0.822 1.638 0.974 -0.674 0.393 0.830 0.011 2.173 0.770 -0.140 -0.402 0.000 0.294 -0.133 0.030 0.000 1.220 0.807 0.638 0.000 0.826 1.063 1.216 1.026 0.705 0.934 0.823
1 0.711 0.602 0.048 1.145 0.966 0.934 0.263 -1.589 2.173 0.971 -0.496 -0.421 1.107 0.628 -0.865 0.845 0.000 0.661 -0.008 -0.565 0.000 0.893 0.705 0.988 0.998 1.339 0.908 0.872
1 0.953 -1.651 -0.167 0.885 1.053 1.013 -1.239 0.133 0.000 1.884 -1.122 1.222 2.215 1.906 -0.860 -1.184 1.274 1.413 -0.668 -1.647 0.000 1.873 1.510 1.133 1.050 1.678 1.246 1.061
1 0.986 -0.892 -1.380 0.917 1.134 0.950 -1.162 -0.469 0.000 0.569 -1.393 0.215 0.000 0.320 2.667 1.712 0.000 1.570 -0.375 1.457 3.102 0.925 1.128 1.011 0.598 0.824 0.913 0.833
1 1.067 0.099 1.154 0.527 -0.789 1.085 0.623 -1.602 2.173 1.511 -0.230 0.022 2.215 0.269 -0.377 0.883 0.000 0.571 -0.540 -0.512 0.000 0.414 0.803 1.022 0.959 2.053 1.041 0.780
0 0.825 -2.118 0.217 1.453 -0.493 0.819 0.313 -0.942 0.000 2.098 -0.725 1.096 2.215 0.484 1.336 1.458 0.000 0.482 0.100 1.163 0.000 0.913 0.536 0.990 1.679 0.957 1.095 1.143
1 1.507 0.054 1.120 0.698 -1.340 0.912 0.384 0.015 1.087 0.720 0.247 -0.820 0.000 0.286 0.154 1.578 2.548 0.629 1.582 -0.576 0.000 0.828 0.893 1.136 0.514 0.632 0.699 0.709
1 0.610 1.180 -0.993 0.816 0.301 0.932 0.758 1.539 0.000 0.726 -0.830 0.248 2.215 0.883 0.857 -1.305 0.000 1.338 1.009 -0.252 3.102 0.901 1.074 0.987 0.875 1.159 1.035 0.858
1 1.247 -1.360 1.502 1.525 -1.332 0.618 1.063 0.755 0.000 0.582 -0.155 0.473 2.215 1.214 -0.422 -0.551 2.548 0.838 -1.171 -1.166 0.000 2.051 1.215 1.062 1.091 0.725 0.896 1.091
0 0.373 -0.600 1.291 2.573 0.207 0.765 -0.209 1.667 0.000 0.668 0.724 -1.499 0.000 1.045 -0.338 -0.754 2.548 0.558 -0.469 0.029 3.102 0.868 0.939 1.124 0.519 0.383 0.636 0.838
0 0.791 0.336 -0.307 0.494 1.213 1.158 0.336 1.081 2.173 0.918 1.289 -0.449 0.000 0.735 -0.521 -0.969 0.000 1.052 0.499 -1.188 3.102 0.699 1.013 0.987 0.622 1.050 0.712 0.661
0 1.321 0.856 0.464 0.202 0.901 1.144 0.120 -1.651 0.000 0.803 0.577 -0.509 2.215 0.695 -0.114 0.423 2.548 0.621 1.852 -0.420 0.000 0.697 0.964 0.983 0.527 0.659 0.719 0.729
0 0.563 2.081 0.913 0.982 -0.533 0.549 -0.481 -1.730 0.000 0.962 0.921 0.569 2.215 0.731 1.184 -0.679 1.274 0.918 0.931 -1.432 0.000 1.008 0.919 0.993 0.895 0.819 0.810 0.878
1 1.148 0.345 0.953 0.921 0.617 0.991 1.103 -0.484 0.000 0.970 1.978 1.525 0.000 1.150 0.689 -0.757 2.548 0.517 0.995 1.245 0.000 1.093 1.140 0.998 1.006 0.756 0.864 0.838
1 1.400 0.128 -1.695 1.169 1.070 1.094 -0.345 -0.249 0.000 1.224 0.364 -0.036 2.215 1.178 0.530 -1.544 0.000 1.334 0.933 1.604 0.000 0.560 1.267 1.073 0.716 0.780 0.832 0.792
0 0.330 -2.133 1.403 0.628 0.379 1.686 -0.995 0.030 1.087 2.071 0.127 -0.457 0.000 4.662 -0.855 1.477 0.000 2.072 -0.917 -1.416 3.102 5.403 3.074 0.977 0.936 1.910 2.325 1.702
0 0.989 0.473 0.968 1.970 1.368 0.844 0.574 -0.290 2.173 0.866 -0.345 -1.019 0.000 1.130 0.605 -0.752 0.000 0.956 -0.888 0.870 3.102 0.885 0.886 0.982 1.157 1.201 1.100 1.068
1 0.773 0.418 0.753 1.388 1.070 1.104 -0.378 -0.758 0.000 1.027 0.397 -0.496 2.215 1.234 0.027 1.084 2.548 0.936 0.209 1.677 0.000 1.355 1.020 0.983 0.550 1.206 0.916 0.931
0 0.319 2.015 1.534 0.570 -1.134 0.632 0.124 0.757 0.000 0.477 0.598 -1.109 1.107 0.449 0.438 -0.755 2.548 0.574 -0.659 0.691 0.000 0.440 0.749 0.985 0.517 0.158 0.505 0.522
0 1.215 1.453 -1.386 1.276 1.298 0.643 0.570 -0.196 2.173 0.588 2.104 0.498 0.000 0.617 -0.296 -0.801 2.548 0.452 0.110 0.313 0.000 0.815 0.953 1.141 1.166 0.547 0.892 0.807
1 1.257 -1.869 -0.060 0.265 0.653 1.527 -0.346 1.163 2.173 0.758 -2.119 -0.604 0.000 1.473 -1.133 -1.290 2.548 0.477 -0.428 -0.066 0.000 0.818 0.841 0.984 1.446 1.729 1.211 1.054
1 1.449 0.464 1.585 1.418 -1.488 1.540 0.942 0.087 0.000 0.898 0.402 -0.631 2.215 0.753 0.039 -1.729 0.000 0.859 0.849 -1.054 0.000 0.791 0.677 0.995 0.687 0.527 0.703 0.606
1 1.084 -1.997 0.900 1.333 1.024 0.872 -0.864 -1.500 2.173 1.072 -0.813 -0.421 2.215 0.924 0.478 0.304 0.000 0.992 -0.398 -1.022 0.000 0.741 1.085 0.980 1.221 1.176 1.032 0.961
0 1.712 1.129 0.125 1.120 -1.402 1.749 0.951 -1.575 2.173 1.711 0.445 0.578 0.000 1.114 0.234 -1.011 0.000 1.577 -0.088 0.086 3.102 2.108 1.312 1.882 1.597 2.009 1.441 1.308
0 0.530 0.248 1.622 1.450 -1.012 1.221 -1.154 -0.763 2.173 1.698 -0.586 0.733 0.000 0.889 1.042 1.038 1.274 0.657 0.008 0.701 0.000 0.430 1.005 0.983 0.930 2.264 1.357 1.146
1 0.921 1.735 0.883 0.699 -1.614 0.821 1.463 0.319 1.087 1.099 0.814 -1.600 2.215 1.375 0.702 -0.691 0.000 0.869 1.326 -0.790 0.000 0.980 0.900 0.988 0.832 1.452 0.816 0.709
0 2.485 -0.823 -0.297 0.886 -1.404 0.989 0.835 1.615 2.173 0.382 0.588 -0.224 0.000 1.029 -0.456 1.546 2.548 0.613 -0.359 -0.789 0.000 0.768 0.977 1.726 2.007 0.913 1.338 1.180
1 0.657 -0.069 -0.078 1.107 1.549 0.804 1.335 -1.630 2.173 1.271 0.481 0.153 1.107 1.028 0.144 -0.762 0.000 1.098 0.132 1.570 0.000 0.830 0.979 1.175 1.069 1.624 1.000 0.868
1 2.032 0.329 -1.003 0.493 -0.136 1.159 -0.224 0.750 1.087 0.396 0.546 0.587 0.000 0.620 1.805 0.982 0.000 1.236 0.744 -1.621 0.000 0.930 1.200 0.988 0.482 0.771 0.887 0.779
0 0.524 -1.319 0.634 0.471 1.221 0.599 -0.588 -0.461 0.000 1.230 -1.504 -1.517 1.107 1.436 -0.035 0.104 2.548 0.629 1.997 -1.282 0.000 2.084 1.450 0.984 1.084 1.827 1.547 1.213
1 0.871 0.618 -1.544 0.718 0.186 1.041 -1.180 0.434 2.173 1.133 1.558 -1.301 0.000 0.452 -0.595 0.522 0.000 0.665 0.567 0.130 3.102 1.872 1.114 1.095 1.398 0.979 1.472 1.168
1 3.308 1.037 -0.634 0.690 -0.619 1.975 0.949 1.280 0.000 0.826 0.546 -0.139 2.215 0.635 -0.045 0.427 0.000 1.224 0.112 1.339 3.102 1.756 1.050 0.992 0.738 0.903 0.968 1.238
0 0.588 2.104 -0.872 1.136 1.743 0.842 0.638 0.015 0.000 0.481 0.928 1.000 2.215 0.595 0.125 1.429 0.000 0.951 -1.140 -0.511 3.102 1.031 1.057 0.979 0.673 1.064 1.001 0.891
0 0.289 0.823 0.013 0.615 -1.601 0.177 2.403 -0.015 0.000 0.258 1.151 1.036 2.215 0.694 0.553 -1.326 2.548 0.411 0.366 0.106 0.000 0.482 0.562 0.989 0.670 0.404 0.516 0.561
1 0.294 -0.660 -1.162 1.752 0.384 0.860 0.513 1.119 0.000 2.416 0.107 -1.342 0.000 1.398 0.361 -0.350 2.548 1.126 -0.902 0.040 1.551 0.650 1.125 0.988 0.531 0.843 0.912 0.911
0 0.599 -0.616 1.526 1.381 0.507 0.955 -0.646 -0.085 2.173 0.775 -0.533 1.116 2.215 0.789 -0.136 -1.176 0.000 2.449 1.435 -1.433 0.000 1.692 1.699 1.000 0.869 1.119 1.508 1.303
1 1.100 -1.174 -1.114 1.601 -1.576 1.056 -1.343 0.547 2.173 0.555 0.367 0.592 2.215 0.580 -1.862 -0.914 0.000 0.904 0.508 -0.444 0.000 1.439 1.105 0.986 1.408 1.104 1.190 1.094
1 2.237 -0.701 1.470 0.719 -0.199 0.745 -0.132 -0.737 1.087 0.976 -0.227 0.093 2.215 0.699 0.057 1.133 0.000 0.661 0.573 -0.679 0.000 0.785 0.772 1.752 1.235 0.856 0.990 0.825
1 0.455 -0.880 -1.482 1.260 -0.178 1.499 0.158 1.022 0.000 1.867 -0.435 -0.675 2.215 1.234 0.783 1.586 0.000 0.641 -0.454 -0.409 3.102 1.002 0.964 0.986 0.761 0.240 1.190 0.995
1 1.158 -0.778 -0.159 0.823 1.641 1.341 -0.830 -1.169 2.173 0.840 -1.554 0.934 0.000 0.693 0.488 -1.218 2.548 1.042 1.395 0.276 0.000 0.946 0.785 1.350 1.079 0.893 1.267 1.151
1 0.902 -0.078 -0.055 0.872 -0.012 0.843 1.276 1.739 2.173 0.838 1.492 0.918 0.000 0.626 0.904 -0.648 2.548 0.412 -2.027 -0.883 0.000 2.838 1.664 0.988 1.803 0.768 1.244 1.280
1 0.649 -1.028 -1.521 1.097 0.774 1.216 -0.383 -0.318 2.173 1.643 -0.285 -1.705 0.000 0.911 -0.091 0.341 0.000 0.592 0.537 0.732 3.102 0.911 0.856 1.027 1.160 0.874 0.986 0.893
1 1.192 1.846 -0.781 1.326 -0.747 1.550 1.177 1.366 0.000 1.196 0.151 0.387 2.215 0.527 2.261 -0.190 0.000 0.390 1.474 0.381 0.000 0.986 1.025 1.004 1.392 0.761 0.965 1.043
0 0.438 -0.358 -1.549 0.836 0.436 0.818 0.276 -0.708 2.173 0.707 0.826 0.392 0.000 1.050 1.741 -1.066 0.000 1.276 -1.583 0.842 0.000 1.475 1.273 0.986 0.853 1.593 1.255 1.226
1 1.083 0.142 1.701 0.605 -0.253 1.237 0.791 1.183 2.173 0.842 2.850 -0.082 0.000 0.724 -0.464 -0.694 0.000 1.499 0.456 -0.226 3.102 0.601 0.799 1.102 0.995 1.389 1.013 0.851
0 0.828 1.897 -0.615 0.572 -0.545 0.572 0.461 0.464 2.173 0.393 0.356 1.069 2.215 1.840 0.088 1.500 0.000 0.407 -0.663 -0.787 0.000 0.950 0.965 0.979 0.733 0.363 0.618 0.733
0 0.735 1.438 1.197 1.123 -0.214 0.641 0.949 0.858 0.000 1.162 0.524 -0.896 2.215 0.992 0.454 -1.475 2.548 0.902 1.079 0.019 0.000 0.822 0.917 1.203 1.032 0.569 0.780 0.764
0 0.437 -2.102 0.044 1.779 -1.042 1.231 -0.181 -0.515 1.087 2.666 0.863 1.466 2.215 1.370 0.345 -1.371 0.000 0.906 0.363 1.611 0.000 1.140 1.362 1.013 3.931 3.004 2.724 2.028
1 0.881 1.814 -0.987 0.384 0.800 2.384 1.422 0.640 0.000 1.528 0.292 -0.962 1.107 2.126 -0.371 -1.401 2.548 0.700 0.109 0.203 0.000 0.450 0.813 0.985 0.956 1.013 0.993 0.774
1 0.630 0.408 0.152 0.194 0.316 0.710 -0.824 -0.358 2.173 0.741 0.535 -0.851 2.215 0.933 0.406 1.148 0.000 0.523 -0.479 -0.625 0.000 0.873 0.960 0.988 0.830 0.921 0.711 0.661
1 0.870 -0.448 -1.134 0.616 0.135 0.600 0.649 -0.622 2.173 0.768 0.709 -0.123 0.000 1.308 0.500 1.468 0.000 1.973 -0.286 1.462 3.102 0.909 0.944 0.990 0.835 1.250 0.798 0.776
0 1.290 0.552 1.330 0.615 -1.353 0.661 0.240 -0.393 0.000 0.531 0.053 -1.588 0.000 0.675 0.839 -0.345 1.274 1.597 0.020 0.536 3.102 1.114 0.964 0.987 0.783 0.675 0.662 0.675
1 0.943 0.936 1.068 1.373 0.671 2.170 -2.011 -1.032 0.000 0.640 0.361 -0.806 0.000 2.239 -0.083 0.590 2.548 1.224 0.646 -1.723 0.000 0.879 0.834 0.981 1.436 0.568 0.916 0.931
1 0.431 1.686 -1.053 0.388 1.739 0.457 -0.471 -0.743 2.173 0.786 1.432 -0.547 2.215 0.537 -0.413 1.256 0.000 0.413 2.311 -0.408 0.000 1.355 1.017 0.982 0.689 1.014 0.821 0.715
0 1.620 -0.055 -0.862 1.341 -1.571 0.634 -0.906 0.935 2.173 0.501 -2.198 -0.525 0.000 0.778 -0.708 -0.060 0.000 0.988 -0.621 0.489 3.102 0.870 0.956 1.216 0.992 0.336 0.871 0.889
1 0.549 0.304 -1.443 1.309 -0.312 1.116 0.644 1.519 2.173 1.078 -0.303 -0.736 0.000 1.261 0.387 0.628 2.548 0.945 -0.190 0.090 0.000 0.893 1.043 1.000 1.124 1.077 1.026 0.886
0 0.412 -0.618 -1.486 1.133 -0.665 0.646 0.436 1.520 0.000 0.993 0.976 0.106 2.215 0.832 0.091 0.164 2.548 0.672 -0.650 1.256 0.000 0.695 1.131 0.991 1.017 0.455 1.226 1.087
0 1.183 -0.084 1.644 1.389 0.967 0.843 0.938 -0.670 0.000 0.480 0.256 0.123 2.215 0.437 1.644 0.491 0.000 0.501 -0.416 0.101 3.102 1.060 0.804 1.017 0.775 0.173 0.535 0.760
0 1.629 -1.486 -0.683 2.786 -0.492 1.347 -2.638 1.453 0.000 1.857 0.208 0.873 0.000 0.519 -1.265 -1.602 1.274 0.903 -1.102 -0.329 1.551 6.892 3.522 0.998 0.570 0.477 2.039 2.006
1 2.045 -0.671 -1.235 0.490 -0.952 0.525 -1.252 1.289 0.000 1.088 -0.993 0.648 2.215 0.975 -0.109 -0.254 2.548 0.556 -1.095 -0.194 0.000 0.803 0.861 0.980 1.282 0.945 0.925 0.811
0 0.448 -0.058 -0.974 0.945 -1.633 1.181 -1.139 0.266 2.173 1.118 -0.761 1.502 1.107 1.706 0.585 -0.680 0.000 0.487 -1.951 0.945 0.000 2.347 1.754 0.993 1.161 1.549 1.414 1.176
0 0.551 0.519 0.448 2.183 1.293 1.220 0.628 -0.627 2.173 1.019 -0.002 -0.652 0.000 1.843 -0.386 1.042 2.548 0.400 -1.102 -1.014 0.000 0.648 0.792 1.049 0.888 2.132 1.262 1.096
0 1.624 0.488 1.403 0.760 0.559 0.812 0.777 -1.244 2.173 0.613 0.589 -0.030 2.215 0.692 1.058 0.683 0.000 1.054 1.165 -0.765 0.000 0.915 0.875 1.059 0.821 0.927 0.792 0.721
1 0.774 0.444 1.257 0.515 -0.689 0.515 1.448 -1.271 0.000 0.793 0.118 0.811 1.107 0.679 0.326 -0.426 0.000 1.066 -0.865 -0.049 3.102 0.960 1.046 0.986 0.716 0.772 0.855 0.732
1 2.093 -1.240 1.615 0.918 -1.202 1.412 -0.541 0.640 1.087 2.019 0.872 -0.639 0.000 0.672 -0.936 0.972 0.000 0.896 0.235 0.212 0.000 0.810 0.700 1.090 0.797 0.862 1.049 0.874
1 0.908 1.069 0.283 0.400 1.293 0.609 1.452 -1.136 0.000 0.623 0.417 -0.098 2.215 1.023 0.775 1.054 1.274 0.706 2.346 -1.305 0.000 0.744 1.006 0.991 0.606 0.753 0.796 0.753
0 0.403 -1.328 -0.065 0.901 1.052 0.708 -0.354 -0.718 2.173 0.892 0.633 1.684 2.215 0.999 -1.205 0.941 0.000 0.930 1.072 -0.809 0.000 2.105 1.430 0.989 0.838 1.147 1.042 0.883
0 1.447 0.453 0.118 1.731 0.650 0.771 0.446 -1.564 0.000 0.973 -2.014 0.354 0.000 1.949 -0.643 -1.531 1.274 1.106 -0.334 -1.163 0.000 0.795 0.821 1.013 1.699 0.918 1.118 1.018
1 1.794 0.123 -0.454 0.057 1.489 0.966 -1.190 1.090 1.087 0.539 -0.535 1.035 0.000 1.096 -1.069 -1.236 2.548 0.659 -1.196 -0.283 0.000 0.803 0.756 0.985 1.343 1.109 0.993 0.806
0 1.484 -2.047 0.813 0.591 -0.295 0.923 0.312 -1.164 2.173 0.654 -0.316 0.752 2.215 0.599 1.966 -1.128 0.000 0.626 -0.304 -1.431 0.000 1.112 0.910 1.090 0.986 1.189 1.350 1.472
0 0.417 -2.016 0.849 1.817 0.040 1.201 -1.676 -1.394 0.000 0.792 0.537 0.641 2.215 0.794 -1.222 0.187 0.000 0.825 -0.217 1.334 3.102 1.470 0.931 0.987 1.203 0.525 0.833 0.827
1 0.603 1.009 0.033 0.486 1.225 0.884 -0.617 -1.058 0.000 0.500 -1.407 -0.567 0.000 1.476 -0.876 0.605 2.548 0.970 0.560 1.092 3.102 0.853 1.153 0.988 0.846 0.920 0.944 0.835
1 1.381 -0.326 0.552 0.417 -0.027 1.030 -0.835 -1.287 2.173 0.941 -0.421 1.519 2.215 0.615 -1.650 0.377 0.000 0.606 0.644 0.650 0.000 1.146 0.970 0.990 1.191 0.884 0.897 0.826
1 0.632 1.200 -0.703 0.438 -1.700 0.779 -0.731 0.958 1.087 0.605 0.393 -1.376 0.000 0.670 -0.827 -1.315 2.548 0.626 -0.501 0.417 0.000 0.904 0.903 0.998 0.673 0.803 0.722 0.640
1 1.561 -0.569 1.580 0.329 0.237 1.059 0.731 0.415 2.173 0.454 0.016 -0.828 0.000 0.587 0.008 -0.291 1.274 0.597 1.119 1.191 0.000 0.815 0.908 0.988 0.733 0.690 0.892 0.764
1 2.102 0.087 0.449 1.164 -0.390 1.085 -0.408 -1.116 2.173 0.578 0.197 -0.137 0.000 1.202 0.917 1.523 0.000 0.959 -0.832 1.404 3.102 1.380 1.109 1.486 1.496 0.886 1.066 1.025
1 1.698 -0.489 -0.552 0.976 -1.009 1.620 -0.721 0.648 1.087 1.481 -1.860 -1.354 0.000 1.142 -1.140 1.401 2.548 1.000 -1.274 -0.158 0.000 1.430 1.130 0.987 1.629 1.154 1.303 1.223
1 1.111 -0.249 -1.457 0.421 0.939 0.646 -2.076 0.362 0.000 1.315 0.796 -1.436 2.215 0.780 0.130 0.055 0.000 1.662 -0.834 0.461 0.000 0.920 0.948 0.990 1.046 0.905 1.493 1.169
1 0.945 0.390 -1.159 1.675 0.437 0.356 0.261 0.543 1.087 0.574 0.838 1.599 2.215 0.496 -1.220 -0.022 0.000 0.558 -2.454 1.440 0.000 0.763 0.983 1.728 1.000 0.578 0.922 1.003
1 2.076 0.014 -1.314 0.854 -0.306 3.446 1.341 0.598 0.000 2.086 0.227 -0.747 2.215 1.564 -0.216 1.649 2.548 0.965 -0.857 -1.062 0.000 0.477 0.734 1.456 1.003 1.660 1.001 0.908
1 1.992 0.192 -0.103 0.108 -1.599 0.938 0.595 -1.360 2.173 0.869 -1.012 1.432 0.000 1.302 0.850 0.436 2.548 0.487 1.051 -1.027 0.000 0.502 0.829 0.983 1.110 1.394 0.904 0.836
0 0.460 1.625 1.485 1.331 1.242 0.675 -0.329 -1.039 1.087 0.671 -1.028 -0.514 0.000 1.265 -0.788 0.415 1.274 0.570 -0.683 -1.738 0.000 0.725 0.758 1.004 1.024 1.156 0.944 0.833
0 0.871 0.839 -1.536 0.428 1.198 0.875 -1.256 -0.466 1.087 0.684 -0.768 0.150 0.000 0.556 -1.793 0.389 0.000 0.942 -1.126 1.339 1.551 0.624 0.734 0.986 1.357 0.960 1.474 1.294
1 0.951 1.651 0.576 1.273 1.495 0.834 0.048 -0.578 2.173 0.386 -0.056 -1.448 0.000 0.597 -0.196 0.162 2.548 0.524 1.649 1.625 0.000 0.737 0.901 1.124 1.014 0.556 1.039 0.845
1 1.049 -0.223 0.685 0.256 -1.191 2.506 0.238 -0.359 0.000 1.510 -0.904 1.158 1.107 2.733 -0.902 1.679 2.548 0.407 -0.474 -1.572 0.000 1.513 2.472 0.982 1.238 0.978 1.985 1.510
0 0.455 -0.028 0.265 1.286 1.373 0.459 0.331 -0.922 0.000 0.343 0.634 0.430 0.000 0.279 -0.084 -0.272 0.000 0.475 0.926 -0.123 3.102 0.803 0.495 0.987 0.587 0.211 0.417 0.445
1 2.074 0.388 0.878 1.110 1.557 1.077 -0.226 -0.295 2.173 0.865 -0.319 -1.116 2.215 0.707 -0.835 0.722 0.000 0.632 -0.608 -0.728 0.000 0.715 0.802 1.207 1.190 0.960 1.143 0.926
1 1.390 0.265 1.196 0.919 -1.371 1.858 0.506 0.786 0.000 1.280 -1.367 -0.720 2.215 1.483 -0.441 -0.675 2.548 1.076 0.294 -0.539 0.000 1.126 0.830 1.155 1.551 0.702 1.103 0.933
1 1.014 -0.079 1.597 1.038 -0.281 1.135 -0.722 -0.177 2.173 0.544 -1.475 -1.501 0.000 1.257 -1.315 1.212 0.000 0.496 -0.060 1.180 1.551 0.815 0.611 1.411 1.110 0.792 0.846 0.853
0 0.335 1.267 -1.154 2.011 -0.574 0.753 0.618 1.411 0.000 0.474 0.748 0.681 2.215 0.608 -0.446 -0.354 2.548 0.399 1.295 -0.581 0.000 0.911 0.882 0.975 0.832 0.598 0.580 0.678
1 0.729 -0.189 1.182 0.293 1.310 0.412 0.459 -0.632 0.000 0.869 -1.128 -0.625 2.215 1.173 -0.893 0.478 2.548 0.584 -2.394 -1.727 0.000 2.016 1.272 0.995 1.034 0.905 0.966 1.038
1 1.225 -1.215 -0.088 0.881 -0.237 0.600 -0.976 1.462 2.173 0.876 0.506 1.583 2.215 0.718 1.228 -0.031 0.000 0.653 -1.292 1.216 0.000 0.838 1.108 0.981 1.805 0.890 1.251 1.197
1 2.685 -0.444 0.847 0.253 0.183 0.641 -1.541 -0.873 2.173 0.417 2.874 -0.551 0.000 0.706 -1.431 0.764 0.000 1.390 -0.596 -1.397 0.000 0.894 0.829 0.993 0.789 0.654 0.883 0.746
0 0.638 -0.481 0.683 1.457 -1.024 0.707 -1.338 1.498 0.000 0.980 0.518 0.289 2.215 0.964 -0.531 -0.423 0.000 0.694 -0.654 -1.314 3.102 0.807 1.283 1.335 0.658 0.907 0.797 0.772
1 1.789 -0.765 -0.732 0.421 -0.020 1.142 -1.353 1.439 2.173 0.725 -1.518 -1.261 0.000 0.812 -2.597 -0.463 0.000 1.203 -0.120 1.001 0.000 0.978 0.673 0.985 1.303 1.400 1.078 0.983
1 0.784 -1.431 1.724 0.848 0.559 0.615 -1.643 -1.456 0.000 1.339 -0.513 0.040 2.215 0.394 -2.483 1.304 0.000 0.987 0.889 -0.339 0.000 0.732 0.713 0.987 0.973 0.705 0.875 0.759
1 0.911 1.098 -1.289 0.421 0.823 1.218 -0.503 0.431 0.000 0.775 0.432 -1.680 0.000 0.855 -0.226 -0.460 2.548 0.646 -0.947 -1.243 1.551 2.201 1.349 0.985 0.730 0.451 0.877 0.825
1 0.959 0.372 -0.269 1.255 0.702 1.151 0.097 0.805 2.173 0.993 1.011 0.767 2.215 1.096 0.185 0.381 0.000 1.001 -0.205 0.059 0.000 0.979 0.997 1.168 0.796 0.771 0.839 0.776
0 0.283 -1.864 -1.663 0.219 1.624 0.955 -1.213 0.932 2.173 0.889 0.395 -0.268 0.000 0.597 -1.083 -0.921 2.548 0.584 1.325 -1.072 0.000 0.856 0.927 0.996 0.937 0.936 1.095 0.892
0 2.017 -0.488 -0.466 1.029 -0.870 3.157 0.059 -0.343 2.173 3.881 0.872 1.502 1.107 3.631 1.720 0.963 0.000 0.633 -1.264 -1.734 0.000 4.572 3.339 1.005 1.407 5.590 3.614 3.110
1 1.088 0.414 -0.841 0.485 0.605 0.860 1.110 -0.568 0.000 1.152 -0.325 1.203 2.215 0.324 1.652 -0.104 0.000 0.510 1.095 -1.728 0.000 0.880 0.722 0.989 0.977 0.711 0.888 0.762
0 0.409 -1.717 0.712 0.809 -1.301 0.701 -1.529 -1.411 0.000 1.191 -0.582 0.438 2.215 1.147 0.813 -0.571 2.548 1.039 0.543 0.892 0.000 0.636 0.810 0.986 0.861 1.411 0.907 0.756
1 1.094 1.577 -0.988 0.497 -0.149 0.891 -2.459 1.034 0.000 0.646 0.792 -1.022 0.000 1.573 0.254 -0.053 2.548 1.428 0.190 -1.641 3.102 4.322 2.687 0.985 0.881 1.135 1.907 1.831
1 0.613 1.993 -0.280 0.544 0.931 0.909 1.526 1.559 0.000 0.840 1.473 -0.483 2.215 0.856 0.352 0.408 2.548 1.058 1.733 -1.396 0.000 0.801 1.066 0.984 0.639 0.841 0.871 0.748
0 0.958 -1.202 0.600 0.434 0.170 0.783 -0.214 1.319 0.000 0.835 -0.454 -0.615 2.215 0.658 -1.858 -0.891 0.000 0.640 0.172 -1.204 3.102 1.790 1.086 0.997 0.804 0.403 0.793 0.756
1 1.998 -0.238 0.972 0.058 0.266 0.759 1.576 -0.357 2.173 1.004 -0.349 -0.747 2.215 0.962 0.490 -0.453 0.000 1.592 0.661 -1.405 0.000 0.874 1.086 0.990 1.436 1.527 1.177 0.993
1 0.796 -0.171 -0.818 0.574 -1.625 1.201 -0.737 1.451 2.173 0.651 0.404 -0.452 0.000 1.150 -0.652 -0.120 0.000 1.008 -0.093 0.531 3.102 0.884 0.706 0.979 1.193 0.937 0.943 0.881
1 0.773 1.023 0.527 1.537 -0.201 2.967 -0.574 -1.534 2.173 2.346 -0.307 0.394 2.215 1.393 0.135 -0.027 0.000 3.015 0.187 0.516 0.000 0.819 1.260 0.982 2.552 3.862 2.179 1.786
0 1.823 1.008 -1.489 0.234 -0.962 0.591 0.461 0.996 2.173 0.568 -1.297 -0.410 0.000 0.887 2.157 1.194 0.000 2.079 0.369 -0.085 3.102 0.770 0.945 0.995 1.179 0.971 0.925 0.983
0 0.780 0.640 0.490 0.680 -1.301 0.715 -0.137 0.152 2.173 0.616 -0.831 1.668 0.000 1.958 0.528 -0.982 2.548 0.966 -1.551 0.462 0.000 1.034 1.079 1.008 0.827 1.369 1.152 0.983
1 0.543 0.801 1.543 1.134 -0.772 0.954 -0.849 0.410 1.087 0.851 -1.988 1.686 0.000 0.799 -0.912 -1.156 0.000 0.479 0.097 1.334 0.000 0.923 0.597 0.989 1.231 0.759 0.975 0.867
0 1.241 -0.014 0.129 1.158 0.670 0.445 -0.732 1.739 2.173 0.918 0.659 -1.340 2.215 0.557 2.410 -1.404 0.000 0.966 -1.545 -1.120 0.000 0.874 0.918 0.987 1.001 0.798 0.904 0.937
0 1.751 -0.266 -1.575 0.489 1.292 1.112 1.533 0.137 2.173 1.204 -0.414 -0.928 0.000 0.879 1.237 -0.415 2.548 1.479 1.469 0.913 0.000 2.884 1.747 0.989 1.742 0.600 1.363 1.293
1 1.505 1.208 -1.476 0.995 -0.836 2.800 -1.600 0.111 0.000 2.157 1.241 1.110 2.215 1.076 2.619 -0.913 0.000 1.678 2.204 -1.575 0.000 0.849 1.224 0.990 1.412 0.976 1.271 1.105
0 0.816 0.611 0.779 1.694 0.278 0.575 -0.787 1.592 2.173 1.148 1.076 -0.831 2.215 0.421 1.316 0.632 0.000 0.589 0.452 -1.466 0.000 0.779 0.909 0.990 1.146 1.639 1.236 0.949
1 0.551 -0.808 0.330 1.188 -0.294 0.447 -0.035 -0.993 0.000 0.432 -0.276 -0.481 2.215 1.959 -0.288 1.195 2.548 0.638 0.583 1.107 0.000 0.832 0.924 0.993 0.723 0.976 0.968 0.895
0 1.316 -0.093 0.995 0.860 -0.621 0.593 -0.560 -1.599 2.173 0.524 -0.318 -0.240 2.215 0.566 0.759 -0.368 0.000 0.483 -2.030 -1.104 0.000 1.468 1.041 1.464 0.811 0.778 0.690 0.722
1 1.528 0.067 -0.855 0.959 -1.464 1.143 -0.082 1.023 0.000 0.702 -0.763 -0.244 0.000 0.935 -0.881 0.206 2.548 0.614 -0.831 1.657 3.102 1.680 1.105 0.983 1.078 0.559 0.801 0.809
0 0.558 -0.833 -0.598 1.436 -1.724 1.316 -0.661 1.593 2.173 1.148 -0.503 -0.132 1.107 1.584 -0.125 0.380 0.000 1.110 -1.216 -0.181 0.000 1.258 0.860 1.053 0.790 1.814 1.159 1.007
1 0.819 0.879 1.221 0.598 -1.450 0.754 0.417 -0.369 2.173 0.477 1.199 0.274 0.000 1.073 0.368 0.273 2.548 1.599 2.047 1.690 0.000 0.933 0.984 0.983 0.788 0.613 0.728 0.717
0 0.981 -1.007 0.489 0.923 1.261 0.436 -0.698 -0.506 2.173 0.764 -1.105 -1.241 2.215 0.577 -2.573 -0.036 0.000 0.565 -1.628 1.610 0.000 0.688 0.801 0.991 0.871 0.554 0.691 0.656
0 2.888 0.568 -1.416 1.461 -1.157 1.756 -0.900 0.522 0.000 0.657 0.409 1.076 2.215 1.419 0.672 -0.019 0.000 1.436 -0.184 -0.980 3.102 0.946 0.919 0.995 1.069 0.890 0.834 0.856
1 0.522 1.805 -0.963 1.136 0.418 0.727 -0.195 -1.695 2.173 0.309 2.559 -0.178 0.000 0.521 1.794 0.919 0.000 0.788 0.174 -0.406 3.102 0.555 0.729 1.011 1.385 0.753 0.927 0.832
1 0.793 -0.162 -1.643 0.634 0.337 0.898 -0.633 1.689 0.000 0.806 -0.826 -0.356 2.215 0.890 -0.142 -1.268 0.000 1.293 0.574 0.725 0.000 0.833 1.077 0.988 0.721 0.679 0.867 0.753
0 1.298 1.098 0.280 0.371 -0.373 0.855 -0.306 -1.186 0.000 0.977 -0.421 1.003 0.000 0.978 0.956 -1.249 2.548 0.735 0.577 -0.037 3.102 0.974 1.002 0.992 0.549 0.587 0.725 0.954
1 0.751 -0.520 -1.653 0.168 -0.419 0.878 -1.023 -1.364 2.173 1.310 -0.667 0.863 0.000 1.196 -0.827 0.358 0.000 1.154 -0.165 -0.360 1.551 0.871 0.950 0.983 0.907 0.955 0.959 0.874
0 1.730 0.666 -1.432 0.446 1.302 0.921 -0.203 0.621 0.000 1.171 -0.365 -0.611 1.107 0.585 0.807 1.150 0.000 0.415 -0.843 1.311 0.000 0.968 0.786 0.986 1.059 0.371 0.790 0.848
1 0.596 -1.486 0.690 1.045 -1.344 0.928 0.867 0.820 2.173 0.610 0.999 -1.329 2.215 0.883 -0.001 -0.106 0.000 1.145 2.184 -0.808 0.000 2.019 1.256 1.056 1.751 1.037 1.298 1.518
1 0.656 -1.993 -0.519 1.643 -0.143 0.815 0.256 1.220 1.087 0.399 -1.184 -1.458 0.000 0.738 1.361 -1.443 0.000 0.842 0.033 0.293 0.000 0.910 0.891 0.993 0.668 0.562 0.958 0.787
1 1.127 -0.542 0.645 0.318 -1.496 0.661 -0.640 0.369 2.173 0.992 0.358 1.702 0.000 1.004 0.316 -1.109 0.000 1.616 -0.936 -0.707 1.551 0.875 1.191 0.985 0.651 0.940 0.969 0.834
0 0.916 -1.423 -1.490 1.248 -0.538 0.625 -0.535 -0.174 0.000 0.769 -0.389 1.608 2.215 0.667 -1.138 -1.738 1.274 0.877 -0.019 0.482 0.000 0.696 0.917 1.121 0.678 0.347 0.647 0.722
1 2.756 -0.637 -1.715 1.331 1.124 0.913 -0.296 -0.491 0.000 0.983 -0.831 0.000 2.215 1.180 -0.428 0.742 0.000 1.113 0.005 -1.157 1.551 1.681 1.096 1.462 0.976 0.917 1.009 1.040
0 0.755 1.754 0.701 2.111 0.256 1.243 0.057 -1.502 2.173 0.565 -0.034 -1.078 1.107 0.529 1.696 -1.090 0.000 0.665 0.292 0.107 0.000 0.870 0.780 0.990 2.775 0.465 1.876 1.758
1 0.593 -0.762 1.743 0.908 0.442 0.773 -1.357 -0.768 2.173 0.432 1.421 1.236 0.000 0.579 0.291 -0.403 0.000 0.966 -0.309 1.016 3.102 0.893 0.743 0.989 0.857 1.030 0.943 0.854
1 0.891 -1.151 -1.269 0.504 -0.622 0.893 -0.549 0.700 0.000 0.828 -0.825 0.154 2.215 1.083 0.632 -1.141 0.000 1.059 -0.557 1.526 3.102 2.117 1.281 0.987 0.819 0.802 0.917 0.828
1 2.358 -0.248 0.080 0.747 -0.975 1.019 1.374 1.363 0.000 0.935 0.127 -1.707 2.215 0.312 -0.827 0.017 0.000 0.737 1.059 -0.327 0.000 0.716 0.828 1.495 0.953 0.704 0.880 0.745
0 0.660 -0.017 -1.138 0.453 1.002 0.645 0.518 0.703 2.173 0.751 0.705 -0.592 2.215 0.744 -0.909 -1.596 0.000 0.410 -1.135 0.481 0.000 0.592 0.922 0.989 0.897 0.948 0.777 0.701
1 0.718 0.518 0.225 1.710 -0.022 1.888 -0.424 1.092 0.000 4.134 0.185 -1.366 0.000 1.415 1.293 0.242 2.548 2.351 0.264 -0.057 3.102 0.830 1.630 0.976 1.215 0.890 1.422 1.215
1 1.160 0.203 0.941 0.594 0.212 0.636 -0.556 0.679 2.173 1.089 -0.481 -1.008 1.107 1.245 -0.056 -1.357 0.000 0.587 1.007 0.056 0.000 1.106 0.901 0.987 0.786 1.224 0.914 0.837
1 0.697 0.542 0.619 0.985 1.481 0.745 0.415 1.644 2.173 0.903 0.495 -0.958 2.215 1.165 1.195 0.346 0.000 1.067 -0.881 -0.264 0.000 0.830 1.025 0.987 0.690 0.863 0.894 0.867
0 1.430 0.190 -0.700 0.246 0.518 1.302 0.660 -0.247 2.173 1.185 -0.539 1.504 0.000 1.976 -0.401 1.079 0.000 0.855 -0.958 -1.110 3.102 0.886 0.953 0.993 0.889 1.400 1.376 1.119
1 1.122 -0.795 0.202 0.397 -1.553 0.597 -1.459 -0.734 2.173 0.522 1.044 1.027 2.215 0.783 -1.243 1.701 0.000 0.371 1.737 0.199 0.000 1.719 1.176 0.988 0.723 1.583 1.063 0.914
0 1.153 0.526 1.236 0.266 0.001 1.139 -1.236 -0.585 2.173 1.337 -0.215 -1.356 2.215 1.780 1.129 0.902 0.000 1.608 -0.391 -0.161 0.000 1.441 1.633 0.990 1.838 1.516 1.635 1.373
1 0.760 1.012 0.758 0.937 0.051 0.941 0.687 -1.247 2.173 1.288 -0.743 0.822 0.000 1.552 1.782 -1.533 0.000 0.767 1.349 0.168 0.000 0.716 0.862 0.988 0.595 0.359 0.697 0.623
1 1.756 -1.469 1.395 1.345 -1.595 0.817 0.017 -0.741 2.173 0.483 -0.008 0.293 0.000 1.768 -0.663 0.438 1.274 1.202 -1.387 -0.222 0.000 1.022 1.058 0.992 1.407 1.427 1.356 1.133
0 0.397 0.582 -0.758 1.260 -1.735 0.889 -0.515 1.139 2.173 0.973 1.616 0.460 0.000 1.308 1.001 -0.709 2.548 0.858 0.995 -0.231 0.000 0.749 0.888 0.979 1.487 1.804 1.208 1.079
0 0.515 -0.984 0.425 1.114 -0.439 1.999 0.818 1.561 0.000 1.407 0.009 -0.380 0.000 1.332 0.230 0.397 0.000 1.356 -0.616 -1.057 3.102 0.978 1.017 0.990 1.118 0.862 0.835 0.919
1 1.368 -0.921 -0.866 0.842 -0.598 0.456 -1.176 1.219 1.087 0.419 -1.974 -0.819 0.000 0.791 -1.640 0.881 0.000 1.295 -0.782 0.442 3.102 0.945 0.761 0.974 0.915 0.535 0.733 0.651
0 2.276 0.134 0.399 2.525 0.376 1.111 -1.078 -1.571 0.000 0.657 2.215 -0.900 0.000 1.183 -0.662 -0.508 2.548 1.436 -0.517 0.960 3.102 0.569 0.931 0.993 1.170 0.967 0.879 1.207
0 0.849 0.907 0.124 0.652 1.585 0.715 0.355 -1.200 0.000 0.599 -0.892 1.301 0.000 1.106 1.151 0.582 0.000 1.895 -0.279 -0.568 3.102 0.881 0.945 0.998 0.559 0.649 0.638 0.660
1 2.105 0.248 -0.797 0.530 0.206 1.957 -2.175 0.797 0.000 1.193 0.637 -1.646 2.215 0.881 1.111 -1.046 0.000 0.872 -0.185 1.085 1.551 0.986 1.343 1.151 1.069 0.714 2.063 1.951
1 1.838 1.060 1.637 1.017 1.370 0.913 0.461 -0.609 1.087 0.766 -0.461 0.303 2.215 0.724 -0.061 0.886 0.000 0.941 1.123 -0.745 0.000 0.858 0.847 0.979 1.313 1.083 1.094 0.910
0 0.364 1.274 1.066 1.570 -0.394 0.485 0.012 -1.716 0.000 0.317 -1.233 0.534 2.215 0.548 -2.165 0.762 0.000 0.729 0.169 -0.318 3.102 0.892 0.944 1.013 0.594 0.461 0.688 0.715
1 0.503 1.343 -0.031 1.134 -1.204 0.590 -0.309 0.174 2.173 0.408 2.372 -0.628 0.000 1.850 0.400 1.147 2.548 0.664 -0.458 -0.885 0.000 1.445 1.283 0.989 1.280 1.118 1.127 1.026
0 1.873 0.258 0.103 2.491 0.530 1.678 0.644 -1.738 2.173 1.432 0.848 -1.340 0.000 0.621 1.323 -1.316 0.000 0.628 0.789 -0.206 1.551 0.426 0.802 1.125 0.688 1.079 1.338 1.239
1 0.826 -0.732 1.587 0.582 -1.236 0.495 0.757 -0.741 2.173 0.940 1.474 0.354 2.215 0.474 1.055 -1.657 0.000 0.415 1.758 0.841 0.000 0.451 0.578 0.984 0.757 0.922 0.860 0.696
0 0.935 -1.614 -0.597 0.299 1.223 0.707 -0.853 -1.026 0.000 0.751 0.007 -1.691 0.000 1.062 -0.125 0.976 2.548 0.877 1.275 0.646 0.000 0.962 1.074 0.980 0.608 0.726 0.741 0.662
1 0.643 0.542 -1.285 0.474 -0.366 0.667 -0.446 1.195 2.173 1.076 0.145 -0.126 0.000 0.970 -0.661 0.394 1.274 1.218 -0.184 -1.722 0.000 1.331 1.019 0.985 1.192 0.677 0.973 0.910
0 0.713 0.164 1.080 1.427 -0.460 0.960 -0.152 -0.940 2.173 1.427 -0.901 1.036 1.107 0.440 -1.269 -0.194 0.000 0.452 1.932 -0.532 0.000 1.542 1.210 1.374 1.319 1.818 1.220 1.050
0 0.876 -0.463 -1.224 2.458 -1.689 1.007 -0.752 0.398 0.000 2.456 -1.285 -0.152 1.107 1.641 1.838 1.717 0.000 0.458 0.194 0.488 3.102 4.848 2.463 0.986 1.981 0.974 2.642 2.258
1 0.384 -0.275 0.387 1.403 -0.994 0.620 -1.529 1.685 0.000 1.091 -1.644 1.078 0.000 0.781 -1.311 0.326 2.548 1.228 -0.728 -0.633 1.551 0.920 0.854 0.987 0.646 0.609 0.740 0.884
0 0.318 -1.818 -1.008 0.977 1.268 0.457 2.451 -1.522 0.000 0.881 1.351 0.461 2.215 0.929 0.239 -0.380 2.548 0.382 -0.613 1.330 0.000 1.563 1.193 0.994 0.829 0.874 0.901 1.026
1 0.612 -1.120 1.098 0.402 -0.480 0.818 0.188 1.511 0.000 0.800 -0.253 0.977 0.000 1.175 0.271 -1.289 1.274 2.531 0.226 -0.409 3.102 0.889 0.947 0.979 1.486 0.940 1.152 1.119
1 0.587 -0.737 -0.228 0.970 1.119 0.823 0.184 1.594 0.000 1.104 0.301 -0.818 2.215 0.819 0.712 -0.560 0.000 2.240 -0.419 0.340 3.102 1.445 1.103 0.988 0.715 1.363 1.019 0.926
0 1.030 -0.694 -1.638 0.893 -1.074 1.160 -0.766 0.485 0.000 1.632 -0.698 -1.142 2.215 1.050 -1.092 0.952 0.000 1.475 0.286 0.125 3.102 0.914 1.075 0.982 0.732 1.493 1.219 1.079
1 2.142 0.617 1.517 0.387 -0.862 0.345 1.203 -1.014 2.173 0.609 1.092 0.275 0.000 1.331 0.582 -0.183 2.548 0.557 1.540 -1.642 0.000 0.801 0.737 1.060 0.715 0.626 0.749 0.674
0 1.076 0.240 -0.246 0.871 -1.241 0.496 0.282 0.746 2.173 1.095 -0.648 1.100 2.215 0.446 -1.756 0.764 0.000 0.434 0.788 -0.991 0.000 1.079 0.868 1.047 0.818 0.634 0.795 0.733
0 1.400 0.901 -1.617 0.625 -0.163 0.661 -0.411 -1.616 2.173 0.685 0.524 0.425 0.000 0.881 -0.766 0.312 0.000 0.979 0.255 -0.667 3.102 0.898 1.105 1.253 0.730 0.716 0.738 0.795
0 3.302 1.132 1.051 0.658 0.768 1.308 0.251 -0.374 1.087 1.673 0.015 -0.898 0.000 0.688 -0.535 1.363 1.274 0.871 1.325 -1.583 0.000 1.646 1.249 0.995 1.919 1.288 1.330 1.329
0 1.757 0.202 0.750 0.767 -0.362 0.932 -1.033 -1.366 0.000 1.529 -1.012 -0.771 0.000 1.161 -0.287 0.059 0.000 2.185 1.147 1.099 3.102 0.795 0.529 1.354 1.144 1.491 1.319 1.161
0 1.290 0.905 -1.711 1.017 -0.695 1.008 -1.038 0.693 2.173 1.202 -0.595 0.187 0.000 1.011 0.139 -1.607 0.000 0.789 -0.613 -1.041 3.102 1.304 0.895 1.259 1.866 0.955 1.211 1.200
1 1.125 -0.004 1.694 0.373 0.329 0.978 0.640 -0.391 0.000 1.122 -0.376 1.521 2.215 0.432 2.413 -1.259 0.000 0.969 0.730 0.512 3.102 0.716 0.773 0.991 0.624 0.977 0.981 0.875
0 1.081 0.861 1.252 1.621 1.474 1.293 0.600 0.630 0.000 1.991 -0.090 -0.675 2.215 0.861 1.105 -0.201 0.000 1.135 2.489 -1.659 0.000 1.089 0.657 0.991 2.179 0.412 1.334 1.071
1 0.652 -0.294 1.241 1.034 0.490 1.033 0.551 -0.963 2.173 0.661 1.031 -1.654 2.215 1.376 -0.018 0.843 0.000 0.943 -0.329 -0.269 0.000 1.085 1.067 0.991 1.504 0.773 1.135 0.993
1 1.408 -1.028 -1.018 0.252 -0.242 0.465 -0.364 -0.200 0.000 1.466 0.669 0.739 1.107 1.031 0.415 -1.468 2.548 0.457 -1.091 -1.722 0.000 0.771 0.811 0.979 1.459 1.204 1.041 0.866
1 0.781 -1.143 -0.659 0.961 1.266 1.183 -0.686 0.119 2.173 1.126 -0.064 1.447 0.000 0.730 1.430 -1.535 0.000 1.601 0.513 1.658 0.000 0.871 1.345 1.184 1.058 0.620 1.107 0.978
1 1.300 -0.616 1.032 0.751 -0.731 0.961 -0.716 1.592 0.000 2.079 -1.063 -0.271 2.215 0.475 0.518 1.695 1.274 0.395 -2.204 0.349 0.000 1.350 0.983 1.369 1.265 1.428 1.135 0.982
1 0.833 0.809 1.657 1.637 1.019 0.705 1.077 -0.968 2.173 1.261 0.114 -0.298 1.107 1.032 0.017 0.236 0.000 0.640 -0.026 -1.598 0.000 0.894 0.982 0.981 1.250 1.054 1.018 0.853
1 1.686 -1.090 -0.301 0.890 0.557 1.304 -0.284 -1.393 2.173 0.388 2.118 0.513 0.000 0.514 -0.015 0.891 0.000 0.460 0.547 0.627 3.102 0.942 0.524 1.186 1.528 0.889 1.015 1.122
1 0.551 0.911 0.879 0.379 -0.796 1.154 -0.808 -0.966 0.000 1.168 -0.513 0.355 2.215 0.646 -1.309 0.773 0.000 0.544 -0.283 1.301 3.102 0.847 0.705 0.990 0.772 0.546 0.790 0.719
1 1.597 0.793 -1.119 0.691 -1.455 0.370 0.337 1.354 0.000 0.646 -1.005 0.732 2.215 1.019 0.040 0.209 0.000 0.545 0.958 0.239 3.102 0.962 0.793 0.994 0.719 0.745 0.812 0.739
0 1.033 -1.193 -0.452 0.247 0.970 0.503 -1.424 1.362 0.000 1.062 -0.416 -1.156 2.215 0.935 -0.023 0.555 2.548 0.410 -1.766 0.379 0.000 0.590 0.953 0.991 0.717 1.081 0.763 0.690
1 0.859 -1.004 1.521 0.781 -0.993 0.677 0.643 -0.338 2.173 0.486 0.409 1.283 0.000 0.679 0.110 0.285 0.000 0.715 -0.735 -0.157 1.551 0.702 0.773 0.984 0.627 0.633 0.694 0.643
0 0.612 -1.127 1.074 1.225 -0.426 0.927 -2.141 -0.473 0.000 1.290 -0.927 -1.085 2.215 1.183 1.981 -1.687 0.000 2.176 0.406 -1.581 0.000 0.945 0.651 1.170 0.895 1.604 1.179 1.142
1 0.535 0.321 -1.095 0.281 -0.960 0.876 -0.709 -0.076 0.000 1.563 -0.666 1.536 2.215 0.773 -0.321 0.435 0.000 0.682 -0.801 -0.952 3.102 0.711 0.667 0.985 0.888 0.741 0.872 0.758
1 0.745 1.586 1.578 0.863 -1.423 0.530 1.714 1.085 0.000 1.174 0.679 1.015 0.000 1.158 0.609 -1.186 2.548 1.851 0.832 -0.248 3.102 0.910 1.164 0.983 0.947 0.858 0.928 0.823
0 0.677 -1.014 -1.648 1.455 1.461 0.596 -2.358 0.517 0.000 0.800 0.849 -0.743 2.215 1.024 -0.282 -1.004 0.000 1.846 -0.977 0.378 3.102 2.210 1.423 0.982 1.074 1.623 1.417 1.258
1 0.815 -1.263 0.057 1.018 -0.208 0.339 -0.347 -1.646 2.173 1.223 0.600 -1.658 2.215 1.435 0.042 0.926 0.000 0.777 1.698 -0.698 0.000 1.022 1.058 1.000 0.784 0.477 0.886 0.836
0 3.512 -1.094 -0.220 0.338 -0.328 1.962 -1.099 1.544 1.087 1.461 -1.305 -0.922 2.215 1.219 -1.289 0.400 0.000 0.731 0.155 1.249 0.000 1.173 1.366 0.993 2.259 2.000 1.626 1.349
0 0.904 1.248 0.325 0.317 -1.624 0.685 -0.538 1.665 2.173 0.685 -2.145 -1.106 0.000 0.632 -1.460 1.017 0.000 1.085 -0.182 0.162 3.102 0.885 0.801 0.989 0.930 0.904 1.012 0.961

File diff suppressed because it is too large Load Diff

View File

@@ -1,270 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/contrib/gbdt/lightgbm/lightgbm-example.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Use LightGBM Estimator in Azure Machine Learning\n",
"In this notebook we will demonstrate how to run a training job using LightGBM Estimator. [LightGBM](https://lightgbm.readthedocs.io/en/latest/) is a gradient boosting framework that uses tree based learning algorithms. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"This notebook uses azureml-contrib-gbdt package, if you don't already have the package, please install by uncommenting below cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install azureml-contrib-gbdt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Run, Experiment\n",
"import shutil, os\n",
"from azureml.widgets import RunDetails\n",
"from azureml.contrib.gbdt import LightGBM\n",
"from azureml.train.dnn import Mpi\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.core.compute_target import ComputeTargetException"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you are using an AzureML Compute Instance, you are all set. Otherwise, go through the [configuration.ipynb](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up machine learning resources"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cluster_vm_size = \"STANDARD_DS14_V2\"\n",
"cluster_min_nodes = 0\n",
"cluster_max_nodes = 20\n",
"cpu_cluster_name = 'TrainingCompute2' \n",
"\n",
"try:\n",
" cpu_cluster = AmlCompute(ws, cpu_cluster_name)\n",
" if cpu_cluster and type(cpu_cluster) is AmlCompute:\n",
" print('found compute target: ' + cpu_cluster_name)\n",
"except ComputeTargetException:\n",
" print('creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = cluster_vm_size, \n",
" vm_priority = 'lowpriority', \n",
" min_nodes = cluster_min_nodes, \n",
" max_nodes = cluster_max_nodes)\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, provisioning_config)\n",
" \n",
" # can poll for a minimum number of nodes and for a specific timeout. \n",
" # if no min node count is provided it will use the scale settings for the cluster\n",
" cpu_cluster.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
" \n",
" # For a more detailed view of current Azure Machine Learning Compute status, use get_status()\n",
" print(cpu_cluster.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From this point, you can either upload training data file directly or use Datastore for training data storage\n",
"## Upload training file from local"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"scripts_folder = \"scripts_folder\"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)\n",
"shutil.copy('./train.conf', os.path.join(scripts_folder, 'train.conf'))\n",
"shutil.copy('./binary0.train', os.path.join(scripts_folder, 'binary0.train'))\n",
"shutil.copy('./binary1.train', os.path.join(scripts_folder, 'binary1.train'))\n",
"shutil.copy('./binary0.test', os.path.join(scripts_folder, 'binary0.test'))\n",
"shutil.copy('./binary1.test', os.path.join(scripts_folder, 'binary1.test'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data_list=[\"binary0.train\", \"binary1.train\"]\n",
"validation_data_list = [\"binary0.test\", \"binary1.test\"]\n",
"lgbm = LightGBM(source_directory=scripts_folder, \n",
" compute_target=cpu_cluster, \n",
" distributed_training=Mpi(),\n",
" node_count=2,\n",
" lightgbm_config='train.conf',\n",
" data=training_data_list,\n",
" valid=validation_data_list\n",
" )\n",
"experiment_name = 'lightgbm-estimator-test'\n",
"experiment = Experiment(ws, name=experiment_name)\n",
"run = experiment.submit(lgbm, tags={\"test public docker image\": None})\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use data reference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"datastore = ws.get_default_datastore()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore.upload(src_dir='.',\n",
" target_path='.',\n",
" show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data_list=[\"binary0.train\", \"binary1.train\"]\n",
"validation_data_list = [\"binary0.test\", \"binary1.test\"]\n",
"lgbm = LightGBM(source_directory='.', \n",
" compute_target=cpu_cluster, \n",
" distributed_training=Mpi(),\n",
" node_count=2,\n",
" inputs=[datastore.as_mount()],\n",
" lightgbm_config='train.conf',\n",
" data=training_data_list,\n",
" valid=validation_data_list\n",
" )\n",
"experiment_name = 'lightgbm-estimator-test'\n",
"experiment = Experiment(ws, name=experiment_name)\n",
"run = experiment.submit(lgbm, tags={\"use datastore.as_mount()\": None})\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# uncomment below and run if compute resources are no longer needed\n",
"# cpu_cluster.delete() "
]
}
],
"metadata": {
"authors": [
{
"name": "jingywa"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,7 +0,0 @@
name: lightgbm-example
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-gbdt
- azureml-widgets
- azureml-core

View File

@@ -1,111 +0,0 @@
# task type, support train and predict
task = train
# boosting type, support gbdt for now, alias: boosting, boost
boosting_type = gbdt
# application type, support following application
# regression , regression task
# binary , binary classification task
# lambdarank , lambdarank task
# alias: application, app
objective = binary
# eval metrics, support multi metric, delimite by ',' , support following metrics
# l1
# l2 , default metric for regression
# ndcg , default metric for lambdarank
# auc
# binary_logloss , default metric for binary
# binary_error
metric = binary_logloss,auc
# frequence for metric output
metric_freq = 1
# true if need output metric for training data, alias: tranining_metric, train_metric
is_training_metric = true
# number of bins for feature bucket, 255 is a recommend setting, it can save memories, and also has good accuracy.
max_bin = 255
# training data
# if exsting weight file, should name to "binary.train.weight"
# alias: train_data, train
data = binary.train
# validation data, support multi validation data, separated by ','
# if exsting weight file, should name to "binary.test.weight"
# alias: valid, test, test_data,
valid_data = binary.test
# number of trees(iterations), alias: num_tree, num_iteration, num_iterations, num_round, num_rounds
num_trees = 100
# shrinkage rate , alias: shrinkage_rate
learning_rate = 0.1
# number of leaves for one tree, alias: num_leaf
num_leaves = 63
# type of tree learner, support following types:
# serial , single machine version
# feature , use feature parallel to train
# data , use data parallel to train
# voting , use voting based parallel to train
# alias: tree
tree_learner = feature
# number of threads for multi-threading. One thread will use one CPU, defalut is setted to #cpu.
# num_threads = 8
# feature sub-sample, will random select 80% feature to train on each iteration
# alias: sub_feature
feature_fraction = 0.8
# Support bagging (data sub-sample), will perform bagging every 5 iterations
bagging_freq = 5
# Bagging farction, will random select 80% data on bagging
# alias: sub_row
bagging_fraction = 0.8
# minimal number data for one leaf, use this to deal with over-fit
# alias : min_data_per_leaf, min_data
min_data_in_leaf = 50
# minimal sum hessians for one leaf, use this to deal with over-fit
min_sum_hessian_in_leaf = 5.0
# save memory and faster speed for sparse feature, alias: is_sparse
is_enable_sparse = true
# when data is bigger than memory size, set this to true. otherwise set false will have faster speed
# alias: two_round_loading, two_round
use_two_round_loading = false
# true if need to save data to binary file and application will auto load data from binary file next time
# alias: is_save_binary, save_binary
is_save_binary_file = false
# output model file
output_model = LightGBM_model.txt
# support continuous train from trained gbdt model
# input_model= trained_model.txt
# output prediction file for predict task
# output_result= prediction.txt
# support continuous train from initial score file
# input_init_score= init_score.txt
# number of machines in parallel training, alias: num_machine
num_machines = 2
# local listening port in parallel training, alias: local_port
local_listen_port = 12400
# machines list file for parallel training, alias: mlist
machine_list_file = mlist.txt

View File

@@ -144,7 +144,7 @@ jupyter notebook
- Dataset: forecasting for a bike-sharing
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-function.ipynb](forecasting-high-frequency/auto-ml-forecasting-function.ipynb)
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
@@ -230,6 +230,15 @@ You may check the version of tensorflow and uninstall as follows
2) enter `pip freeze` and look for `tensorflow` , if found, the version listed should be < 1.13
3) If the listed version is a not a supported version, `pip uninstall tensorflow` in the command shell and enter y for confirmation.
## KeyError: 'brand' when running AutoML on local compute or Azure Databricks cluster**
If a new environment was created after 10 June 2020 using SDK 1.7.0 or lower, training may fail with the above error due to an update in the py-cpuinfo package. (Environments created on or before 10 June 2020 are unaffected, as well as experiments run on remote compute as cached training images are used.) To work around this issue, either of the two following steps can be taken:
1) Update the SDK version to 1.8.0 or higher (this will also downgrade py-cpuinfo to 5.0.0):
`pip install --upgrade azureml-sdk[automl]`
2) Downgrade the installed version of py-cpuinfo to 5.0.0:
`pip install py-cpuinfo==5.0.0`
## Remote run: DsvmCompute.create fails
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.

View File

@@ -6,7 +6,7 @@ dependencies:
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.16.0,<=1.16.2
- numpy~=1.16.0
- cython
- urllib3<1.24
- scipy==1.4.1
@@ -14,6 +14,7 @@ dependencies:
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=10.1.243
@@ -26,6 +27,5 @@ dependencies:
- azureml-pipeline
- pytorch-transformers==1.0.0
- spacy==2.1.8
- pyarrow==0.17.0
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz

View File

@@ -7,7 +7,7 @@ dependencies:
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.16.0,<=1.16.2
- numpy~=1.16.0
- cython
- urllib3<1.24
- scipy==1.4.1
@@ -15,6 +15,7 @@ dependencies:
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=9.0
@@ -27,5 +28,4 @@ dependencies:
- azureml-pipeline
- pytorch-transformers==1.0.0
- spacy==2.1.8
- pyarrow==0.17.0
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz

View File

@@ -57,7 +57,7 @@
"9. Test the ACI service.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Blacklisting** certain pipelines\n",
"- **Blocking** certain pipelines\n",
"- Specifying **target metrics** to indicate stopping criteria\n",
"- Handling **missing data** in the input"
]
@@ -89,7 +89,7 @@
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
"from azureml.interpret._internal.explanation_client import ExplanationClient"
]
},
{
@@ -105,7 +105,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -314,8 +314,8 @@
"|**task**|classification or regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**blacklist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
"| **whitelist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blacklist_models** allowed for **whitelist_models**.|\n",
"|**blocked_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
"|**allowed_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blocked_models** allowed for **allowed_models**.|\n",
"|**experiment_exit_score**| Value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
@@ -349,7 +349,7 @@
" debug_log = 'automl_errors.log',\n",
" compute_target=compute_target,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
" blocked_models = ['KNN','LinearSVM'],\n",
" enable_onnx_compatible_models=True,\n",
" training_data = train_data,\n",
" label_column_name = label,\n",
@@ -362,7 +362,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while."
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
@@ -675,10 +675,8 @@
"model_name = best_run.properties['model_name']\n",
"\n",
"script_file_name = 'inference/score.py'\n",
"conda_env_file_name = 'inference/env.yml'\n",
"\n",
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')\n",
"best_run.download_file('outputs/conda_env_v_1_0_0.yml', 'inference/env.yml')"
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')"
]
},
{
@@ -721,8 +719,7 @@
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=conda_env_file_name)\n",
"inference_config = InferenceConfig(entry_script=script_file_name, environment=myenv)\n",
"inference_config = InferenceConfig(entry_script=script_file_name)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
@@ -736,24 +733,6 @@
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -778,7 +757,9 @@
"source": [
"## Test\n",
"\n",
"Now that the model is trained, run the test data through the trained model to get the predicted values."
"Now that the model is trained, run the test data through the trained model to get the predicted values. This calls the ACI web service to do the prediction.\n",
"\n",
"Note that the JSON passed to the ACI web service is an array of rows of data. Each row should either be an array of values in the same order that was used for training or a dictionary where the keys are the same as the column names used for training. The example below uses dictionary rows."
]
},
{
@@ -818,10 +799,27 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"import json\n",
"import requests\n",
"\n",
"X_test_json = X_test.to_json(orient='records')\n",
"data = \"{\\\"data\\\": \" + X_test_json +\"}\"\n",
"headers = {'Content-Type': 'application/json'}\n",
"\n",
"resp = requests.post(aci_service.scoring_uri, data, headers=headers)\n",
"\n",
"y_pred = json.loads(json.loads(resp.text))['result']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"actual = array(y_test)\n",
"actual = actual[:,0]\n",
"print(y_pred.shape, \" \", actual.shape)"
"print(len(y_pred), \" \", len(actual))"
]
},
{
@@ -830,8 +828,7 @@
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
"Now visualize the data as a confusion matrix that compared the predicted values against the actual values.\n"
]
},
{
@@ -841,12 +838,45 @@
"outputs": [],
"source": [
"%matplotlib notebook\n",
"test_pred = plt.scatter(actual, y_pred, color='b')\n",
"test_test = plt.scatter(actual, actual, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf =confusion_matrix(actual,y_pred)\n",
"plt.imshow(cf,cmap=plt.cm.Blues,interpolation='nearest')\n",
"plt.colorbar()\n",
"plt.title('Confusion Matrix')\n",
"plt.xlabel('Predicted')\n",
"plt.ylabel('Actual')\n",
"class_labels = ['no','yes']\n",
"tick_marks = np.arange(len(class_labels))\n",
"plt.xticks(tick_marks,class_labels)\n",
"plt.yticks([-0.5,0,1,1.5],['','no','yes',''])\n",
"# plotting text value inside cells\n",
"thresh = cf.max() / 2.\n",
"for i,j in itertools.product(range(cf.shape[0]),range(cf.shape[1])):\n",
" plt.text(j,i,format(cf[i,j],'d'),horizontalalignment='center',color='white' if cf[i,j] >thresh else 'black')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -2,7 +2,3 @@ name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- onnxruntime==1.0.0

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -232,7 +232,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while."
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{

View File

@@ -2,6 +2,3 @@ name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -491,8 +491,8 @@
"metadata": {},
"outputs": [],
"source": [
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset,\n",
" target_column_name, model_name)"
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run,\n",
" train_dataset, test_dataset, target_column_name, model_name)"
]
},
{

View File

@@ -2,11 +2,3 @@ name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl
- sentencepiece==0.1.82
- pytorch-transformers==1.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz

View File

@@ -6,7 +6,7 @@ from azureml.core.run import Run
def run_inference(test_experiment, compute_target, script_folder, train_run,
test_dataset, target_column_name, model_name):
train_dataset, test_dataset, target_column_name, model_name):
train_run.download_file('outputs/conda_env_v_1_0_0.yml',
'inference/condafile.yml')
@@ -22,7 +22,10 @@ def run_inference(test_experiment, compute_target, script_folder, train_run,
'--target_column_name': target_column_name,
'--model_name': model_name
},
inputs=[test_dataset.as_named_input('test_data')],
inputs=[
train_dataset.as_named_input('train_data'),
test_dataset.as_named_input('test_data')
],
compute_target=compute_target,
environment_definition=inference_env)

View File

@@ -1,8 +1,11 @@
import numpy as np
import argparse
from azureml.core import Run
import numpy as np
from sklearn.externals import joblib
from azureml.automl.core.shared import constants, metrics
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
from azureml.core.model import Model
@@ -29,22 +32,26 @@ model = joblib.load(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
train_dataset = run.input_datasets['train_data']
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
y_test_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
y_train_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
predicted = model.predict_proba(X_test_df)
# use automl metrics module
scores = metrics.compute_metrics_classification(
np.array(predicted),
np.array(y_test_df),
class_labels=model.classes_,
metrics=list(constants.Metric.SCALAR_CLASSIFICATION_SET)
)
# Use the AutoML scoring module
class_labels = np.unique(np.concatenate((y_train_df.values, y_test_df.values)))
train_labels = model.classes_
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
scores = scoring.score_classification(y_test_df.values, predicted,
classification_metrics,
class_labels, train_labels)
print("scores:")
print(scores)

View File

@@ -88,7 +88,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -201,10 +201,9 @@
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets'], \n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets', 'azureml-defaults'], \n",
" conda_packages=['numpy==1.16.2'], \n",
" pin_sdk_version=False)\n",
"#cd.add_pip_package('azureml-explain-model')\n",
"conda_run_config.environment.python.conda_dependencies = cd\n",
"\n",
"print('run config is ready')"

View File

@@ -2,7 +2,3 @@ name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- azureml-pipeline

View File

@@ -114,7 +114,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -217,7 +217,7 @@
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Grain** is another word for an individual time series in your dataset. Grains are identified by values of the columns listed `grain_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"**Time series identifier columns** are identified by values of the columns listed `time_series_id_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
@@ -269,7 +269,7 @@
"source": [
"target_column_name = 'BeerProduction'\n",
"time_column_name = 'DATE'\n",
"grain_column_names = []\n",
"time_series_id_column_names = []\n",
"freq = 'M' #Monthly data"
]
},
@@ -329,7 +329,7 @@
},
"outputs": [],
"source": [
"max_horizon = 12"
"forecast_horizon = 12"
]
},
{
@@ -352,8 +352,6 @@
"|**label_column_name**|The name of the label column.|\n",
"|**enable_dnn**|Enable Forecasting DNNs|\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results.\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
]
},
@@ -366,11 +364,10 @@
},
"outputs": [],
"source": [
"automl_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon,\n",
" 'enable_dnn' : True,\n",
"}\n",
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
@@ -382,7 +379,8 @@
" compute_target=compute_target,\n",
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" **automl_settings)"
" enable_dnn=True,\n",
" forecasting_parameters=forecasting_parameters)"
]
},
{
@@ -392,7 +390,7 @@
"hidePrompt": false
},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. The experiment can be continued for more iterations if more accurate results are required."
"We will now run the experiment, starting with 10 iterations of model search. The experiment can be continued for more iterations if more accurate results are required. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
@@ -583,7 +581,7 @@
"source": [
"from helper import run_inference\n",
"\n",
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset, valid_dataset, max_horizon,\n",
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset, valid_dataset, forecast_horizon,\n",
" target_column_name, time_column_name, freq)"
]
},
@@ -605,7 +603,7 @@
"from helper import run_multiple_inferences\n",
"\n",
"summary_df = run_multiple_inferences(summary_df, experiment, test_experiment, compute_target, script_folder, test_dataset, \n",
" valid_dataset, max_horizon, target_column_name, time_column_name, freq)"
" valid_dataset, forecast_horizon, target_column_name, time_column_name, freq)"
]
},
{

View File

@@ -1,11 +1,4 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- py-xgboost<=0.90
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib
- azureml-train

View File

@@ -1,11 +1,14 @@
import pandas as pd
import numpy as np
import argparse
from azureml.core import Run
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset
from sklearn.externals import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.automl.core.shared import constants, metrics
from pandas.tseries.frequencies import to_offset
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
def align_outputs(y_predicted, X_trans, X_test, y_test,
@@ -299,12 +302,11 @@ print(df_all[target_column_name])
print("predicted values:::")
print(df_all['predicted'])
# use automl metrics module
scores = metrics.compute_metrics_regression(
df_all['predicted'],
df_all[target_column_name],
list(constants.Metric.SCALAR_REGRESSION_SET),
None, None, None)
# Use the AutoML scoring module
regression_metrics = list(constants.REGRESSION_SCALAR_SET)
y_test = np.array(df_all[target_column_name])
y_pred = np.array(df_all['predicted'])
scores = scoring.score_regression(y_test, y_pred, regression_metrics)
print("scores:")
print(scores)

View File

@@ -87,7 +87,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -238,6 +238,22 @@
"test.to_pandas_dataframe().head(5).reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting Parameters\n",
"To define forecasting parameters for your experiment training, you can leverage the ForecastingParameters class. The table below details the forecasting parameter we will be passing into our experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**country_or_region_for_holidays**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -250,20 +266,16 @@
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**blocked_models**|Models in blocked_models won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|\n",
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
"|**forecasting_parameters**|A class that holds all the forecasting related parameters.|\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
"This notebook uses the blocked_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blocked_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
@@ -281,7 +293,7 @@
"metadata": {},
"outputs": [],
"source": [
"max_horizon = 14"
"forecast_horizon = 14"
]
},
{
@@ -297,17 +309,18 @@
"metadata": {},
"outputs": [],
"source": [
"time_series_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon, \n",
" 'country_or_region': 'US', # set country_or_region will trigger holiday featurizer\n",
" 'target_lags': 'auto', # use heuristic based lag setting \n",
" 'drop_column_names': ['casual', 'registered'] # these columns are a breakdown of the total and therefore a leak\n",
"}\n",
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n",
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
" target_lags='auto', # use heuristic based lag setting \n",
" drop_column_names=['casual', 'registered'] # these columns are a breakdown of the total and therefore a leak\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ExtremeRandomTrees'], \n",
" blocked_models = ['ExtremeRandomTrees'], \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
@@ -317,7 +330,7 @@
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" verbosity=logging.INFO,\n",
" **time_series_settings)"
" forecasting_parameters=forecasting_parameters)"
]
},
{
@@ -422,7 +435,7 @@
"source": [
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
"\n",
"The scoring will run on a remote compute. In this example, it will reuse the training compute.|"
"The scoring will run on a remote compute. In this example, it will reuse the training compute."
]
},
{
@@ -439,7 +452,7 @@
"metadata": {},
"source": [
"### Retrieving forecasts from the model\n",
"To run the forecast on the remote compute we will use two helper scripts: forecasting_script and forecasting_helper. These scripts contain the utility methods which will be used by the remote estimator. We copy these scripts to the project folder to upload them to remote compute."
"To run the forecast on the remote compute we will use a helper script: forecasting_script. This script contains the utility methods which will be used by the remote estimator. We copy the script to the project folder to upload it to remote compute."
]
},
{
@@ -453,15 +466,14 @@
"\n",
"script_folder = os.path.join(os.getcwd(), 'forecast')\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy('forecasting_script.py', script_folder)\n",
"shutil.copy('forecasting_helper.py', script_folder)"
"shutil.copy('forecasting_script.py', script_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For brevity we have created the function called run_forecast. It submits the test data to the best model and run the estimation on the selected compute target."
"For brevity, we have created a function called run_forecast that submits the test data to the best model determined during the training run and retrieves forecasts. The test set is longer than the forecast horizon specified at train time, so the forecasting script uses a so-called rolling evaluation to generate predictions over the whole test set. A rolling evaluation iterates the forecaster over the test set, using the actuals in the test set to make lag features as needed. "
]
},
{
@@ -472,8 +484,7 @@
"source": [
"from run_forecast import run_rolling_forecast\n",
"\n",
"remote_run = run_rolling_forecast(test_experiment, compute_target, best_run, test, max_horizon,\n",
" target_column_name, time_column_name)\n",
"remote_run = run_rolling_forecast(test_experiment, compute_target, best_run, test, target_column_name)\n",
"remote_run"
]
},
@@ -510,16 +521,16 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared import constants, metrics\n",
"from azureml.automl.core.shared import constants\n",
"from azureml.automl.runtime.shared.score import scoring\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
"from matplotlib import pyplot as plt\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"scores = scoring.score_regression(\n",
" y_test=df_all[target_column_name],\n",
" y_pred=df_all['predicted'],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
@@ -537,7 +548,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The MAPE seems high; it is being skewed by an actual with a small absolute value. For a more informative evaluation, we can calculate the metrics by forecast horizon:"
"Since we did a rolling evaluation on the test set, we can analyze the predictions by their forecast horizon relative to the rolling origin. The model was initially trained at a forecast horizon of 14, so each prediction from the model is associated with a horizon value from 1 to 14. The horizon values are in a column named, \"horizon_origin,\" in the prediction set. For example, we can calculate some of the error metrics grouped by the horizon:"
]
},
{
@@ -557,7 +568,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"It's also interesting to see the distributions of APE (absolute percentage error) by horizon. On a log scale, the outlying APE in the horizon-3 group is clear."
"To drill down more, we can look at the distributions of APE (absolute percentage error) by horizon. From the chart, it is clear that the overall MAPE is being skewed by one particular point where the actual value is of small absolute value."
]
},
{
@@ -567,7 +578,7 @@
"outputs": [],
"source": [
"df_all_APE = df_all.assign(APE=APE(df_all[target_column_name], df_all['predicted']))\n",
"APEs = [df_all_APE[df_all['horizon_origin'] == h].APE.values for h in range(1, max_horizon + 1)]\n",
"APEs = [df_all_APE[df_all['horizon_origin'] == h].APE.values for h in range(1, forecast_horizon + 1)]\n",
"\n",
"%matplotlib inline\n",
"plt.boxplot(APEs)\n",
@@ -631,5 +642,5 @@
"version": 3
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -1,10 +1,4 @@
name: auto-ml-forecasting-bike-share
dependencies:
- py-xgboost<=0.90
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -1,99 +0,0 @@
import pandas as pd
import numpy as np
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
def do_rolling_forecast(fitted_model, X_test, y_test, target_column_name,
time_column_name, max_horizon, freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X_test[time_column_name] < horizon_time)
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
target_column_name))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)

View File

@@ -1,37 +1,21 @@
import argparse
import azureml.train.automl
from azureml.automl.runtime.shared import forecasting_models
from azureml.core import Run
from sklearn.externals import joblib
import forecasting_helper
parser = argparse.ArgumentParser()
parser.add_argument(
'--max_horizon', type=int, dest='max_horizon',
default=10, help='Max Horizon for forecasting')
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--time_column_name', type=str, dest='time_column_name',
help='Time Column Name')
parser.add_argument(
'--frequency', type=str, dest='freq',
help='Frequency of prediction')
args = parser.parse_args()
max_horizon = args.max_horizon
target_column_name = args.target_column_name
time_column_name = args.time_column_name
freq = args.freq
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
grain_column_names = []
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
@@ -39,14 +23,12 @@ y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[targ
fitted_model = joblib.load('model.pkl')
df_all = forecasting_helper.do_rolling_forecast(
fitted_model,
X_test_df,
y_test_df.values.T[0],
target_column_name,
time_column_name,
max_horizon,
freq)
y_pred, X_trans = fitted_model.rolling_evaluation(X_test_df, y_test_df.values)
# Add predictions, actuals, and horizon relative to rolling origin to the test feature data
assign_dict = {'horizon_origin': X_trans['horizon_origin'].values, 'predicted': y_pred,
target_column_name: y_test_df[target_column_name].values}
df_all = X_test_df.assign(**assign_dict)
file_name = 'outputs/predictions.csv'
export_csv = df_all.to_csv(file_name, header=True)

View File

@@ -5,8 +5,7 @@ from azureml.core.run import Run
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
max_horizon, target_column_name, time_column_name,
freq='D', inference_folder='./forecast'):
target_column_name, inference_folder='./forecast'):
condafile = inference_folder + '/condafile.yml'
train_run.download_file('outputs/model.pkl',
inference_folder + '/model.pkl')
@@ -20,10 +19,7 @@ def run_rolling_forecast(test_experiment, compute_target, train_run, test_datase
est = Estimator(source_directory=inference_folder,
entry_script='forecasting_script.py',
script_params={
'--max_horizon': max_horizon,
'--target_column_name': target_column_name,
'--time_column_name': time_column_name,
'--frequency': freq
'--target_column_name': target_column_name
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -288,7 +288,20 @@
"metadata": {},
"outputs": [],
"source": [
"max_horizon = 48"
"forecast_horizon = 48"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting Parameters\n",
"To define forecasting parameters for your experiment training, you can leverage the ForecastingParameters class. The table below details the forecasting parameter we will be passing into our experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|"
]
},
{
@@ -297,28 +310,27 @@
"source": [
"## Train\n",
"\n",
"Instantiate an AutoMLConfig object. This config defines the settings and data used to run the experiment. We can provide extra configurations within 'automl_settings', for this forecasting task we add the name of the time column and the maximum forecast horizon.\n",
"Instantiate an AutoMLConfig object. This config defines the settings and data used to run the experiment. We can provide extra configurations within 'automl_settings', for this forecasting task we add the forecasting parameters to hold all the additional forecasting parameters.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**blocked_models**|Models in blocked_models won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_hours**|Maximum amount of time in hours that the experiment take before it terminates.|\n",
"|**training_data**|The training data to be used within the experiment.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
"|**enable_early_stopping**|Flag to enble early termination if the score is not improving in the short term.|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**max_horizon**|The number of periods out you would like to predict past your training data. Periods are inferred from your data.|\n"
"|**forecasting_parameters**|A class holds all the forecasting related parameters.|\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
"This notebook uses the blocked_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blocked_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
@@ -327,14 +339,14 @@
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon,\n",
"}\n",
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
" blocked_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
@@ -342,7 +354,7 @@
" enable_early_stopping=True,\n",
" n_cross_validations=3, \n",
" verbosity=logging.INFO,\n",
" **automl_settings)"
" forecasting_parameters=forecasting_parameters)"
]
},
{
@@ -465,7 +477,7 @@
"metadata": {},
"source": [
"### Forecast Function\n",
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see notebook on [high frequency forecasting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/auto-ml-forecasting-function.ipynb)."
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see the [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
]
},
{
@@ -507,15 +519,15 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared import constants, metrics\n",
"from azureml.automl.core.shared import constants\n",
"from azureml.automl.runtime.shared.score import scoring\n",
"from matplotlib import pyplot as plt\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"scores = scoring.score_regression(\n",
" y_test=df_all[target_column_name],\n",
" y_pred=df_all['predicted'],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
@@ -550,7 +562,7 @@
"metadata": {},
"source": [
"## Advanced Training <a id=\"advanced_training\"></a>\n",
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, time series identifier columns and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
]
},
{
@@ -558,9 +570,9 @@
"metadata": {},
"source": [
"### Using lags and rolling window features\n",
"Now we will configure the target lags, that is the previous values of the target variables, meaning the prediction is no longer horizon-less. We therefore must still specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features.\n",
"Now we will configure the target lags, that is the previous values of the target variables, meaning the prediction is no longer horizon-less. We therefore must still specify the `forecast_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features.\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
"This notebook uses the blocked_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blocked_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
]
},
{
@@ -569,16 +581,14 @@
"metadata": {},
"outputs": [],
"source": [
"automl_advanced_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon,\n",
" 'target_lags': 12,\n",
" 'target_rolling_window_size': 4,\n",
"}\n",
"advanced_forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name, forecast_horizon=forecast_horizon,\n",
" target_lags=12, target_rolling_window_size=4\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
" blocked_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blocked for tutorial purposes, remove this for real use cases. \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
@@ -586,7 +596,7 @@
" enable_early_stopping = True,\n",
" n_cross_validations=3, \n",
" verbosity=logging.INFO,\n",
" **automl_advanced_settings)"
" forecasting_parameters=advanced_forecasting_parameters)"
]
},
{
@@ -635,7 +645,7 @@
"metadata": {},
"source": [
"## Advanced Results<a id=\"advanced_results\"></a>\n",
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, time series identifier columns and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
]
},
{
@@ -667,15 +677,15 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared import constants, metrics\n",
"from azureml.automl.core.shared import constants\n",
"from azureml.automl.runtime.shared.score import scoring\n",
"from matplotlib import pyplot as plt\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"scores = scoring.score_regression(\n",
" y_test=df_all[target_column_name],\n",
" y_pred=df_all['predicted'],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",

View File

@@ -2,8 +2,3 @@ name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -35,7 +35,6 @@
"Terminology:\n",
"* forecast origin: the last period when the target value is known\n",
"* forecast periods(s): the period(s) for which the value of the target is desired.\n",
"* forecast horizon: the number of forecast periods\n",
"* lookback: how many past periods (before forecast origin) the model function depends on. The larger of number of lags and length of rolling window.\n",
"* prediction context: `lookback` periods immediately preceding the forecast origin\n",
"\n",
@@ -95,7 +94,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -143,15 +142,15 @@
"outputs": [],
"source": [
"TIME_COLUMN_NAME = 'date'\n",
"GRAIN_COLUMN_NAME = 'grain'\n",
"TIME_SERIES_ID_COLUMN_NAME = 'time_series_id'\n",
"TARGET_COLUMN_NAME = 'y'\n",
"\n",
"def get_timeseries(train_len: int,\n",
" test_len: int,\n",
" time_column_name: str,\n",
" target_column_name: str,\n",
" grain_column_name: str,\n",
" grains: int = 1,\n",
" time_series_id_column_name: str,\n",
" time_series_number: int = 1,\n",
" freq: str = 'H'):\n",
" \"\"\"\n",
" Return the time series of designed length.\n",
@@ -162,9 +161,8 @@
" :type test_len: int\n",
" :param time_column_name: The desired name of a time column.\n",
" :type time_column_name: str\n",
" :param\n",
" :param grains: The number of grains.\n",
" :type grains: int\n",
" :param time_series_number: The number of time series in the data set.\n",
" :type time_series_number: int\n",
" :param freq: The frequency string representing pandas offset.\n",
" see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html\n",
" :type freq: str\n",
@@ -175,14 +173,14 @@
" data_train = [] # type: List[pd.DataFrame]\n",
" data_test = [] # type: List[pd.DataFrame]\n",
" data_length = train_len + test_len\n",
" for i in range(grains):\n",
" for i in range(time_series_number):\n",
" X = pd.DataFrame({\n",
" time_column_name: pd.date_range(start='2000-01-01',\n",
" periods=data_length,\n",
" freq=freq),\n",
" target_column_name: np.arange(data_length).astype(float) + np.random.rand(data_length) + i*5,\n",
" 'ext_predictor': np.asarray(range(42, 42 + data_length)),\n",
" grain_column_name: np.repeat('g{}'.format(i), data_length)\n",
" time_series_id_column_name: np.repeat('ts{}'.format(i), data_length)\n",
" })\n",
" data_train.append(X[:train_len])\n",
" data_test.append(X[train_len:])\n",
@@ -198,8 +196,8 @@
" test_len=n_test_periods,\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" target_column_name=TARGET_COLUMN_NAME,\n",
" grain_column_name=GRAIN_COLUMN_NAME,\n",
" grains=2)"
" time_series_id_column_name=TIME_SERIES_ID_COLUMN_NAME,\n",
" time_series_number=2)"
]
},
{
@@ -229,7 +227,7 @@
"whole_data = X_train.copy()\n",
"target_label = 'y'\n",
"whole_data[target_label] = y_train\n",
"for g in whole_data.groupby('grain'): \n",
"for g in whole_data.groupby('time_series_id'): \n",
" plt.plot(g[1]['date'].values, g[1]['y'].values, label=g[0])\n",
"plt.legend()\n",
"plt.show()"
@@ -298,7 +296,7 @@
"source": [
"## Create the configuration and train a forecaster <a id=\"train\"></a>\n",
"First generate the configuration, in which we:\n",
"* Set metadata columns: target, time column and grain column names.\n",
"* Set metadata columns: target, time column and time-series id column names.\n",
"* Validate our data using cross validation with rolling window method.\n",
"* Set normalized root mean squared error as a metric to select the best model.\n",
"* Set early termination to True, so the iterations through the models will stop when no improvements in accuracy score will be made.\n",
@@ -313,21 +311,22 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"lags = [1,2,3]\n",
"max_horizon = n_test_periods\n",
"time_series_settings = { \n",
" 'time_column_name': TIME_COLUMN_NAME,\n",
" 'grain_column_names': [ GRAIN_COLUMN_NAME ],\n",
" 'max_horizon': max_horizon,\n",
" 'target_lags': lags\n",
"}"
"forecast_horizon = n_test_periods\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" forecast_horizon=forecast_horizon,\n",
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
" target_lags=lags\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the model selection and training process."
"Run the model selection and training process. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
@@ -353,7 +352,7 @@
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" label_column_name=target_label,\n",
" **time_series_settings)\n",
" forecasting_parameters=forecasting_parameters)\n",
"\n",
"remote_run = experiment.submit(automl_config, show_output=False)"
]
@@ -483,7 +482,7 @@
"# use forecast_quantiles function, not the forecast() one\n",
"y_pred_quantiles = fitted_model.forecast_quantiles(X_test)\n",
"\n",
"# quantile forecasts returned in a Dataframe along with the time and grain columns \n",
"# quantile forecasts returned in a Dataframe along with the time and time series id columns \n",
"y_pred_quantiles"
]
},
@@ -493,7 +492,7 @@
"source": [
"#### Destination-date forecast: \"just do something\"\n",
"\n",
"In some scenarios, the X_test is not known. The forecast is likely to be weak, because it is missing contemporaneous predictors, which we will need to impute. If you still wish to predict forward under the assumption that the last known values will be carried forward, you can forecast out to \"destination date\". The destination date still needs to fit within the maximum horizon from training."
"In some scenarios, the X_test is not known. The forecast is likely to be weak, because it is missing contemporaneous predictors, which we will need to impute. If you still wish to predict forward under the assumption that the last known values will be carried forward, you can forecast out to \"destination date\". The destination date still needs to fit within the forecast horizon from training."
]
},
{
@@ -520,7 +519,7 @@
"\n",
"![Forecasting after training](forecast_function_away_from_train.png)\n",
"\n",
"The notion of forecast origin comes into play: the forecast origin is **the last period for which we have seen the target value**. This applies per grain, so each grain can have a different forecast origin. \n",
"The notion of forecast origin comes into play: the forecast origin is **the last period for which we have seen the target value**. This applies per time-series, so each time-series can have a different forecast origin. \n",
"\n",
"The part of data before the forecast origin is the **prediction context**. To provide the context values the model needs when it looks back, we pass definite values in `y_test` (aligned with corresponding times in `X_test`)."
]
@@ -537,13 +536,13 @@
" test_len=4,\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" target_column_name=TARGET_COLUMN_NAME,\n",
" grain_column_name=GRAIN_COLUMN_NAME,\n",
" grains=2)\n",
" time_series_id_column_name=TIME_SERIES_ID_COLUMN_NAME,\n",
" time_series_number=2)\n",
"\n",
"# end of the data we trained on\n",
"print(X_train.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].max())\n",
"print(X_train.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].max())\n",
"# start of the data we want to predict on\n",
"print(X_away.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].min())"
"print(X_away.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].min())"
]
},
{
@@ -570,7 +569,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"How should we read that eror message? The forecast origin is at the last time the model saw an actual value of `y` (the target). That was at the end of the training data! The model is attempting to forecast from the end of training data. But the requested forecast periods are past the maximum horizon. We need to provide a define `y` value to establish the forecast origin.\n",
"How should we read that eror message? The forecast origin is at the last time the model saw an actual value of `y` (the target). That was at the end of the training data! The model is attempting to forecast from the end of training data. But the requested forecast periods are past the forecast horizon. We need to provide a define `y` value to establish the forecast origin.\n",
"\n",
"We will use this helper function to take the required amount of context from the data preceding the testing data. It's definition is intentionally simplified to keep the idea in the clear."
]
@@ -585,7 +584,7 @@
"\n",
" \"\"\"\n",
" This function will take the full dataset, and create the query\n",
" to predict all values of the grain from the `forecast_origin`\n",
" to predict all values of the time series from the `forecast_origin`\n",
" forward for the next `horizon` horizons. Context from previous\n",
" `lookback` periods will be included.\n",
"\n",
@@ -655,8 +654,8 @@
"metadata": {},
"outputs": [],
"source": [
"print(X_context.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"print(X_away.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"print(X_context.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"print(X_away.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"X_context.tail(5)"
]
},
@@ -686,7 +685,7 @@
"n_lookback_periods = max(lags)\n",
"lookback = pd.DateOffset(hours=n_lookback_periods)\n",
"\n",
"horizon = pd.DateOffset(hours=max_horizon)\n",
"horizon = pd.DateOffset(hours=forecast_horizon)\n",
"\n",
"# now make the forecast query from context (refer to figure)\n",
"X_pred, y_pred = make_forecasting_query(fulldata, TIME_COLUMN_NAME, TARGET_COLUMN_NAME,\n",
@@ -702,7 +701,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the forecast origin is at 17:00 for both grains, and periods from 18:00 are to be forecast."
"Note that the forecast origin is at 17:00 for both time-series, and periods from 18:00 are to be forecast."
]
},
{
@@ -717,9 +716,94 @@
"# show the forecast aligned\n",
"X_show = xy_away.reset_index()\n",
"# without the generated features\n",
"X_show[['date', 'grain', 'ext_predictor', '_automl_target_col']]\n",
"X_show[['date', 'time_series_id', 'ext_predictor', '_automl_target_col']]\n",
"# prediction is in _automl_target_col"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting farther than the forecast horizon <a id=\"recursive forecasting\"></a>\n",
"When the forecast destination, or the latest date in the prediction data frame, is farther into the future than the specified forecast horizon, the `forecast()` function will still make point predictions out to the later date using a recursive operation mode. Internally, the method recursively applies the regular forecaster to generate context so that we can forecast further into the future. \n",
"\n",
"To illustrate the use-case and operation of recursive forecasting, we'll consider an example with a single time-series where the forecasting period directly follows the training period and is twice as long as the forecasting horizon given at training time.\n",
"\n",
"![Recursive_forecast_overview](recursive_forecast_overview_small.png)\n",
"\n",
"Internally, we apply the forecaster in an iterative manner and finish the forecast task in two interations. In the first iteration, we apply the forecaster and get the prediction for the first forecast-horizon periods (y_pred1). In the second iteraction, y_pred1 is used as the context to produce the prediction for the next forecast-horizon periods (y_pred2). The combination of (y_pred1 and y_pred2) gives the results for the total forecast periods. \n",
"\n",
"A caveat: forecast accuracy will likely be worse the farther we predict into the future since errors are compounded with recursive application of the forecaster.\n",
"\n",
"![Recursive_forecast_iter1](recursive_forecast_iter1.png)\n",
"![Recursive_forecast_iter2](recursive_forecast_iter2.png)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate the same kind of test data we trained on, but with a single time-series and test period twice as long\n",
"# as the forecast_horizon.\n",
"_, _, X_test_long, y_test_long = get_timeseries(train_len=n_train_periods,\n",
" test_len=forecast_horizon*2,\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" target_column_name=TARGET_COLUMN_NAME,\n",
" time_series_id_column_name=TIME_SERIES_ID_COLUMN_NAME,\n",
" time_series_number=1)\n",
"\n",
"print(X_test_long.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].min())\n",
"print(X_test_long.groupby(TIME_SERIES_ID_COLUMN_NAME)[TIME_COLUMN_NAME].max())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# forecast() function will invoke the recursive forecast method internally.\n",
"y_pred_long, X_trans_long = fitted_model.forecast(X_test_long)\n",
"y_pred_long"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# What forecast() function does in this case is equivalent to iterating it twice over the test set as the following. \n",
"y_pred1, _ = fitted_model.forecast(X_test_long[:forecast_horizon])\n",
"y_pred_all, _ = fitted_model.forecast(X_test_long, np.concatenate((y_pred1, np.full(forecast_horizon, np.nan))))\n",
"np.array_equal(y_pred_all, y_pred_long)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Confidence interval and distributional forecasts\n",
"AutoML cannot currently estimate forecast errors beyond the forecast horizon set during training, so the `forecast_quantiles()` function will return missing values for quantiles not equal to 0.5 beyond the forecast horizon. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.forecast_quantiles(X_test_long)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similarly with the simple senarios illustrated above, forecasting farther than the forecast horizon in other senarios like 'multiple time-series', 'Destination-date forecast', and 'forecast away from the training data' are also automatically handled by the `forecast()` function. "
]
}
],
"metadata": {

View File

@@ -0,0 +1,4 @@
name: auto-ml-forecasting-function
dependencies:
- pip:
- azureml-sdk

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@@ -1,10 +0,0 @@
name: auto-ml-forecasting-function
dependencies:
- py-xgboost<=0.90
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -82,7 +82,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -178,7 +178,7 @@
"source": [
"Each row in the DataFrame holds a quantity of weekly sales for an OJ brand at a single store. The data also includes the sales price, a flag indicating if the OJ brand was advertised in the store that week, and some customer demographic information based on the store location. For historical reasons, the data also include the logarithm of the sales quantity. The Dominick's grocery data is commonly used to illustrate econometric modeling techniques where logarithms of quantities are generally preferred. \n",
"\n",
"The task is now to build a time-series model for the _Quantity_ column. It is important to note that this dataset is comprised of many individual time-series - one for each unique combination of _Store_ and _Brand_. To distinguish the individual time-series, we thus define the **grain** - the columns whose values determine the boundaries between time-series: "
"The task is now to build a time-series model for the _Quantity_ column. It is important to note that this dataset is comprised of many individual time-series - one for each unique combination of _Store_ and _Brand_. To distinguish the individual time-series, we define the **time_series_id_column_names** - the columns whose values determine the boundaries between time-series: "
]
},
{
@@ -187,8 +187,8 @@
"metadata": {},
"outputs": [],
"source": [
"grain_column_names = ['Store', 'Brand']\n",
"nseries = data.groupby(grain_column_names).ngroups\n",
"time_series_id_column_names = ['Store', 'Brand']\n",
"nseries = data.groupby(time_series_id_column_names).ngroups\n",
"print('Data contains {0} individual time-series.'.format(nseries))"
]
},
@@ -207,7 +207,7 @@
"source": [
"use_stores = [2, 5, 8]\n",
"data_subset = data[data.Store.isin(use_stores)]\n",
"nseries = data_subset.groupby(grain_column_names).ngroups\n",
"nseries = data_subset.groupby(time_series_id_column_names).ngroups\n",
"print('Data subset contains {0} individual time-series.'.format(nseries))"
]
},
@@ -216,7 +216,7 @@
"metadata": {},
"source": [
"### Data Splitting\n",
"We now split the data into a training and a testing set for later forecast evaluation. The test set will contain the final 20 weeks of observed sales for each time-series. The splits should be stratified by series, so we use a group-by statement on the grain columns."
"We now split the data into a training and a testing set for later forecast evaluation. The test set will contain the final 20 weeks of observed sales for each time-series. The splits should be stratified by series, so we use a group-by statement on the time series identifier columns."
]
},
{
@@ -227,15 +227,15 @@
"source": [
"n_test_periods = 20\n",
"\n",
"def split_last_n_by_grain(df, n):\n",
" \"\"\"Group df by grain and split on last n rows for each group.\"\"\"\n",
"def split_last_n_by_series_id(df, n):\n",
" \"\"\"Group df by series identifiers and split on last n rows for each group.\"\"\"\n",
" df_grouped = (df.sort_values(time_column_name) # Sort by ascending time\n",
" .groupby(grain_column_names, group_keys=False))\n",
" .groupby(time_series_id_column_names, group_keys=False))\n",
" df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])\n",
" df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])\n",
" return df_head, df_tail\n",
"\n",
"train, test = split_last_n_by_grain(data_subset, n_test_periods)"
"train, test = split_last_n_by_series_id(data_subset, n_test_periods)"
]
},
{
@@ -301,11 +301,11 @@
"For forecasting tasks, AutoML uses pre-processing and estimation steps that are specific to time-series. AutoML will undertake the following pre-processing steps:\n",
"* Detect time-series sample frequency (e.g. hourly, daily, weekly) and create new records for absent time points to make the series regular. A regular time series has a well-defined frequency and has a value at every sample point in a contiguous time span \n",
"* Impute missing values in the target (via forward-fill) and feature columns (using median column values) \n",
"* Create grain-based features to enable fixed effects across different series\n",
"* Create features based on time series identifiers to enable fixed effects across different series\n",
"* Create time-based features to assist in learning seasonal patterns\n",
"* Encode categorical variables to numeric quantities\n",
"\n",
"In this notebook, AutoML will train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series. If you're looking for training multiple models for different time-series, please check out the forecasting grouping notebook. \n",
"In this notebook, AutoML will train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series. If you're looking for training multiple models for different time-series, please see the many-models notebook.\n",
"\n",
"You are almost ready to start an AutoML training job. First, we need to separate the target column from the rest of the DataFrame: "
]
@@ -336,7 +336,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"tags": [
"sample-featurizationconfig-remarks"
]
},
"outputs": [],
"source": [
"featurization_config = FeaturizationConfig()\n",
@@ -349,6 +353,21 @@
"featurization_config.add_transformer_params('Imputer', ['INCOME'], {\"strategy\": \"median\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting Parameters\n",
"To define forecasting parameters for your experiment training, you can leverage the ForecastingParameters class. The table below details the forecasting parameter we will be passing into our experiment.\n",
"\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -357,9 +376,9 @@
"\n",
"The [AutoMLConfig](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py) object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters.\n",
"\n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If grain columns are not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
"For forecasting tasks, there are some additional parameters that can be set in the `ForecastingParameters` class: the name of the column holding the date/time, the timeseries id column names, and the maximum forecast horizon. A time column is required for forecasting, while the time_series_id is optional. If time_series_id columns are not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
"\n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the forecast horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
"\n",
"We note here that AutoML can sweep over two types of time-series models:\n",
"* Models that are trained for each series such as ARIMA and Facebook's Prophet. Note that these models are only available for [Enterprise Edition Workspaces](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace#upgrade).\n",
@@ -385,11 +404,8 @@
"|**enable_voting_ensemble**|Allow AutoML to create a Voting ensemble of the best performing models|\n",
"|**enable_stack_ensemble**|Allow AutoML to create a Stack ensemble of the best performing models|\n",
"|**debug_log**|Log file path for writing debugging information|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|\n",
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Setting this enables AutoML to perform featurization on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**max_cores_per_iteration**|Maximum number of cores to utilize per iteration. A value of -1 indicates all available cores should be used.|"
"|**max_cores_per_iteration**|Maximum number of cores to utilize per iteration. A value of -1 indicates all available cores should be used"
]
},
{
@@ -398,11 +414,12 @@
"metadata": {},
"outputs": [],
"source": [
"time_series_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'max_horizon': n_test_periods\n",
"}\n",
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
"forecasting_parameters = ForecastingParameters(\n",
" time_column_name=time_column_name,\n",
" forecast_horizon=n_test_periods,\n",
" time_series_id_column_names=time_series_id_column_names\n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
@@ -416,7 +433,7 @@
" n_cross_validations=3,\n",
" verbosity=logging.INFO,\n",
" max_cores_per_iteration=-1,\n",
" **time_series_settings)"
" forecasting_parameters=forecasting_parameters)"
]
},
{
@@ -424,7 +441,7 @@
"metadata": {},
"source": [
"You can now submit a new training run. Depending on the data and number of iterations this operation may take several minutes.\n",
"Information from each iteration will be printed to the console."
"Information from each iteration will be printed to the console. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
@@ -533,9 +550,8 @@
"metadata": {},
"outputs": [],
"source": [
"# The featurized data, aligned to y, will also be returned.\n",
"# forecast returns the predictions and the featurized data, aligned to X_test.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_predictions, X_trans = fitted_model.forecast(X_test)"
]
},
@@ -545,7 +561,7 @@
"source": [
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
"\n",
"The [forecast function notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/auto-ml-forecasting-function.ipynb) demonstrates the use of the forecast function for a variety of use cases. Also, please see the [API documentation for the forecast function](https://docs.microsoft.com/en-us/python/api/azureml-automl-runtime/azureml.automl.runtime.shared.model_wrappers.forecastingpipelinewrapper?view=azure-ml-py#forecast-x-pred--typing-union-pandas-core-frame-dataframe--nonetype----none--y-pred--typing-union-pandas-core-frame-dataframe--numpy-ndarray--nonetype----none--forecast-destination--typing-union-pandas--libs-tslibs-timestamps-timestamp--nonetype----none--ignore-data-errors--bool---false-----typing-tuple-numpy-ndarray--pandas-core-frame-dataframe-)."
"The [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
]
},
{
@@ -556,7 +572,7 @@
"\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). \n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
"We'll add predictions and actuals into a single dataframe for convenience in calculating the metrics."
]
},
{
@@ -565,9 +581,8 @@
"metadata": {},
"outputs": [],
"source": [
"from forecasting_helper import align_outputs\n",
"\n",
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
"assign_dict = {'predicted': y_predictions, target_column_name: y_test}\n",
"df_all = X_test.assign(**assign_dict)"
]
},
{
@@ -576,15 +591,15 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared import constants, metrics\n",
"from azureml.automl.core.shared import constants\n",
"from azureml.automl.runtime.shared.score import scoring\n",
"from matplotlib import pyplot as plt\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"# use automl scoring module\n",
"scores = scoring.score_regression(\n",
" y_test=df_all[target_column_name],\n",
" y_pred=df_all['predicted'],\n",
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
@@ -790,5 +805,5 @@
"task": "Forecasting"
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@@ -1,10 +1,4 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- py-xgboost<=0.90
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -1,98 +0,0 @@
import pandas as pd
import numpy as np
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
def do_rolling_forecast(fitted_model, X_test, y_test, target_column_name, time_column_name, max_horizon, freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X_test[time_column_name] < horizon_time)
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
target_column_name))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)

View File

@@ -1,22 +0,0 @@
import pandas as pd
import numpy as np
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))

View File

@@ -28,7 +28,8 @@
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Test](#Tests)\n",
"1. [Explanation](#Explanation)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
@@ -49,9 +50,9 @@
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model.\n",
"4. Explore the results.\n",
"5. Visualization model's feature importance in azure portal\n",
"6. Explore any model's explanation and explore feature importance in azure portal\n",
"7. Test the fitted model."
"5. Test the fitted model.\n",
"6. Explore any model's explanation and explore feature importance in azure portal.\n",
"7. Create an AKS cluster, deploy the webservice of AutoML scoring model and the explainer model to the AKS and consume the web service."
]
},
{
@@ -79,7 +80,7 @@
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
"from azureml.interpret._internal.explanation_client import ExplanationClient"
]
},
{
@@ -95,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -255,9 +256,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"### Analyze results\n",
"\n",
"### Retrieve the Best Model\n",
"#### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
@@ -284,135 +285,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Best Model 's explanation\n",
"Retrieve the explanation from the best_run which includes explanations for engineered features and raw features.\n",
"\n",
"#### Download engineered feature importance from artifact store\n",
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = ExplanationClient.from_run(best_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explanations\n",
"In this section, we will show how to compute model explanations and visualize the explanations using azureml-explain-model package. Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance based on your test data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve any other AutoML model from training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run, fitted_model = local_run.get_output(metric='accuracy')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Setup the model explanations for AutoML models\n",
"The fitted_model can generate the following which will be used for getting the engineered explanations using automl_setup_model_explanations:-\n",
"\n",
"1. Featurized data from train samples/test samples\n",
"2. Gather engineered name lists\n",
"3. Find the classes in your labeled column in classification scenarios\n",
"\n",
"The automl_explainer_setup_obj contains all the structures from above list."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = training_data.drop_columns(columns=[label_column_name])\n",
"y_train = training_data.keep_columns(columns=[label_column_name], validate=True)\n",
"X_test = validation_data.drop_columns(columns=[label_column_name])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations\n",
"\n",
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
" X_test=X_test, y=y_train, \n",
" task='classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initialize the Mimic Explainer for feature importance\n",
"For explaining the AutoML models, use the MimicWrapper from azureml.explain.model package. The MimicWrapper can be initialized with fields in automl_explainer_setup_obj, your workspace and a surrogate model to explain the AutoML model (fitted_model here). The MimicWrapper also takes the automl_run object where engineered explanations will be uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
" classes=automl_explainer_setup_obj.classes,\n",
" explainer_kwargs=automl_explainer_setup_obj.surrogate_model_params)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"## Tests\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
@@ -476,6 +349,408 @@
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explanation\n",
"In this section, we will show how to compute model explanations and visualize the explanations using azureml-interpret package. We will also show how to run the automl model and the explainer model through deploying an AKS web service.\n",
"\n",
"Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance based on your test data.\n",
"\n",
"### Run the explanation\n",
"#### Download engineered feature importance from artifact store\n",
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = ExplanationClient.from_run(best_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve any other AutoML model from training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run, fitted_model = local_run.get_output(metric='accuracy')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Setup the model explanations for AutoML models\n",
"The fitted_model can generate the following which will be used for getting the engineered explanations using automl_setup_model_explanations:-\n",
"\n",
"1. Featurized data from train samples/test samples\n",
"2. Gather engineered name lists\n",
"3. Find the classes in your labeled column in classification scenarios\n",
"\n",
"The automl_explainer_setup_obj contains all the structures from above list."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = training_data.drop_columns(columns=[label_column_name])\n",
"y_train = training_data.keep_columns(columns=[label_column_name], validate=True)\n",
"X_test = validation_data.drop_columns(columns=[label_column_name])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations\n",
"\n",
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
" X_test=X_test, y=y_train, \n",
" task='classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initialize the Mimic Explainer for feature importance\n",
"For explaining the AutoML models, use the MimicWrapper from azureml-interpret package. The MimicWrapper can be initialized with fields in automl_explainer_setup_obj, your workspace and a surrogate model to explain the AutoML model (fitted_model here). The MimicWrapper also takes the automl_run object where engineered explanations will be uploaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from interpret.ext.glassbox import LGBMExplainableModel\n",
"from azureml.interpret.mimic_wrapper import MimicWrapper\n",
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
" classes=automl_explainer_setup_obj.classes,\n",
" explainer_kwargs=automl_explainer_setup_obj.surrogate_model_params)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the engineered explanations\n",
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initialize the scoring Explainer, save and upload it for later use in scoring explanation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.interpret.scoring.scoring_explainer import TreeScoringExplainer\n",
"import joblib\n",
"\n",
"# Initialize the ScoringExplainer\n",
"scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])\n",
"\n",
"# Pickle scoring explainer locally to './scoring_explainer.pkl'\n",
"scoring_explainer_file_name = 'scoring_explainer.pkl'\n",
"with open(scoring_explainer_file_name, 'wb') as stream:\n",
" joblib.dump(scoring_explainer, stream)\n",
"\n",
"# Upload the scoring explainer to the automl run\n",
"automl_run.upload_file('outputs/scoring_explainer.pkl', scoring_explainer_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploying the scoring and explainer models to a web service to Azure Kubernetes Service (AKS)\n",
"\n",
"We use the TreeScoringExplainer from azureml.interpret package to create the scoring explainer which will be used to compute the raw and engineered feature importances at the inference time. In the cell below, we register the AutoML model and the scoring explainer with the Model Management Service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Register trained automl model present in the 'outputs' folder in the artifacts\n",
"original_model = automl_run.register_model(model_name='automl_model', \n",
" model_path='outputs/model.pkl')\n",
"scoring_explainer_model = automl_run.register_model(model_name='scoring_explainer',\n",
" model_path='outputs/scoring_explainer.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create the conda dependencies for setting up the service\n",
"\n",
"We need to download the conda dependencies using the automl_run object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.shared import constants\n",
"from azureml.core.environment import Environment\n",
"\n",
"automl_run.download_file(constants.CONDA_ENV_FILE_PATH, 'myenv.yml')\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"myenv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Write the Entry Script\n",
"Write the script that will be used to predict on your model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import pickle\n",
"import azureml.train.automl\n",
"import azureml.interpret\n",
"from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \\\n",
" automl_setup_model_explanations\n",
"import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global automl_model\n",
" global scoring_explainer\n",
"\n",
" # Retrieve the path to the model file using the model name\n",
" # Assume original model is named original_prediction_model\n",
" automl_model_path = Model.get_model_path('automl_model')\n",
" scoring_explainer_path = Model.get_model_path('scoring_explainer')\n",
"\n",
" automl_model = joblib.load(automl_model_path)\n",
" scoring_explainer = joblib.load(scoring_explainer_path)\n",
"\n",
"\n",
"def run(raw_data):\n",
" data = pd.read_json(raw_data, orient='records') \n",
" # Make prediction\n",
" predictions = automl_model.predict(data)\n",
" # Setup for inferencing explanations\n",
" automl_explainer_setup_obj = automl_setup_model_explanations(automl_model,\n",
" X_test=data, task='classification')\n",
" # Retrieve model explanations for engineered explanations\n",
" engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform) \n",
" # You can return any data type as long as it is JSON-serializable\n",
" return {'predictions': predictions.tolist(),\n",
" 'engineered_local_importance_values': engineered_local_importance_values}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create the InferenceConfig \n",
"Create the inference config that will be used when deploying the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inf_config = InferenceConfig(entry_script='score.py', environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your cluster.\n",
"aks_name = 'scoring-explain'\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" prov_config = AksCompute.provisioning_configuration(vm_size='STANDARD_D3_V2')\n",
" aks_target = ComputeTarget.create(workspace=ws, \n",
" name=aks_name,\n",
" provisioning_configuration=prov_config)\n",
"aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the web service configuration (using default here)\n",
"from azureml.core.webservice import AksWebservice\n",
"from azureml.core.model import Model\n",
"\n",
"aks_config = AksWebservice.deploy_configuration()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service_name ='model-scoring-local-aks'\n",
"\n",
"aks_service = Model.deploy(workspace=ws,\n",
" name=aks_service_name,\n",
" models=[scoring_explainer_model, original_model],\n",
" inference_config=inf_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the service logs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Consume the web service using run method to do the scoring and explanation of scoring.\n",
"We test the web sevice by passing data. Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Serialize the first row of the test data into json\n",
"X_test_json = X_test_df[:1].to_json(orient='records')\n",
"print(X_test_json)\n",
"\n",
"# Call the service to get the predictions and the engineered and raw explanations\n",
"output = aks_service.run(X_test_json)\n",
"\n",
"# Print the predicted value\n",
"print('predictions:\\n{}\\n'.format(output['predictions']))\n",
"# Print the engineered feature importances for the predicted value\n",
"print('engineered_local_importance_values:\\n{}\\n'.format(output['engineered_local_importance_values']))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Clean up\n",
"Delete the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -2,6 +2,3 @@ name: auto-ml-classification-credit-card-fraud-local
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -98,7 +98,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -242,7 +242,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"tags": [
"sample-featurizationconfig-remarks2"
]
},
"outputs": [],
"source": [
"featurization_config = FeaturizationConfig()\n",
@@ -260,7 +264,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"tags": [
"sample-featurizationconfig-remarks3"
]
},
"outputs": [],
"source": [
"automl_settings = {\n",
@@ -617,7 +625,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
"from azureml.interpret._internal.explanation_client import ExplanationClient\n",
"client = ExplanationClient.from_run(automl_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False, comment='engineered explanations')\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
@@ -651,7 +659,7 @@
"In this section we will show how you can operationalize an AutoML model and the explainer which was used to compute the explanations in the previous section.\n",
"\n",
"### Register the AutoML model and the scoring explainer\n",
"We use the *TreeScoringExplainer* from *azureml.explain.model* package to create the scoring explainer which will be used to compute the raw and engineered feature importances at the inference time. \n",
"We use the *TreeScoringExplainer* from *azureml-interpret* package to create the scoring explainer which will be used to compute the raw and engineered feature importances at the inference time. \n",
"In the cell below, we register the AutoML model and the scoring explainer with the Model Management Service."
]
},
@@ -673,7 +681,7 @@
"metadata": {},
"source": [
"### Create the conda dependencies for setting up the service\n",
"We need to create the conda dependencies comprising of the *azureml-explain-model*, *azureml-train-automl* and *azureml-defaults* packages. "
"We need to create the conda dependencies comprising of the *azureml* packages using the training environment from the *automl_run*."
]
},
{

View File

@@ -2,6 +2,3 @@ name: auto-ml-regression-explanation-featurization
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -4,10 +4,10 @@ import pandas as pd
import os
import pickle
import azureml.train.automl
import azureml.explain.model
import azureml.interpret
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations
from sklearn.externals import joblib
import joblib
from azureml.core.model import Model

View File

@@ -4,14 +4,14 @@ import os
from azureml.core.run import Run
from azureml.core.experiment import Experiment
from sklearn.externals import joblib
from azureml.core.dataset import Dataset
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations, automl_check_model_if_explainable
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
from azureml.explain.model.mimic_wrapper import MimicWrapper
from azureml.automl.core.shared.constants import MODEL_PATH
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save
from interpret.ext.glassbox import LGBMExplainableModel
from azureml.interpret.mimic_wrapper import MimicWrapper
from automl.client.core.common.constants import MODEL_PATH
from azureml.interpret.scoring.scoring_explainer import TreeScoringExplainer
import joblib
OUTPUT_DIR = './outputs/'
@@ -74,7 +74,8 @@ print("Engineered and raw explanations computed successfully")
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
# Pickle scoring explainer locally
save(scoring_explainer, exist_ok=True)
with open('scoring_explainer.pkl', 'wb') as stream:
joblib.dump(scoring_explainer, stream)
# Upload the scoring explainer to the automl run
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -233,7 +233,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of remote runs is asynchronous. Depending on the data and the number of iterations this can run for a while."
"Call the `submit` method on the experiment object and pass the run configuration. Execution of remote runs is asynchronous. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{

View File

@@ -2,7 +2,3 @@ name: auto-ml-regression
dependencies:
- pip:
- azureml-sdk
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -13,32 +13,45 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated ML on Azure Databricks\n",
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"\n",
"In this example we use the scikit-learn's <a href=\"http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset\" target=\"_blank\">digit dataset</a> to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
"2. Create an `Experiment` in an existing `Workspace`.\n",
"3. Configure Automated ML using `AutoMLConfig`.\n",
"4. Train the model using Azure Databricks.\n",
"5. Explore the results.\n",
"6. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"7. Test the best fitted model.\n",
"\n",
"Before running this notebook, please follow the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks\" target=\"_blank\">readme for using Automated ML on Azure Databricks</a> for installing necessary libraries to your cluster."
"**install azureml-sdk with Automated ML**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl]`\n",
"* Select Install Library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK with Automated ML as library from GUI. When attaching a library follow <a href=\"https://docs.databricks.com/user-guide/libraries.html\" target=\"_blank\">this link</a> and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"# AutoML : Classification with Local Compute on Azure DataBricks\n",
"\n",
"**azureml-sdk with automated ml**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl]`\n",
"* Select Install Library"
"In this example we use the scikit-learn's to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
"2. Create an `Experiment` in an existing `Workspace`.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AzureDataBricks.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"Prerequisites:\n",
"Before running this notebook, please follow the readme for installing necessary libraries to your cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Machine Learning Services Resource Provider\n",
"Microsoft.MachineLearningServices only needs to be registed once in the subscription. To register it:\n",
"Start the Azure portal.\n",
"Select your All services and then Subscription.\n",
"Select the subscription that you want to use.\n",
"Click on Resource providers\n",
"Click the Register link next to Microsoft.MachineLearningServices"
]
},
{
@@ -145,31 +158,8 @@
" resource_group = resource_group)\n",
"\n",
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Folder to Host Sample Projects\n",
"Finally, create a folder where all the sample projects will be hosted."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sample_projects_folder = './sample_projects'\n",
"\n",
"if not os.path.isdir(sample_projects_folder):\n",
" os.mkdir(sample_projects_folder)\n",
" \n",
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
"ws.write_config()\n",
"write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
@@ -178,7 +168,7 @@
"source": [
"## Create an Experiment\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
@@ -191,6 +181,7 @@
"import os\n",
"import random\n",
"import time\n",
"import json\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
@@ -212,7 +203,6 @@
"source": [
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -222,94 +212,11 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Registering Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Datastore is the way to save connection information to a storage service (e.g. Azure Blob, Azure Data Lake, Azure SQL) information to your workspace so you can access them without exposing credentials in your code. The first thing you will need to do is register a datastore, you can refer to our [python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) on how to register datastores. __Note: for best security practices, please do not check in code that contains registering datastores with secrets into your source control__\n",
"\n",
"The code below registers a datastore pointing to a publicly readable blob container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"container_name = 'digits' \n",
"account_name = 'automlpublicdatasets'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example on how to register a private blob container\n",
"```python\n",
"datastore = Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = 'example_datastore', \n",
" container_name = 'example-container', \n",
" account_name = 'storageaccount',\n",
" account_key = 'accountkey'\n",
")\n",
"```\n",
"The example below shows how to register an Azure Data Lake store. Please make sure you have granted the necessary permissions for the service principal to access the data lake.\n",
"```python\n",
"datastore = Datastore.register_azure_data_lake(\n",
" workspace = ws,\n",
" datastore_name = 'example_datastore',\n",
" store_name = 'adlsstore',\n",
" tenant_id = 'tenant-id-of-service-principal',\n",
" client_id = 'client-id-of-service-principal',\n",
" client_secret = 'client-secret-of-service-principal'\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -323,9 +230,7 @@
"source": [
"Automated ML takes a `TabularDataset` as input.\n",
"\n",
"You are free to use the data preparation libraries/tools of your choice to do the require preparation and once you are done, you can write it to a datastore and create a TabularDataset from it.\n",
"\n",
"You will get the datastore you registered previously and pass it to Dataset for reading. The data comes from the digits dataset: `sklearn.datasets.load_digits()`. `DataPath` points to a specific location within a datastore. "
"You are free to use the data preparation libraries/tools of your choice to do the require preparation and once you are done, you can write it to a datastore and create a TabularDataset from it."
]
},
{
@@ -334,13 +239,12 @@
"metadata": {},
"outputs": [],
"source": [
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"datastore = Datastore.get(workspace = ws, datastore_name = datastore_name)\n",
"\n",
"X_train = Dataset.Tabular.from_delimited_files(datastore.path('X.csv'))\n",
"y_train = Dataset.Tabular.from_delimited_files(datastore.path('y.csv'))"
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dataset = Dataset.Tabular.from_delimited_files(example_data)\n",
"dataset.take(5).to_pandas_dataframe()"
]
},
{
@@ -357,16 +261,8 @@
"metadata": {},
"outputs": [],
"source": [
"X_train.take(5).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train.take(5).to_pandas_dataframe()"
"training_data = dataset.drop_columns(columns=['FBI Code'])\n",
"label = 'Primary Type'"
]
},
{
@@ -384,14 +280,11 @@
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**spark_context**|Spark Context object. for Databricks, use spark_context=sc|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure Databricks cluster.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|"
]
},
{
@@ -404,15 +297,13 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 3,\n",
" preprocess = True,\n",
" iterations = 5,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #databricks/spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" training_data=training_data,\n",
" label_column_name=label)"
]
},
{
@@ -433,26 +324,6 @@
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Continue experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run.continue_experiment(iterations=2,\n",
" X=X_train, \n",
" y=y_train,\n",
" spark_context=sc,\n",
" show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -475,14 +346,7 @@
"metadata": {},
"outputs": [],
"source": [
"displayHTML(\"<a href={} target='_blank'>Your experiment in Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following will show the child runs and waits for the parent run to complete."
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
]
},
{
@@ -503,6 +367,7 @@
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" #print(properties)\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
@@ -514,9 +379,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model after the above run is complete \n",
"## Deploy\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
@@ -525,71 +392,7 @@
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['datatransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
"best_run, fitted_model = local_run.get_output()"
]
},
{
@@ -607,11 +410,13 @@
"metadata": {},
"outputs": [],
"source": [
"blob_location = \"https://{}.blob.core.windows.net/{}\".format(account_name, container_name)\n",
"X_test = pd.read_csv(\"{}./X_valid.csv\".format(blob_location), header=0)\n",
"y_test = pd.read_csv(\"{}/y_valid.csv\".format(blob_location), header=0)\n",
"images = pd.read_csv(\"{}/images.csv\".format(blob_location), header=None)\n",
"images = np.reshape(images.values, (100,8,8))"
"dataset_test = Dataset.Tabular.from_delimited_files(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv')\n",
"\n",
"df_test = dataset_test.to_pandas_dataframe()\n",
"df_test = df_test[pd.notnull(df_test['Primary Type'])]\n",
"\n",
"y_test = df_test[['Primary Type']]\n",
"X_test = df_test.drop(['Primary Type', 'FBI Code'], axis=1)"
]
},
{
@@ -628,35 +433,9 @@
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test.values[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
"fitted_model.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When deploying an automated ML trained model, please specify _pippackages=['azureml-sdk[automl]']_ in your CondaDependencies.\n",
"\n",
"Please refer to only the **Deploy** section in this notebook - <a href=\"https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment\" target=\"_blank\">Deployment of Automated ML trained model</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
@@ -689,10 +468,10 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.6.8"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 587284549713154
"notebookId": 1275190406842063
},
"nbformat": 4,
"nbformat_minor": 1

View File

@@ -27,7 +27,7 @@
"source": [
"# AutoML : Classification with Local Compute on Azure DataBricks with deployment to ACI\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"In this example we use the scikit-learn's to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
@@ -164,30 +164,6 @@
"write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Folder to Host Sample Projects\n",
"Finally, create a folder where all the sample projects will be hosted."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sample_projects_folder = './sample_projects'\n",
"\n",
"if not os.path.isdir(sample_projects_folder):\n",
" os.mkdir(sample_projects_folder)\n",
" \n",
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -229,7 +205,6 @@
"source": [
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -239,94 +214,11 @@
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Registering Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Datastore is the way to save connection information to a storage service (e.g. Azure Blob, Azure Data Lake, Azure SQL) information to your workspace so you can access them without exposing credentials in your code. The first thing you will need to do is register a datastore, you can refer to our [python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) on how to register datastores. __Note: for best security practices, please do not check in code that contains registering datastores with secrets into your source control__\n",
"\n",
"The code below registers a datastore pointing to a publicly readable blob container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"container_name = 'digits' \n",
"account_name = 'automlpublicdatasets'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example on how to register a private blob container\n",
"```python\n",
"datastore = Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = 'example_datastore', \n",
" container_name = 'example-container', \n",
" account_name = 'storageaccount',\n",
" account_key = 'accountkey'\n",
")\n",
"```\n",
"The example below shows how to register an Azure Data Lake store. Please make sure you have granted the necessary permissions for the service principal to access the data lake.\n",
"```python\n",
"datastore = Datastore.register_azure_data_lake(\n",
" workspace = ws,\n",
" datastore_name = 'example_datastore',\n",
" store_name = 'adlsstore',\n",
" tenant_id = 'tenant-id-of-service-principal',\n",
" client_id = 'client-id-of-service-principal',\n",
" client_secret = 'client-secret-of-service-principal'\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -340,9 +232,7 @@
"source": [
"Automated ML takes a `TabularDataset` as input.\n",
"\n",
"You are free to use the data preparation libraries/tools of your choice to do the require preparation and once you are done, you can write it to a datastore and create a TabularDataset from it.\n",
"\n",
"You will get the datastore you registered previously and pass it to Dataset for reading. The data comes from the digits dataset: `sklearn.datasets.load_digits()`. `DataPath` points to a specific location within a datastore. "
"You are free to use the data preparation libraries/tools of your choice to do the require preparation and once you are done, you can write it to a datastore and create a TabularDataset from it."
]
},
{
@@ -351,13 +241,12 @@
"metadata": {},
"outputs": [],
"source": [
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"datastore = Datastore.get(workspace = ws, datastore_name = datastore_name)\n",
"\n",
"X_train = Dataset.Tabular.from_delimited_files(datastore.path('X.csv'))\n",
"y_train = Dataset.Tabular.from_delimited_files(datastore.path('y.csv'))"
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dataset = Dataset.Tabular.from_delimited_files(example_data)\n",
"dataset.take(5).to_pandas_dataframe()"
]
},
{
@@ -374,16 +263,8 @@
"metadata": {},
"outputs": [],
"source": [
"X_train.take(5).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train.take(5).to_pandas_dataframe()"
"training_data = dataset.drop_columns(columns=['FBI Code'])\n",
"label = 'Primary Type'"
]
},
{
@@ -401,14 +282,11 @@
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**spark_context**|Spark Context object. for Databricks, use spark_context=sc|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure Databricks cluster.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|"
]
},
{
@@ -422,14 +300,12 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 5,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #databricks/spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" training_data=training_data,\n",
" label_column_name=label)"
]
},
{
@@ -475,13 +351,6 @@
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following will show the child runs and waits for the parent run to complete."
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -651,11 +520,13 @@
"metadata": {},
"outputs": [],
"source": [
"blob_location = \"https://{}.blob.core.windows.net/{}\".format(account_name, container_name)\n",
"X_test = pd.read_csv(\"{}./X_valid.csv\".format(blob_location), header=0)\n",
"y_test = pd.read_csv(\"{}/y_valid.csv\".format(blob_location), header=0)\n",
"images = pd.read_csv(\"{}/images.csv\".format(blob_location), header=None)\n",
"images = np.reshape(images.values, (100,8,8))"
"dataset_test = Dataset.Tabular.from_delimited_files(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv')\n",
"\n",
"df_test = dataset_test.to_pandas_dataframe()\n",
"df_test = df_test[pd.notnull(df_test['Primary Type'])]\n",
"\n",
"y_test = df_test[['Primary Type']]\n",
"X_test = df_test.drop(['Primary Type', 'FBI Code'], axis=1)"
]
},
{
@@ -672,20 +543,7 @@
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" test_sample = json.dumps({'data':X_test[index:index + 1].values.tolist()})\n",
" predicted = aci_service.run(input_data = test_sample)\n",
" label = y_test.values[index]\n",
" predictedDict = json.loads(predicted)\n",
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0]) \n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
"fitted_model.predict(X_test)"
]
},
{
@@ -703,7 +561,7 @@
"metadata": {},
"outputs": [],
"source": [
"myservice.delete()"
"aci_service.delete()"
]
},
{
@@ -741,7 +599,7 @@
"version": "3.6.8"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 2733885892129020
"notebookId": 3772036807853791
},
"nbformat": 4,
"nbformat_minor": 1

View File

@@ -50,10 +50,12 @@ pip install azureml-accel-models[gpu]
### Step 4: Follow our notebooks
The notebooks in this repo walk through the following scenarios:
* [Quickstart](accelerated-models-quickstart.ipynb), deploy and inference a ResNet50 model trained on ImageNet
* [Object Detection](accelerated-models-object-detection.ipynb), deploy and inference an SSD-VGG model that can do object detection
* [Training models](accelerated-models-training.ipynb), train one of our accelerated models on the Kaggle Cats and Dogs dataset to see how to improve accuracy on custom datasets
We provide notebooks to walk through the following scenarios, linked below:
* [Quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb), deploy and inference a ResNet50 model trained on ImageNet
* [Object Detection](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb), deploy and inference an SSD-VGG model that can do object detection
* [Training models](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb), train one of our accelerated models on the Kaggle Cats and Dogs dataset to see how to improve accuracy on custom datasets
**Note**: the above notebooks work only for tensorflow >= 1.6,<2.0.
<a name="model-classes"></a>
## Model Classes

View File

@@ -86,7 +86,37 @@
"source": [
"In this example, we will be using and registering two models. \n",
"\n",
"You wil need to have a `first_model.pkl` file and `second_model.pkl` file in the current directory. The below call registers the files as Models with the names `my_first_model` and `my_second_model` in the workspace."
"First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import sklearn\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import BayesianRidge, Ridge\n",
"\n",
"x, y = load_diabetes(return_X_y=True)\n",
"\n",
"first_model = Ridge().fit(x, y)\n",
"second_model = BayesianRidge().fit(x, y)\n",
"\n",
"joblib.dump(first_model, \"first_model.pkl\")\n",
"joblib.dump(second_model, \"second_model.pkl\")\n",
"\n",
"print(\"Trained models using scikit-learn {}.\".format(sklearn.__version__))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have our trained models locally, we will register them as Models with the names `my_first_model` and `my_second_model` in the workspace."
]
},
{
@@ -102,12 +132,12 @@
"from azureml.core.model import Model\n",
"\n",
"my_model_1 = Model.register(model_path=\"first_model.pkl\",\n",
" model_name=\"my_first_model\",\n",
" workspace=ws)\n",
" model_name=\"my_first_model\",\n",
" workspace=ws)\n",
"\n",
"my_model_2 = Model.register(model_path=\"second_model.pkl\",\n",
" model_name=\"my_second_model\",\n",
" workspace=ws)"
" model_name=\"my_second_model\",\n",
" workspace=ws)"
]
},
{
@@ -149,25 +179,24 @@
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model_1, model_2\n",
" # note here \"my_first_model\" is the name of the model registered under the workspace\n",
" # this call should return the path to the model.pkl file on the local disk.\n",
" # Here \"my_first_model\" is the name of the model registered under the workspace.\n",
" # This call will return the path to the .pkl file on the local disk.\n",
" model_1_path = Model.get_model_path(model_name='my_first_model')\n",
" model_2_path = Model.get_model_path(model_name='my_second_model')\n",
" \n",
" # deserialize the model files back into a sklearn model\n",
" # Deserialize the model files back into scikit-learn models.\n",
" model_1 = joblib.load(model_1_path)\n",
" model_2 = joblib.load(model_2_path)\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"# Note you can pass in multiple rows for scoring.\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
@@ -177,7 +206,7 @@
" result_1 = model_1.predict(data)\n",
" result_2 = model_2.predict(data)\n",
"\n",
" # you can return any data type as long as it is JSON-serializable\n",
" # You can return any JSON-serializable value.\n",
" return {\"prediction1\": result_1.tolist(), \"prediction2\": result_2.tolist()}\n",
" except Exception as e:\n",
" result = str(e)\n",
@@ -208,10 +237,10 @@
"source": [
"from azureml.core import Environment\n",
"\n",
"env = Environment.from_conda_specification(name='deploytocloudenv', file_path='myenv.yml')\n",
"\n",
"# This is optional at this point\n",
"# env.register(workspace=ws)"
"env = Environment(\"deploytocloudenv\")\n",
"env.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"env.python.conda_dependencies.add_pip_package(\"numpy\")\n",
"env.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))"
]
},
{
@@ -281,25 +310,15 @@
},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice, Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aci_service_name = \"aciservice-multimodel\"\n",
"\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"aci_service_name = 'aciservice-multimodel'\n",
"\n",
"try:\n",
" # if you want to get existing service below is the command\n",
" # since aci name needs to be unique in subscription deleting existing aci if any\n",
" # we use aci_service_name to create azure aci\n",
" service = Webservice(ws, name=aci_service_name)\n",
" if service:\n",
" service.delete()\n",
"except WebserviceException as e:\n",
" print()\n",
"\n",
"service = Model.deploy(ws, aci_service_name, [my_model_1, my_model_2], inference_config, deployment_config)\n",
"\n",
"service = Model.deploy(ws, aci_service_name, [my_model_1, my_model_2], inference_config, deployment_config, overwrite=True)\n",
"service.wait_for_deployment(True)\n",
"\n",
"print(service.state)"
]
},
@@ -317,13 +336,11 @@
"outputs": [],
"source": [
"import json\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"\n",
"test_sample_encoded = bytes(test_sample, encoding='utf8')\n",
"prediction = service.run(input_data=test_sample_encoded)\n",
"test_sample = json.dumps({'data': x[0:2].tolist()})\n",
"\n",
"prediction = service.run(test_sample)\n",
"\n",
"print(prediction)"
]
},

View File

@@ -2,3 +2,5 @@ name: multi-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -1,8 +0,0 @@
name: project_environment
dependencies:
- python=3.6.2
- pip:
- azureml-defaults
- scikit-learn
- numpy
- inference-schema[numpy-support]

View File

@@ -1,442 +0,0 @@
3.807590643342410180e-02,5.068011873981870252e-02,6.169620651868849837e-02,2.187235499495579841e-02,-4.422349842444640161e-02,-3.482076283769860309e-02,-4.340084565202689815e-02,-2.592261998182820038e-03,1.990842087631829876e-02,-1.764612515980519894e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,-5.147406123880610140e-02,-2.632783471735180084e-02,-8.448724111216979540e-03,-1.916333974822199970e-02,7.441156407875940126e-02,-3.949338287409189657e-02,-6.832974362442149896e-02,-9.220404962683000083e-02
8.529890629667830071e-02,5.068011873981870252e-02,4.445121333659410312e-02,-5.670610554934250001e-03,-4.559945128264750180e-02,-3.419446591411950259e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,2.863770518940129874e-03,-2.593033898947460017e-02
-8.906293935226029801e-02,-4.464163650698899782e-02,-1.159501450521270051e-02,-3.665644679856060184e-02,1.219056876180000040e-02,2.499059336410210108e-02,-3.603757004385269719e-02,3.430885887772629900e-02,2.269202256674450122e-02,-9.361911330135799444e-03
5.383060374248070309e-03,-4.464163650698899782e-02,-3.638469220447349689e-02,2.187235499495579841e-02,3.934851612593179802e-03,1.559613951041610019e-02,8.142083605192099172e-03,-2.592261998182820038e-03,-3.199144494135589684e-02,-4.664087356364819692e-02
-9.269547780327989928e-02,-4.464163650698899782e-02,-4.069594049999709917e-02,-1.944209332987930153e-02,-6.899064987206669775e-02,-7.928784441181220555e-02,4.127682384197570165e-02,-7.639450375000099436e-02,-4.118038518800790082e-02,-9.634615654166470144e-02
-4.547247794002570037e-02,5.068011873981870252e-02,-4.716281294328249912e-02,-1.599922263614299983e-02,-4.009563984984299695e-02,-2.480001206043359885e-02,7.788079970179680352e-04,-3.949338287409189657e-02,-6.291294991625119570e-02,-3.835665973397880263e-02
6.350367559056099842e-02,5.068011873981870252e-02,-1.894705840284650021e-03,6.662967401352719310e-02,9.061988167926439408e-02,1.089143811236970016e-01,2.286863482154040048e-02,1.770335448356720118e-02,-3.581672810154919867e-02,3.064409414368320182e-03
4.170844488444359899e-02,5.068011873981870252e-02,6.169620651868849837e-02,-4.009931749229690007e-02,-1.395253554402150001e-02,6.201685656730160021e-03,-2.867429443567860031e-02,-2.592261998182820038e-03,-1.495647502491130078e-02,1.134862324403770016e-02
-7.090024709716259699e-02,-4.464163650698899782e-02,3.906215296718960200e-02,-3.321357610482440076e-02,-1.257658268582039982e-02,-3.450761437590899733e-02,-2.499265663159149983e-02,-2.592261998182820038e-03,6.773632611028609918e-02,-1.350401824497050006e-02
-9.632801625429950054e-02,-4.464163650698899782e-02,-8.380842345523309422e-02,8.100872220010799790e-03,-1.033894713270950005e-01,-9.056118903623530669e-02,-1.394774321933030074e-02,-7.639450375000099436e-02,-6.291294991625119570e-02,-3.421455281914410201e-02
2.717829108036539862e-02,5.068011873981870252e-02,1.750591148957160101e-02,-3.321357610482440076e-02,-7.072771253015849857e-03,4.597154030400080194e-02,-6.549067247654929980e-02,7.120997975363539678e-02,-9.643322289178400675e-02,-5.906719430815229877e-02
1.628067572730669890e-02,-4.464163650698899782e-02,-2.884000768730720157e-02,-9.113481248670509197e-03,-4.320865536613589623e-03,-9.768885894535990141e-03,4.495846164606279866e-02,-3.949338287409189657e-02,-3.075120986455629965e-02,-4.249876664881350324e-02
5.383060374248070309e-03,5.068011873981870252e-02,-1.894705840284650021e-03,8.100872220010799790e-03,-4.320865536613589623e-03,-1.571870666853709964e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,3.839324821169769891e-02,-1.350401824497050006e-02
4.534098333546320025e-02,-4.464163650698899782e-02,-2.560657146566450160e-02,-1.255635194240680048e-02,1.769438019460449832e-02,-6.128357906048329537e-05,8.177483968693349814e-02,-3.949338287409189657e-02,-3.199144494135589684e-02,-7.563562196749110123e-02
-5.273755484206479882e-02,5.068011873981870252e-02,-1.806188694849819934e-02,8.040115678847230274e-02,8.924392882106320368e-02,1.076617872765389949e-01,-3.971920784793980114e-02,1.081111006295440019e-01,3.605579008983190309e-02,-4.249876664881350324e-02
-5.514554978810590376e-03,-4.464163650698899782e-02,4.229558918883229851e-02,4.941532054484590319e-02,2.457414448561009990e-02,-2.386056667506489953e-02,7.441156407875940126e-02,-3.949338287409189657e-02,5.227999979678119719e-02,2.791705090337660150e-02
7.076875249260000666e-02,5.068011873981870252e-02,1.211685112016709989e-02,5.630106193231849965e-02,3.420581449301800248e-02,4.941617338368559792e-02,-3.971920784793980114e-02,3.430885887772629900e-02,2.736770754260900093e-02,-1.077697500466389974e-03
-3.820740103798660192e-02,-4.464163650698899782e-02,-1.051720243133190055e-02,-3.665644679856060184e-02,-3.734373413344069942e-02,-1.947648821001150138e-02,-2.867429443567860031e-02,-2.592261998182820038e-03,-1.811826730789670159e-02,-1.764612515980519894e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,-1.806188694849819934e-02,-4.009931749229690007e-02,-2.944912678412469915e-03,-1.133462820348369975e-02,3.759518603788870178e-02,-3.949338287409189657e-02,-8.944018957797799166e-03,-5.492508739331759815e-02
-4.910501639104519755e-02,-4.464163650698899782e-02,-5.686312160821060252e-02,-4.354218818603310115e-02,-4.559945128264750180e-02,-4.327577130601600180e-02,7.788079970179680352e-04,-3.949338287409189657e-02,-1.190068480150809939e-02,1.549073015887240078e-02
-8.543040090124079389e-02,5.068011873981870252e-02,-2.237313524402180162e-02,1.215130832538269907e-03,-3.734373413344069942e-02,-2.636575436938120090e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-7.212845460195599356e-02,-1.764612515980519894e-02
-8.543040090124079389e-02,-4.464163650698899782e-02,-4.050329988046450294e-03,-9.113481248670509197e-03,-2.944912678412469915e-03,7.767427965677820186e-03,2.286863482154040048e-02,-3.949338287409189657e-02,-6.117659509433449883e-02,-1.350401824497050006e-02
4.534098333546320025e-02,5.068011873981870252e-02,6.061839444480759953e-02,3.105334362634819961e-02,2.870200306021350109e-02,-4.734670130927989828e-02,-5.444575906428809897e-02,7.120997975363539678e-02,1.335989800130079896e-01,1.356118306890790048e-01
-6.363517019512339445e-02,-4.464163650698899782e-02,3.582871674554689856e-02,-2.288496402361559975e-02,-3.046396984243510131e-02,-1.885019128643240088e-02,-6.584467611156170040e-03,-2.592261998182820038e-03,-2.595242443518940012e-02,-5.492508739331759815e-02
-6.726770864614299572e-02,5.068011873981870252e-02,-1.267282657909369996e-02,-4.009931749229690007e-02,-1.532848840222260020e-02,4.635943347782499856e-03,-5.812739686837520292e-02,3.430885887772629900e-02,1.919903307856710151e-02,-3.421455281914410201e-02
-1.072256316073579990e-01,-4.464163650698899782e-02,-7.734155101194770121e-02,-2.632783471735180084e-02,-8.962994274508359616e-02,-9.619786134844690584e-02,2.655027262562750096e-02,-7.639450375000099436e-02,-4.257210492279420166e-02,-5.219804415301099697e-03
-2.367724723390840155e-02,-4.464163650698899782e-02,5.954058237092670069e-02,-4.009931749229690007e-02,-4.284754556624519733e-02,-4.358891976780549654e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-1.599826775813870117e-02,4.034337164788070335e-02
5.260606023750229870e-02,-4.464163650698899782e-02,-2.129532317014089932e-02,-7.452802442965950069e-02,-4.009563984984299695e-02,-3.763909899380440266e-02,-6.584467611156170040e-03,-3.949338287409189657e-02,-6.092541861022970299e-04,-5.492508739331759815e-02
6.713621404158050254e-02,5.068011873981870252e-02,-6.205954135808240159e-03,6.318680331979099896e-02,-4.284754556624519733e-02,-9.588471288665739722e-02,5.232173725423699961e-02,-7.639450375000099436e-02,5.942380044479410317e-02,5.276969239238479825e-02
-6.000263174410389727e-02,-4.464163650698899782e-02,4.445121333659410312e-02,-1.944209332987930153e-02,-9.824676969418109224e-03,-7.576846662009279788e-03,2.286863482154040048e-02,-3.949338287409189657e-02,-2.712864555432650121e-02,-9.361911330135799444e-03
-2.367724723390840155e-02,-4.464163650698899782e-02,-6.548561819925780014e-02,-8.141376581713200000e-02,-3.871968699164179961e-02,-5.360967054507050078e-02,5.968501286241110343e-02,-7.639450375000099436e-02,-3.712834601047360072e-02,-4.249876664881350324e-02
3.444336798240450054e-02,5.068011873981870252e-02,1.252871188776620015e-01,2.875809638242839833e-02,-5.385516843185429725e-02,-1.290037051243130006e-02,-1.023070505174200062e-01,1.081111006295440019e-01,2.714857279071319972e-04,2.791705090337660150e-02
3.081082953138499989e-02,-4.464163650698899782e-02,-5.039624916492520257e-02,-2.227739861197989939e-03,-4.422349842444640161e-02,-8.993489211265630334e-02,1.185912177278039964e-01,-7.639450375000099436e-02,-1.811826730789670159e-02,3.064409414368320182e-03
1.628067572730669890e-02,-4.464163650698899782e-02,-6.332999405149600247e-02,-5.731367096097819691e-02,-5.798302700645770191e-02,-4.891244361822749687e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-5.947269741072230137e-02,-6.735140813782170000e-02
4.897352178648269744e-02,5.068011873981870252e-02,-3.099563183506899924e-02,-4.928030602040309877e-02,4.934129593323050011e-02,-4.132213582324419619e-03,1.333177689441520097e-01,-5.351580880693729975e-02,2.131084656824479978e-02,1.963283707370720027e-02
1.264813727628719998e-02,-4.464163650698899782e-02,2.289497185897609866e-02,5.285819123858220142e-02,8.062710187196569719e-03,-2.855779360190789998e-02,3.759518603788870178e-02,-3.949338287409189657e-02,5.472400334817909689e-02,-2.593033898947460017e-02
-9.147093429830140468e-03,-4.464163650698899782e-02,1.103903904628619932e-02,-5.731367096097819691e-02,-2.496015840963049931e-02,-4.296262284422640298e-02,3.023191042971450082e-02,-3.949338287409189657e-02,1.703713241477999851e-02,-5.219804415301099697e-03
-1.882016527791040067e-03,5.068011873981870252e-02,7.139651518361660176e-02,9.761551025715360652e-02,8.786797596286209655e-02,7.540749571221680436e-02,-2.131101882750449997e-02,7.120997975363539678e-02,7.142403278057639360e-02,2.377494398854190089e-02
-1.882016527791040067e-03,5.068011873981870252e-02,1.427247526792889930e-02,-7.452802442965950069e-02,2.558898754392050119e-03,6.201685656730160021e-03,-1.394774321933030074e-02,-2.592261998182820038e-03,1.919903307856710151e-02,3.064409414368320182e-03
5.383060374248070309e-03,5.068011873981870252e-02,-8.361578283570040432e-03,2.187235499495579841e-02,5.484510736603499803e-02,7.321545647968999426e-02,-2.499265663159149983e-02,3.430885887772629900e-02,1.255315281338930007e-02,9.419076154073199869e-02
-9.996055470531900466e-02,-4.464163650698899782e-02,-6.764124234701959781e-02,-1.089567313670219972e-01,-7.449446130487119566e-02,-7.271172671423199729e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-4.986846773523059828e-02,-9.361911330135799444e-03
-6.000263174410389727e-02,5.068011873981870252e-02,-1.051720243133190055e-02,-1.485159908304049987e-02,-4.972730985725089953e-02,-2.354741821327540133e-02,-5.812739686837520292e-02,1.585829843977170153e-02,-9.918957363154769225e-03,-3.421455281914410201e-02
1.991321417832630017e-02,-4.464163650698899782e-02,-2.345094731790270046e-02,-7.108515373592319553e-02,2.044628591100669870e-02,-1.008203435632550049e-02,1.185912177278039964e-01,-7.639450375000099436e-02,-4.257210492279420166e-02,7.348022696655839847e-02
4.534098333546320025e-02,5.068011873981870252e-02,6.816307896197400240e-02,8.100872220010799790e-03,-1.670444126042380101e-02,4.635943347782499856e-03,-7.653558588881050062e-02,7.120997975363539678e-02,3.243322577960189995e-02,-1.764612515980519894e-02
2.717829108036539862e-02,5.068011873981870252e-02,-3.530688013059259805e-02,3.220096707616459941e-02,-1.120062982761920074e-02,1.504458729887179960e-03,-1.026610541524320026e-02,-2.592261998182820038e-03,-1.495647502491130078e-02,-5.078298047848289754e-02
-5.637009329308430294e-02,-4.464163650698899782e-02,-1.159501450521270051e-02,-3.321357610482440076e-02,-4.697540414084860200e-02,-4.765984977106939996e-02,4.460445801105040325e-03,-3.949338287409189657e-02,-7.979397554541639223e-03,-8.806194271199530021e-02
-7.816532399920170238e-02,-4.464163650698899782e-02,-7.303030271642410587e-02,-5.731367096097819691e-02,-8.412613131227909824e-02,-7.427746902317970690e-02,-2.499265663159149983e-02,-3.949338287409189657e-02,-1.811826730789670159e-02,-8.391983579716059960e-02
6.713621404158050254e-02,5.068011873981870252e-02,-4.177375257387799801e-02,1.154374291374709975e-02,2.558898754392050119e-03,5.888537194940629722e-03,4.127682384197570165e-02,-3.949338287409189657e-02,-5.947269741072230137e-02,-2.178823207463989955e-02
-4.183993948900609910e-02,5.068011873981870252e-02,1.427247526792889930e-02,-5.670610554934250001e-03,-1.257658268582039982e-02,6.201685656730160021e-03,-7.285394808472339667e-02,7.120997975363539678e-02,3.546193866076970125e-02,-1.350401824497050006e-02
3.444336798240450054e-02,-4.464163650698899782e-02,-7.283766209689159811e-03,1.498661360748330083e-02,-4.422349842444640161e-02,-3.732595053201490098e-02,-2.902829807069099918e-03,-3.949338287409189657e-02,-2.139368094035999993e-02,7.206516329203029904e-03
5.987113713954139715e-02,5.068011873981870252e-02,1.642809941569069870e-02,2.875809638242839833e-02,-4.147159270804409714e-02,-2.918409052548700047e-02,-2.867429443567860031e-02,-2.592261998182820038e-03,-2.396681493414269844e-03,-2.178823207463989955e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,-9.439390357450949676e-03,-5.670610554934250001e-03,3.970962592582259754e-02,4.471894645684260094e-02,2.655027262562750096e-02,-2.592261998182820038e-03,-1.811826730789670159e-02,-1.350401824497050006e-02
-9.147093429830140468e-03,-4.464163650698899782e-02,-1.590626280073640167e-02,7.007254470726349826e-02,1.219056876180000040e-02,2.217225720799630151e-02,1.550535921336619952e-02,-2.592261998182820038e-03,-3.324878724762579674e-02,4.862758547755009764e-02
-4.910501639104519755e-02,-4.464163650698899782e-02,2.505059600673789980e-02,8.100872220010799790e-03,2.044628591100669870e-02,1.778817874294279927e-02,5.232173725423699961e-02,-3.949338287409189657e-02,-4.118038518800790082e-02,7.206516329203029904e-03
-4.183993948900609910e-02,-4.464163650698899782e-02,-4.931843709104429679e-02,-3.665644679856060184e-02,-7.072771253015849857e-03,-2.260797282790679916e-02,8.545647749102060209e-02,-3.949338287409189657e-02,-6.648814822283539983e-02,7.206516329203029904e-03
-4.183993948900609910e-02,-4.464163650698899782e-02,4.121777711495139968e-02,-2.632783471735180084e-02,-3.183992270063620150e-02,-3.043668437264510085e-02,-3.603757004385269719e-02,2.942906133203560069e-03,3.365681290238470291e-02,-1.764612515980519894e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,-6.332999405149600247e-02,-5.042792957350569760e-02,-8.962994274508359616e-02,-1.043397213549750041e-01,5.232173725423699961e-02,-7.639450375000099436e-02,-5.615757309500619965e-02,-6.735140813782170000e-02
4.170844488444359899e-02,-4.464163650698899782e-02,-6.440780612537699845e-02,3.564383776990089764e-02,1.219056876180000040e-02,-5.799374901012400302e-02,1.811790603972839864e-01,-7.639450375000099436e-02,-6.092541861022970299e-04,-5.078298047848289754e-02
6.350367559056099842e-02,5.068011873981870252e-02,-2.560657146566450160e-02,1.154374291374709975e-02,6.447677737344290061e-02,4.847672799831700269e-02,3.023191042971450082e-02,-2.592261998182820038e-03,3.839324821169769891e-02,1.963283707370720027e-02
-7.090024709716259699e-02,-4.464163650698899782e-02,-4.050329988046450294e-03,-4.009931749229690007e-02,-6.623874415566440021e-02,-7.866154748823310505e-02,5.232173725423699961e-02,-7.639450375000099436e-02,-5.140053526058249722e-02,-3.421455281914410201e-02
-4.183993948900609910e-02,5.068011873981870252e-02,4.572166603000769880e-03,-5.387080026724189868e-02,-4.422349842444640161e-02,-2.730519975474979960e-02,-8.021722369289760457e-02,7.120997975363539678e-02,3.664579779339879884e-02,1.963283707370720027e-02
-2.730978568492789874e-02,5.068011873981870252e-02,-7.283766209689159811e-03,-4.009931749229690007e-02,-1.120062982761920074e-02,-1.383981589779990050e-02,5.968501286241110343e-02,-3.949338287409189657e-02,-8.238148325810279449e-02,-2.593033898947460017e-02
-3.457486258696700065e-02,-4.464163650698899782e-02,-3.746250427835440266e-02,-6.075654165471439799e-02,2.044628591100669870e-02,4.346635260968449710e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,-3.075120986455629965e-02,-7.149351505265640061e-02
6.713621404158050254e-02,5.068011873981870252e-02,-2.560657146566450160e-02,-4.009931749229690007e-02,-6.348683843926219983e-02,-5.987263978086120042e-02,-2.902829807069099918e-03,-3.949338287409189657e-02,-1.919704761394450121e-02,1.134862324403770016e-02
-4.547247794002570037e-02,5.068011873981870252e-02,-2.452875939178359929e-02,5.974393262605470073e-02,5.310804470794310353e-03,1.496984258683710031e-02,-5.444575906428809897e-02,7.120997975363539678e-02,4.234489544960749752e-02,1.549073015887240078e-02
-9.147093429830140468e-03,5.068011873981870252e-02,-1.806188694849819934e-02,-3.321357610482440076e-02,-2.083229983502719873e-02,1.215150643073130074e-02,-7.285394808472339667e-02,7.120997975363539678e-02,2.714857279071319972e-04,1.963283707370720027e-02
4.170844488444359899e-02,5.068011873981870252e-02,-1.482845072685549936e-02,-1.714684618924559867e-02,-5.696818394814720174e-03,8.393724889256879915e-03,-1.394774321933030074e-02,-1.854239580664649974e-03,-1.190068480150809939e-02,3.064409414368320182e-03
3.807590643342410180e-02,5.068011873981870252e-02,-2.991781976118810041e-02,-4.009931749229690007e-02,-3.321587555883730170e-02,-2.417371513685449835e-02,-1.026610541524320026e-02,-2.592261998182820038e-03,-1.290794225416879923e-02,3.064409414368320182e-03
1.628067572730669890e-02,-4.464163650698899782e-02,-4.608500086940160029e-02,-5.670610554934250001e-03,-7.587041416307230279e-02,-6.143838208980879900e-02,-1.394774321933030074e-02,-3.949338287409189657e-02,-5.140053526058249722e-02,1.963283707370720027e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,-6.979686649478139548e-02,-1.255635194240680048e-02,-1.930069620102049918e-04,-9.142588970956939953e-03,7.072992627467229731e-02,-3.949338287409189657e-02,-6.291294991625119570e-02,4.034337164788070335e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,3.367309259778510089e-02,1.251584758070440062e-01,2.457414448561009990e-02,2.624318721126020146e-02,-1.026610541524320026e-02,-2.592261998182820038e-03,2.671425763351279944e-02,6.105390622205419948e-02
6.350367559056099842e-02,5.068011873981870252e-02,-4.050329988046450294e-03,-1.255635194240680048e-02,1.030034574030749966e-01,4.878987646010649742e-02,5.600337505832399948e-02,-2.592261998182820038e-03,8.449528221240310000e-02,-1.764612515980519894e-02
1.264813727628719998e-02,5.068011873981870252e-02,-2.021751109626000048e-02,-2.227739861197989939e-03,3.833367306762140020e-02,5.317395492515999966e-02,-6.584467611156170040e-03,3.430885887772629900e-02,-5.145307980263110273e-03,-9.361911330135799444e-03
1.264813727628719998e-02,5.068011873981870252e-02,2.416542455238970041e-03,5.630106193231849965e-02,2.732605020201240090e-02,1.716188181936379939e-02,4.127682384197570165e-02,-3.949338287409189657e-02,3.711738233435969789e-03,7.348022696655839847e-02
-9.147093429830140468e-03,5.068011873981870252e-02,-3.099563183506899924e-02,-2.632783471735180084e-02,-1.120062982761920074e-02,-1.000728964429089965e-03,-2.131101882750449997e-02,-2.592261998182820038e-03,6.209315616505399656e-03,2.791705090337660150e-02
-3.094232413594750000e-02,5.068011873981870252e-02,2.828403222838059977e-02,7.007254470726349826e-02,-1.267806699165139883e-01,-1.068449090492910036e-01,-5.444575906428809897e-02,-4.798064067555100204e-02,-3.075120986455629965e-02,1.549073015887240078e-02
-9.632801625429950054e-02,-4.464163650698899782e-02,-3.638469220447349689e-02,-7.452802442965950069e-02,-3.871968699164179961e-02,-2.761834821653930128e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-7.408887149153539631e-02,-1.077697500466389974e-03
5.383060374248070309e-03,-4.464163650698899782e-02,-5.794093368209150136e-02,-2.288496402361559975e-02,-6.761469701386560449e-02,-6.832764824917850199e-02,-5.444575906428809897e-02,-2.592261998182820038e-03,4.289568789252869857e-02,-8.391983579716059960e-02
-1.035930931563389945e-01,-4.464163650698899782e-02,-3.746250427835440266e-02,-2.632783471735180084e-02,2.558898754392050119e-03,1.998021797546959896e-02,1.182372140927919965e-02,-2.592261998182820038e-03,-6.832974362442149896e-02,-2.593033898947460017e-02
7.076875249260000666e-02,-4.464163650698899782e-02,1.211685112016709989e-02,4.252957915737339695e-02,7.135654166444850566e-02,5.348710338694950134e-02,5.232173725423699961e-02,-2.592261998182820038e-03,2.539313491544940155e-02,-5.219804415301099697e-03
1.264813727628719998e-02,5.068011873981870252e-02,-2.237313524402180162e-02,-2.977070541108809906e-02,1.081461590359879960e-02,2.843522644378690054e-02,-2.131101882750449997e-02,3.430885887772629900e-02,-6.080248196314420352e-03,-1.077697500466389974e-03
-1.641217033186929963e-02,-4.464163650698899782e-02,-3.530688013059259805e-02,-2.632783471735180084e-02,3.282986163481690228e-02,1.716188181936379939e-02,1.001830287073690040e-01,-3.949338287409189657e-02,-7.020931272868760620e-02,-7.977772888232589898e-02
-3.820740103798660192e-02,-4.464163650698899782e-02,9.961226972405269262e-03,-4.698505887976939938e-02,-5.935897986465880211e-02,-5.298337362149149743e-02,-1.026610541524320026e-02,-3.949338287409189657e-02,-1.599826775813870117e-02,-4.249876664881350324e-02
1.750521923228520000e-03,-4.464163650698899782e-02,-3.961812842611620034e-02,-1.009233664264470032e-01,-2.908801698423390050e-02,-3.012353591085559917e-02,4.495846164606279866e-02,-5.019470792810550031e-02,-6.832974362442149896e-02,-1.294830118603420011e-01
4.534098333546320025e-02,-4.464163650698899782e-02,7.139651518361660176e-02,1.215130832538269907e-03,-9.824676969418109224e-03,-1.000728964429089965e-03,1.550535921336619952e-02,-3.949338287409189657e-02,-4.118038518800790082e-02,-7.149351505265640061e-02
-7.090024709716259699e-02,5.068011873981870252e-02,-7.518592686418590354e-02,-4.009931749229690007e-02,-5.110326271545199972e-02,-1.509240974495799914e-02,-3.971920784793980114e-02,-2.592261998182820038e-03,-9.643322289178400675e-02,-3.421455281914410201e-02
4.534098333546320025e-02,-4.464163650698899782e-02,-6.205954135808240159e-03,1.154374291374709975e-02,6.310082451524179348e-02,1.622243643399520069e-02,9.650139090328180291e-02,-3.949338287409189657e-02,4.289568789252869857e-02,-3.835665973397880263e-02
-5.273755484206479882e-02,5.068011873981870252e-02,-4.069594049999709917e-02,-6.764228304218700139e-02,-3.183992270063620150e-02,-3.701280207022530216e-02,3.759518603788870178e-02,-3.949338287409189657e-02,-3.452371533034950118e-02,6.933812005172369786e-02
-4.547247794002570037e-02,-4.464163650698899782e-02,-4.824062501716339796e-02,-1.944209332987930153e-02,-1.930069620102049918e-04,-1.603185513032660131e-02,6.704828847058519337e-02,-3.949338287409189657e-02,-2.479118743246069845e-02,1.963283707370720027e-02
1.264813727628719998e-02,-4.464163650698899782e-02,-2.560657146566450160e-02,-4.009931749229690007e-02,-3.046396984243510131e-02,-4.515466207675319921e-02,7.809320188284639419e-02,-7.639450375000099436e-02,-7.212845460195599356e-02,1.134862324403770016e-02
4.534098333546320025e-02,-4.464163650698899782e-02,5.199589785376040191e-02,-5.387080026724189868e-02,6.310082451524179348e-02,6.476044801137270657e-02,-1.026610541524320026e-02,3.430885887772629900e-02,3.723201120896890010e-02,1.963283707370720027e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,4.572166603000769880e-03,9.761551025715360652e-02,5.310804470794310353e-03,-2.072908205716959829e-02,6.336665066649820044e-02,-3.949338287409189657e-02,1.255315281338930007e-02,1.134862324403770016e-02
-4.910501639104519755e-02,-4.464163650698899782e-02,-6.440780612537699845e-02,-1.020709899795499975e-01,-2.944912678412469915e-03,-1.540555820674759969e-02,6.336665066649820044e-02,-4.724261825803279663e-02,-3.324878724762579674e-02,-5.492508739331759815e-02
-7.816532399920170238e-02,-4.464163650698899782e-02,-1.698407487461730050e-02,-1.255635194240680048e-02,-1.930069620102049918e-04,-1.352666743601040056e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-4.118038518800790082e-02,-9.220404962683000083e-02
-7.090024709716259699e-02,-4.464163650698899782e-02,-5.794093368209150136e-02,-8.141376581713200000e-02,-4.559945128264750180e-02,-2.887094206369749880e-02,-4.340084565202689815e-02,-2.592261998182820038e-03,1.143797379512540100e-03,-5.219804415301099697e-03
5.623859868852180283e-02,5.068011873981870252e-02,9.961226972405269262e-03,4.941532054484590319e-02,-4.320865536613589623e-03,-1.227407358885230018e-02,-4.340084565202689815e-02,3.430885887772629900e-02,6.078775415074400001e-02,3.205915781821130212e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,8.864150836571099701e-02,-2.518021116424929914e-02,2.182223876920789951e-02,4.252690722431590187e-02,-3.235593223976569732e-02,3.430885887772629900e-02,2.863770518940129874e-03,7.762233388139309909e-02
1.750521923228520000e-03,5.068011873981870252e-02,-5.128142061927360405e-03,-1.255635194240680048e-02,-1.532848840222260020e-02,-1.383981589779990050e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-6.080248196314420352e-03,-6.735140813782170000e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,-6.440780612537699845e-02,1.154374291374709975e-02,2.732605020201240090e-02,3.751653183568340322e-02,-1.394774321933030074e-02,3.430885887772629900e-02,1.178390038357590014e-02,-5.492508739331759815e-02
1.628067572730669890e-02,-4.464163650698899782e-02,1.750591148957160101e-02,-2.288496402361559975e-02,6.034891879883950289e-02,4.440579799505309927e-02,3.023191042971450082e-02,-2.592261998182820038e-03,3.723201120896890010e-02,-1.077697500466389974e-03
1.628067572730669890e-02,5.068011873981870252e-02,-4.500718879552070145e-02,6.318680331979099896e-02,1.081461590359879960e-02,-3.744320408500199904e-04,6.336665066649820044e-02,-3.949338287409189657e-02,-3.075120986455629965e-02,3.620126473304600273e-02
-9.269547780327989928e-02,-4.464163650698899782e-02,2.828403222838059977e-02,-1.599922263614299983e-02,3.695772020942030001e-02,2.499059336410210108e-02,5.600337505832399948e-02,-3.949338287409189657e-02,-5.145307980263110273e-03,-1.077697500466389974e-03
5.987113713954139715e-02,5.068011873981870252e-02,4.121777711495139968e-02,1.154374291374709975e-02,4.108557878402369773e-02,7.071026878537380045e-02,-3.603757004385269719e-02,3.430885887772629900e-02,-1.090443584737709956e-02,-3.007244590430930078e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,6.492964274033119487e-02,-2.227739861197989939e-03,-2.496015840963049931e-02,-1.728444897748479883e-02,2.286863482154040048e-02,-3.949338287409189657e-02,-6.117659509433449883e-02,-6.320930122298699938e-02
2.354575262934580082e-02,5.068011873981870252e-02,-3.207344390894990155e-02,-4.009931749229690007e-02,-3.183992270063620150e-02,-2.166852744253820046e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,-1.090443584737709956e-02,1.963283707370720027e-02
-9.632801625429950054e-02,-4.464163650698899782e-02,-7.626373893806680238e-02,-4.354218818603310115e-02,-4.559945128264750180e-02,-3.482076283769860309e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-5.947269741072230137e-02,-8.391983579716059960e-02
2.717829108036539862e-02,-4.464163650698899782e-02,4.984027370599859730e-02,-5.501842382034440038e-02,-2.944912678412469915e-03,4.064801645357869753e-02,-5.812739686837520292e-02,5.275941931568080279e-02,-5.295879323920039961e-02,-5.219804415301099697e-03
1.991321417832630017e-02,5.068011873981870252e-02,4.552902541047500196e-02,2.990571983224480160e-02,-6.211088558106100249e-02,-5.580170977759729700e-02,-7.285394808472339667e-02,2.692863470254440103e-02,4.560080841412490066e-02,4.034337164788070335e-02
3.807590643342410180e-02,5.068011873981870252e-02,-9.439390357450949676e-03,2.362754385640800005e-03,1.182945896190920002e-03,3.751653183568340322e-02,-5.444575906428809897e-02,5.017634085436720182e-02,-2.595242443518940012e-02,1.066170822852360034e-01
4.170844488444359899e-02,5.068011873981870252e-02,-3.207344390894990155e-02,-2.288496402361559975e-02,-4.972730985725089953e-02,-4.014428668812060341e-02,3.023191042971450082e-02,-3.949338287409189657e-02,-1.260973855604090033e-01,1.549073015887240078e-02
1.991321417832630017e-02,-4.464163650698899782e-02,4.572166603000769880e-03,-2.632783471735180084e-02,2.319819162740899970e-02,1.027261565999409987e-02,6.704828847058519337e-02,-3.949338287409189657e-02,-2.364455757213410059e-02,-4.664087356364819692e-02
-8.543040090124079389e-02,-4.464163650698899782e-02,2.073934771121430098e-02,-2.632783471735180084e-02,5.310804470794310353e-03,1.966706951368000014e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,-2.364455757213410059e-02,3.064409414368320182e-03
1.991321417832630017e-02,5.068011873981870252e-02,1.427247526792889930e-02,6.318680331979099896e-02,1.494247447820220079e-02,2.029336643725910064e-02,-4.708248345611389801e-02,3.430885887772629900e-02,4.666077235681449775e-02,9.004865462589720093e-02
2.354575262934580082e-02,-4.464163650698899782e-02,1.101977498433290015e-01,6.318680331979099896e-02,1.356652162000110060e-02,-3.294187206696139875e-02,-2.499265663159149983e-02,2.065544415363990138e-02,9.924022573398999514e-02,2.377494398854190089e-02
-3.094232413594750000e-02,5.068011873981870252e-02,1.338730381358059929e-03,-5.670610554934250001e-03,6.447677737344290061e-02,4.941617338368559792e-02,-4.708248345611389801e-02,1.081111006295440019e-01,8.379676636552239877e-02,3.064409414368320182e-03
4.897352178648269744e-02,5.068011873981870252e-02,5.846277029704580186e-02,7.007254470726349826e-02,1.356652162000110060e-02,2.060651489904859884e-02,-2.131101882750449997e-02,3.430885887772629900e-02,2.200405045615050001e-02,2.791705090337660150e-02
5.987113713954139715e-02,-4.464163650698899782e-02,-2.129532317014089932e-02,8.728689817594480205e-02,4.521343735862710239e-02,3.156671106168230240e-02,-4.708248345611389801e-02,7.120997975363539678e-02,7.912108138965789905e-02,1.356118306890790048e-01
-5.637009329308430294e-02,5.068011873981870252e-02,-1.051720243133190055e-02,2.531522568869210010e-02,2.319819162740899970e-02,4.002171952999959703e-02,-3.971920784793980114e-02,3.430885887772629900e-02,2.061233072136409855e-02,5.691179930721949887e-02
1.628067572730669890e-02,-4.464163650698899782e-02,-4.716281294328249912e-02,-2.227739861197989939e-03,-1.945634697682600139e-02,-4.296262284422640298e-02,3.391354823380159783e-02,-3.949338287409189657e-02,2.736770754260900093e-02,2.791705090337660150e-02
-4.910501639104519755e-02,-4.464163650698899782e-02,4.572166603000769880e-03,1.154374291374709975e-02,-3.734373413344069942e-02,-1.853704282464289921e-02,-1.762938102341739949e-02,-2.592261998182820038e-03,-3.980959436433750137e-02,-2.178823207463989955e-02
6.350367559056099842e-02,-4.464163650698899782e-02,1.750591148957160101e-02,2.187235499495579841e-02,8.062710187196569719e-03,2.154596028441720101e-02,-3.603757004385269719e-02,3.430885887772629900e-02,1.990842087631829876e-02,1.134862324403770016e-02
4.897352178648269744e-02,5.068011873981870252e-02,8.109682384854470516e-02,2.187235499495579841e-02,4.383748450042589812e-02,6.413415108779360607e-02,-5.444575906428809897e-02,7.120997975363539678e-02,3.243322577960189995e-02,4.862758547755009764e-02
5.383060374248070309e-03,5.068011873981870252e-02,3.475090467166599972e-02,-1.080116308095460057e-03,1.525377602983150060e-01,1.987879896572929961e-01,-6.180903467246220279e-02,1.852344432601940039e-01,1.556684454070180086e-02,7.348022696655839847e-02
-5.514554978810590376e-03,-4.464163650698899782e-02,2.397278393285700096e-02,8.100872220010799790e-03,-3.459182841703849903e-02,-3.889169284096249957e-02,2.286863482154040048e-02,-3.949338287409189657e-02,-1.599826775813870117e-02,-1.350401824497050006e-02
-5.514554978810590376e-03,5.068011873981870252e-02,-8.361578283570040432e-03,-2.227739861197989939e-03,-3.321587555883730170e-02,-6.363042132233559522e-02,-3.603757004385269719e-02,-2.592261998182820038e-03,8.058546423866649877e-02,7.206516329203029904e-03
-8.906293935226029801e-02,-4.464163650698899782e-02,-6.117436990373419786e-02,-2.632783471735180084e-02,-5.523112129005539744e-02,-5.454911593043910295e-02,4.127682384197570165e-02,-7.639450375000099436e-02,-9.393564550871469354e-02,-5.492508739331759815e-02
3.444336798240450054e-02,5.068011873981870252e-02,-1.894705840284650021e-03,-1.255635194240680048e-02,3.833367306762140020e-02,1.371724873967889932e-02,7.809320188284639419e-02,-3.949338287409189657e-02,4.551890466127779880e-03,-9.634615654166470144e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,-6.225218197761509670e-02,-2.632783471735180084e-02,-5.696818394814720174e-03,-5.071658967693000106e-03,3.023191042971450082e-02,-3.949338287409189657e-02,-3.075120986455629965e-02,-7.149351505265640061e-02
9.015598825267629943e-03,-4.464163650698899782e-02,1.642809941569069870e-02,4.658001526274530187e-03,9.438663045397699403e-03,1.058576412178359981e-02,-2.867429443567860031e-02,3.430885887772629900e-02,3.896836603088559697e-02,1.190434030297399942e-01
-6.363517019512339445e-02,5.068011873981870252e-02,9.618619288287730273e-02,1.045012516446259948e-01,-2.944912678412469915e-03,-4.758510505903469807e-03,-6.584467611156170040e-03,-2.592261998182820038e-03,2.269202256674450122e-02,7.348022696655839847e-02
-9.632801625429950054e-02,-4.464163650698899782e-02,-6.979686649478139548e-02,-6.764228304218700139e-02,-1.945634697682600139e-02,-1.070833127990459925e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-4.687948284421659950e-02,-7.977772888232589898e-02
1.628067572730669890e-02,5.068011873981870252e-02,-2.129532317014089932e-02,-9.113481248670509197e-03,3.420581449301800248e-02,4.785043107473799934e-02,7.788079970179680352e-04,-2.592261998182820038e-03,-1.290794225416879923e-02,2.377494398854190089e-02
-4.183993948900609910e-02,5.068011873981870252e-02,-5.362968538656789907e-02,-4.009931749229690007e-02,-8.412613131227909824e-02,-7.177228132886340206e-02,-2.902829807069099918e-03,-3.949338287409189657e-02,-7.212845460195599356e-02,-3.007244590430930078e-02
-7.453278554818210111e-02,-4.464163650698899782e-02,4.337340126271319735e-02,-3.321357610482440076e-02,1.219056876180000040e-02,2.518648827290310109e-04,6.336665066649820044e-02,-3.949338287409189657e-02,-2.712864555432650121e-02,-4.664087356364819692e-02
-5.514554978810590376e-03,-4.464163650698899782e-02,5.630714614928399725e-02,-3.665644679856060184e-02,-4.835135699904979933e-02,-4.296262284422640298e-02,-7.285394808472339667e-02,3.799897096531720114e-02,5.078151336297320045e-02,5.691179930721949887e-02
-9.269547780327989928e-02,-4.464163650698899782e-02,-8.165279930747129655e-02,-5.731367096097819691e-02,-6.073493272285990230e-02,-6.801449978738899338e-02,4.864009945014990260e-02,-7.639450375000099436e-02,-6.648814822283539983e-02,-2.178823207463989955e-02
5.383060374248070309e-03,-4.464163650698899782e-02,4.984027370599859730e-02,9.761551025715360652e-02,-1.532848840222260020e-02,-1.634500359211620013e-02,-6.584467611156170040e-03,-2.592261998182820038e-03,1.703713241477999851e-02,-1.350401824497050006e-02
3.444336798240450054e-02,5.068011873981870252e-02,1.112755619172099975e-01,7.695828609473599757e-02,-3.183992270063620150e-02,-3.388131745233000092e-02,-2.131101882750449997e-02,-2.592261998182820038e-03,2.801650652326400162e-02,7.348022696655839847e-02
2.354575262934580082e-02,-4.464163650698899782e-02,6.169620651868849837e-02,5.285819123858220142e-02,-3.459182841703849903e-02,-4.891244361822749687e-02,-2.867429443567860031e-02,-2.592261998182820038e-03,5.472400334817909689e-02,-5.219804415301099697e-03
4.170844488444359899e-02,5.068011873981870252e-02,1.427247526792889930e-02,4.252957915737339695e-02,-3.046396984243510131e-02,-1.313877426218630021e-03,-4.340084565202689815e-02,-2.592261998182820038e-03,-3.324878724762579674e-02,1.549073015887240078e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,4.768464955823679963e-02,-4.698505887976939938e-02,3.420581449301800248e-02,5.724488492842390308e-02,-8.021722369289760457e-02,1.302517731550900115e-01,4.506616833626150148e-02,1.314697237742440128e-01
4.170844488444359899e-02,5.068011873981870252e-02,1.211685112016709989e-02,3.908670846363720280e-02,5.484510736603499803e-02,4.440579799505309927e-02,4.460445801105040325e-03,-2.592261998182820038e-03,4.560080841412490066e-02,-1.077697500466389974e-03
-3.094232413594750000e-02,-4.464163650698899782e-02,5.649978676881649634e-03,-9.113481248670509197e-03,1.907033305280559851e-02,6.827982580309210209e-03,7.441156407875940126e-02,-3.949338287409189657e-02,-4.118038518800790082e-02,-4.249876664881350324e-02
3.081082953138499989e-02,5.068011873981870252e-02,4.660683748435590079e-02,-1.599922263614299983e-02,2.044628591100669870e-02,5.066876723084379891e-02,-5.812739686837520292e-02,7.120997975363539678e-02,6.209315616505399656e-03,7.206516329203029904e-03
-4.183993948900609910e-02,-4.464163650698899782e-02,1.285205550993039902e-01,6.318680331979099896e-02,-3.321587555883730170e-02,-3.262872360517189707e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-1.599826775813870117e-02,-5.078298047848289754e-02
-3.094232413594750000e-02,5.068011873981870252e-02,5.954058237092670069e-02,1.215130832538269907e-03,1.219056876180000040e-02,3.156671106168230240e-02,-4.340084565202689815e-02,3.430885887772629900e-02,1.482271084126630077e-02,7.206516329203029904e-03
-5.637009329308430294e-02,-4.464163650698899782e-02,9.295275666123460623e-02,-1.944209332987930153e-02,1.494247447820220079e-02,2.342485105515439842e-02,-2.867429443567860031e-02,2.545258986750810123e-02,2.605608963368469949e-02,4.034337164788070335e-02
-6.000263174410389727e-02,5.068011873981870252e-02,1.535028734180979987e-02,-1.944209332987930153e-02,3.695772020942030001e-02,4.816357953652750101e-02,1.918699701745330000e-02,-2.592261998182820038e-03,-3.075120986455629965e-02,-1.077697500466389974e-03
-4.910501639104519755e-02,5.068011873981870252e-02,-5.128142061927360405e-03,-4.698505887976939938e-02,-2.083229983502719873e-02,-2.041593359538010008e-02,-6.917231028063640375e-02,7.120997975363539678e-02,6.123790751970099866e-02,-3.835665973397880263e-02
2.354575262934580082e-02,-4.464163650698899782e-02,7.031870310973570293e-02,2.531522568869210010e-02,-3.459182841703849903e-02,-1.446611282137899926e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,-1.919704761394450121e-02,-9.361911330135799444e-03
1.750521923228520000e-03,-4.464163650698899782e-02,-4.050329988046450294e-03,-5.670610554934250001e-03,-8.448724111216979540e-03,-2.386056667506489953e-02,5.232173725423699961e-02,-3.949338287409189657e-02,-8.944018957797799166e-03,-1.350401824497050006e-02
-3.457486258696700065e-02,5.068011873981870252e-02,-8.168937664037369826e-04,7.007254470726349826e-02,3.970962592582259754e-02,6.695248724389940564e-02,-6.549067247654929980e-02,1.081111006295440019e-01,2.671425763351279944e-02,7.348022696655839847e-02
4.170844488444359899e-02,5.068011873981870252e-02,-4.392937672163980262e-02,6.318680331979099896e-02,-4.320865536613589623e-03,1.622243643399520069e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,-3.452371533034950118e-02,1.134862324403770016e-02
6.713621404158050254e-02,5.068011873981870252e-02,2.073934771121430098e-02,-5.670610554934250001e-03,2.044628591100669870e-02,2.624318721126020146e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,8.640282933063080789e-03,3.064409414368320182e-03
-2.730978568492789874e-02,5.068011873981870252e-02,6.061839444480759953e-02,4.941532054484590319e-02,8.511607024645979902e-02,8.636769187485039689e-02,-2.902829807069099918e-03,3.430885887772629900e-02,3.781447882634390162e-02,4.862758547755009764e-02
-1.641217033186929963e-02,-4.464163650698899782e-02,-1.051720243133190055e-02,1.215130832538269907e-03,-3.734373413344069942e-02,-3.576020822306719832e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-2.139368094035999993e-02,-3.421455281914410201e-02
-1.882016527791040067e-03,5.068011873981870252e-02,-3.315125598283080038e-02,-1.829446977677679984e-02,3.145390877661580209e-02,4.284005568610550069e-02,-1.394774321933030074e-02,1.991742173612169944e-02,1.022564240495780000e-02,2.791705090337660150e-02
-1.277963188084970010e-02,-4.464163650698899782e-02,-6.548561819925780014e-02,-6.993753018282070077e-02,1.182945896190920002e-03,1.684873335757430118e-02,-2.902829807069099918e-03,-7.020396503291909812e-03,-3.075120986455629965e-02,-5.078298047848289754e-02
-5.514554978810590376e-03,-4.464163650698899782e-02,4.337340126271319735e-02,8.728689817594480205e-02,1.356652162000110060e-02,7.141131042098750048e-03,-1.394774321933030074e-02,-2.592261998182820038e-03,4.234489544960749752e-02,-1.764612515980519894e-02
-9.147093429830140468e-03,-4.464163650698899782e-02,-6.225218197761509670e-02,-7.452802442965950069e-02,-2.358420555142939912e-02,-1.321351897422090062e-02,4.460445801105040325e-03,-3.949338287409189657e-02,-3.581672810154919867e-02,-4.664087356364819692e-02
-4.547247794002570037e-02,5.068011873981870252e-02,6.385183066645029604e-02,7.007254470726349826e-02,1.332744202834990066e-01,1.314610703725430096e-01,-3.971920784793980114e-02,1.081111006295440019e-01,7.573758845754760549e-02,8.590654771106250032e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,3.043965637614240091e-02,-7.452802442965950069e-02,-2.358420555142939912e-02,-1.133462820348369975e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,-3.075120986455629965e-02,-1.077697500466389974e-03
1.628067572730669890e-02,5.068011873981870252e-02,7.247432725749750060e-02,7.695828609473599757e-02,-8.448724111216979540e-03,5.575388733151089883e-03,-6.584467611156170040e-03,-2.592261998182820038e-03,-2.364455757213410059e-02,6.105390622205419948e-02
4.534098333546320025e-02,-4.464163650698899782e-02,-1.913969902237900103e-02,2.187235499495579841e-02,2.732605020201240090e-02,-1.352666743601040056e-02,1.001830287073690040e-01,-3.949338287409189657e-02,1.776347786711730131e-02,-1.350401824497050006e-02
-4.183993948900609910e-02,-4.464163650698899782e-02,-6.656343027313869898e-02,-4.698505887976939938e-02,-3.734373413344069942e-02,-4.327577130601600180e-02,4.864009945014990260e-02,-3.949338287409189657e-02,-5.615757309500619965e-02,-1.350401824497050006e-02
-5.637009329308430294e-02,5.068011873981870252e-02,-6.009655782985329903e-02,-3.665644679856060184e-02,-8.825398988688250290e-02,-7.083283594349480683e-02,-1.394774321933030074e-02,-3.949338287409189657e-02,-7.814091066906959926e-02,-1.046303703713340055e-01
7.076875249260000666e-02,-4.464163650698899782e-02,6.924089103585480409e-02,3.793908501382069892e-02,2.182223876920789951e-02,1.504458729887179960e-03,-3.603757004385269719e-02,3.910600459159439823e-02,7.763278919555950675e-02,1.066170822852360034e-01
1.750521923228520000e-03,5.068011873981870252e-02,5.954058237092670069e-02,-2.227739861197989939e-03,6.172487165704060308e-02,6.319470570242499696e-02,-5.812739686837520292e-02,1.081111006295440019e-01,6.898221163630259556e-02,1.273276168594099922e-01
-1.882016527791040067e-03,-4.464163650698899782e-02,-2.668438353954540043e-02,4.941532054484590319e-02,5.897296594063840269e-02,-1.603185513032660131e-02,-4.708248345611389801e-02,7.120997975363539678e-02,1.335989800130079896e-01,1.963283707370720027e-02
2.354575262934580082e-02,5.068011873981870252e-02,-2.021751109626000048e-02,-3.665644679856060184e-02,-1.395253554402150001e-02,-1.509240974495799914e-02,5.968501286241110343e-02,-3.949338287409189657e-02,-9.643322289178400675e-02,-1.764612515980519894e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,-4.608500086940160029e-02,-9.862811928581330378e-02,-7.587041416307230279e-02,-5.987263978086120042e-02,-1.762938102341739949e-02,-3.949338287409189657e-02,-5.140053526058249722e-02,-4.664087356364819692e-02
4.170844488444359899e-02,5.068011873981870252e-02,7.139651518361660176e-02,8.100872220010799790e-03,3.833367306762140020e-02,1.590928797220559840e-02,-1.762938102341739949e-02,3.430885887772629900e-02,7.341007804911610368e-02,8.590654771106250032e-02
-6.363517019512339445e-02,5.068011873981870252e-02,-7.949717515970949888e-02,-5.670610554934250001e-03,-7.174255558846899528e-02,-6.644875747844139480e-02,-1.026610541524320026e-02,-3.949338287409189657e-02,-1.811826730789670159e-02,-5.492508739331759815e-02
1.628067572730669890e-02,5.068011873981870252e-02,9.961226972405269262e-03,-4.354218818603310115e-02,-9.650970703608929835e-02,-9.463211903949929338e-02,-3.971920784793980114e-02,-3.949338287409189657e-02,1.703713241477999851e-02,7.206516329203029904e-03
6.713621404158050254e-02,-4.464163650698899782e-02,-3.854031635223530150e-02,-2.632783471735180084e-02,-3.183992270063620150e-02,-2.636575436938120090e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-2.712864555432650121e-02,3.064409414368320182e-03
4.534098333546320025e-02,5.068011873981870252e-02,1.966153563733339868e-02,3.908670846363720280e-02,2.044628591100669870e-02,2.593003874947069978e-02,8.142083605192099172e-03,-2.592261998182820038e-03,-3.303712578676999863e-03,1.963283707370720027e-02
4.897352178648269744e-02,-4.464163650698899782e-02,2.720622015449970094e-02,-2.518021116424929914e-02,2.319819162740899970e-02,1.841447566652189977e-02,-6.180903467246220279e-02,8.006624876385350087e-02,7.222365081991240221e-02,3.205915781821130212e-02
4.170844488444359899e-02,-4.464163650698899782e-02,-8.361578283570040432e-03,-2.632783471735180084e-02,2.457414448561009990e-02,1.622243643399520069e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-4.836172480289190057e-02,-3.007244590430930078e-02
-2.367724723390840155e-02,-4.464163650698899782e-02,-1.590626280073640167e-02,-1.255635194240680048e-02,2.044628591100669870e-02,4.127431337715779802e-02,-4.340084565202689815e-02,3.430885887772629900e-02,1.407245251576850001e-02,-9.361911330135799444e-03
-3.820740103798660192e-02,5.068011873981870252e-02,4.572166603000769880e-03,3.564383776990089764e-02,-1.120062982761920074e-02,5.888537194940629722e-03,-4.708248345611389801e-02,3.430885887772629900e-02,1.630495279994180133e-02,-1.077697500466389974e-03
4.897352178648269744e-02,-4.464163650698899782e-02,-4.285156464775889684e-02,-5.387080026724189868e-02,4.521343735862710239e-02,5.004247030726469841e-02,3.391354823380159783e-02,-2.592261998182820038e-03,-2.595242443518940012e-02,-6.320930122298699938e-02
4.534098333546320025e-02,5.068011873981870252e-02,5.649978676881649634e-03,5.630106193231849965e-02,6.447677737344290061e-02,8.918602803095619647e-02,-3.971920784793980114e-02,7.120997975363539678e-02,1.556684454070180086e-02,-9.361911330135799444e-03
4.534098333546320025e-02,5.068011873981870252e-02,-3.530688013059259805e-02,6.318680331979099896e-02,-4.320865536613589623e-03,-1.627025888008149911e-03,-1.026610541524320026e-02,-2.592261998182820038e-03,1.556684454070180086e-02,5.691179930721949887e-02
1.628067572730669890e-02,-4.464163650698899782e-02,2.397278393285700096e-02,-2.288496402361559975e-02,-2.496015840963049931e-02,-2.605260590759169922e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,3.723201120896890010e-02,3.205915781821130212e-02
-7.453278554818210111e-02,5.068011873981870252e-02,-1.806188694849819934e-02,8.100872220010799790e-03,-1.945634697682600139e-02,-2.480001206043359885e-02,-6.549067247654929980e-02,3.430885887772629900e-02,6.731721791468489591e-02,-1.764612515980519894e-02
-8.179786245022120650e-02,5.068011873981870252e-02,4.229558918883229851e-02,-1.944209332987930153e-02,3.970962592582259754e-02,5.755803339021339782e-02,-6.917231028063640375e-02,1.081111006295440019e-01,4.718616788601970313e-02,-3.835665973397880263e-02
-6.726770864614299572e-02,-4.464163650698899782e-02,-5.470749746044879791e-02,-2.632783471735180084e-02,-7.587041416307230279e-02,-8.210618056791800512e-02,4.864009945014990260e-02,-7.639450375000099436e-02,-8.682899321629239386e-02,-1.046303703713340055e-01
5.383060374248070309e-03,-4.464163650698899782e-02,-2.972517914165530208e-03,4.941532054484590319e-02,7.410844738085080319e-02,7.071026878537380045e-02,4.495846164606279866e-02,-2.592261998182820038e-03,-1.498586820292070049e-03,-9.361911330135799444e-03
-1.882016527791040067e-03,-4.464163650698899782e-02,-6.656343027313869898e-02,1.215130832538269907e-03,-2.944912678412469915e-03,3.070201038834840124e-03,1.182372140927919965e-02,-2.592261998182820038e-03,-2.028874775162960165e-02,-2.593033898947460017e-02
9.015598825267629943e-03,-4.464163650698899782e-02,-1.267282657909369996e-02,2.875809638242839833e-02,-1.808039411862490120e-02,-5.071658967693000106e-03,-4.708248345611389801e-02,3.430885887772629900e-02,2.337484127982079885e-02,-5.219804415301099697e-03
-5.514554978810590376e-03,5.068011873981870252e-02,-4.177375257387799801e-02,-4.354218818603310115e-02,-7.999827273767569358e-02,-7.615635979391689736e-02,-3.235593223976569732e-02,-3.949338287409189657e-02,1.022564240495780000e-02,-9.361911330135799444e-03
5.623859868852180283e-02,5.068011873981870252e-02,-3.099563183506899924e-02,8.100872220010799790e-03,1.907033305280559851e-02,2.123281182262769934e-02,3.391354823380159783e-02,-3.949338287409189657e-02,-2.952762274177360077e-02,-5.906719430815229877e-02
9.015598825267629943e-03,5.068011873981870252e-02,-5.128142061927360405e-03,-6.419941234845069622e-02,6.998058880624739853e-02,8.386250418053420308e-02,-3.971920784793980114e-02,7.120997975363539678e-02,3.953987807202419963e-02,1.963283707370720027e-02
-6.726770864614299572e-02,-4.464163650698899782e-02,-5.901874575597240019e-02,3.220096707616459941e-02,-5.110326271545199972e-02,-4.953874054180659736e-02,-1.026610541524320026e-02,-3.949338287409189657e-02,2.007840549823790115e-03,2.377494398854190089e-02
2.717829108036539862e-02,5.068011873981870252e-02,2.505059600673789980e-02,1.498661360748330083e-02,2.595009734381130070e-02,4.847672799831700269e-02,-3.971920784793980114e-02,3.430885887772629900e-02,7.837142301823850701e-03,2.377494398854190089e-02
-2.367724723390840155e-02,-4.464163650698899782e-02,-4.608500086940160029e-02,-3.321357610482440076e-02,3.282986163481690228e-02,3.626393798852529937e-02,3.759518603788870178e-02,-2.592261998182820038e-03,-3.324878724762579674e-02,1.134862324403770016e-02
4.897352178648269744e-02,5.068011873981870252e-02,3.494354529119849794e-03,7.007254470726349826e-02,-8.448724111216979540e-03,1.340410027788939938e-02,-5.444575906428809897e-02,3.430885887772629900e-02,1.331596790892770020e-02,3.620126473304600273e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,5.415152200152219958e-02,-2.632783471735180084e-02,-5.523112129005539744e-02,-3.388131745233000092e-02,-1.394774321933030074e-02,-3.949338287409189657e-02,-7.408887149153539631e-02,-5.906719430815229877e-02
4.170844488444359899e-02,-4.464163650698899782e-02,-4.500718879552070145e-02,3.449621432008449784e-02,4.383748450042589812e-02,-1.571870666853709964e-02,3.759518603788870178e-02,-1.440062067847370023e-02,8.989869327767099905e-02,7.206516329203029904e-03
5.623859868852180283e-02,-4.464163650698899782e-02,-5.794093368209150136e-02,-7.965857695567990157e-03,5.209320164963270050e-02,4.910302492189610318e-02,5.600337505832399948e-02,-2.141183364489639834e-02,-2.832024254799870092e-02,4.448547856271539702e-02
-3.457486258696700065e-02,5.068011873981870252e-02,-5.578530953432969675e-02,-1.599922263614299983e-02,-9.824676969418109224e-03,-7.889995123798789270e-03,3.759518603788870178e-02,-3.949338287409189657e-02,-5.295879323920039961e-02,2.791705090337660150e-02
8.166636784565869944e-02,5.068011873981870252e-02,1.338730381358059929e-03,3.564383776990089764e-02,1.263946559924939983e-01,9.106491880169340081e-02,1.918699701745330000e-02,3.430885887772629900e-02,8.449528221240310000e-02,-3.007244590430930078e-02
-1.882016527791040067e-03,5.068011873981870252e-02,3.043965637614240091e-02,5.285819123858220142e-02,3.970962592582259754e-02,5.661858800484489973e-02,-3.971920784793980114e-02,7.120997975363539678e-02,2.539313491544940155e-02,2.791705090337660150e-02
1.107266754538149961e-01,5.068011873981870252e-02,6.727790750762559745e-03,2.875809638242839833e-02,-2.771206412603280031e-02,-7.263698200219739949e-03,-4.708248345611389801e-02,3.430885887772629900e-02,2.007840549823790115e-03,7.762233388139309909e-02
-3.094232413594750000e-02,-4.464163650698899782e-02,4.660683748435590079e-02,1.498661360748330083e-02,-1.670444126042380101e-02,-4.703355284749029946e-02,7.788079970179680352e-04,-2.592261998182820038e-03,6.345592137206540473e-02,-2.593033898947460017e-02
1.750521923228520000e-03,5.068011873981870252e-02,2.612840808061879863e-02,-9.113481248670509197e-03,2.457414448561009990e-02,3.845597722105199845e-02,-2.131101882750449997e-02,3.430885887772629900e-02,9.436409146079870192e-03,3.064409414368320182e-03
9.015598825267629943e-03,-4.464163650698899782e-02,4.552902541047500196e-02,2.875809638242839833e-02,1.219056876180000040e-02,-1.383981589779990050e-02,2.655027262562750096e-02,-3.949338287409189657e-02,4.613233103941480340e-02,3.620126473304600273e-02
3.081082953138499989e-02,-4.464163650698899782e-02,4.013996504107050084e-02,7.695828609473599757e-02,1.769438019460449832e-02,3.782968029747289795e-02,-2.867429443567860031e-02,3.430885887772629900e-02,-1.498586820292070049e-03,1.190434030297399942e-01
3.807590643342410180e-02,5.068011873981870252e-02,-1.806188694849819934e-02,6.662967401352719310e-02,-5.110326271545199972e-02,-1.665815205390569834e-02,-7.653558588881050062e-02,3.430885887772629900e-02,-1.190068480150809939e-02,-1.350401824497050006e-02
9.015598825267629943e-03,-4.464163650698899782e-02,1.427247526792889930e-02,1.498661360748330083e-02,5.484510736603499803e-02,4.722413415115889884e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-3.324878724762579674e-02,-5.906719430815229877e-02
9.256398319871740610e-02,-4.464163650698899782e-02,3.690652881942779739e-02,2.187235499495579841e-02,-2.496015840963049931e-02,-1.665815205390569834e-02,7.788079970179680352e-04,-3.949338287409189657e-02,-2.251217192966049885e-02,-2.178823207463989955e-02
6.713621404158050254e-02,-4.464163650698899782e-02,3.494354529119849794e-03,3.564383776990089764e-02,4.934129593323050011e-02,3.125356259989280072e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-6.092541861022970299e-04,1.963283707370720027e-02
1.750521923228520000e-03,-4.464163650698899782e-02,-7.087467856866229432e-02,-2.288496402361559975e-02,-1.568959820211340015e-03,-1.000728964429089965e-03,2.655027262562750096e-02,-3.949338287409189657e-02,-2.251217192966049885e-02,7.206516329203029904e-03
3.081082953138499989e-02,-4.464163650698899782e-02,-3.315125598283080038e-02,-2.288496402361559975e-02,-4.697540414084860200e-02,-8.116673518254939601e-02,1.038646665114559969e-01,-7.639450375000099436e-02,-3.980959436433750137e-02,-5.492508739331759815e-02
2.717829108036539862e-02,5.068011873981870252e-02,9.403056873511560221e-02,9.761551025715360652e-02,-3.459182841703849903e-02,-3.200242668159279658e-02,-4.340084565202689815e-02,-2.592261998182820038e-03,3.664579779339879884e-02,1.066170822852360034e-01
1.264813727628719998e-02,5.068011873981870252e-02,3.582871674554689856e-02,4.941532054484590319e-02,5.346915450783389784e-02,7.415490186505870052e-02,-6.917231028063640375e-02,1.450122215054540087e-01,4.560080841412490066e-02,4.862758547755009764e-02
7.440129094361959405e-02,-4.464163650698899782e-02,3.151746845002330322e-02,1.010583809508899950e-01,4.658939021682820258e-02,3.689023491210430272e-02,1.550535921336619952e-02,-2.592261998182820038e-03,3.365681290238470291e-02,4.448547856271539702e-02
-4.183993948900609910e-02,-4.464163650698899782e-02,-6.548561819925780014e-02,-4.009931749229690007e-02,-5.696818394814720174e-03,1.434354566325799982e-02,-4.340084565202689815e-02,3.430885887772629900e-02,7.026862549151949647e-03,-1.350401824497050006e-02
-8.906293935226029801e-02,-4.464163650698899782e-02,-4.177375257387799801e-02,-1.944209332987930153e-02,-6.623874415566440021e-02,-7.427746902317970690e-02,8.142083605192099172e-03,-3.949338287409189657e-02,1.143797379512540100e-03,-3.007244590430930078e-02
2.354575262934580082e-02,5.068011873981870252e-02,-3.961812842611620034e-02,-5.670610554934250001e-03,-4.835135699904979933e-02,-3.325502052875090042e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-1.016435479455120028e-01,-6.735140813782170000e-02
-4.547247794002570037e-02,-4.464163650698899782e-02,-3.854031635223530150e-02,-2.632783471735180084e-02,-1.532848840222260020e-02,8.781618063081050515e-04,-3.235593223976569732e-02,-2.592261998182820038e-03,1.143797379512540100e-03,-3.835665973397880263e-02
-2.367724723390840155e-02,5.068011873981870252e-02,-2.560657146566450160e-02,4.252957915737339695e-02,-5.385516843185429725e-02,-4.765984977106939996e-02,-2.131101882750449997e-02,-3.949338287409189657e-02,1.143797379512540100e-03,1.963283707370720027e-02
-9.996055470531900466e-02,-4.464163650698899782e-02,-2.345094731790270046e-02,-6.419941234845069622e-02,-5.798302700645770191e-02,-6.018578824265070210e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-1.811826730789670159e-02,-5.078298047848289754e-02
-2.730978568492789874e-02,-4.464163650698899782e-02,-6.656343027313869898e-02,-1.123996020607579971e-01,-4.972730985725089953e-02,-4.139688053527879746e-02,7.788079970179680352e-04,-3.949338287409189657e-02,-3.581672810154919867e-02,-9.361911330135799444e-03
3.081082953138499989e-02,5.068011873981870252e-02,3.259528052390420205e-02,4.941532054484590319e-02,-4.009563984984299695e-02,-4.358891976780549654e-02,-6.917231028063640375e-02,3.430885887772629900e-02,6.301661511474640487e-02,3.064409414368320182e-03
-1.035930931563389945e-01,5.068011873981870252e-02,-4.608500086940160029e-02,-2.632783471735180084e-02,-2.496015840963049931e-02,-2.480001206043359885e-02,3.023191042971450082e-02,-3.949338287409189657e-02,-3.980959436433750137e-02,-5.492508739331759815e-02
6.713621404158050254e-02,5.068011873981870252e-02,-2.991781976118810041e-02,5.744868538213489945e-02,-1.930069620102049918e-04,-1.571870666853709964e-02,7.441156407875940126e-02,-5.056371913686460301e-02,-3.845911230135379971e-02,7.206516329203029904e-03
-5.273755484206479882e-02,-4.464163650698899782e-02,-1.267282657909369996e-02,-6.075654165471439799e-02,-1.930069620102049918e-04,8.080576427467340075e-03,1.182372140927919965e-02,-2.592261998182820038e-03,-2.712864555432650121e-02,-5.078298047848289754e-02
-2.730978568492789874e-02,5.068011873981870252e-02,-1.590626280073640167e-02,-2.977070541108809906e-02,3.934851612593179802e-03,-6.875805026395569565e-04,4.127682384197570165e-02,-3.949338287409189657e-02,-2.364455757213410059e-02,1.134862324403770016e-02
-3.820740103798660192e-02,5.068011873981870252e-02,7.139651518361660176e-02,-5.731367096097819691e-02,1.539137131565160022e-01,1.558866503921270130e-01,7.788079970179680352e-04,7.194800217115350505e-02,5.027649338998960160e-02,6.933812005172369786e-02
9.015598825267629943e-03,-4.464163650698899782e-02,-3.099563183506899924e-02,2.187235499495579841e-02,8.062710187196569719e-03,8.706873351046409346e-03,4.460445801105040325e-03,-2.592261998182820038e-03,9.436409146079870192e-03,1.134862324403770016e-02
1.264813727628719998e-02,5.068011873981870252e-02,2.609183074771409820e-04,-1.140872838930430053e-02,3.970962592582259754e-02,5.724488492842390308e-02,-3.971920784793980114e-02,5.608052019451260223e-02,2.405258322689299982e-02,3.205915781821130212e-02
6.713621404158050254e-02,-4.464163650698899782e-02,3.690652881942779739e-02,-5.042792957350569760e-02,-2.358420555142939912e-02,-3.450761437590899733e-02,4.864009945014990260e-02,-3.949338287409189657e-02,-2.595242443518940012e-02,-3.835665973397880263e-02
4.534098333546320025e-02,-4.464163650698899782e-02,3.906215296718960200e-02,4.597244985110970211e-02,6.686757328995440036e-03,-2.417371513685449835e-02,8.142083605192099172e-03,-1.255556463467829946e-02,6.432823302367089713e-02,5.691179930721949887e-02
6.713621404158050254e-02,5.068011873981870252e-02,-1.482845072685549936e-02,5.859630917623830093e-02,-5.935897986465880211e-02,-3.450761437590899733e-02,-6.180903467246220279e-02,1.290620876969899959e-02,-5.145307980263110273e-03,4.862758547755009764e-02
2.717829108036539862e-02,-4.464163650698899782e-02,6.727790750762559745e-03,3.564383776990089764e-02,7.961225881365530110e-02,7.071026878537380045e-02,1.550535921336619952e-02,3.430885887772629900e-02,4.067226371449769728e-02,1.134862324403770016e-02
5.623859868852180283e-02,-4.464163650698899782e-02,-6.871905442090049665e-02,-6.878990659528949614e-02,-1.930069620102049918e-04,-1.000728964429089965e-03,4.495846164606279866e-02,-3.764832683029650101e-02,-4.836172480289190057e-02,-1.077697500466389974e-03
3.444336798240450054e-02,5.068011873981870252e-02,-9.439390357450949676e-03,5.974393262605470073e-02,-3.596778127523959923e-02,-7.576846662009279788e-03,-7.653558588881050062e-02,7.120997975363539678e-02,1.100810104587249955e-02,-2.178823207463989955e-02
2.354575262934580082e-02,-4.464163650698899782e-02,1.966153563733339868e-02,-1.255635194240680048e-02,8.374011738825870577e-02,3.876912568284150012e-02,6.336665066649820044e-02,-2.592261998182820038e-03,6.604820616309839409e-02,4.862758547755009764e-02
4.897352178648269744e-02,5.068011873981870252e-02,7.462995140525929827e-02,6.662967401352719310e-02,-9.824676969418109224e-03,-2.253322811587220049e-03,-4.340084565202689815e-02,3.430885887772629900e-02,3.365681290238470291e-02,1.963283707370720027e-02
3.081082953138499989e-02,5.068011873981870252e-02,-8.361578283570040432e-03,4.658001526274530187e-03,1.494247447820220079e-02,2.749578105841839898e-02,8.142083605192099172e-03,-8.127430129569179762e-03,-2.952762274177360077e-02,5.691179930721949887e-02
-1.035930931563389945e-01,5.068011873981870252e-02,-2.345094731790270046e-02,-2.288496402361559975e-02,-8.687803702868139577e-02,-6.770135132559949864e-02,-1.762938102341739949e-02,-3.949338287409189657e-02,-7.814091066906959926e-02,-7.149351505265640061e-02
1.628067572730669890e-02,5.068011873981870252e-02,-4.608500086940160029e-02,1.154374291374709975e-02,-3.321587555883730170e-02,-1.603185513032660131e-02,-1.026610541524320026e-02,-2.592261998182820038e-03,-4.398540256559110156e-02,-4.249876664881350324e-02
-6.000263174410389727e-02,5.068011873981870252e-02,5.415152200152219958e-02,-1.944209332987930153e-02,-4.972730985725089953e-02,-4.891244361822749687e-02,2.286863482154040048e-02,-3.949338287409189657e-02,-4.398540256559110156e-02,-5.219804415301099697e-03
-2.730978568492789874e-02,-4.464163650698899782e-02,-3.530688013059259805e-02,-2.977070541108809906e-02,-5.660707414825649764e-02,-5.862004593370299943e-02,3.023191042971450082e-02,-3.949338287409189657e-02,-4.986846773523059828e-02,-1.294830118603420011e-01
4.170844488444359899e-02,-4.464163650698899782e-02,-3.207344390894990155e-02,-6.190416520781699683e-02,7.961225881365530110e-02,5.098191569263330059e-02,5.600337505832399948e-02,-9.972486173364639508e-03,4.506616833626150148e-02,-5.906719430815229877e-02
-8.179786245022120650e-02,-4.464163650698899782e-02,-8.165279930747129655e-02,-4.009931749229690007e-02,2.558898754392050119e-03,-1.853704282464289921e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-1.090443584737709956e-02,-9.220404962683000083e-02
-4.183993948900609910e-02,-4.464163650698899782e-02,4.768464955823679963e-02,5.974393262605470073e-02,1.277706088506949944e-01,1.280164372928579986e-01,-2.499265663159149983e-02,1.081111006295440019e-01,6.389312063683939835e-02,4.034337164788070335e-02
-1.277963188084970010e-02,-4.464163650698899782e-02,6.061839444480759953e-02,5.285819123858220142e-02,4.796534307502930278e-02,2.937467182915549924e-02,-1.762938102341739949e-02,3.430885887772629900e-02,7.021129819331020649e-02,7.206516329203029904e-03
6.713621404158050254e-02,-4.464163650698899782e-02,5.630714614928399725e-02,7.351541540099980343e-02,-1.395253554402150001e-02,-3.920484130275200124e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,7.573758845754760549e-02,3.620126473304600273e-02
-5.273755484206479882e-02,5.068011873981870252e-02,9.834181703063900326e-02,8.728689817594480205e-02,6.034891879883950289e-02,4.878987646010649742e-02,-5.812739686837520292e-02,1.081111006295440019e-01,8.449528221240310000e-02,4.034337164788070335e-02
5.383060374248070309e-03,-4.464163650698899782e-02,5.954058237092670069e-02,-5.616604740787570216e-02,2.457414448561009990e-02,5.286080646337049799e-02,-4.340084565202689815e-02,5.091436327188540029e-02,-4.219859706946029777e-03,-3.007244590430930078e-02
8.166636784565869944e-02,-4.464163650698899782e-02,3.367309259778510089e-02,8.100872220010799790e-03,5.209320164963270050e-02,5.661858800484489973e-02,-1.762938102341739949e-02,3.430885887772629900e-02,3.486419309615960277e-02,6.933812005172369786e-02
3.081082953138499989e-02,5.068011873981870252e-02,5.630714614928399725e-02,7.695828609473599757e-02,4.934129593323050011e-02,-1.227407358885230018e-02,-3.603757004385269719e-02,7.120997975363539678e-02,1.200533820015380060e-01,9.004865462589720093e-02
1.750521923228520000e-03,-4.464163650698899782e-02,-6.548561819925780014e-02,-5.670610554934250001e-03,-7.072771253015849857e-03,-1.947648821001150138e-02,4.127682384197570165e-02,-3.949338287409189657e-02,-3.303712578676999863e-03,7.206516329203029904e-03
-4.910501639104519755e-02,-4.464163650698899782e-02,1.608549173157310108e-01,-4.698505887976939938e-02,-2.908801698423390050e-02,-1.978963667180099958e-02,-4.708248345611389801e-02,3.430885887772629900e-02,2.801650652326400162e-02,1.134862324403770016e-02
-2.730978568492789874e-02,5.068011873981870252e-02,-5.578530953432969675e-02,2.531522568869210010e-02,-7.072771253015849857e-03,-2.354741821327540133e-02,5.232173725423699961e-02,-3.949338287409189657e-02,-5.145307980263110273e-03,-5.078298047848289754e-02
7.803382939463919532e-02,5.068011873981870252e-02,-2.452875939178359929e-02,-4.239456463293059946e-02,6.686757328995440036e-03,5.286080646337049799e-02,-6.917231028063640375e-02,8.080427118137170628e-02,-3.712834601047360072e-02,5.691179930721949887e-02
1.264813727628719998e-02,-4.464163650698899782e-02,-3.638469220447349689e-02,4.252957915737339695e-02,-1.395253554402150001e-02,1.293437758520510003e-02,-2.683347553363510038e-02,5.156973385758089994e-03,-4.398540256559110156e-02,7.206516329203029904e-03
4.170844488444359899e-02,-4.464163650698899782e-02,-8.361578283570040432e-03,-5.731367096097819691e-02,8.062710187196569719e-03,-3.137612975801370302e-02,1.517259579645879874e-01,-7.639450375000099436e-02,-8.023654024890179703e-02,-1.764612515980519894e-02
4.897352178648269744e-02,-4.464163650698899782e-02,-4.177375257387799801e-02,1.045012516446259948e-01,3.558176735121919981e-02,-2.573945744580210040e-02,1.774974225931970073e-01,-7.639450375000099436e-02,-1.290794225416879923e-02,1.549073015887240078e-02
-1.641217033186929963e-02,5.068011873981870252e-02,1.274427430254229943e-01,9.761551025715360652e-02,1.631842733640340160e-02,1.747503028115330106e-02,-2.131101882750449997e-02,3.430885887772629900e-02,3.486419309615960277e-02,3.064409414368320182e-03
-7.453278554818210111e-02,5.068011873981870252e-02,-7.734155101194770121e-02,-4.698505887976939938e-02,-4.697540414084860200e-02,-3.262872360517189707e-02,4.460445801105040325e-03,-3.949338287409189657e-02,-7.212845460195599356e-02,-1.764612515980519894e-02
3.444336798240450054e-02,5.068011873981870252e-02,2.828403222838059977e-02,-3.321357610482440076e-02,-4.559945128264750180e-02,-9.768885894535990141e-03,-5.076412126020100196e-02,-2.592261998182820038e-03,-5.947269741072230137e-02,-2.178823207463989955e-02
-3.457486258696700065e-02,5.068011873981870252e-02,-2.560657146566450160e-02,-1.714684618924559867e-02,1.182945896190920002e-03,-2.879619735166290186e-03,8.142083605192099172e-03,-1.550765430475099967e-02,1.482271084126630077e-02,4.034337164788070335e-02
-5.273755484206479882e-02,5.068011873981870252e-02,-6.225218197761509670e-02,1.154374291374709975e-02,-8.448724111216979540e-03,-3.669965360843580049e-02,1.222728555318910032e-01,-7.639450375000099436e-02,-8.682899321629239386e-02,3.064409414368320182e-03
5.987113713954139715e-02,-4.464163650698899782e-02,-8.168937664037369826e-04,-8.485663651086830517e-02,7.548440023905199359e-02,7.947842571548069390e-02,4.460445801105040325e-03,3.430885887772629900e-02,2.337484127982079885e-02,2.791705090337660150e-02
6.350367559056099842e-02,5.068011873981870252e-02,8.864150836571099701e-02,7.007254470726349826e-02,2.044628591100669870e-02,3.751653183568340322e-02,-5.076412126020100196e-02,7.120997975363539678e-02,2.930041326858690010e-02,7.348022696655839847e-02
9.015598825267629943e-03,-4.464163650698899782e-02,-3.207344390894990155e-02,-2.632783471735180084e-02,4.246153164222479792e-02,-1.039518281811509931e-02,1.590892335727620011e-01,-7.639450375000099436e-02,-1.190068480150809939e-02,-3.835665973397880263e-02
5.383060374248070309e-03,5.068011873981870252e-02,3.043965637614240091e-02,8.384402748220859403e-02,-3.734373413344069942e-02,-4.734670130927989828e-02,1.550535921336619952e-02,-3.949338287409189657e-02,8.640282933063080789e-03,1.549073015887240078e-02
3.807590643342410180e-02,5.068011873981870252e-02,8.883414898524360018e-03,4.252957915737339695e-02,-4.284754556624519733e-02,-2.104223051895920057e-02,-3.971920784793980114e-02,-2.592261998182820038e-03,-1.811826730789670159e-02,7.206516329203029904e-03
1.264813727628719998e-02,-4.464163650698899782e-02,6.727790750762559745e-03,-5.616604740787570216e-02,-7.587041416307230279e-02,-6.644875747844139480e-02,-2.131101882750449997e-02,-3.764832683029650101e-02,-1.811826730789670159e-02,-9.220404962683000083e-02
7.440129094361959405e-02,5.068011873981870252e-02,-2.021751109626000048e-02,4.597244985110970211e-02,7.410844738085080319e-02,3.281930490884039930e-02,-3.603757004385269719e-02,7.120997975363539678e-02,1.063542767417259977e-01,3.620126473304600273e-02
1.628067572730669890e-02,-4.464163650698899782e-02,-2.452875939178359929e-02,3.564383776990089764e-02,-7.072771253015849857e-03,-3.192768196955810076e-03,-1.394774321933030074e-02,-2.592261998182820038e-03,1.556684454070180086e-02,1.549073015887240078e-02
-5.514554978810590376e-03,5.068011873981870252e-02,-1.159501450521270051e-02,1.154374291374709975e-02,-2.220825269322829892e-02,-1.540555820674759969e-02,-2.131101882750449997e-02,-2.592261998182820038e-03,1.100810104587249955e-02,6.933812005172369786e-02
1.264813727628719998e-02,-4.464163650698899782e-02,2.612840808061879863e-02,6.318680331979099896e-02,1.250187031342930022e-01,9.169121572527250130e-02,6.336665066649820044e-02,-2.592261998182820038e-03,5.757285620242599822e-02,-2.178823207463989955e-02
-3.457486258696700065e-02,-4.464163650698899782e-02,-5.901874575597240019e-02,1.215130832538269907e-03,-5.385516843185429725e-02,-7.803525056465400456e-02,6.704828847058519337e-02,-7.639450375000099436e-02,-2.139368094035999993e-02,1.549073015887240078e-02
6.713621404158050254e-02,5.068011873981870252e-02,-3.638469220447349689e-02,-8.485663651086830517e-02,-7.072771253015849857e-03,1.966706951368000014e-02,-5.444575906428809897e-02,3.430885887772629900e-02,1.143797379512540100e-03,3.205915781821130212e-02
3.807590643342410180e-02,5.068011873981870252e-02,-2.452875939178359929e-02,4.658001526274530187e-03,-2.633611126783170012e-02,-2.636575436938120090e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-1.599826775813870117e-02,-2.593033898947460017e-02
9.015598825267629943e-03,5.068011873981870252e-02,1.858372356345249984e-02,3.908670846363720280e-02,1.769438019460449832e-02,1.058576412178359981e-02,1.918699701745330000e-02,-2.592261998182820038e-03,1.630495279994180133e-02,-1.764612515980519894e-02
-9.269547780327989928e-02,5.068011873981870252e-02,-9.027529589851850111e-02,-5.731367096097819691e-02,-2.496015840963049931e-02,-3.043668437264510085e-02,-6.584467611156170040e-03,-2.592261998182820038e-03,2.405258322689299982e-02,3.064409414368320182e-03
7.076875249260000666e-02,-4.464163650698899782e-02,-5.128142061927360405e-03,-5.670610554934250001e-03,8.786797596286209655e-02,1.029645603496960049e-01,1.182372140927919965e-02,3.430885887772629900e-02,-8.944018957797799166e-03,2.791705090337660150e-02
-1.641217033186929963e-02,-4.464163650698899782e-02,-5.255187331268700024e-02,-3.321357610482440076e-02,-4.422349842444640161e-02,-3.638650514664620167e-02,1.918699701745330000e-02,-3.949338287409189657e-02,-6.832974362442149896e-02,-3.007244590430930078e-02
4.170844488444359899e-02,5.068011873981870252e-02,-2.237313524402180162e-02,2.875809638242839833e-02,-6.623874415566440021e-02,-4.515466207675319921e-02,-6.180903467246220279e-02,-2.592261998182820038e-03,2.863770518940129874e-03,-5.492508739331759815e-02
1.264813727628719998e-02,-4.464163650698899782e-02,-2.021751109626000048e-02,-1.599922263614299983e-02,1.219056876180000040e-02,2.123281182262769934e-02,-7.653558588881050062e-02,1.081111006295440019e-01,5.988072306548120061e-02,-2.178823207463989955e-02
-3.820740103798660192e-02,-4.464163650698899782e-02,-5.470749746044879791e-02,-7.797089512339580586e-02,-3.321587555883730170e-02,-8.649025903297140327e-02,1.406810445523269948e-01,-7.639450375000099436e-02,-1.919704761394450121e-02,-5.219804415301099697e-03
4.534098333546320025e-02,-4.464163650698899782e-02,-6.205954135808240159e-03,-1.599922263614299983e-02,1.250187031342930022e-01,1.251981011367520047e-01,1.918699701745330000e-02,3.430885887772629900e-02,3.243322577960189995e-02,-5.219804415301099697e-03
7.076875249260000666e-02,5.068011873981870252e-02,-1.698407487461730050e-02,2.187235499495579841e-02,4.383748450042589812e-02,5.630543954305530091e-02,3.759518603788870178e-02,-2.592261998182820038e-03,-7.020931272868760620e-02,-1.764612515980519894e-02
-7.453278554818210111e-02,5.068011873981870252e-02,5.522933407540309841e-02,-4.009931749229690007e-02,5.346915450783389784e-02,5.317395492515999966e-02,-4.340084565202689815e-02,7.120997975363539678e-02,6.123790751970099866e-02,-3.421455281914410201e-02
5.987113713954139715e-02,5.068011873981870252e-02,7.678557555302109594e-02,2.531522568869210010e-02,1.182945896190920002e-03,1.684873335757430118e-02,-5.444575906428809897e-02,3.430885887772629900e-02,2.993564839653250001e-02,4.448547856271539702e-02
7.440129094361959405e-02,-4.464163650698899782e-02,1.858372356345249984e-02,6.318680331979099896e-02,6.172487165704060308e-02,4.284005568610550069e-02,8.142083605192099172e-03,-2.592261998182820038e-03,5.803912766389510147e-02,-5.906719430815229877e-02
9.015598825267629943e-03,-4.464163650698899782e-02,-2.237313524402180162e-02,-3.206595255172180192e-02,-4.972730985725089953e-02,-6.864079671096809387e-02,7.809320188284639419e-02,-7.085933561861459951e-02,-6.291294991625119570e-02,-3.835665973397880263e-02
-7.090024709716259699e-02,-4.464163650698899782e-02,9.295275666123460623e-02,1.269136646684959971e-02,2.044628591100669870e-02,4.252690722431590187e-02,7.788079970179680352e-04,3.598276718899090076e-04,-5.454415271109520208e-02,-1.077697500466389974e-03
2.354575262934580082e-02,5.068011873981870252e-02,-3.099563183506899924e-02,-5.670610554934250001e-03,-1.670444126042380101e-02,1.778817874294279927e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,-7.408887149153539631e-02,-3.421455281914410201e-02
-5.273755484206479882e-02,5.068011873981870252e-02,3.906215296718960200e-02,-4.009931749229690007e-02,-5.696818394814720174e-03,-1.290037051243130006e-02,1.182372140927919965e-02,-3.949338287409189657e-02,1.630495279994180133e-02,3.064409414368320182e-03
6.713621404158050254e-02,-4.464163650698899782e-02,-6.117436990373419786e-02,-4.009931749229690007e-02,-2.633611126783170012e-02,-2.448686359864400003e-02,3.391354823380159783e-02,-3.949338287409189657e-02,-5.615757309500619965e-02,-5.906719430815229877e-02
1.750521923228520000e-03,-4.464163650698899782e-02,-8.361578283570040432e-03,-6.419941234845069622e-02,-3.871968699164179961e-02,-2.448686359864400003e-02,4.460445801105040325e-03,-3.949338287409189657e-02,-6.468302246445030435e-02,-5.492508739331759815e-02
2.354575262934580082e-02,5.068011873981870252e-02,-3.746250427835440266e-02,-4.698505887976939938e-02,-9.100589560328480043e-02,-7.553006287033779687e-02,-3.235593223976569732e-02,-3.949338287409189657e-02,-3.075120986455629965e-02,-1.350401824497050006e-02
3.807590643342410180e-02,5.068011873981870252e-02,-1.375063865297449991e-02,-1.599922263614299983e-02,-3.596778127523959923e-02,-2.198167590432769866e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,-2.595242443518940012e-02,-1.077697500466389974e-03
1.628067572730669890e-02,-4.464163650698899782e-02,7.355213933137849658e-02,-4.124694104539940176e-02,-4.320865536613589623e-03,-1.352666743601040056e-02,-1.394774321933030074e-02,-1.116217163146459961e-03,4.289568789252869857e-02,4.448547856271539702e-02
-1.882016527791040067e-03,5.068011873981870252e-02,-2.452875939178359929e-02,5.285819123858220142e-02,2.732605020201240090e-02,3.000096875273459973e-02,3.023191042971450082e-02,-2.592261998182820038e-03,-2.139368094035999993e-02,3.620126473304600273e-02
1.264813727628719998e-02,-4.464163650698899782e-02,3.367309259778510089e-02,3.334859052598110329e-02,3.007795591841460128e-02,2.718263259662880016e-02,-2.902829807069099918e-03,8.847085473348980864e-03,3.119299070280229930e-02,2.791705090337660150e-02
7.440129094361959405e-02,-4.464163650698899782e-02,3.475090467166599972e-02,9.417263956341730136e-02,5.759701308243719842e-02,2.029336643725910064e-02,2.286863482154040048e-02,-2.592261998182820038e-03,7.380214692004880006e-02,-2.178823207463989955e-02
4.170844488444359899e-02,5.068011873981870252e-02,-3.854031635223530150e-02,5.285819123858220142e-02,7.686035309725310072e-02,1.164299442066459994e-01,-3.971920784793980114e-02,7.120997975363539678e-02,-2.251217192966049885e-02,-1.350401824497050006e-02
-9.147093429830140468e-03,5.068011873981870252e-02,-3.961812842611620034e-02,-4.009931749229690007e-02,-8.448724111216979540e-03,1.622243643399520069e-02,-6.549067247654929980e-02,7.120997975363539678e-02,1.776347786711730131e-02,-6.735140813782170000e-02
9.015598825267629943e-03,5.068011873981870252e-02,-1.894705840284650021e-03,2.187235499495579841e-02,-3.871968699164179961e-02,-2.480001206043359885e-02,-6.584467611156170040e-03,-3.949338287409189657e-02,-3.980959436433750137e-02,-1.350401824497050006e-02
6.713621404158050254e-02,5.068011873981870252e-02,-3.099563183506899924e-02,4.658001526274530187e-03,2.457414448561009990e-02,3.563764106494619888e-02,-2.867429443567860031e-02,3.430885887772629900e-02,2.337484127982079885e-02,8.176444079622779970e-02
1.750521923228520000e-03,-4.464163650698899782e-02,-4.608500086940160029e-02,-3.321357610482440076e-02,-7.311850844667000526e-02,-8.147988364433890462e-02,4.495846164606279866e-02,-6.938329078357829971e-02,-6.117659509433449883e-02,-7.977772888232589898e-02
-9.147093429830140468e-03,5.068011873981870252e-02,1.338730381358059929e-03,-2.227739861197989939e-03,7.961225881365530110e-02,7.008397186179469995e-02,3.391354823380159783e-02,-2.592261998182820038e-03,2.671425763351279944e-02,8.176444079622779970e-02
-5.514554978810590376e-03,-4.464163650698899782e-02,6.492964274033119487e-02,3.564383776990089764e-02,-1.568959820211340015e-03,1.496984258683710031e-02,-1.394774321933030074e-02,7.288388806489919797e-04,-1.811826730789670159e-02,3.205915781821130212e-02
9.619652164973699349e-02,-4.464163650698899782e-02,4.013996504107050084e-02,-5.731367096097819691e-02,4.521343735862710239e-02,6.068951800810880315e-02,-2.131101882750449997e-02,3.615391492152170150e-02,1.255315281338930007e-02,2.377494398854190089e-02
-7.453278554818210111e-02,-4.464163650698899782e-02,-2.345094731790270046e-02,-5.670610554934250001e-03,-2.083229983502719873e-02,-1.415296435958940044e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-3.845911230135379971e-02,-3.007244590430930078e-02
5.987113713954139715e-02,5.068011873981870252e-02,5.307370992764130074e-02,5.285819123858220142e-02,3.282986163481690228e-02,1.966706951368000014e-02,-1.026610541524320026e-02,3.430885887772629900e-02,5.520503808961670089e-02,-1.077697500466389974e-03
-2.367724723390840155e-02,-4.464163650698899782e-02,4.013996504107050084e-02,-1.255635194240680048e-02,-9.824676969418109224e-03,-1.000728964429089965e-03,-2.902829807069099918e-03,-2.592261998182820038e-03,-1.190068480150809939e-02,-3.835665973397880263e-02
9.015598825267629943e-03,-4.464163650698899782e-02,-2.021751109626000048e-02,-5.387080026724189868e-02,3.145390877661580209e-02,2.060651489904859884e-02,5.600337505832399948e-02,-3.949338287409189657e-02,-1.090443584737709956e-02,-1.077697500466389974e-03
1.628067572730669890e-02,5.068011873981870252e-02,1.427247526792889930e-02,1.215130832538269907e-03,1.182945896190920002e-03,-2.135537898074869878e-02,-3.235593223976569732e-02,3.430885887772629900e-02,7.496833602773420036e-02,4.034337164788070335e-02
1.991321417832630017e-02,-4.464163650698899782e-02,-3.422906805671169922e-02,5.515343848250200270e-02,6.722868308984519814e-02,7.415490186505870052e-02,-6.584467611156170040e-03,3.283281404268990206e-02,2.472532334280450050e-02,6.933812005172369786e-02
8.893144474769780483e-02,-4.464163650698899782e-02,6.727790750762559745e-03,2.531522568869210010e-02,3.007795591841460128e-02,8.706873351046409346e-03,6.336665066649820044e-02,-3.949338287409189657e-02,9.436409146079870192e-03,3.205915781821130212e-02
1.991321417832630017e-02,-4.464163650698899782e-02,4.572166603000769880e-03,4.597244985110970211e-02,-1.808039411862490120e-02,-5.454911593043910295e-02,6.336665066649820044e-02,-3.949338287409189657e-02,2.866072031380889965e-02,6.105390622205419948e-02
-2.367724723390840155e-02,-4.464163650698899782e-02,3.043965637614240091e-02,-5.670610554934250001e-03,8.236416453005759863e-02,9.200436418706199604e-02,-1.762938102341739949e-02,7.120997975363539678e-02,3.304707235493409972e-02,3.064409414368320182e-03
9.619652164973699349e-02,-4.464163650698899782e-02,5.199589785376040191e-02,7.925353333865589600e-02,5.484510736603499803e-02,3.657708645031480105e-02,-7.653558588881050062e-02,1.413221094178629955e-01,9.864637430492799453e-02,6.105390622205419948e-02
2.354575262934580082e-02,5.068011873981870252e-02,6.169620651868849837e-02,6.203917986997459916e-02,2.457414448561009990e-02,-3.607335668485669999e-02,-9.126213710515880539e-02,1.553445353507079962e-01,1.333957338374689994e-01,8.176444079622779970e-02
7.076875249260000666e-02,5.068011873981870252e-02,-7.283766209689159811e-03,4.941532054484590319e-02,6.034891879883950289e-02,-4.445362044113949918e-03,-5.444575906428809897e-02,1.081111006295440019e-01,1.290194116001679991e-01,5.691179930721949887e-02
3.081082953138499989e-02,-4.464163650698899782e-02,5.649978676881649634e-03,1.154374291374709975e-02,7.823630595545419397e-02,7.791268340653299818e-02,-4.340084565202689815e-02,1.081111006295440019e-01,6.604820616309839409e-02,1.963283707370720027e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,5.415152200152219958e-02,-6.649465948908450663e-02,7.273249452264969606e-02,5.661858800484489973e-02,-4.340084565202689815e-02,8.486339447772170419e-02,8.449528221240310000e-02,4.862758547755009764e-02
4.534098333546320025e-02,5.068011873981870252e-02,-8.361578283570040432e-03,-3.321357610482440076e-02,-7.072771253015849857e-03,1.191310268097639903e-03,-3.971920784793980114e-02,3.430885887772629900e-02,2.993564839653250001e-02,2.791705090337660150e-02
7.440129094361959405e-02,-4.464163650698899782e-02,1.145089981388529993e-01,2.875809638242839833e-02,2.457414448561009990e-02,2.499059336410210108e-02,1.918699701745330000e-02,-2.592261998182820038e-03,-6.092541861022970299e-04,-5.219804415301099697e-03
-3.820740103798660192e-02,-4.464163650698899782e-02,6.708526688809300642e-02,-6.075654165471439799e-02,-2.908801698423390050e-02,-2.323426975148589965e-02,-1.026610541524320026e-02,-2.592261998182820038e-03,-1.498586820292070049e-03,1.963283707370720027e-02
-1.277963188084970010e-02,5.068011873981870252e-02,-5.578530953432969675e-02,-2.227739861197989939e-03,-2.771206412603280031e-02,-2.918409052548700047e-02,1.918699701745330000e-02,-3.949338287409189657e-02,-1.705210460474350029e-02,4.448547856271539702e-02
9.015598825267629943e-03,5.068011873981870252e-02,3.043965637614240091e-02,4.252957915737339695e-02,-2.944912678412469915e-03,3.689023491210430272e-02,-6.549067247654929980e-02,7.120997975363539678e-02,-2.364455757213410059e-02,1.549073015887240078e-02
8.166636784565869944e-02,5.068011873981870252e-02,-2.560657146566450160e-02,-3.665644679856060184e-02,-7.036660273026780488e-02,-4.640725592391130305e-02,-3.971920784793980114e-02,-2.592261998182820038e-03,-4.118038518800790082e-02,-5.219804415301099697e-03
3.081082953138499989e-02,-4.464163650698899782e-02,1.048086894739250069e-01,7.695828609473599757e-02,-1.120062982761920074e-02,-1.133462820348369975e-02,-5.812739686837520292e-02,3.430885887772629900e-02,5.710418744784390155e-02,3.620126473304600273e-02
2.717829108036539862e-02,5.068011873981870252e-02,-6.205954135808240159e-03,2.875809638242839833e-02,-1.670444126042380101e-02,-1.627025888008149911e-03,-5.812739686837520292e-02,3.430885887772629900e-02,2.930041326858690010e-02,3.205915781821130212e-02
-6.000263174410389727e-02,5.068011873981870252e-02,-4.716281294328249912e-02,-2.288496402361559975e-02,-7.174255558846899528e-02,-5.768060054833450134e-02,-6.584467611156170040e-03,-3.949338287409189657e-02,-6.291294991625119570e-02,-5.492508739331759815e-02
5.383060374248070309e-03,-4.464163650698899782e-02,-4.824062501716339796e-02,-1.255635194240680048e-02,1.182945896190920002e-03,-6.637401276640669812e-03,6.336665066649820044e-02,-3.949338287409189657e-02,-5.140053526058249722e-02,-5.906719430815229877e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,8.540807214406830050e-02,-3.665644679856060184e-02,9.199583453746550121e-02,8.949917649274570508e-02,-6.180903467246220279e-02,1.450122215054540087e-01,8.094791351127560153e-02,5.276969239238479825e-02
1.991321417832630017e-02,5.068011873981870252e-02,-1.267282657909369996e-02,7.007254470726349826e-02,-1.120062982761920074e-02,7.141131042098750048e-03,-3.971920784793980114e-02,3.430885887772629900e-02,5.384369968545729690e-03,3.064409414368320182e-03
-6.363517019512339445e-02,-4.464163650698899782e-02,-3.315125598283080038e-02,-3.321357610482440076e-02,1.182945896190920002e-03,2.405114797873349891e-02,-2.499265663159149983e-02,-2.592261998182820038e-03,-2.251217192966049885e-02,-5.906719430815229877e-02
2.717829108036539862e-02,-4.464163650698899782e-02,-7.283766209689159811e-03,-5.042792957350569760e-02,7.548440023905199359e-02,5.661858800484489973e-02,3.391354823380159783e-02,-2.592261998182820038e-03,4.344317225278129802e-02,1.549073015887240078e-02
-1.641217033186929963e-02,-4.464163650698899782e-02,-1.375063865297449991e-02,1.320442171945160059e-01,-9.824676969418109224e-03,-3.819065120534880214e-03,1.918699701745330000e-02,-3.949338287409189657e-02,-3.581672810154919867e-02,-3.007244590430930078e-02
3.081082953138499989e-02,5.068011873981870252e-02,5.954058237092670069e-02,5.630106193231849965e-02,-2.220825269322829892e-02,1.191310268097639903e-03,-3.235593223976569732e-02,-2.592261998182820038e-03,-2.479118743246069845e-02,-1.764612515980519894e-02
5.623859868852180283e-02,5.068011873981870252e-02,2.181715978509519982e-02,5.630106193231849965e-02,-7.072771253015849857e-03,1.810132720473240156e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,-2.364455757213410059e-02,2.377494398854190089e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,1.858372356345249984e-02,9.072976886968099619e-02,3.934851612593179802e-03,8.706873351046409346e-03,3.759518603788870178e-02,-3.949338287409189657e-02,-5.780006567561250114e-02,7.206516329203029904e-03
-1.072256316073579990e-01,-4.464163650698899782e-02,-1.159501450521270051e-02,-4.009931749229690007e-02,4.934129593323050011e-02,6.444729954958319795e-02,-1.394774321933030074e-02,3.430885887772629900e-02,7.026862549151949647e-03,-3.007244590430930078e-02
8.166636784565869944e-02,5.068011873981870252e-02,-2.972517914165530208e-03,-3.321357610482440076e-02,4.246153164222479792e-02,5.787118185200299664e-02,-1.026610541524320026e-02,3.430885887772629900e-02,-6.092541861022970299e-04,-1.077697500466389974e-03
5.383060374248070309e-03,5.068011873981870252e-02,1.750591148957160101e-02,3.220096707616459941e-02,1.277706088506949944e-01,1.273901403692790091e-01,-2.131101882750449997e-02,7.120997975363539678e-02,6.257518145805600340e-02,1.549073015887240078e-02
3.807590643342410180e-02,5.068011873981870252e-02,-2.991781976118810041e-02,-7.452802442965950069e-02,-1.257658268582039982e-02,-1.258722205064180012e-02,4.460445801105040325e-03,-2.592261998182820038e-03,3.711738233435969789e-03,-3.007244590430930078e-02
3.081082953138499989e-02,-4.464163650698899782e-02,-2.021751109626000048e-02,-5.670610554934250001e-03,-4.320865536613589623e-03,-2.949723898727649868e-02,7.809320188284639419e-02,-3.949338287409189657e-02,-1.090443584737709956e-02,-1.077697500466389974e-03
1.750521923228520000e-03,5.068011873981870252e-02,-5.794093368209150136e-02,-4.354218818603310115e-02,-9.650970703608929835e-02,-4.703355284749029946e-02,-9.862541271333299941e-02,3.430885887772629900e-02,-6.117659509433449883e-02,-7.149351505265640061e-02
-2.730978568492789874e-02,5.068011873981870252e-02,6.061839444480759953e-02,1.079441223383619947e-01,1.219056876180000040e-02,-1.759759743927430051e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,7.021129819331020649e-02,1.356118306890790048e-01
-8.543040090124079389e-02,5.068011873981870252e-02,-4.069594049999709917e-02,-3.321357610482440076e-02,-8.137422559587689785e-02,-6.958024209633670298e-02,-6.584467611156170040e-03,-3.949338287409189657e-02,-5.780006567561250114e-02,-4.249876664881350324e-02
1.264813727628719998e-02,5.068011873981870252e-02,-7.195249064254319316e-02,-4.698505887976939938e-02,-5.110326271545199972e-02,-9.713730673381550107e-02,1.185912177278039964e-01,-7.639450375000099436e-02,-2.028874775162960165e-02,-3.835665973397880263e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,-5.578530953432969675e-02,-3.665644679856060184e-02,8.924392882106320368e-02,-3.192768196955810076e-03,8.142083605192099172e-03,3.430885887772629900e-02,1.323726493386760128e-01,3.064409414368320182e-03
-2.367724723390840155e-02,5.068011873981870252e-02,4.552902541047500196e-02,2.187235499495579841e-02,1.098832216940800049e-01,8.887287956916670173e-02,7.788079970179680352e-04,3.430885887772629900e-02,7.419253669003070262e-02,6.105390622205419948e-02
-7.453278554818210111e-02,5.068011873981870252e-02,-9.439390357450949676e-03,1.498661360748330083e-02,-3.734373413344069942e-02,-2.166852744253820046e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,-3.324878724762579674e-02,1.134862324403770016e-02
-5.514554978810590376e-03,5.068011873981870252e-02,-3.315125598283080038e-02,-1.599922263614299983e-02,8.062710187196569719e-03,1.622243643399520069e-02,1.550535921336619952e-02,-2.592261998182820038e-03,-2.832024254799870092e-02,-7.563562196749110123e-02
-6.000263174410389727e-02,5.068011873981870252e-02,4.984027370599859730e-02,1.842948430121960079e-02,-1.670444126042380101e-02,-3.012353591085559917e-02,-1.762938102341739949e-02,-2.592261998182820038e-03,4.976865992074899769e-02,-5.906719430815229877e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,-8.488623552911400694e-02,-2.632783471735180084e-02,-3.596778127523959923e-02,-3.419446591411950259e-02,4.127682384197570165e-02,-5.167075276314189725e-02,-8.238148325810279449e-02,-4.664087356364819692e-02
3.807590643342410180e-02,5.068011873981870252e-02,5.649978676881649634e-03,3.220096707616459941e-02,6.686757328995440036e-03,1.747503028115330106e-02,-2.499265663159149983e-02,3.430885887772629900e-02,1.482271084126630077e-02,6.105390622205419948e-02
1.628067572730669890e-02,-4.464163650698899782e-02,2.073934771121430098e-02,2.187235499495579841e-02,-1.395253554402150001e-02,-1.321351897422090062e-02,-6.584467611156170040e-03,-2.592261998182820038e-03,1.331596790892770020e-02,4.034337164788070335e-02
4.170844488444359899e-02,-4.464163650698899782e-02,-7.283766209689159811e-03,2.875809638242839833e-02,-4.284754556624519733e-02,-4.828614669464850045e-02,5.232173725423699961e-02,-7.639450375000099436e-02,-7.212845460195599356e-02,2.377494398854190089e-02
1.991321417832630017e-02,5.068011873981870252e-02,1.048086894739250069e-01,7.007254470726349826e-02,-3.596778127523959923e-02,-2.667890283117069911e-02,-2.499265663159149983e-02,-2.592261998182820038e-03,3.711738233435969789e-03,4.034337164788070335e-02
-4.910501639104519755e-02,5.068011873981870252e-02,-2.452875939178359929e-02,6.750727943574620551e-05,-4.697540414084860200e-02,-2.824464514011839830e-02,-6.549067247654929980e-02,2.840467953758080144e-02,1.919903307856710151e-02,1.134862324403770016e-02
1.750521923228520000e-03,5.068011873981870252e-02,-6.205954135808240159e-03,-1.944209332987930153e-02,-9.824676969418109224e-03,4.949091809572019746e-03,-3.971920784793980114e-02,3.430885887772629900e-02,1.482271084126630077e-02,9.833286845556660216e-02
3.444336798240450054e-02,-4.464163650698899782e-02,-3.854031635223530150e-02,-1.255635194240680048e-02,9.438663045397699403e-03,5.262240271361550044e-03,-6.584467611156170040e-03,-2.592261998182820038e-03,3.119299070280229930e-02,9.833286845556660216e-02
-4.547247794002570037e-02,5.068011873981870252e-02,1.371430516903520136e-01,-1.599922263614299983e-02,4.108557878402369773e-02,3.187985952347179713e-02,-4.340084565202689815e-02,7.120997975363539678e-02,7.102157794598219775e-02,4.862758547755009764e-02
-9.147093429830140468e-03,5.068011873981870252e-02,1.705552259806600024e-01,1.498661360748330083e-02,3.007795591841460128e-02,3.375875029420900147e-02,-2.131101882750449997e-02,3.430885887772629900e-02,3.365681290238470291e-02,3.205915781821130212e-02
-1.641217033186929963e-02,5.068011873981870252e-02,2.416542455238970041e-03,1.498661360748330083e-02,2.182223876920789951e-02,-1.008203435632550049e-02,-2.499265663159149983e-02,3.430885887772629900e-02,8.553312118743899850e-02,8.176444079622779970e-02
-9.147093429830140468e-03,-4.464163650698899782e-02,3.798434089330870317e-02,-4.009931749229690007e-02,-2.496015840963049931e-02,-3.819065120534880214e-03,-4.340084565202689815e-02,1.585829843977170153e-02,-5.145307980263110273e-03,2.791705090337660150e-02
1.991321417832630017e-02,-4.464163650698899782e-02,-5.794093368209150136e-02,-5.731367096097819691e-02,-1.568959820211340015e-03,-1.258722205064180012e-02,7.441156407875940126e-02,-3.949338287409189657e-02,-6.117659509433449883e-02,-7.563562196749110123e-02
5.260606023750229870e-02,5.068011873981870252e-02,-9.439390357450949676e-03,4.941532054484590319e-02,5.071724879143160031e-02,-1.916333974822199970e-02,-1.394774321933030074e-02,3.430885887772629900e-02,1.193439942037869961e-01,-1.764612515980519894e-02
-2.730978568492789874e-02,5.068011873981870252e-02,-2.345094731790270046e-02,-1.599922263614299983e-02,1.356652162000110060e-02,1.277780335431030062e-02,2.655027262562750096e-02,-2.592261998182820038e-03,-1.090443584737709956e-02,-2.178823207463989955e-02
-7.453278554818210111e-02,-4.464163650698899782e-02,-1.051720243133190055e-02,-5.670610554934250001e-03,-6.623874415566440021e-02,-5.705430362475540085e-02,-2.902829807069099918e-03,-3.949338287409189657e-02,-4.257210492279420166e-02,-1.077697500466389974e-03
-1.072256316073579990e-01,-4.464163650698899782e-02,-3.422906805671169922e-02,-6.764228304218700139e-02,-6.348683843926219983e-02,-7.051968748170529822e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-6.092541861022970299e-04,-7.977772888232589898e-02
4.534098333546320025e-02,5.068011873981870252e-02,-2.972517914165530208e-03,1.079441223383619947e-01,3.558176735121919981e-02,2.248540566978590033e-02,2.655027262562750096e-02,-2.592261998182820038e-03,2.801650652326400162e-02,1.963283707370720027e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,6.816307896197400240e-02,-5.670610554934250001e-03,1.195148917014880047e-01,1.302084765253850029e-01,-2.499265663159149983e-02,8.670845052151719690e-02,4.613233103941480340e-02,-1.077697500466389974e-03
1.991321417832630017e-02,5.068011873981870252e-02,9.961226972405269262e-03,1.842948430121960079e-02,1.494247447820220079e-02,4.471894645684260094e-02,-6.180903467246220279e-02,7.120997975363539678e-02,9.436409146079870192e-03,-6.320930122298699938e-02
1.628067572730669890e-02,5.068011873981870252e-02,2.416542455238970041e-03,-5.670610554934250001e-03,-5.696818394814720174e-03,1.089891258357309975e-02,-5.076412126020100196e-02,3.430885887772629900e-02,2.269202256674450122e-02,-3.835665973397880263e-02
-1.882016527791040067e-03,-4.464163650698899782e-02,-3.854031635223530150e-02,2.187235499495579841e-02,-1.088932827598989989e-01,-1.156130659793979942e-01,2.286863482154040048e-02,-7.639450375000099436e-02,-4.687948284421659950e-02,2.377494398854190089e-02
1.628067572730669890e-02,-4.464163650698899782e-02,2.612840808061879863e-02,5.859630917623830093e-02,-6.073493272285990230e-02,-4.421521669138449989e-02,-1.394774321933030074e-02,-3.395821474270550172e-02,-5.140053526058249722e-02,-2.593033898947460017e-02
-7.090024709716259699e-02,5.068011873981870252e-02,-8.919748382463760228e-02,-7.452802442965950069e-02,-4.284754556624519733e-02,-2.573945744580210040e-02,-3.235593223976569732e-02,-2.592261998182820038e-03,-1.290794225416879923e-02,-5.492508739331759815e-02
4.897352178648269744e-02,-4.464163650698899782e-02,6.061839444480759953e-02,-2.288496402361559975e-02,-2.358420555142939912e-02,-7.271172671423199729e-02,-4.340084565202689815e-02,-2.592261998182820038e-03,1.041376113589790042e-01,3.620126473304600273e-02
5.383060374248070309e-03,5.068011873981870252e-02,-2.884000768730720157e-02,-9.113481248670509197e-03,-3.183992270063620150e-02,-2.887094206369749880e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-1.811826730789670159e-02,7.206516329203029904e-03
3.444336798240450054e-02,5.068011873981870252e-02,-2.991781976118810041e-02,4.658001526274530187e-03,9.337178739566659447e-02,8.699398879842949739e-02,3.391354823380159783e-02,-2.592261998182820038e-03,2.405258322689299982e-02,-3.835665973397880263e-02
2.354575262934580082e-02,5.068011873981870252e-02,-1.913969902237900103e-02,4.941532054484590319e-02,-6.348683843926219983e-02,-6.112523362801929733e-02,4.460445801105040325e-03,-3.949338287409189657e-02,-2.595242443518940012e-02,-1.350401824497050006e-02
1.991321417832630017e-02,-4.464163650698899782e-02,-4.069594049999709917e-02,-1.599922263614299983e-02,-8.448724111216979540e-03,-1.759759743927430051e-02,5.232173725423699961e-02,-3.949338287409189657e-02,-3.075120986455629965e-02,3.064409414368320182e-03
-4.547247794002570037e-02,-4.464163650698899782e-02,1.535028734180979987e-02,-7.452802442965950069e-02,-4.972730985725089953e-02,-1.728444897748479883e-02,-2.867429443567860031e-02,-2.592261998182820038e-03,-1.043648208321659998e-01,-7.563562196749110123e-02
5.260606023750229870e-02,5.068011873981870252e-02,-2.452875939178359929e-02,5.630106193231849965e-02,-7.072771253015849857e-03,-5.071658967693000106e-03,-2.131101882750449997e-02,-2.592261998182820038e-03,2.671425763351279944e-02,-3.835665973397880263e-02
-5.514554978810590376e-03,5.068011873981870252e-02,1.338730381358059929e-03,-8.485663651086830517e-02,-1.120062982761920074e-02,-1.665815205390569834e-02,4.864009945014990260e-02,-3.949338287409189657e-02,-4.118038518800790082e-02,-8.806194271199530021e-02
9.015598825267629943e-03,5.068011873981870252e-02,6.924089103585480409e-02,5.974393262605470073e-02,1.769438019460449832e-02,-2.323426975148589965e-02,-4.708248345611389801e-02,3.430885887772629900e-02,1.032922649115240038e-01,7.348022696655839847e-02
-2.367724723390840155e-02,-4.464163650698899782e-02,-6.979686649478139548e-02,-6.419941234845069622e-02,-5.935897986465880211e-02,-5.047818592717519953e-02,1.918699701745330000e-02,-3.949338287409189657e-02,-8.913686007934769340e-02,-5.078298047848289754e-02
-4.183993948900609910e-02,5.068011873981870252e-02,-2.991781976118810041e-02,-2.227739861197989939e-03,2.182223876920789951e-02,3.657708645031480105e-02,1.182372140927919965e-02,-2.592261998182820038e-03,-4.118038518800790082e-02,6.519601313688899724e-02
-7.453278554818210111e-02,-4.464163650698899782e-02,-4.608500086940160029e-02,-4.354218818603310115e-02,-2.908801698423390050e-02,-2.323426975148589965e-02,1.550535921336619952e-02,-3.949338287409189657e-02,-3.980959436433750137e-02,-2.178823207463989955e-02
3.444336798240450054e-02,-4.464163650698899782e-02,1.858372356345249984e-02,5.630106193231849965e-02,1.219056876180000040e-02,-5.454911593043910295e-02,-6.917231028063640375e-02,7.120997975363539678e-02,1.300806095217529879e-01,7.206516329203029904e-03
-6.000263174410389727e-02,-4.464163650698899782e-02,1.338730381358059929e-03,-2.977070541108809906e-02,-7.072771253015849857e-03,-2.166852744253820046e-02,1.182372140927919965e-02,-2.592261998182820038e-03,3.181521750079859684e-02,-5.492508739331759815e-02
-8.543040090124079389e-02,5.068011873981870252e-02,-3.099563183506899924e-02,-2.288496402361559975e-02,-6.348683843926219983e-02,-5.423596746864960128e-02,1.918699701745330000e-02,-3.949338287409189657e-02,-9.643322289178400675e-02,-3.421455281914410201e-02
5.260606023750229870e-02,-4.464163650698899782e-02,-4.050329988046450294e-03,-3.091832896419060075e-02,-4.697540414084860200e-02,-5.830689747191349775e-02,-1.394774321933030074e-02,-2.583996815000549896e-02,3.605579008983190309e-02,2.377494398854190089e-02
1.264813727628719998e-02,-4.464163650698899782e-02,1.535028734180979987e-02,-3.321357610482440076e-02,4.108557878402369773e-02,3.219300798526129881e-02,-2.902829807069099918e-03,-2.592261998182820038e-03,4.506616833626150148e-02,-6.735140813782170000e-02
5.987113713954139715e-02,5.068011873981870252e-02,2.289497185897609866e-02,4.941532054484590319e-02,1.631842733640340160e-02,1.183835796894170019e-02,-1.394774321933030074e-02,-2.592261998182820038e-03,3.953987807202419963e-02,1.963283707370720027e-02
-2.367724723390840155e-02,-4.464163650698899782e-02,4.552902541047500196e-02,9.072976886968099619e-02,-1.808039411862490120e-02,-3.544705976127759950e-02,7.072992627467229731e-02,-3.949338287409189657e-02,-3.452371533034950118e-02,-9.361911330135799444e-03
1.628067572730669890e-02,-4.464163650698899782e-02,-4.500718879552070145e-02,-5.731367096097819691e-02,-3.459182841703849903e-02,-5.392281900686000246e-02,7.441156407875940126e-02,-7.639450375000099436e-02,-4.257210492279420166e-02,4.034337164788070335e-02
1.107266754538149961e-01,5.068011873981870252e-02,-3.315125598283080038e-02,-2.288496402361559975e-02,-4.320865536613589623e-03,2.029336643725910064e-02,-6.180903467246220279e-02,7.120997975363539678e-02,1.556684454070180086e-02,4.448547856271539702e-02
-2.004470878288880029e-02,-4.464163650698899782e-02,9.726400495675820157e-02,-5.670610554934250001e-03,-5.696818394814720174e-03,-2.386056667506489953e-02,-2.131101882750449997e-02,-2.592261998182820038e-03,6.168584882386619894e-02,4.034337164788070335e-02
-1.641217033186929963e-02,-4.464163650698899782e-02,5.415152200152219958e-02,7.007254470726349826e-02,-3.321587555883730170e-02,-2.793149667832890010e-02,8.142083605192099172e-03,-3.949338287409189657e-02,-2.712864555432650121e-02,-9.361911330135799444e-03
4.897352178648269744e-02,5.068011873981870252e-02,1.231314947298999957e-01,8.384402748220859403e-02,-1.047654241852959967e-01,-1.008950882752900069e-01,-6.917231028063640375e-02,-2.592261998182820038e-03,3.664579779339879884e-02,-3.007244590430930078e-02
-5.637009329308430294e-02,-4.464163650698899782e-02,-8.057498723359039772e-02,-8.485663651086830517e-02,-3.734373413344069942e-02,-3.701280207022530216e-02,3.391354823380159783e-02,-3.949338287409189657e-02,-5.615757309500619965e-02,-1.377672256900120129e-01
2.717829108036539862e-02,-4.464163650698899782e-02,9.295275666123460623e-02,-5.272317671413939699e-02,8.062710187196569719e-03,3.970857106821010230e-02,-2.867429443567860031e-02,2.102445536239900062e-02,-4.836172480289190057e-02,1.963283707370720027e-02
6.350367559056099842e-02,-4.464163650698899782e-02,-5.039624916492520257e-02,1.079441223383619947e-01,3.145390877661580209e-02,1.935392105189049847e-02,-1.762938102341739949e-02,2.360753382371260159e-02,5.803912766389510147e-02,4.034337164788070335e-02
-5.273755484206479882e-02,5.068011873981870252e-02,-1.159501450521270051e-02,5.630106193231849965e-02,5.622106022423609822e-02,7.290230801790049953e-02,-3.971920784793980114e-02,7.120997975363539678e-02,3.056648739841480097e-02,-5.219804415301099697e-03
-9.147093429830140468e-03,5.068011873981870252e-02,-2.776219561342629927e-02,8.100872220010799790e-03,4.796534307502930278e-02,3.720338337389379746e-02,-2.867429443567860031e-02,3.430885887772629900e-02,6.604820616309839409e-02,-4.249876664881350324e-02
5.383060374248070309e-03,-4.464163650698899782e-02,5.846277029704580186e-02,-4.354218818603310115e-02,-7.311850844667000526e-02,-7.239857825244250256e-02,1.918699701745330000e-02,-7.639450375000099436e-02,-5.140053526058249722e-02,-2.593033898947460017e-02
7.440129094361959405e-02,-4.464163650698899782e-02,8.540807214406830050e-02,6.318680331979099896e-02,1.494247447820220079e-02,1.309095181609989944e-02,1.550535921336619952e-02,-2.592261998182820038e-03,6.209315616505399656e-03,8.590654771106250032e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,-8.168937664037369826e-04,-2.632783471735180084e-02,1.081461590359879960e-02,7.141131042098750048e-03,4.864009945014990260e-02,-3.949338287409189657e-02,-3.581672810154919867e-02,1.963283707370720027e-02
8.166636784565869944e-02,5.068011873981870252e-02,6.727790750762559745e-03,-4.522987001831730094e-03,1.098832216940800049e-01,1.170562411302250028e-01,-3.235593223976569732e-02,9.187460744414439884e-02,5.472400334817909689e-02,7.206516329203029904e-03
-5.514554978810590376e-03,-4.464163650698899782e-02,8.883414898524360018e-03,-5.042792957350569760e-02,2.595009734381130070e-02,4.722413415115889884e-02,-4.340084565202689815e-02,7.120997975363539678e-02,1.482271084126630077e-02,3.064409414368320182e-03
-2.730978568492789874e-02,-4.464163650698899782e-02,8.001901177466380632e-02,9.876313370696999938e-02,-2.944912678412469915e-03,1.810132720473240156e-02,-1.762938102341739949e-02,3.311917341962639788e-03,-2.952762274177360077e-02,3.620126473304600273e-02
-5.273755484206479882e-02,-4.464163650698899782e-02,7.139651518361660176e-02,-7.452802442965950069e-02,-1.532848840222260020e-02,-1.313877426218630021e-03,4.460445801105040325e-03,-2.141183364489639834e-02,-4.687948284421659950e-02,3.064409414368320182e-03
9.015598825267629943e-03,-4.464163650698899782e-02,-2.452875939178359929e-02,-2.632783471735180084e-02,9.887559882847110626e-02,9.419640341958869512e-02,7.072992627467229731e-02,-2.592261998182820038e-03,-2.139368094035999993e-02,7.206516329203029904e-03
-2.004470878288880029e-02,-4.464163650698899782e-02,-5.470749746044879791e-02,-5.387080026724189868e-02,-6.623874415566440021e-02,-5.736745208654490252e-02,1.182372140927919965e-02,-3.949338287409189657e-02,-7.408887149153539631e-02,-5.219804415301099697e-03
2.354575262934580082e-02,-4.464163650698899782e-02,-3.638469220447349689e-02,6.750727943574620551e-05,1.182945896190920002e-03,3.469819567957759671e-02,-4.340084565202689815e-02,3.430885887772629900e-02,-3.324878724762579674e-02,6.105390622205419948e-02
3.807590643342410180e-02,5.068011873981870252e-02,1.642809941569069870e-02,2.187235499495579841e-02,3.970962592582259754e-02,4.503209491863210262e-02,-4.340084565202689815e-02,7.120997975363539678e-02,4.976865992074899769e-02,1.549073015887240078e-02
-7.816532399920170238e-02,5.068011873981870252e-02,7.786338762690199478e-02,5.285819123858220142e-02,7.823630595545419397e-02,6.444729954958319795e-02,2.655027262562750096e-02,-2.592261998182820038e-03,4.067226371449769728e-02,-9.361911330135799444e-03
9.015598825267629943e-03,5.068011873981870252e-02,-3.961812842611620034e-02,2.875809638242839833e-02,3.833367306762140020e-02,7.352860494147960002e-02,-7.285394808472339667e-02,1.081111006295440019e-01,1.556684454070180086e-02,-4.664087356364819692e-02
1.750521923228520000e-03,5.068011873981870252e-02,1.103903904628619932e-02,-1.944209332987930153e-02,-1.670444126042380101e-02,-3.819065120534880214e-03,-4.708248345611389801e-02,3.430885887772629900e-02,2.405258322689299982e-02,2.377494398854190089e-02
-7.816532399920170238e-02,-4.464163650698899782e-02,-4.069594049999709917e-02,-8.141376581713200000e-02,-1.006375656106929944e-01,-1.127947298232920004e-01,2.286863482154040048e-02,-7.639450375000099436e-02,-2.028874775162960165e-02,-5.078298047848289754e-02
3.081082953138499989e-02,5.068011873981870252e-02,-3.422906805671169922e-02,4.367720260718979675e-02,5.759701308243719842e-02,6.883137801463659611e-02,-3.235593223976569732e-02,5.755656502954899917e-02,3.546193866076970125e-02,8.590654771106250032e-02
-3.457486258696700065e-02,5.068011873981870252e-02,5.649978676881649634e-03,-5.670610554934250001e-03,-7.311850844667000526e-02,-6.269097593696699999e-02,-6.584467611156170040e-03,-3.949338287409189657e-02,-4.542095777704099890e-02,3.205915781821130212e-02
4.897352178648269744e-02,5.068011873981870252e-02,8.864150836571099701e-02,8.728689817594480205e-02,3.558176735121919981e-02,2.154596028441720101e-02,-2.499265663159149983e-02,3.430885887772629900e-02,6.604820616309839409e-02,1.314697237742440128e-01
-4.183993948900609910e-02,-4.464163650698899782e-02,-3.315125598283080038e-02,-2.288496402361559975e-02,4.658939021682820258e-02,4.158746183894729970e-02,5.600337505832399948e-02,-2.473293452372829840e-02,-2.595242443518940012e-02,-3.835665973397880263e-02
-9.147093429830140468e-03,-4.464163650698899782e-02,-5.686312160821060252e-02,-5.042792957350569760e-02,2.182223876920789951e-02,4.534524338042170144e-02,-2.867429443567860031e-02,3.430885887772629900e-02,-9.918957363154769225e-03,-1.764612515980519894e-02
7.076875249260000666e-02,5.068011873981870252e-02,-3.099563183506899924e-02,2.187235499495579841e-02,-3.734373413344069942e-02,-4.703355284749029946e-02,3.391354823380159783e-02,-3.949338287409189657e-02,-1.495647502491130078e-02,-1.077697500466389974e-03
9.015598825267629943e-03,-4.464163650698899782e-02,5.522933407540309841e-02,-5.670610554934250001e-03,5.759701308243719842e-02,4.471894645684260094e-02,-2.902829807069099918e-03,2.323852261495349888e-02,5.568354770267369691e-02,1.066170822852360034e-01
-2.730978568492789874e-02,-4.464163650698899782e-02,-6.009655782985329903e-02,-2.977070541108809906e-02,4.658939021682820258e-02,1.998021797546959896e-02,1.222728555318910032e-01,-3.949338287409189657e-02,-5.140053526058249722e-02,-9.361911330135799444e-03
1.628067572730669890e-02,-4.464163650698899782e-02,1.338730381358059929e-03,8.100872220010799790e-03,5.310804470794310353e-03,1.089891258357309975e-02,3.023191042971450082e-02,-3.949338287409189657e-02,-4.542095777704099890e-02,3.205915781821130212e-02
-1.277963188084970010e-02,-4.464163650698899782e-02,-2.345094731790270046e-02,-4.009931749229690007e-02,-1.670444126042380101e-02,4.635943347782499856e-03,-1.762938102341739949e-02,-2.592261998182820038e-03,-3.845911230135379971e-02,-3.835665973397880263e-02
-5.637009329308430294e-02,-4.464163650698899782e-02,-7.410811479030500470e-02,-5.042792957350569760e-02,-2.496015840963049931e-02,-4.703355284749029946e-02,9.281975309919469896e-02,-7.639450375000099436e-02,-6.117659509433449883e-02,-4.664087356364819692e-02
4.170844488444359899e-02,5.068011873981870252e-02,1.966153563733339868e-02,5.974393262605470073e-02,-5.696818394814720174e-03,-2.566471273376759888e-03,-2.867429443567860031e-02,-2.592261998182820038e-03,3.119299070280229930e-02,7.206516329203029904e-03
-5.514554978810590376e-03,5.068011873981870252e-02,-1.590626280073640167e-02,-6.764228304218700139e-02,4.934129593323050011e-02,7.916527725369119917e-02,-2.867429443567860031e-02,3.430885887772629900e-02,-1.811826730789670159e-02,4.448547856271539702e-02
4.170844488444359899e-02,5.068011873981870252e-02,-1.590626280073640167e-02,1.728186074811709910e-02,-3.734373413344069942e-02,-1.383981589779990050e-02,-2.499265663159149983e-02,-1.107951979964190078e-02,-4.687948284421659950e-02,1.549073015887240078e-02
-4.547247794002570037e-02,-4.464163650698899782e-02,3.906215296718960200e-02,1.215130832538269907e-03,1.631842733640340160e-02,1.528299104862660025e-02,-2.867429443567860031e-02,2.655962349378539894e-02,4.452837402140529671e-02,-2.593033898947460017e-02
-4.547247794002570037e-02,-4.464163650698899782e-02,-7.303030271642410587e-02,-8.141376581713200000e-02,8.374011738825870577e-02,2.780892952020790065e-02,1.738157847891100005e-01,-3.949338287409189657e-02,-4.219859706946029777e-03,3.064409414368320182e-03
1 3.807590643342410180e-02 5.068011873981870252e-02 6.169620651868849837e-02 2.187235499495579841e-02 -4.422349842444640161e-02 -3.482076283769860309e-02 -4.340084565202689815e-02 -2.592261998182820038e-03 1.990842087631829876e-02 -1.764612515980519894e-02
2 -1.882016527791040067e-03 -4.464163650698899782e-02 -5.147406123880610140e-02 -2.632783471735180084e-02 -8.448724111216979540e-03 -1.916333974822199970e-02 7.441156407875940126e-02 -3.949338287409189657e-02 -6.832974362442149896e-02 -9.220404962683000083e-02
3 8.529890629667830071e-02 5.068011873981870252e-02 4.445121333659410312e-02 -5.670610554934250001e-03 -4.559945128264750180e-02 -3.419446591411950259e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 2.863770518940129874e-03 -2.593033898947460017e-02
4 -8.906293935226029801e-02 -4.464163650698899782e-02 -1.159501450521270051e-02 -3.665644679856060184e-02 1.219056876180000040e-02 2.499059336410210108e-02 -3.603757004385269719e-02 3.430885887772629900e-02 2.269202256674450122e-02 -9.361911330135799444e-03
5 5.383060374248070309e-03 -4.464163650698899782e-02 -3.638469220447349689e-02 2.187235499495579841e-02 3.934851612593179802e-03 1.559613951041610019e-02 8.142083605192099172e-03 -2.592261998182820038e-03 -3.199144494135589684e-02 -4.664087356364819692e-02
6 -9.269547780327989928e-02 -4.464163650698899782e-02 -4.069594049999709917e-02 -1.944209332987930153e-02 -6.899064987206669775e-02 -7.928784441181220555e-02 4.127682384197570165e-02 -7.639450375000099436e-02 -4.118038518800790082e-02 -9.634615654166470144e-02
7 -4.547247794002570037e-02 5.068011873981870252e-02 -4.716281294328249912e-02 -1.599922263614299983e-02 -4.009563984984299695e-02 -2.480001206043359885e-02 7.788079970179680352e-04 -3.949338287409189657e-02 -6.291294991625119570e-02 -3.835665973397880263e-02
8 6.350367559056099842e-02 5.068011873981870252e-02 -1.894705840284650021e-03 6.662967401352719310e-02 9.061988167926439408e-02 1.089143811236970016e-01 2.286863482154040048e-02 1.770335448356720118e-02 -3.581672810154919867e-02 3.064409414368320182e-03
9 4.170844488444359899e-02 5.068011873981870252e-02 6.169620651868849837e-02 -4.009931749229690007e-02 -1.395253554402150001e-02 6.201685656730160021e-03 -2.867429443567860031e-02 -2.592261998182820038e-03 -1.495647502491130078e-02 1.134862324403770016e-02
10 -7.090024709716259699e-02 -4.464163650698899782e-02 3.906215296718960200e-02 -3.321357610482440076e-02 -1.257658268582039982e-02 -3.450761437590899733e-02 -2.499265663159149983e-02 -2.592261998182820038e-03 6.773632611028609918e-02 -1.350401824497050006e-02
11 -9.632801625429950054e-02 -4.464163650698899782e-02 -8.380842345523309422e-02 8.100872220010799790e-03 -1.033894713270950005e-01 -9.056118903623530669e-02 -1.394774321933030074e-02 -7.639450375000099436e-02 -6.291294991625119570e-02 -3.421455281914410201e-02
12 2.717829108036539862e-02 5.068011873981870252e-02 1.750591148957160101e-02 -3.321357610482440076e-02 -7.072771253015849857e-03 4.597154030400080194e-02 -6.549067247654929980e-02 7.120997975363539678e-02 -9.643322289178400675e-02 -5.906719430815229877e-02
13 1.628067572730669890e-02 -4.464163650698899782e-02 -2.884000768730720157e-02 -9.113481248670509197e-03 -4.320865536613589623e-03 -9.768885894535990141e-03 4.495846164606279866e-02 -3.949338287409189657e-02 -3.075120986455629965e-02 -4.249876664881350324e-02
14 5.383060374248070309e-03 5.068011873981870252e-02 -1.894705840284650021e-03 8.100872220010799790e-03 -4.320865536613589623e-03 -1.571870666853709964e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 3.839324821169769891e-02 -1.350401824497050006e-02
15 4.534098333546320025e-02 -4.464163650698899782e-02 -2.560657146566450160e-02 -1.255635194240680048e-02 1.769438019460449832e-02 -6.128357906048329537e-05 8.177483968693349814e-02 -3.949338287409189657e-02 -3.199144494135589684e-02 -7.563562196749110123e-02
16 -5.273755484206479882e-02 5.068011873981870252e-02 -1.806188694849819934e-02 8.040115678847230274e-02 8.924392882106320368e-02 1.076617872765389949e-01 -3.971920784793980114e-02 1.081111006295440019e-01 3.605579008983190309e-02 -4.249876664881350324e-02
17 -5.514554978810590376e-03 -4.464163650698899782e-02 4.229558918883229851e-02 4.941532054484590319e-02 2.457414448561009990e-02 -2.386056667506489953e-02 7.441156407875940126e-02 -3.949338287409189657e-02 5.227999979678119719e-02 2.791705090337660150e-02
18 7.076875249260000666e-02 5.068011873981870252e-02 1.211685112016709989e-02 5.630106193231849965e-02 3.420581449301800248e-02 4.941617338368559792e-02 -3.971920784793980114e-02 3.430885887772629900e-02 2.736770754260900093e-02 -1.077697500466389974e-03
19 -3.820740103798660192e-02 -4.464163650698899782e-02 -1.051720243133190055e-02 -3.665644679856060184e-02 -3.734373413344069942e-02 -1.947648821001150138e-02 -2.867429443567860031e-02 -2.592261998182820038e-03 -1.811826730789670159e-02 -1.764612515980519894e-02
20 -2.730978568492789874e-02 -4.464163650698899782e-02 -1.806188694849819934e-02 -4.009931749229690007e-02 -2.944912678412469915e-03 -1.133462820348369975e-02 3.759518603788870178e-02 -3.949338287409189657e-02 -8.944018957797799166e-03 -5.492508739331759815e-02
21 -4.910501639104519755e-02 -4.464163650698899782e-02 -5.686312160821060252e-02 -4.354218818603310115e-02 -4.559945128264750180e-02 -4.327577130601600180e-02 7.788079970179680352e-04 -3.949338287409189657e-02 -1.190068480150809939e-02 1.549073015887240078e-02
22 -8.543040090124079389e-02 5.068011873981870252e-02 -2.237313524402180162e-02 1.215130832538269907e-03 -3.734373413344069942e-02 -2.636575436938120090e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -7.212845460195599356e-02 -1.764612515980519894e-02
23 -8.543040090124079389e-02 -4.464163650698899782e-02 -4.050329988046450294e-03 -9.113481248670509197e-03 -2.944912678412469915e-03 7.767427965677820186e-03 2.286863482154040048e-02 -3.949338287409189657e-02 -6.117659509433449883e-02 -1.350401824497050006e-02
24 4.534098333546320025e-02 5.068011873981870252e-02 6.061839444480759953e-02 3.105334362634819961e-02 2.870200306021350109e-02 -4.734670130927989828e-02 -5.444575906428809897e-02 7.120997975363539678e-02 1.335989800130079896e-01 1.356118306890790048e-01
25 -6.363517019512339445e-02 -4.464163650698899782e-02 3.582871674554689856e-02 -2.288496402361559975e-02 -3.046396984243510131e-02 -1.885019128643240088e-02 -6.584467611156170040e-03 -2.592261998182820038e-03 -2.595242443518940012e-02 -5.492508739331759815e-02
26 -6.726770864614299572e-02 5.068011873981870252e-02 -1.267282657909369996e-02 -4.009931749229690007e-02 -1.532848840222260020e-02 4.635943347782499856e-03 -5.812739686837520292e-02 3.430885887772629900e-02 1.919903307856710151e-02 -3.421455281914410201e-02
27 -1.072256316073579990e-01 -4.464163650698899782e-02 -7.734155101194770121e-02 -2.632783471735180084e-02 -8.962994274508359616e-02 -9.619786134844690584e-02 2.655027262562750096e-02 -7.639450375000099436e-02 -4.257210492279420166e-02 -5.219804415301099697e-03
28 -2.367724723390840155e-02 -4.464163650698899782e-02 5.954058237092670069e-02 -4.009931749229690007e-02 -4.284754556624519733e-02 -4.358891976780549654e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -1.599826775813870117e-02 4.034337164788070335e-02
29 5.260606023750229870e-02 -4.464163650698899782e-02 -2.129532317014089932e-02 -7.452802442965950069e-02 -4.009563984984299695e-02 -3.763909899380440266e-02 -6.584467611156170040e-03 -3.949338287409189657e-02 -6.092541861022970299e-04 -5.492508739331759815e-02
30 6.713621404158050254e-02 5.068011873981870252e-02 -6.205954135808240159e-03 6.318680331979099896e-02 -4.284754556624519733e-02 -9.588471288665739722e-02 5.232173725423699961e-02 -7.639450375000099436e-02 5.942380044479410317e-02 5.276969239238479825e-02
31 -6.000263174410389727e-02 -4.464163650698899782e-02 4.445121333659410312e-02 -1.944209332987930153e-02 -9.824676969418109224e-03 -7.576846662009279788e-03 2.286863482154040048e-02 -3.949338287409189657e-02 -2.712864555432650121e-02 -9.361911330135799444e-03
32 -2.367724723390840155e-02 -4.464163650698899782e-02 -6.548561819925780014e-02 -8.141376581713200000e-02 -3.871968699164179961e-02 -5.360967054507050078e-02 5.968501286241110343e-02 -7.639450375000099436e-02 -3.712834601047360072e-02 -4.249876664881350324e-02
33 3.444336798240450054e-02 5.068011873981870252e-02 1.252871188776620015e-01 2.875809638242839833e-02 -5.385516843185429725e-02 -1.290037051243130006e-02 -1.023070505174200062e-01 1.081111006295440019e-01 2.714857279071319972e-04 2.791705090337660150e-02
34 3.081082953138499989e-02 -4.464163650698899782e-02 -5.039624916492520257e-02 -2.227739861197989939e-03 -4.422349842444640161e-02 -8.993489211265630334e-02 1.185912177278039964e-01 -7.639450375000099436e-02 -1.811826730789670159e-02 3.064409414368320182e-03
35 1.628067572730669890e-02 -4.464163650698899782e-02 -6.332999405149600247e-02 -5.731367096097819691e-02 -5.798302700645770191e-02 -4.891244361822749687e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -5.947269741072230137e-02 -6.735140813782170000e-02
36 4.897352178648269744e-02 5.068011873981870252e-02 -3.099563183506899924e-02 -4.928030602040309877e-02 4.934129593323050011e-02 -4.132213582324419619e-03 1.333177689441520097e-01 -5.351580880693729975e-02 2.131084656824479978e-02 1.963283707370720027e-02
37 1.264813727628719998e-02 -4.464163650698899782e-02 2.289497185897609866e-02 5.285819123858220142e-02 8.062710187196569719e-03 -2.855779360190789998e-02 3.759518603788870178e-02 -3.949338287409189657e-02 5.472400334817909689e-02 -2.593033898947460017e-02
38 -9.147093429830140468e-03 -4.464163650698899782e-02 1.103903904628619932e-02 -5.731367096097819691e-02 -2.496015840963049931e-02 -4.296262284422640298e-02 3.023191042971450082e-02 -3.949338287409189657e-02 1.703713241477999851e-02 -5.219804415301099697e-03
39 -1.882016527791040067e-03 5.068011873981870252e-02 7.139651518361660176e-02 9.761551025715360652e-02 8.786797596286209655e-02 7.540749571221680436e-02 -2.131101882750449997e-02 7.120997975363539678e-02 7.142403278057639360e-02 2.377494398854190089e-02
40 -1.882016527791040067e-03 5.068011873981870252e-02 1.427247526792889930e-02 -7.452802442965950069e-02 2.558898754392050119e-03 6.201685656730160021e-03 -1.394774321933030074e-02 -2.592261998182820038e-03 1.919903307856710151e-02 3.064409414368320182e-03
41 5.383060374248070309e-03 5.068011873981870252e-02 -8.361578283570040432e-03 2.187235499495579841e-02 5.484510736603499803e-02 7.321545647968999426e-02 -2.499265663159149983e-02 3.430885887772629900e-02 1.255315281338930007e-02 9.419076154073199869e-02
42 -9.996055470531900466e-02 -4.464163650698899782e-02 -6.764124234701959781e-02 -1.089567313670219972e-01 -7.449446130487119566e-02 -7.271172671423199729e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -4.986846773523059828e-02 -9.361911330135799444e-03
43 -6.000263174410389727e-02 5.068011873981870252e-02 -1.051720243133190055e-02 -1.485159908304049987e-02 -4.972730985725089953e-02 -2.354741821327540133e-02 -5.812739686837520292e-02 1.585829843977170153e-02 -9.918957363154769225e-03 -3.421455281914410201e-02
44 1.991321417832630017e-02 -4.464163650698899782e-02 -2.345094731790270046e-02 -7.108515373592319553e-02 2.044628591100669870e-02 -1.008203435632550049e-02 1.185912177278039964e-01 -7.639450375000099436e-02 -4.257210492279420166e-02 7.348022696655839847e-02
45 4.534098333546320025e-02 5.068011873981870252e-02 6.816307896197400240e-02 8.100872220010799790e-03 -1.670444126042380101e-02 4.635943347782499856e-03 -7.653558588881050062e-02 7.120997975363539678e-02 3.243322577960189995e-02 -1.764612515980519894e-02
46 2.717829108036539862e-02 5.068011873981870252e-02 -3.530688013059259805e-02 3.220096707616459941e-02 -1.120062982761920074e-02 1.504458729887179960e-03 -1.026610541524320026e-02 -2.592261998182820038e-03 -1.495647502491130078e-02 -5.078298047848289754e-02
47 -5.637009329308430294e-02 -4.464163650698899782e-02 -1.159501450521270051e-02 -3.321357610482440076e-02 -4.697540414084860200e-02 -4.765984977106939996e-02 4.460445801105040325e-03 -3.949338287409189657e-02 -7.979397554541639223e-03 -8.806194271199530021e-02
48 -7.816532399920170238e-02 -4.464163650698899782e-02 -7.303030271642410587e-02 -5.731367096097819691e-02 -8.412613131227909824e-02 -7.427746902317970690e-02 -2.499265663159149983e-02 -3.949338287409189657e-02 -1.811826730789670159e-02 -8.391983579716059960e-02
49 6.713621404158050254e-02 5.068011873981870252e-02 -4.177375257387799801e-02 1.154374291374709975e-02 2.558898754392050119e-03 5.888537194940629722e-03 4.127682384197570165e-02 -3.949338287409189657e-02 -5.947269741072230137e-02 -2.178823207463989955e-02
50 -4.183993948900609910e-02 5.068011873981870252e-02 1.427247526792889930e-02 -5.670610554934250001e-03 -1.257658268582039982e-02 6.201685656730160021e-03 -7.285394808472339667e-02 7.120997975363539678e-02 3.546193866076970125e-02 -1.350401824497050006e-02
51 3.444336798240450054e-02 -4.464163650698899782e-02 -7.283766209689159811e-03 1.498661360748330083e-02 -4.422349842444640161e-02 -3.732595053201490098e-02 -2.902829807069099918e-03 -3.949338287409189657e-02 -2.139368094035999993e-02 7.206516329203029904e-03
52 5.987113713954139715e-02 5.068011873981870252e-02 1.642809941569069870e-02 2.875809638242839833e-02 -4.147159270804409714e-02 -2.918409052548700047e-02 -2.867429443567860031e-02 -2.592261998182820038e-03 -2.396681493414269844e-03 -2.178823207463989955e-02
53 -5.273755484206479882e-02 -4.464163650698899782e-02 -9.439390357450949676e-03 -5.670610554934250001e-03 3.970962592582259754e-02 4.471894645684260094e-02 2.655027262562750096e-02 -2.592261998182820038e-03 -1.811826730789670159e-02 -1.350401824497050006e-02
54 -9.147093429830140468e-03 -4.464163650698899782e-02 -1.590626280073640167e-02 7.007254470726349826e-02 1.219056876180000040e-02 2.217225720799630151e-02 1.550535921336619952e-02 -2.592261998182820038e-03 -3.324878724762579674e-02 4.862758547755009764e-02
55 -4.910501639104519755e-02 -4.464163650698899782e-02 2.505059600673789980e-02 8.100872220010799790e-03 2.044628591100669870e-02 1.778817874294279927e-02 5.232173725423699961e-02 -3.949338287409189657e-02 -4.118038518800790082e-02 7.206516329203029904e-03
56 -4.183993948900609910e-02 -4.464163650698899782e-02 -4.931843709104429679e-02 -3.665644679856060184e-02 -7.072771253015849857e-03 -2.260797282790679916e-02 8.545647749102060209e-02 -3.949338287409189657e-02 -6.648814822283539983e-02 7.206516329203029904e-03
57 -4.183993948900609910e-02 -4.464163650698899782e-02 4.121777711495139968e-02 -2.632783471735180084e-02 -3.183992270063620150e-02 -3.043668437264510085e-02 -3.603757004385269719e-02 2.942906133203560069e-03 3.365681290238470291e-02 -1.764612515980519894e-02
58 -2.730978568492789874e-02 -4.464163650698899782e-02 -6.332999405149600247e-02 -5.042792957350569760e-02 -8.962994274508359616e-02 -1.043397213549750041e-01 5.232173725423699961e-02 -7.639450375000099436e-02 -5.615757309500619965e-02 -6.735140813782170000e-02
59 4.170844488444359899e-02 -4.464163650698899782e-02 -6.440780612537699845e-02 3.564383776990089764e-02 1.219056876180000040e-02 -5.799374901012400302e-02 1.811790603972839864e-01 -7.639450375000099436e-02 -6.092541861022970299e-04 -5.078298047848289754e-02
60 6.350367559056099842e-02 5.068011873981870252e-02 -2.560657146566450160e-02 1.154374291374709975e-02 6.447677737344290061e-02 4.847672799831700269e-02 3.023191042971450082e-02 -2.592261998182820038e-03 3.839324821169769891e-02 1.963283707370720027e-02
61 -7.090024709716259699e-02 -4.464163650698899782e-02 -4.050329988046450294e-03 -4.009931749229690007e-02 -6.623874415566440021e-02 -7.866154748823310505e-02 5.232173725423699961e-02 -7.639450375000099436e-02 -5.140053526058249722e-02 -3.421455281914410201e-02
62 -4.183993948900609910e-02 5.068011873981870252e-02 4.572166603000769880e-03 -5.387080026724189868e-02 -4.422349842444640161e-02 -2.730519975474979960e-02 -8.021722369289760457e-02 7.120997975363539678e-02 3.664579779339879884e-02 1.963283707370720027e-02
63 -2.730978568492789874e-02 5.068011873981870252e-02 -7.283766209689159811e-03 -4.009931749229690007e-02 -1.120062982761920074e-02 -1.383981589779990050e-02 5.968501286241110343e-02 -3.949338287409189657e-02 -8.238148325810279449e-02 -2.593033898947460017e-02
64 -3.457486258696700065e-02 -4.464163650698899782e-02 -3.746250427835440266e-02 -6.075654165471439799e-02 2.044628591100669870e-02 4.346635260968449710e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 -3.075120986455629965e-02 -7.149351505265640061e-02
65 6.713621404158050254e-02 5.068011873981870252e-02 -2.560657146566450160e-02 -4.009931749229690007e-02 -6.348683843926219983e-02 -5.987263978086120042e-02 -2.902829807069099918e-03 -3.949338287409189657e-02 -1.919704761394450121e-02 1.134862324403770016e-02
66 -4.547247794002570037e-02 5.068011873981870252e-02 -2.452875939178359929e-02 5.974393262605470073e-02 5.310804470794310353e-03 1.496984258683710031e-02 -5.444575906428809897e-02 7.120997975363539678e-02 4.234489544960749752e-02 1.549073015887240078e-02
67 -9.147093429830140468e-03 5.068011873981870252e-02 -1.806188694849819934e-02 -3.321357610482440076e-02 -2.083229983502719873e-02 1.215150643073130074e-02 -7.285394808472339667e-02 7.120997975363539678e-02 2.714857279071319972e-04 1.963283707370720027e-02
68 4.170844488444359899e-02 5.068011873981870252e-02 -1.482845072685549936e-02 -1.714684618924559867e-02 -5.696818394814720174e-03 8.393724889256879915e-03 -1.394774321933030074e-02 -1.854239580664649974e-03 -1.190068480150809939e-02 3.064409414368320182e-03
69 3.807590643342410180e-02 5.068011873981870252e-02 -2.991781976118810041e-02 -4.009931749229690007e-02 -3.321587555883730170e-02 -2.417371513685449835e-02 -1.026610541524320026e-02 -2.592261998182820038e-03 -1.290794225416879923e-02 3.064409414368320182e-03
70 1.628067572730669890e-02 -4.464163650698899782e-02 -4.608500086940160029e-02 -5.670610554934250001e-03 -7.587041416307230279e-02 -6.143838208980879900e-02 -1.394774321933030074e-02 -3.949338287409189657e-02 -5.140053526058249722e-02 1.963283707370720027e-02
71 -1.882016527791040067e-03 -4.464163650698899782e-02 -6.979686649478139548e-02 -1.255635194240680048e-02 -1.930069620102049918e-04 -9.142588970956939953e-03 7.072992627467229731e-02 -3.949338287409189657e-02 -6.291294991625119570e-02 4.034337164788070335e-02
72 -1.882016527791040067e-03 -4.464163650698899782e-02 3.367309259778510089e-02 1.251584758070440062e-01 2.457414448561009990e-02 2.624318721126020146e-02 -1.026610541524320026e-02 -2.592261998182820038e-03 2.671425763351279944e-02 6.105390622205419948e-02
73 6.350367559056099842e-02 5.068011873981870252e-02 -4.050329988046450294e-03 -1.255635194240680048e-02 1.030034574030749966e-01 4.878987646010649742e-02 5.600337505832399948e-02 -2.592261998182820038e-03 8.449528221240310000e-02 -1.764612515980519894e-02
74 1.264813727628719998e-02 5.068011873981870252e-02 -2.021751109626000048e-02 -2.227739861197989939e-03 3.833367306762140020e-02 5.317395492515999966e-02 -6.584467611156170040e-03 3.430885887772629900e-02 -5.145307980263110273e-03 -9.361911330135799444e-03
75 1.264813727628719998e-02 5.068011873981870252e-02 2.416542455238970041e-03 5.630106193231849965e-02 2.732605020201240090e-02 1.716188181936379939e-02 4.127682384197570165e-02 -3.949338287409189657e-02 3.711738233435969789e-03 7.348022696655839847e-02
76 -9.147093429830140468e-03 5.068011873981870252e-02 -3.099563183506899924e-02 -2.632783471735180084e-02 -1.120062982761920074e-02 -1.000728964429089965e-03 -2.131101882750449997e-02 -2.592261998182820038e-03 6.209315616505399656e-03 2.791705090337660150e-02
77 -3.094232413594750000e-02 5.068011873981870252e-02 2.828403222838059977e-02 7.007254470726349826e-02 -1.267806699165139883e-01 -1.068449090492910036e-01 -5.444575906428809897e-02 -4.798064067555100204e-02 -3.075120986455629965e-02 1.549073015887240078e-02
78 -9.632801625429950054e-02 -4.464163650698899782e-02 -3.638469220447349689e-02 -7.452802442965950069e-02 -3.871968699164179961e-02 -2.761834821653930128e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -7.408887149153539631e-02 -1.077697500466389974e-03
79 5.383060374248070309e-03 -4.464163650698899782e-02 -5.794093368209150136e-02 -2.288496402361559975e-02 -6.761469701386560449e-02 -6.832764824917850199e-02 -5.444575906428809897e-02 -2.592261998182820038e-03 4.289568789252869857e-02 -8.391983579716059960e-02
80 -1.035930931563389945e-01 -4.464163650698899782e-02 -3.746250427835440266e-02 -2.632783471735180084e-02 2.558898754392050119e-03 1.998021797546959896e-02 1.182372140927919965e-02 -2.592261998182820038e-03 -6.832974362442149896e-02 -2.593033898947460017e-02
81 7.076875249260000666e-02 -4.464163650698899782e-02 1.211685112016709989e-02 4.252957915737339695e-02 7.135654166444850566e-02 5.348710338694950134e-02 5.232173725423699961e-02 -2.592261998182820038e-03 2.539313491544940155e-02 -5.219804415301099697e-03
82 1.264813727628719998e-02 5.068011873981870252e-02 -2.237313524402180162e-02 -2.977070541108809906e-02 1.081461590359879960e-02 2.843522644378690054e-02 -2.131101882750449997e-02 3.430885887772629900e-02 -6.080248196314420352e-03 -1.077697500466389974e-03
83 -1.641217033186929963e-02 -4.464163650698899782e-02 -3.530688013059259805e-02 -2.632783471735180084e-02 3.282986163481690228e-02 1.716188181936379939e-02 1.001830287073690040e-01 -3.949338287409189657e-02 -7.020931272868760620e-02 -7.977772888232589898e-02
84 -3.820740103798660192e-02 -4.464163650698899782e-02 9.961226972405269262e-03 -4.698505887976939938e-02 -5.935897986465880211e-02 -5.298337362149149743e-02 -1.026610541524320026e-02 -3.949338287409189657e-02 -1.599826775813870117e-02 -4.249876664881350324e-02
85 1.750521923228520000e-03 -4.464163650698899782e-02 -3.961812842611620034e-02 -1.009233664264470032e-01 -2.908801698423390050e-02 -3.012353591085559917e-02 4.495846164606279866e-02 -5.019470792810550031e-02 -6.832974362442149896e-02 -1.294830118603420011e-01
86 4.534098333546320025e-02 -4.464163650698899782e-02 7.139651518361660176e-02 1.215130832538269907e-03 -9.824676969418109224e-03 -1.000728964429089965e-03 1.550535921336619952e-02 -3.949338287409189657e-02 -4.118038518800790082e-02 -7.149351505265640061e-02
87 -7.090024709716259699e-02 5.068011873981870252e-02 -7.518592686418590354e-02 -4.009931749229690007e-02 -5.110326271545199972e-02 -1.509240974495799914e-02 -3.971920784793980114e-02 -2.592261998182820038e-03 -9.643322289178400675e-02 -3.421455281914410201e-02
88 4.534098333546320025e-02 -4.464163650698899782e-02 -6.205954135808240159e-03 1.154374291374709975e-02 6.310082451524179348e-02 1.622243643399520069e-02 9.650139090328180291e-02 -3.949338287409189657e-02 4.289568789252869857e-02 -3.835665973397880263e-02
89 -5.273755484206479882e-02 5.068011873981870252e-02 -4.069594049999709917e-02 -6.764228304218700139e-02 -3.183992270063620150e-02 -3.701280207022530216e-02 3.759518603788870178e-02 -3.949338287409189657e-02 -3.452371533034950118e-02 6.933812005172369786e-02
90 -4.547247794002570037e-02 -4.464163650698899782e-02 -4.824062501716339796e-02 -1.944209332987930153e-02 -1.930069620102049918e-04 -1.603185513032660131e-02 6.704828847058519337e-02 -3.949338287409189657e-02 -2.479118743246069845e-02 1.963283707370720027e-02
91 1.264813727628719998e-02 -4.464163650698899782e-02 -2.560657146566450160e-02 -4.009931749229690007e-02 -3.046396984243510131e-02 -4.515466207675319921e-02 7.809320188284639419e-02 -7.639450375000099436e-02 -7.212845460195599356e-02 1.134862324403770016e-02
92 4.534098333546320025e-02 -4.464163650698899782e-02 5.199589785376040191e-02 -5.387080026724189868e-02 6.310082451524179348e-02 6.476044801137270657e-02 -1.026610541524320026e-02 3.430885887772629900e-02 3.723201120896890010e-02 1.963283707370720027e-02
93 -2.004470878288880029e-02 -4.464163650698899782e-02 4.572166603000769880e-03 9.761551025715360652e-02 5.310804470794310353e-03 -2.072908205716959829e-02 6.336665066649820044e-02 -3.949338287409189657e-02 1.255315281338930007e-02 1.134862324403770016e-02
94 -4.910501639104519755e-02 -4.464163650698899782e-02 -6.440780612537699845e-02 -1.020709899795499975e-01 -2.944912678412469915e-03 -1.540555820674759969e-02 6.336665066649820044e-02 -4.724261825803279663e-02 -3.324878724762579674e-02 -5.492508739331759815e-02
95 -7.816532399920170238e-02 -4.464163650698899782e-02 -1.698407487461730050e-02 -1.255635194240680048e-02 -1.930069620102049918e-04 -1.352666743601040056e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -4.118038518800790082e-02 -9.220404962683000083e-02
96 -7.090024709716259699e-02 -4.464163650698899782e-02 -5.794093368209150136e-02 -8.141376581713200000e-02 -4.559945128264750180e-02 -2.887094206369749880e-02 -4.340084565202689815e-02 -2.592261998182820038e-03 1.143797379512540100e-03 -5.219804415301099697e-03
97 5.623859868852180283e-02 5.068011873981870252e-02 9.961226972405269262e-03 4.941532054484590319e-02 -4.320865536613589623e-03 -1.227407358885230018e-02 -4.340084565202689815e-02 3.430885887772629900e-02 6.078775415074400001e-02 3.205915781821130212e-02
98 -2.730978568492789874e-02 -4.464163650698899782e-02 8.864150836571099701e-02 -2.518021116424929914e-02 2.182223876920789951e-02 4.252690722431590187e-02 -3.235593223976569732e-02 3.430885887772629900e-02 2.863770518940129874e-03 7.762233388139309909e-02
99 1.750521923228520000e-03 5.068011873981870252e-02 -5.128142061927360405e-03 -1.255635194240680048e-02 -1.532848840222260020e-02 -1.383981589779990050e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -6.080248196314420352e-03 -6.735140813782170000e-02
100 -1.882016527791040067e-03 -4.464163650698899782e-02 -6.440780612537699845e-02 1.154374291374709975e-02 2.732605020201240090e-02 3.751653183568340322e-02 -1.394774321933030074e-02 3.430885887772629900e-02 1.178390038357590014e-02 -5.492508739331759815e-02
101 1.628067572730669890e-02 -4.464163650698899782e-02 1.750591148957160101e-02 -2.288496402361559975e-02 6.034891879883950289e-02 4.440579799505309927e-02 3.023191042971450082e-02 -2.592261998182820038e-03 3.723201120896890010e-02 -1.077697500466389974e-03
102 1.628067572730669890e-02 5.068011873981870252e-02 -4.500718879552070145e-02 6.318680331979099896e-02 1.081461590359879960e-02 -3.744320408500199904e-04 6.336665066649820044e-02 -3.949338287409189657e-02 -3.075120986455629965e-02 3.620126473304600273e-02
103 -9.269547780327989928e-02 -4.464163650698899782e-02 2.828403222838059977e-02 -1.599922263614299983e-02 3.695772020942030001e-02 2.499059336410210108e-02 5.600337505832399948e-02 -3.949338287409189657e-02 -5.145307980263110273e-03 -1.077697500466389974e-03
104 5.987113713954139715e-02 5.068011873981870252e-02 4.121777711495139968e-02 1.154374291374709975e-02 4.108557878402369773e-02 7.071026878537380045e-02 -3.603757004385269719e-02 3.430885887772629900e-02 -1.090443584737709956e-02 -3.007244590430930078e-02
105 -2.730978568492789874e-02 -4.464163650698899782e-02 6.492964274033119487e-02 -2.227739861197989939e-03 -2.496015840963049931e-02 -1.728444897748479883e-02 2.286863482154040048e-02 -3.949338287409189657e-02 -6.117659509433449883e-02 -6.320930122298699938e-02
106 2.354575262934580082e-02 5.068011873981870252e-02 -3.207344390894990155e-02 -4.009931749229690007e-02 -3.183992270063620150e-02 -2.166852744253820046e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 -1.090443584737709956e-02 1.963283707370720027e-02
107 -9.632801625429950054e-02 -4.464163650698899782e-02 -7.626373893806680238e-02 -4.354218818603310115e-02 -4.559945128264750180e-02 -3.482076283769860309e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -5.947269741072230137e-02 -8.391983579716059960e-02
108 2.717829108036539862e-02 -4.464163650698899782e-02 4.984027370599859730e-02 -5.501842382034440038e-02 -2.944912678412469915e-03 4.064801645357869753e-02 -5.812739686837520292e-02 5.275941931568080279e-02 -5.295879323920039961e-02 -5.219804415301099697e-03
109 1.991321417832630017e-02 5.068011873981870252e-02 4.552902541047500196e-02 2.990571983224480160e-02 -6.211088558106100249e-02 -5.580170977759729700e-02 -7.285394808472339667e-02 2.692863470254440103e-02 4.560080841412490066e-02 4.034337164788070335e-02
110 3.807590643342410180e-02 5.068011873981870252e-02 -9.439390357450949676e-03 2.362754385640800005e-03 1.182945896190920002e-03 3.751653183568340322e-02 -5.444575906428809897e-02 5.017634085436720182e-02 -2.595242443518940012e-02 1.066170822852360034e-01
111 4.170844488444359899e-02 5.068011873981870252e-02 -3.207344390894990155e-02 -2.288496402361559975e-02 -4.972730985725089953e-02 -4.014428668812060341e-02 3.023191042971450082e-02 -3.949338287409189657e-02 -1.260973855604090033e-01 1.549073015887240078e-02
112 1.991321417832630017e-02 -4.464163650698899782e-02 4.572166603000769880e-03 -2.632783471735180084e-02 2.319819162740899970e-02 1.027261565999409987e-02 6.704828847058519337e-02 -3.949338287409189657e-02 -2.364455757213410059e-02 -4.664087356364819692e-02
113 -8.543040090124079389e-02 -4.464163650698899782e-02 2.073934771121430098e-02 -2.632783471735180084e-02 5.310804470794310353e-03 1.966706951368000014e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 -2.364455757213410059e-02 3.064409414368320182e-03
114 1.991321417832630017e-02 5.068011873981870252e-02 1.427247526792889930e-02 6.318680331979099896e-02 1.494247447820220079e-02 2.029336643725910064e-02 -4.708248345611389801e-02 3.430885887772629900e-02 4.666077235681449775e-02 9.004865462589720093e-02
115 2.354575262934580082e-02 -4.464163650698899782e-02 1.101977498433290015e-01 6.318680331979099896e-02 1.356652162000110060e-02 -3.294187206696139875e-02 -2.499265663159149983e-02 2.065544415363990138e-02 9.924022573398999514e-02 2.377494398854190089e-02
116 -3.094232413594750000e-02 5.068011873981870252e-02 1.338730381358059929e-03 -5.670610554934250001e-03 6.447677737344290061e-02 4.941617338368559792e-02 -4.708248345611389801e-02 1.081111006295440019e-01 8.379676636552239877e-02 3.064409414368320182e-03
117 4.897352178648269744e-02 5.068011873981870252e-02 5.846277029704580186e-02 7.007254470726349826e-02 1.356652162000110060e-02 2.060651489904859884e-02 -2.131101882750449997e-02 3.430885887772629900e-02 2.200405045615050001e-02 2.791705090337660150e-02
118 5.987113713954139715e-02 -4.464163650698899782e-02 -2.129532317014089932e-02 8.728689817594480205e-02 4.521343735862710239e-02 3.156671106168230240e-02 -4.708248345611389801e-02 7.120997975363539678e-02 7.912108138965789905e-02 1.356118306890790048e-01
119 -5.637009329308430294e-02 5.068011873981870252e-02 -1.051720243133190055e-02 2.531522568869210010e-02 2.319819162740899970e-02 4.002171952999959703e-02 -3.971920784793980114e-02 3.430885887772629900e-02 2.061233072136409855e-02 5.691179930721949887e-02
120 1.628067572730669890e-02 -4.464163650698899782e-02 -4.716281294328249912e-02 -2.227739861197989939e-03 -1.945634697682600139e-02 -4.296262284422640298e-02 3.391354823380159783e-02 -3.949338287409189657e-02 2.736770754260900093e-02 2.791705090337660150e-02
121 -4.910501639104519755e-02 -4.464163650698899782e-02 4.572166603000769880e-03 1.154374291374709975e-02 -3.734373413344069942e-02 -1.853704282464289921e-02 -1.762938102341739949e-02 -2.592261998182820038e-03 -3.980959436433750137e-02 -2.178823207463989955e-02
122 6.350367559056099842e-02 -4.464163650698899782e-02 1.750591148957160101e-02 2.187235499495579841e-02 8.062710187196569719e-03 2.154596028441720101e-02 -3.603757004385269719e-02 3.430885887772629900e-02 1.990842087631829876e-02 1.134862324403770016e-02
123 4.897352178648269744e-02 5.068011873981870252e-02 8.109682384854470516e-02 2.187235499495579841e-02 4.383748450042589812e-02 6.413415108779360607e-02 -5.444575906428809897e-02 7.120997975363539678e-02 3.243322577960189995e-02 4.862758547755009764e-02
124 5.383060374248070309e-03 5.068011873981870252e-02 3.475090467166599972e-02 -1.080116308095460057e-03 1.525377602983150060e-01 1.987879896572929961e-01 -6.180903467246220279e-02 1.852344432601940039e-01 1.556684454070180086e-02 7.348022696655839847e-02
125 -5.514554978810590376e-03 -4.464163650698899782e-02 2.397278393285700096e-02 8.100872220010799790e-03 -3.459182841703849903e-02 -3.889169284096249957e-02 2.286863482154040048e-02 -3.949338287409189657e-02 -1.599826775813870117e-02 -1.350401824497050006e-02
126 -5.514554978810590376e-03 5.068011873981870252e-02 -8.361578283570040432e-03 -2.227739861197989939e-03 -3.321587555883730170e-02 -6.363042132233559522e-02 -3.603757004385269719e-02 -2.592261998182820038e-03 8.058546423866649877e-02 7.206516329203029904e-03
127 -8.906293935226029801e-02 -4.464163650698899782e-02 -6.117436990373419786e-02 -2.632783471735180084e-02 -5.523112129005539744e-02 -5.454911593043910295e-02 4.127682384197570165e-02 -7.639450375000099436e-02 -9.393564550871469354e-02 -5.492508739331759815e-02
128 3.444336798240450054e-02 5.068011873981870252e-02 -1.894705840284650021e-03 -1.255635194240680048e-02 3.833367306762140020e-02 1.371724873967889932e-02 7.809320188284639419e-02 -3.949338287409189657e-02 4.551890466127779880e-03 -9.634615654166470144e-02
129 -5.273755484206479882e-02 -4.464163650698899782e-02 -6.225218197761509670e-02 -2.632783471735180084e-02 -5.696818394814720174e-03 -5.071658967693000106e-03 3.023191042971450082e-02 -3.949338287409189657e-02 -3.075120986455629965e-02 -7.149351505265640061e-02
130 9.015598825267629943e-03 -4.464163650698899782e-02 1.642809941569069870e-02 4.658001526274530187e-03 9.438663045397699403e-03 1.058576412178359981e-02 -2.867429443567860031e-02 3.430885887772629900e-02 3.896836603088559697e-02 1.190434030297399942e-01
131 -6.363517019512339445e-02 5.068011873981870252e-02 9.618619288287730273e-02 1.045012516446259948e-01 -2.944912678412469915e-03 -4.758510505903469807e-03 -6.584467611156170040e-03 -2.592261998182820038e-03 2.269202256674450122e-02 7.348022696655839847e-02
132 -9.632801625429950054e-02 -4.464163650698899782e-02 -6.979686649478139548e-02 -6.764228304218700139e-02 -1.945634697682600139e-02 -1.070833127990459925e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -4.687948284421659950e-02 -7.977772888232589898e-02
133 1.628067572730669890e-02 5.068011873981870252e-02 -2.129532317014089932e-02 -9.113481248670509197e-03 3.420581449301800248e-02 4.785043107473799934e-02 7.788079970179680352e-04 -2.592261998182820038e-03 -1.290794225416879923e-02 2.377494398854190089e-02
134 -4.183993948900609910e-02 5.068011873981870252e-02 -5.362968538656789907e-02 -4.009931749229690007e-02 -8.412613131227909824e-02 -7.177228132886340206e-02 -2.902829807069099918e-03 -3.949338287409189657e-02 -7.212845460195599356e-02 -3.007244590430930078e-02
135 -7.453278554818210111e-02 -4.464163650698899782e-02 4.337340126271319735e-02 -3.321357610482440076e-02 1.219056876180000040e-02 2.518648827290310109e-04 6.336665066649820044e-02 -3.949338287409189657e-02 -2.712864555432650121e-02 -4.664087356364819692e-02
136 -5.514554978810590376e-03 -4.464163650698899782e-02 5.630714614928399725e-02 -3.665644679856060184e-02 -4.835135699904979933e-02 -4.296262284422640298e-02 -7.285394808472339667e-02 3.799897096531720114e-02 5.078151336297320045e-02 5.691179930721949887e-02
137 -9.269547780327989928e-02 -4.464163650698899782e-02 -8.165279930747129655e-02 -5.731367096097819691e-02 -6.073493272285990230e-02 -6.801449978738899338e-02 4.864009945014990260e-02 -7.639450375000099436e-02 -6.648814822283539983e-02 -2.178823207463989955e-02
138 5.383060374248070309e-03 -4.464163650698899782e-02 4.984027370599859730e-02 9.761551025715360652e-02 -1.532848840222260020e-02 -1.634500359211620013e-02 -6.584467611156170040e-03 -2.592261998182820038e-03 1.703713241477999851e-02 -1.350401824497050006e-02
139 3.444336798240450054e-02 5.068011873981870252e-02 1.112755619172099975e-01 7.695828609473599757e-02 -3.183992270063620150e-02 -3.388131745233000092e-02 -2.131101882750449997e-02 -2.592261998182820038e-03 2.801650652326400162e-02 7.348022696655839847e-02
140 2.354575262934580082e-02 -4.464163650698899782e-02 6.169620651868849837e-02 5.285819123858220142e-02 -3.459182841703849903e-02 -4.891244361822749687e-02 -2.867429443567860031e-02 -2.592261998182820038e-03 5.472400334817909689e-02 -5.219804415301099697e-03
141 4.170844488444359899e-02 5.068011873981870252e-02 1.427247526792889930e-02 4.252957915737339695e-02 -3.046396984243510131e-02 -1.313877426218630021e-03 -4.340084565202689815e-02 -2.592261998182820038e-03 -3.324878724762579674e-02 1.549073015887240078e-02
142 -2.730978568492789874e-02 -4.464163650698899782e-02 4.768464955823679963e-02 -4.698505887976939938e-02 3.420581449301800248e-02 5.724488492842390308e-02 -8.021722369289760457e-02 1.302517731550900115e-01 4.506616833626150148e-02 1.314697237742440128e-01
143 4.170844488444359899e-02 5.068011873981870252e-02 1.211685112016709989e-02 3.908670846363720280e-02 5.484510736603499803e-02 4.440579799505309927e-02 4.460445801105040325e-03 -2.592261998182820038e-03 4.560080841412490066e-02 -1.077697500466389974e-03
144 -3.094232413594750000e-02 -4.464163650698899782e-02 5.649978676881649634e-03 -9.113481248670509197e-03 1.907033305280559851e-02 6.827982580309210209e-03 7.441156407875940126e-02 -3.949338287409189657e-02 -4.118038518800790082e-02 -4.249876664881350324e-02
145 3.081082953138499989e-02 5.068011873981870252e-02 4.660683748435590079e-02 -1.599922263614299983e-02 2.044628591100669870e-02 5.066876723084379891e-02 -5.812739686837520292e-02 7.120997975363539678e-02 6.209315616505399656e-03 7.206516329203029904e-03
146 -4.183993948900609910e-02 -4.464163650698899782e-02 1.285205550993039902e-01 6.318680331979099896e-02 -3.321587555883730170e-02 -3.262872360517189707e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -1.599826775813870117e-02 -5.078298047848289754e-02
147 -3.094232413594750000e-02 5.068011873981870252e-02 5.954058237092670069e-02 1.215130832538269907e-03 1.219056876180000040e-02 3.156671106168230240e-02 -4.340084565202689815e-02 3.430885887772629900e-02 1.482271084126630077e-02 7.206516329203029904e-03
148 -5.637009329308430294e-02 -4.464163650698899782e-02 9.295275666123460623e-02 -1.944209332987930153e-02 1.494247447820220079e-02 2.342485105515439842e-02 -2.867429443567860031e-02 2.545258986750810123e-02 2.605608963368469949e-02 4.034337164788070335e-02
149 -6.000263174410389727e-02 5.068011873981870252e-02 1.535028734180979987e-02 -1.944209332987930153e-02 3.695772020942030001e-02 4.816357953652750101e-02 1.918699701745330000e-02 -2.592261998182820038e-03 -3.075120986455629965e-02 -1.077697500466389974e-03
150 -4.910501639104519755e-02 5.068011873981870252e-02 -5.128142061927360405e-03 -4.698505887976939938e-02 -2.083229983502719873e-02 -2.041593359538010008e-02 -6.917231028063640375e-02 7.120997975363539678e-02 6.123790751970099866e-02 -3.835665973397880263e-02
151 2.354575262934580082e-02 -4.464163650698899782e-02 7.031870310973570293e-02 2.531522568869210010e-02 -3.459182841703849903e-02 -1.446611282137899926e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 -1.919704761394450121e-02 -9.361911330135799444e-03
152 1.750521923228520000e-03 -4.464163650698899782e-02 -4.050329988046450294e-03 -5.670610554934250001e-03 -8.448724111216979540e-03 -2.386056667506489953e-02 5.232173725423699961e-02 -3.949338287409189657e-02 -8.944018957797799166e-03 -1.350401824497050006e-02
153 -3.457486258696700065e-02 5.068011873981870252e-02 -8.168937664037369826e-04 7.007254470726349826e-02 3.970962592582259754e-02 6.695248724389940564e-02 -6.549067247654929980e-02 1.081111006295440019e-01 2.671425763351279944e-02 7.348022696655839847e-02
154 4.170844488444359899e-02 5.068011873981870252e-02 -4.392937672163980262e-02 6.318680331979099896e-02 -4.320865536613589623e-03 1.622243643399520069e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 -3.452371533034950118e-02 1.134862324403770016e-02
155 6.713621404158050254e-02 5.068011873981870252e-02 2.073934771121430098e-02 -5.670610554934250001e-03 2.044628591100669870e-02 2.624318721126020146e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 8.640282933063080789e-03 3.064409414368320182e-03
156 -2.730978568492789874e-02 5.068011873981870252e-02 6.061839444480759953e-02 4.941532054484590319e-02 8.511607024645979902e-02 8.636769187485039689e-02 -2.902829807069099918e-03 3.430885887772629900e-02 3.781447882634390162e-02 4.862758547755009764e-02
157 -1.641217033186929963e-02 -4.464163650698899782e-02 -1.051720243133190055e-02 1.215130832538269907e-03 -3.734373413344069942e-02 -3.576020822306719832e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -2.139368094035999993e-02 -3.421455281914410201e-02
158 -1.882016527791040067e-03 5.068011873981870252e-02 -3.315125598283080038e-02 -1.829446977677679984e-02 3.145390877661580209e-02 4.284005568610550069e-02 -1.394774321933030074e-02 1.991742173612169944e-02 1.022564240495780000e-02 2.791705090337660150e-02
159 -1.277963188084970010e-02 -4.464163650698899782e-02 -6.548561819925780014e-02 -6.993753018282070077e-02 1.182945896190920002e-03 1.684873335757430118e-02 -2.902829807069099918e-03 -7.020396503291909812e-03 -3.075120986455629965e-02 -5.078298047848289754e-02
160 -5.514554978810590376e-03 -4.464163650698899782e-02 4.337340126271319735e-02 8.728689817594480205e-02 1.356652162000110060e-02 7.141131042098750048e-03 -1.394774321933030074e-02 -2.592261998182820038e-03 4.234489544960749752e-02 -1.764612515980519894e-02
161 -9.147093429830140468e-03 -4.464163650698899782e-02 -6.225218197761509670e-02 -7.452802442965950069e-02 -2.358420555142939912e-02 -1.321351897422090062e-02 4.460445801105040325e-03 -3.949338287409189657e-02 -3.581672810154919867e-02 -4.664087356364819692e-02
162 -4.547247794002570037e-02 5.068011873981870252e-02 6.385183066645029604e-02 7.007254470726349826e-02 1.332744202834990066e-01 1.314610703725430096e-01 -3.971920784793980114e-02 1.081111006295440019e-01 7.573758845754760549e-02 8.590654771106250032e-02
163 -5.273755484206479882e-02 -4.464163650698899782e-02 3.043965637614240091e-02 -7.452802442965950069e-02 -2.358420555142939912e-02 -1.133462820348369975e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 -3.075120986455629965e-02 -1.077697500466389974e-03
164 1.628067572730669890e-02 5.068011873981870252e-02 7.247432725749750060e-02 7.695828609473599757e-02 -8.448724111216979540e-03 5.575388733151089883e-03 -6.584467611156170040e-03 -2.592261998182820038e-03 -2.364455757213410059e-02 6.105390622205419948e-02
165 4.534098333546320025e-02 -4.464163650698899782e-02 -1.913969902237900103e-02 2.187235499495579841e-02 2.732605020201240090e-02 -1.352666743601040056e-02 1.001830287073690040e-01 -3.949338287409189657e-02 1.776347786711730131e-02 -1.350401824497050006e-02
166 -4.183993948900609910e-02 -4.464163650698899782e-02 -6.656343027313869898e-02 -4.698505887976939938e-02 -3.734373413344069942e-02 -4.327577130601600180e-02 4.864009945014990260e-02 -3.949338287409189657e-02 -5.615757309500619965e-02 -1.350401824497050006e-02
167 -5.637009329308430294e-02 5.068011873981870252e-02 -6.009655782985329903e-02 -3.665644679856060184e-02 -8.825398988688250290e-02 -7.083283594349480683e-02 -1.394774321933030074e-02 -3.949338287409189657e-02 -7.814091066906959926e-02 -1.046303703713340055e-01
168 7.076875249260000666e-02 -4.464163650698899782e-02 6.924089103585480409e-02 3.793908501382069892e-02 2.182223876920789951e-02 1.504458729887179960e-03 -3.603757004385269719e-02 3.910600459159439823e-02 7.763278919555950675e-02 1.066170822852360034e-01
169 1.750521923228520000e-03 5.068011873981870252e-02 5.954058237092670069e-02 -2.227739861197989939e-03 6.172487165704060308e-02 6.319470570242499696e-02 -5.812739686837520292e-02 1.081111006295440019e-01 6.898221163630259556e-02 1.273276168594099922e-01
170 -1.882016527791040067e-03 -4.464163650698899782e-02 -2.668438353954540043e-02 4.941532054484590319e-02 5.897296594063840269e-02 -1.603185513032660131e-02 -4.708248345611389801e-02 7.120997975363539678e-02 1.335989800130079896e-01 1.963283707370720027e-02
171 2.354575262934580082e-02 5.068011873981870252e-02 -2.021751109626000048e-02 -3.665644679856060184e-02 -1.395253554402150001e-02 -1.509240974495799914e-02 5.968501286241110343e-02 -3.949338287409189657e-02 -9.643322289178400675e-02 -1.764612515980519894e-02
172 -2.004470878288880029e-02 -4.464163650698899782e-02 -4.608500086940160029e-02 -9.862811928581330378e-02 -7.587041416307230279e-02 -5.987263978086120042e-02 -1.762938102341739949e-02 -3.949338287409189657e-02 -5.140053526058249722e-02 -4.664087356364819692e-02
173 4.170844488444359899e-02 5.068011873981870252e-02 7.139651518361660176e-02 8.100872220010799790e-03 3.833367306762140020e-02 1.590928797220559840e-02 -1.762938102341739949e-02 3.430885887772629900e-02 7.341007804911610368e-02 8.590654771106250032e-02
174 -6.363517019512339445e-02 5.068011873981870252e-02 -7.949717515970949888e-02 -5.670610554934250001e-03 -7.174255558846899528e-02 -6.644875747844139480e-02 -1.026610541524320026e-02 -3.949338287409189657e-02 -1.811826730789670159e-02 -5.492508739331759815e-02
175 1.628067572730669890e-02 5.068011873981870252e-02 9.961226972405269262e-03 -4.354218818603310115e-02 -9.650970703608929835e-02 -9.463211903949929338e-02 -3.971920784793980114e-02 -3.949338287409189657e-02 1.703713241477999851e-02 7.206516329203029904e-03
176 6.713621404158050254e-02 -4.464163650698899782e-02 -3.854031635223530150e-02 -2.632783471735180084e-02 -3.183992270063620150e-02 -2.636575436938120090e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -2.712864555432650121e-02 3.064409414368320182e-03
177 4.534098333546320025e-02 5.068011873981870252e-02 1.966153563733339868e-02 3.908670846363720280e-02 2.044628591100669870e-02 2.593003874947069978e-02 8.142083605192099172e-03 -2.592261998182820038e-03 -3.303712578676999863e-03 1.963283707370720027e-02
178 4.897352178648269744e-02 -4.464163650698899782e-02 2.720622015449970094e-02 -2.518021116424929914e-02 2.319819162740899970e-02 1.841447566652189977e-02 -6.180903467246220279e-02 8.006624876385350087e-02 7.222365081991240221e-02 3.205915781821130212e-02
179 4.170844488444359899e-02 -4.464163650698899782e-02 -8.361578283570040432e-03 -2.632783471735180084e-02 2.457414448561009990e-02 1.622243643399520069e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -4.836172480289190057e-02 -3.007244590430930078e-02
180 -2.367724723390840155e-02 -4.464163650698899782e-02 -1.590626280073640167e-02 -1.255635194240680048e-02 2.044628591100669870e-02 4.127431337715779802e-02 -4.340084565202689815e-02 3.430885887772629900e-02 1.407245251576850001e-02 -9.361911330135799444e-03
181 -3.820740103798660192e-02 5.068011873981870252e-02 4.572166603000769880e-03 3.564383776990089764e-02 -1.120062982761920074e-02 5.888537194940629722e-03 -4.708248345611389801e-02 3.430885887772629900e-02 1.630495279994180133e-02 -1.077697500466389974e-03
182 4.897352178648269744e-02 -4.464163650698899782e-02 -4.285156464775889684e-02 -5.387080026724189868e-02 4.521343735862710239e-02 5.004247030726469841e-02 3.391354823380159783e-02 -2.592261998182820038e-03 -2.595242443518940012e-02 -6.320930122298699938e-02
183 4.534098333546320025e-02 5.068011873981870252e-02 5.649978676881649634e-03 5.630106193231849965e-02 6.447677737344290061e-02 8.918602803095619647e-02 -3.971920784793980114e-02 7.120997975363539678e-02 1.556684454070180086e-02 -9.361911330135799444e-03
184 4.534098333546320025e-02 5.068011873981870252e-02 -3.530688013059259805e-02 6.318680331979099896e-02 -4.320865536613589623e-03 -1.627025888008149911e-03 -1.026610541524320026e-02 -2.592261998182820038e-03 1.556684454070180086e-02 5.691179930721949887e-02
185 1.628067572730669890e-02 -4.464163650698899782e-02 2.397278393285700096e-02 -2.288496402361559975e-02 -2.496015840963049931e-02 -2.605260590759169922e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 3.723201120896890010e-02 3.205915781821130212e-02
186 -7.453278554818210111e-02 5.068011873981870252e-02 -1.806188694849819934e-02 8.100872220010799790e-03 -1.945634697682600139e-02 -2.480001206043359885e-02 -6.549067247654929980e-02 3.430885887772629900e-02 6.731721791468489591e-02 -1.764612515980519894e-02
187 -8.179786245022120650e-02 5.068011873981870252e-02 4.229558918883229851e-02 -1.944209332987930153e-02 3.970962592582259754e-02 5.755803339021339782e-02 -6.917231028063640375e-02 1.081111006295440019e-01 4.718616788601970313e-02 -3.835665973397880263e-02
188 -6.726770864614299572e-02 -4.464163650698899782e-02 -5.470749746044879791e-02 -2.632783471735180084e-02 -7.587041416307230279e-02 -8.210618056791800512e-02 4.864009945014990260e-02 -7.639450375000099436e-02 -8.682899321629239386e-02 -1.046303703713340055e-01
189 5.383060374248070309e-03 -4.464163650698899782e-02 -2.972517914165530208e-03 4.941532054484590319e-02 7.410844738085080319e-02 7.071026878537380045e-02 4.495846164606279866e-02 -2.592261998182820038e-03 -1.498586820292070049e-03 -9.361911330135799444e-03
190 -1.882016527791040067e-03 -4.464163650698899782e-02 -6.656343027313869898e-02 1.215130832538269907e-03 -2.944912678412469915e-03 3.070201038834840124e-03 1.182372140927919965e-02 -2.592261998182820038e-03 -2.028874775162960165e-02 -2.593033898947460017e-02
191 9.015598825267629943e-03 -4.464163650698899782e-02 -1.267282657909369996e-02 2.875809638242839833e-02 -1.808039411862490120e-02 -5.071658967693000106e-03 -4.708248345611389801e-02 3.430885887772629900e-02 2.337484127982079885e-02 -5.219804415301099697e-03
192 -5.514554978810590376e-03 5.068011873981870252e-02 -4.177375257387799801e-02 -4.354218818603310115e-02 -7.999827273767569358e-02 -7.615635979391689736e-02 -3.235593223976569732e-02 -3.949338287409189657e-02 1.022564240495780000e-02 -9.361911330135799444e-03
193 5.623859868852180283e-02 5.068011873981870252e-02 -3.099563183506899924e-02 8.100872220010799790e-03 1.907033305280559851e-02 2.123281182262769934e-02 3.391354823380159783e-02 -3.949338287409189657e-02 -2.952762274177360077e-02 -5.906719430815229877e-02
194 9.015598825267629943e-03 5.068011873981870252e-02 -5.128142061927360405e-03 -6.419941234845069622e-02 6.998058880624739853e-02 8.386250418053420308e-02 -3.971920784793980114e-02 7.120997975363539678e-02 3.953987807202419963e-02 1.963283707370720027e-02
195 -6.726770864614299572e-02 -4.464163650698899782e-02 -5.901874575597240019e-02 3.220096707616459941e-02 -5.110326271545199972e-02 -4.953874054180659736e-02 -1.026610541524320026e-02 -3.949338287409189657e-02 2.007840549823790115e-03 2.377494398854190089e-02
196 2.717829108036539862e-02 5.068011873981870252e-02 2.505059600673789980e-02 1.498661360748330083e-02 2.595009734381130070e-02 4.847672799831700269e-02 -3.971920784793980114e-02 3.430885887772629900e-02 7.837142301823850701e-03 2.377494398854190089e-02
197 -2.367724723390840155e-02 -4.464163650698899782e-02 -4.608500086940160029e-02 -3.321357610482440076e-02 3.282986163481690228e-02 3.626393798852529937e-02 3.759518603788870178e-02 -2.592261998182820038e-03 -3.324878724762579674e-02 1.134862324403770016e-02
198 4.897352178648269744e-02 5.068011873981870252e-02 3.494354529119849794e-03 7.007254470726349826e-02 -8.448724111216979540e-03 1.340410027788939938e-02 -5.444575906428809897e-02 3.430885887772629900e-02 1.331596790892770020e-02 3.620126473304600273e-02
199 -5.273755484206479882e-02 -4.464163650698899782e-02 5.415152200152219958e-02 -2.632783471735180084e-02 -5.523112129005539744e-02 -3.388131745233000092e-02 -1.394774321933030074e-02 -3.949338287409189657e-02 -7.408887149153539631e-02 -5.906719430815229877e-02
200 4.170844488444359899e-02 -4.464163650698899782e-02 -4.500718879552070145e-02 3.449621432008449784e-02 4.383748450042589812e-02 -1.571870666853709964e-02 3.759518603788870178e-02 -1.440062067847370023e-02 8.989869327767099905e-02 7.206516329203029904e-03
201 5.623859868852180283e-02 -4.464163650698899782e-02 -5.794093368209150136e-02 -7.965857695567990157e-03 5.209320164963270050e-02 4.910302492189610318e-02 5.600337505832399948e-02 -2.141183364489639834e-02 -2.832024254799870092e-02 4.448547856271539702e-02
202 -3.457486258696700065e-02 5.068011873981870252e-02 -5.578530953432969675e-02 -1.599922263614299983e-02 -9.824676969418109224e-03 -7.889995123798789270e-03 3.759518603788870178e-02 -3.949338287409189657e-02 -5.295879323920039961e-02 2.791705090337660150e-02
203 8.166636784565869944e-02 5.068011873981870252e-02 1.338730381358059929e-03 3.564383776990089764e-02 1.263946559924939983e-01 9.106491880169340081e-02 1.918699701745330000e-02 3.430885887772629900e-02 8.449528221240310000e-02 -3.007244590430930078e-02
204 -1.882016527791040067e-03 5.068011873981870252e-02 3.043965637614240091e-02 5.285819123858220142e-02 3.970962592582259754e-02 5.661858800484489973e-02 -3.971920784793980114e-02 7.120997975363539678e-02 2.539313491544940155e-02 2.791705090337660150e-02
205 1.107266754538149961e-01 5.068011873981870252e-02 6.727790750762559745e-03 2.875809638242839833e-02 -2.771206412603280031e-02 -7.263698200219739949e-03 -4.708248345611389801e-02 3.430885887772629900e-02 2.007840549823790115e-03 7.762233388139309909e-02
206 -3.094232413594750000e-02 -4.464163650698899782e-02 4.660683748435590079e-02 1.498661360748330083e-02 -1.670444126042380101e-02 -4.703355284749029946e-02 7.788079970179680352e-04 -2.592261998182820038e-03 6.345592137206540473e-02 -2.593033898947460017e-02
207 1.750521923228520000e-03 5.068011873981870252e-02 2.612840808061879863e-02 -9.113481248670509197e-03 2.457414448561009990e-02 3.845597722105199845e-02 -2.131101882750449997e-02 3.430885887772629900e-02 9.436409146079870192e-03 3.064409414368320182e-03
208 9.015598825267629943e-03 -4.464163650698899782e-02 4.552902541047500196e-02 2.875809638242839833e-02 1.219056876180000040e-02 -1.383981589779990050e-02 2.655027262562750096e-02 -3.949338287409189657e-02 4.613233103941480340e-02 3.620126473304600273e-02
209 3.081082953138499989e-02 -4.464163650698899782e-02 4.013996504107050084e-02 7.695828609473599757e-02 1.769438019460449832e-02 3.782968029747289795e-02 -2.867429443567860031e-02 3.430885887772629900e-02 -1.498586820292070049e-03 1.190434030297399942e-01
210 3.807590643342410180e-02 5.068011873981870252e-02 -1.806188694849819934e-02 6.662967401352719310e-02 -5.110326271545199972e-02 -1.665815205390569834e-02 -7.653558588881050062e-02 3.430885887772629900e-02 -1.190068480150809939e-02 -1.350401824497050006e-02
211 9.015598825267629943e-03 -4.464163650698899782e-02 1.427247526792889930e-02 1.498661360748330083e-02 5.484510736603499803e-02 4.722413415115889884e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -3.324878724762579674e-02 -5.906719430815229877e-02
212 9.256398319871740610e-02 -4.464163650698899782e-02 3.690652881942779739e-02 2.187235499495579841e-02 -2.496015840963049931e-02 -1.665815205390569834e-02 7.788079970179680352e-04 -3.949338287409189657e-02 -2.251217192966049885e-02 -2.178823207463989955e-02
213 6.713621404158050254e-02 -4.464163650698899782e-02 3.494354529119849794e-03 3.564383776990089764e-02 4.934129593323050011e-02 3.125356259989280072e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -6.092541861022970299e-04 1.963283707370720027e-02
214 1.750521923228520000e-03 -4.464163650698899782e-02 -7.087467856866229432e-02 -2.288496402361559975e-02 -1.568959820211340015e-03 -1.000728964429089965e-03 2.655027262562750096e-02 -3.949338287409189657e-02 -2.251217192966049885e-02 7.206516329203029904e-03
215 3.081082953138499989e-02 -4.464163650698899782e-02 -3.315125598283080038e-02 -2.288496402361559975e-02 -4.697540414084860200e-02 -8.116673518254939601e-02 1.038646665114559969e-01 -7.639450375000099436e-02 -3.980959436433750137e-02 -5.492508739331759815e-02
216 2.717829108036539862e-02 5.068011873981870252e-02 9.403056873511560221e-02 9.761551025715360652e-02 -3.459182841703849903e-02 -3.200242668159279658e-02 -4.340084565202689815e-02 -2.592261998182820038e-03 3.664579779339879884e-02 1.066170822852360034e-01
217 1.264813727628719998e-02 5.068011873981870252e-02 3.582871674554689856e-02 4.941532054484590319e-02 5.346915450783389784e-02 7.415490186505870052e-02 -6.917231028063640375e-02 1.450122215054540087e-01 4.560080841412490066e-02 4.862758547755009764e-02
218 7.440129094361959405e-02 -4.464163650698899782e-02 3.151746845002330322e-02 1.010583809508899950e-01 4.658939021682820258e-02 3.689023491210430272e-02 1.550535921336619952e-02 -2.592261998182820038e-03 3.365681290238470291e-02 4.448547856271539702e-02
219 -4.183993948900609910e-02 -4.464163650698899782e-02 -6.548561819925780014e-02 -4.009931749229690007e-02 -5.696818394814720174e-03 1.434354566325799982e-02 -4.340084565202689815e-02 3.430885887772629900e-02 7.026862549151949647e-03 -1.350401824497050006e-02
220 -8.906293935226029801e-02 -4.464163650698899782e-02 -4.177375257387799801e-02 -1.944209332987930153e-02 -6.623874415566440021e-02 -7.427746902317970690e-02 8.142083605192099172e-03 -3.949338287409189657e-02 1.143797379512540100e-03 -3.007244590430930078e-02
221 2.354575262934580082e-02 5.068011873981870252e-02 -3.961812842611620034e-02 -5.670610554934250001e-03 -4.835135699904979933e-02 -3.325502052875090042e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -1.016435479455120028e-01 -6.735140813782170000e-02
222 -4.547247794002570037e-02 -4.464163650698899782e-02 -3.854031635223530150e-02 -2.632783471735180084e-02 -1.532848840222260020e-02 8.781618063081050515e-04 -3.235593223976569732e-02 -2.592261998182820038e-03 1.143797379512540100e-03 -3.835665973397880263e-02
223 -2.367724723390840155e-02 5.068011873981870252e-02 -2.560657146566450160e-02 4.252957915737339695e-02 -5.385516843185429725e-02 -4.765984977106939996e-02 -2.131101882750449997e-02 -3.949338287409189657e-02 1.143797379512540100e-03 1.963283707370720027e-02
224 -9.996055470531900466e-02 -4.464163650698899782e-02 -2.345094731790270046e-02 -6.419941234845069622e-02 -5.798302700645770191e-02 -6.018578824265070210e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -1.811826730789670159e-02 -5.078298047848289754e-02
225 -2.730978568492789874e-02 -4.464163650698899782e-02 -6.656343027313869898e-02 -1.123996020607579971e-01 -4.972730985725089953e-02 -4.139688053527879746e-02 7.788079970179680352e-04 -3.949338287409189657e-02 -3.581672810154919867e-02 -9.361911330135799444e-03
226 3.081082953138499989e-02 5.068011873981870252e-02 3.259528052390420205e-02 4.941532054484590319e-02 -4.009563984984299695e-02 -4.358891976780549654e-02 -6.917231028063640375e-02 3.430885887772629900e-02 6.301661511474640487e-02 3.064409414368320182e-03
227 -1.035930931563389945e-01 5.068011873981870252e-02 -4.608500086940160029e-02 -2.632783471735180084e-02 -2.496015840963049931e-02 -2.480001206043359885e-02 3.023191042971450082e-02 -3.949338287409189657e-02 -3.980959436433750137e-02 -5.492508739331759815e-02
228 6.713621404158050254e-02 5.068011873981870252e-02 -2.991781976118810041e-02 5.744868538213489945e-02 -1.930069620102049918e-04 -1.571870666853709964e-02 7.441156407875940126e-02 -5.056371913686460301e-02 -3.845911230135379971e-02 7.206516329203029904e-03
229 -5.273755484206479882e-02 -4.464163650698899782e-02 -1.267282657909369996e-02 -6.075654165471439799e-02 -1.930069620102049918e-04 8.080576427467340075e-03 1.182372140927919965e-02 -2.592261998182820038e-03 -2.712864555432650121e-02 -5.078298047848289754e-02
230 -2.730978568492789874e-02 5.068011873981870252e-02 -1.590626280073640167e-02 -2.977070541108809906e-02 3.934851612593179802e-03 -6.875805026395569565e-04 4.127682384197570165e-02 -3.949338287409189657e-02 -2.364455757213410059e-02 1.134862324403770016e-02
231 -3.820740103798660192e-02 5.068011873981870252e-02 7.139651518361660176e-02 -5.731367096097819691e-02 1.539137131565160022e-01 1.558866503921270130e-01 7.788079970179680352e-04 7.194800217115350505e-02 5.027649338998960160e-02 6.933812005172369786e-02
232 9.015598825267629943e-03 -4.464163650698899782e-02 -3.099563183506899924e-02 2.187235499495579841e-02 8.062710187196569719e-03 8.706873351046409346e-03 4.460445801105040325e-03 -2.592261998182820038e-03 9.436409146079870192e-03 1.134862324403770016e-02
233 1.264813727628719998e-02 5.068011873981870252e-02 2.609183074771409820e-04 -1.140872838930430053e-02 3.970962592582259754e-02 5.724488492842390308e-02 -3.971920784793980114e-02 5.608052019451260223e-02 2.405258322689299982e-02 3.205915781821130212e-02
234 6.713621404158050254e-02 -4.464163650698899782e-02 3.690652881942779739e-02 -5.042792957350569760e-02 -2.358420555142939912e-02 -3.450761437590899733e-02 4.864009945014990260e-02 -3.949338287409189657e-02 -2.595242443518940012e-02 -3.835665973397880263e-02
235 4.534098333546320025e-02 -4.464163650698899782e-02 3.906215296718960200e-02 4.597244985110970211e-02 6.686757328995440036e-03 -2.417371513685449835e-02 8.142083605192099172e-03 -1.255556463467829946e-02 6.432823302367089713e-02 5.691179930721949887e-02
236 6.713621404158050254e-02 5.068011873981870252e-02 -1.482845072685549936e-02 5.859630917623830093e-02 -5.935897986465880211e-02 -3.450761437590899733e-02 -6.180903467246220279e-02 1.290620876969899959e-02 -5.145307980263110273e-03 4.862758547755009764e-02
237 2.717829108036539862e-02 -4.464163650698899782e-02 6.727790750762559745e-03 3.564383776990089764e-02 7.961225881365530110e-02 7.071026878537380045e-02 1.550535921336619952e-02 3.430885887772629900e-02 4.067226371449769728e-02 1.134862324403770016e-02
238 5.623859868852180283e-02 -4.464163650698899782e-02 -6.871905442090049665e-02 -6.878990659528949614e-02 -1.930069620102049918e-04 -1.000728964429089965e-03 4.495846164606279866e-02 -3.764832683029650101e-02 -4.836172480289190057e-02 -1.077697500466389974e-03
239 3.444336798240450054e-02 5.068011873981870252e-02 -9.439390357450949676e-03 5.974393262605470073e-02 -3.596778127523959923e-02 -7.576846662009279788e-03 -7.653558588881050062e-02 7.120997975363539678e-02 1.100810104587249955e-02 -2.178823207463989955e-02
240 2.354575262934580082e-02 -4.464163650698899782e-02 1.966153563733339868e-02 -1.255635194240680048e-02 8.374011738825870577e-02 3.876912568284150012e-02 6.336665066649820044e-02 -2.592261998182820038e-03 6.604820616309839409e-02 4.862758547755009764e-02
241 4.897352178648269744e-02 5.068011873981870252e-02 7.462995140525929827e-02 6.662967401352719310e-02 -9.824676969418109224e-03 -2.253322811587220049e-03 -4.340084565202689815e-02 3.430885887772629900e-02 3.365681290238470291e-02 1.963283707370720027e-02
242 3.081082953138499989e-02 5.068011873981870252e-02 -8.361578283570040432e-03 4.658001526274530187e-03 1.494247447820220079e-02 2.749578105841839898e-02 8.142083605192099172e-03 -8.127430129569179762e-03 -2.952762274177360077e-02 5.691179930721949887e-02
243 -1.035930931563389945e-01 5.068011873981870252e-02 -2.345094731790270046e-02 -2.288496402361559975e-02 -8.687803702868139577e-02 -6.770135132559949864e-02 -1.762938102341739949e-02 -3.949338287409189657e-02 -7.814091066906959926e-02 -7.149351505265640061e-02
244 1.628067572730669890e-02 5.068011873981870252e-02 -4.608500086940160029e-02 1.154374291374709975e-02 -3.321587555883730170e-02 -1.603185513032660131e-02 -1.026610541524320026e-02 -2.592261998182820038e-03 -4.398540256559110156e-02 -4.249876664881350324e-02
245 -6.000263174410389727e-02 5.068011873981870252e-02 5.415152200152219958e-02 -1.944209332987930153e-02 -4.972730985725089953e-02 -4.891244361822749687e-02 2.286863482154040048e-02 -3.949338287409189657e-02 -4.398540256559110156e-02 -5.219804415301099697e-03
246 -2.730978568492789874e-02 -4.464163650698899782e-02 -3.530688013059259805e-02 -2.977070541108809906e-02 -5.660707414825649764e-02 -5.862004593370299943e-02 3.023191042971450082e-02 -3.949338287409189657e-02 -4.986846773523059828e-02 -1.294830118603420011e-01
247 4.170844488444359899e-02 -4.464163650698899782e-02 -3.207344390894990155e-02 -6.190416520781699683e-02 7.961225881365530110e-02 5.098191569263330059e-02 5.600337505832399948e-02 -9.972486173364639508e-03 4.506616833626150148e-02 -5.906719430815229877e-02
248 -8.179786245022120650e-02 -4.464163650698899782e-02 -8.165279930747129655e-02 -4.009931749229690007e-02 2.558898754392050119e-03 -1.853704282464289921e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -1.090443584737709956e-02 -9.220404962683000083e-02
249 -4.183993948900609910e-02 -4.464163650698899782e-02 4.768464955823679963e-02 5.974393262605470073e-02 1.277706088506949944e-01 1.280164372928579986e-01 -2.499265663159149983e-02 1.081111006295440019e-01 6.389312063683939835e-02 4.034337164788070335e-02
250 -1.277963188084970010e-02 -4.464163650698899782e-02 6.061839444480759953e-02 5.285819123858220142e-02 4.796534307502930278e-02 2.937467182915549924e-02 -1.762938102341739949e-02 3.430885887772629900e-02 7.021129819331020649e-02 7.206516329203029904e-03
251 6.713621404158050254e-02 -4.464163650698899782e-02 5.630714614928399725e-02 7.351541540099980343e-02 -1.395253554402150001e-02 -3.920484130275200124e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 7.573758845754760549e-02 3.620126473304600273e-02
252 -5.273755484206479882e-02 5.068011873981870252e-02 9.834181703063900326e-02 8.728689817594480205e-02 6.034891879883950289e-02 4.878987646010649742e-02 -5.812739686837520292e-02 1.081111006295440019e-01 8.449528221240310000e-02 4.034337164788070335e-02
253 5.383060374248070309e-03 -4.464163650698899782e-02 5.954058237092670069e-02 -5.616604740787570216e-02 2.457414448561009990e-02 5.286080646337049799e-02 -4.340084565202689815e-02 5.091436327188540029e-02 -4.219859706946029777e-03 -3.007244590430930078e-02
254 8.166636784565869944e-02 -4.464163650698899782e-02 3.367309259778510089e-02 8.100872220010799790e-03 5.209320164963270050e-02 5.661858800484489973e-02 -1.762938102341739949e-02 3.430885887772629900e-02 3.486419309615960277e-02 6.933812005172369786e-02
255 3.081082953138499989e-02 5.068011873981870252e-02 5.630714614928399725e-02 7.695828609473599757e-02 4.934129593323050011e-02 -1.227407358885230018e-02 -3.603757004385269719e-02 7.120997975363539678e-02 1.200533820015380060e-01 9.004865462589720093e-02
256 1.750521923228520000e-03 -4.464163650698899782e-02 -6.548561819925780014e-02 -5.670610554934250001e-03 -7.072771253015849857e-03 -1.947648821001150138e-02 4.127682384197570165e-02 -3.949338287409189657e-02 -3.303712578676999863e-03 7.206516329203029904e-03
257 -4.910501639104519755e-02 -4.464163650698899782e-02 1.608549173157310108e-01 -4.698505887976939938e-02 -2.908801698423390050e-02 -1.978963667180099958e-02 -4.708248345611389801e-02 3.430885887772629900e-02 2.801650652326400162e-02 1.134862324403770016e-02
258 -2.730978568492789874e-02 5.068011873981870252e-02 -5.578530953432969675e-02 2.531522568869210010e-02 -7.072771253015849857e-03 -2.354741821327540133e-02 5.232173725423699961e-02 -3.949338287409189657e-02 -5.145307980263110273e-03 -5.078298047848289754e-02
259 7.803382939463919532e-02 5.068011873981870252e-02 -2.452875939178359929e-02 -4.239456463293059946e-02 6.686757328995440036e-03 5.286080646337049799e-02 -6.917231028063640375e-02 8.080427118137170628e-02 -3.712834601047360072e-02 5.691179930721949887e-02
260 1.264813727628719998e-02 -4.464163650698899782e-02 -3.638469220447349689e-02 4.252957915737339695e-02 -1.395253554402150001e-02 1.293437758520510003e-02 -2.683347553363510038e-02 5.156973385758089994e-03 -4.398540256559110156e-02 7.206516329203029904e-03
261 4.170844488444359899e-02 -4.464163650698899782e-02 -8.361578283570040432e-03 -5.731367096097819691e-02 8.062710187196569719e-03 -3.137612975801370302e-02 1.517259579645879874e-01 -7.639450375000099436e-02 -8.023654024890179703e-02 -1.764612515980519894e-02
262 4.897352178648269744e-02 -4.464163650698899782e-02 -4.177375257387799801e-02 1.045012516446259948e-01 3.558176735121919981e-02 -2.573945744580210040e-02 1.774974225931970073e-01 -7.639450375000099436e-02 -1.290794225416879923e-02 1.549073015887240078e-02
263 -1.641217033186929963e-02 5.068011873981870252e-02 1.274427430254229943e-01 9.761551025715360652e-02 1.631842733640340160e-02 1.747503028115330106e-02 -2.131101882750449997e-02 3.430885887772629900e-02 3.486419309615960277e-02 3.064409414368320182e-03
264 -7.453278554818210111e-02 5.068011873981870252e-02 -7.734155101194770121e-02 -4.698505887976939938e-02 -4.697540414084860200e-02 -3.262872360517189707e-02 4.460445801105040325e-03 -3.949338287409189657e-02 -7.212845460195599356e-02 -1.764612515980519894e-02
265 3.444336798240450054e-02 5.068011873981870252e-02 2.828403222838059977e-02 -3.321357610482440076e-02 -4.559945128264750180e-02 -9.768885894535990141e-03 -5.076412126020100196e-02 -2.592261998182820038e-03 -5.947269741072230137e-02 -2.178823207463989955e-02
266 -3.457486258696700065e-02 5.068011873981870252e-02 -2.560657146566450160e-02 -1.714684618924559867e-02 1.182945896190920002e-03 -2.879619735166290186e-03 8.142083605192099172e-03 -1.550765430475099967e-02 1.482271084126630077e-02 4.034337164788070335e-02
267 -5.273755484206479882e-02 5.068011873981870252e-02 -6.225218197761509670e-02 1.154374291374709975e-02 -8.448724111216979540e-03 -3.669965360843580049e-02 1.222728555318910032e-01 -7.639450375000099436e-02 -8.682899321629239386e-02 3.064409414368320182e-03
268 5.987113713954139715e-02 -4.464163650698899782e-02 -8.168937664037369826e-04 -8.485663651086830517e-02 7.548440023905199359e-02 7.947842571548069390e-02 4.460445801105040325e-03 3.430885887772629900e-02 2.337484127982079885e-02 2.791705090337660150e-02
269 6.350367559056099842e-02 5.068011873981870252e-02 8.864150836571099701e-02 7.007254470726349826e-02 2.044628591100669870e-02 3.751653183568340322e-02 -5.076412126020100196e-02 7.120997975363539678e-02 2.930041326858690010e-02 7.348022696655839847e-02
270 9.015598825267629943e-03 -4.464163650698899782e-02 -3.207344390894990155e-02 -2.632783471735180084e-02 4.246153164222479792e-02 -1.039518281811509931e-02 1.590892335727620011e-01 -7.639450375000099436e-02 -1.190068480150809939e-02 -3.835665973397880263e-02
271 5.383060374248070309e-03 5.068011873981870252e-02 3.043965637614240091e-02 8.384402748220859403e-02 -3.734373413344069942e-02 -4.734670130927989828e-02 1.550535921336619952e-02 -3.949338287409189657e-02 8.640282933063080789e-03 1.549073015887240078e-02
272 3.807590643342410180e-02 5.068011873981870252e-02 8.883414898524360018e-03 4.252957915737339695e-02 -4.284754556624519733e-02 -2.104223051895920057e-02 -3.971920784793980114e-02 -2.592261998182820038e-03 -1.811826730789670159e-02 7.206516329203029904e-03
273 1.264813727628719998e-02 -4.464163650698899782e-02 6.727790750762559745e-03 -5.616604740787570216e-02 -7.587041416307230279e-02 -6.644875747844139480e-02 -2.131101882750449997e-02 -3.764832683029650101e-02 -1.811826730789670159e-02 -9.220404962683000083e-02
274 7.440129094361959405e-02 5.068011873981870252e-02 -2.021751109626000048e-02 4.597244985110970211e-02 7.410844738085080319e-02 3.281930490884039930e-02 -3.603757004385269719e-02 7.120997975363539678e-02 1.063542767417259977e-01 3.620126473304600273e-02
275 1.628067572730669890e-02 -4.464163650698899782e-02 -2.452875939178359929e-02 3.564383776990089764e-02 -7.072771253015849857e-03 -3.192768196955810076e-03 -1.394774321933030074e-02 -2.592261998182820038e-03 1.556684454070180086e-02 1.549073015887240078e-02
276 -5.514554978810590376e-03 5.068011873981870252e-02 -1.159501450521270051e-02 1.154374291374709975e-02 -2.220825269322829892e-02 -1.540555820674759969e-02 -2.131101882750449997e-02 -2.592261998182820038e-03 1.100810104587249955e-02 6.933812005172369786e-02
277 1.264813727628719998e-02 -4.464163650698899782e-02 2.612840808061879863e-02 6.318680331979099896e-02 1.250187031342930022e-01 9.169121572527250130e-02 6.336665066649820044e-02 -2.592261998182820038e-03 5.757285620242599822e-02 -2.178823207463989955e-02
278 -3.457486258696700065e-02 -4.464163650698899782e-02 -5.901874575597240019e-02 1.215130832538269907e-03 -5.385516843185429725e-02 -7.803525056465400456e-02 6.704828847058519337e-02 -7.639450375000099436e-02 -2.139368094035999993e-02 1.549073015887240078e-02
279 6.713621404158050254e-02 5.068011873981870252e-02 -3.638469220447349689e-02 -8.485663651086830517e-02 -7.072771253015849857e-03 1.966706951368000014e-02 -5.444575906428809897e-02 3.430885887772629900e-02 1.143797379512540100e-03 3.205915781821130212e-02
280 3.807590643342410180e-02 5.068011873981870252e-02 -2.452875939178359929e-02 4.658001526274530187e-03 -2.633611126783170012e-02 -2.636575436938120090e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -1.599826775813870117e-02 -2.593033898947460017e-02
281 9.015598825267629943e-03 5.068011873981870252e-02 1.858372356345249984e-02 3.908670846363720280e-02 1.769438019460449832e-02 1.058576412178359981e-02 1.918699701745330000e-02 -2.592261998182820038e-03 1.630495279994180133e-02 -1.764612515980519894e-02
282 -9.269547780327989928e-02 5.068011873981870252e-02 -9.027529589851850111e-02 -5.731367096097819691e-02 -2.496015840963049931e-02 -3.043668437264510085e-02 -6.584467611156170040e-03 -2.592261998182820038e-03 2.405258322689299982e-02 3.064409414368320182e-03
283 7.076875249260000666e-02 -4.464163650698899782e-02 -5.128142061927360405e-03 -5.670610554934250001e-03 8.786797596286209655e-02 1.029645603496960049e-01 1.182372140927919965e-02 3.430885887772629900e-02 -8.944018957797799166e-03 2.791705090337660150e-02
284 -1.641217033186929963e-02 -4.464163650698899782e-02 -5.255187331268700024e-02 -3.321357610482440076e-02 -4.422349842444640161e-02 -3.638650514664620167e-02 1.918699701745330000e-02 -3.949338287409189657e-02 -6.832974362442149896e-02 -3.007244590430930078e-02
285 4.170844488444359899e-02 5.068011873981870252e-02 -2.237313524402180162e-02 2.875809638242839833e-02 -6.623874415566440021e-02 -4.515466207675319921e-02 -6.180903467246220279e-02 -2.592261998182820038e-03 2.863770518940129874e-03 -5.492508739331759815e-02
286 1.264813727628719998e-02 -4.464163650698899782e-02 -2.021751109626000048e-02 -1.599922263614299983e-02 1.219056876180000040e-02 2.123281182262769934e-02 -7.653558588881050062e-02 1.081111006295440019e-01 5.988072306548120061e-02 -2.178823207463989955e-02
287 -3.820740103798660192e-02 -4.464163650698899782e-02 -5.470749746044879791e-02 -7.797089512339580586e-02 -3.321587555883730170e-02 -8.649025903297140327e-02 1.406810445523269948e-01 -7.639450375000099436e-02 -1.919704761394450121e-02 -5.219804415301099697e-03
288 4.534098333546320025e-02 -4.464163650698899782e-02 -6.205954135808240159e-03 -1.599922263614299983e-02 1.250187031342930022e-01 1.251981011367520047e-01 1.918699701745330000e-02 3.430885887772629900e-02 3.243322577960189995e-02 -5.219804415301099697e-03
289 7.076875249260000666e-02 5.068011873981870252e-02 -1.698407487461730050e-02 2.187235499495579841e-02 4.383748450042589812e-02 5.630543954305530091e-02 3.759518603788870178e-02 -2.592261998182820038e-03 -7.020931272868760620e-02 -1.764612515980519894e-02
290 -7.453278554818210111e-02 5.068011873981870252e-02 5.522933407540309841e-02 -4.009931749229690007e-02 5.346915450783389784e-02 5.317395492515999966e-02 -4.340084565202689815e-02 7.120997975363539678e-02 6.123790751970099866e-02 -3.421455281914410201e-02
291 5.987113713954139715e-02 5.068011873981870252e-02 7.678557555302109594e-02 2.531522568869210010e-02 1.182945896190920002e-03 1.684873335757430118e-02 -5.444575906428809897e-02 3.430885887772629900e-02 2.993564839653250001e-02 4.448547856271539702e-02
292 7.440129094361959405e-02 -4.464163650698899782e-02 1.858372356345249984e-02 6.318680331979099896e-02 6.172487165704060308e-02 4.284005568610550069e-02 8.142083605192099172e-03 -2.592261998182820038e-03 5.803912766389510147e-02 -5.906719430815229877e-02
293 9.015598825267629943e-03 -4.464163650698899782e-02 -2.237313524402180162e-02 -3.206595255172180192e-02 -4.972730985725089953e-02 -6.864079671096809387e-02 7.809320188284639419e-02 -7.085933561861459951e-02 -6.291294991625119570e-02 -3.835665973397880263e-02
294 -7.090024709716259699e-02 -4.464163650698899782e-02 9.295275666123460623e-02 1.269136646684959971e-02 2.044628591100669870e-02 4.252690722431590187e-02 7.788079970179680352e-04 3.598276718899090076e-04 -5.454415271109520208e-02 -1.077697500466389974e-03
295 2.354575262934580082e-02 5.068011873981870252e-02 -3.099563183506899924e-02 -5.670610554934250001e-03 -1.670444126042380101e-02 1.778817874294279927e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 -7.408887149153539631e-02 -3.421455281914410201e-02
296 -5.273755484206479882e-02 5.068011873981870252e-02 3.906215296718960200e-02 -4.009931749229690007e-02 -5.696818394814720174e-03 -1.290037051243130006e-02 1.182372140927919965e-02 -3.949338287409189657e-02 1.630495279994180133e-02 3.064409414368320182e-03
297 6.713621404158050254e-02 -4.464163650698899782e-02 -6.117436990373419786e-02 -4.009931749229690007e-02 -2.633611126783170012e-02 -2.448686359864400003e-02 3.391354823380159783e-02 -3.949338287409189657e-02 -5.615757309500619965e-02 -5.906719430815229877e-02
298 1.750521923228520000e-03 -4.464163650698899782e-02 -8.361578283570040432e-03 -6.419941234845069622e-02 -3.871968699164179961e-02 -2.448686359864400003e-02 4.460445801105040325e-03 -3.949338287409189657e-02 -6.468302246445030435e-02 -5.492508739331759815e-02
299 2.354575262934580082e-02 5.068011873981870252e-02 -3.746250427835440266e-02 -4.698505887976939938e-02 -9.100589560328480043e-02 -7.553006287033779687e-02 -3.235593223976569732e-02 -3.949338287409189657e-02 -3.075120986455629965e-02 -1.350401824497050006e-02
300 3.807590643342410180e-02 5.068011873981870252e-02 -1.375063865297449991e-02 -1.599922263614299983e-02 -3.596778127523959923e-02 -2.198167590432769866e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 -2.595242443518940012e-02 -1.077697500466389974e-03
301 1.628067572730669890e-02 -4.464163650698899782e-02 7.355213933137849658e-02 -4.124694104539940176e-02 -4.320865536613589623e-03 -1.352666743601040056e-02 -1.394774321933030074e-02 -1.116217163146459961e-03 4.289568789252869857e-02 4.448547856271539702e-02
302 -1.882016527791040067e-03 5.068011873981870252e-02 -2.452875939178359929e-02 5.285819123858220142e-02 2.732605020201240090e-02 3.000096875273459973e-02 3.023191042971450082e-02 -2.592261998182820038e-03 -2.139368094035999993e-02 3.620126473304600273e-02
303 1.264813727628719998e-02 -4.464163650698899782e-02 3.367309259778510089e-02 3.334859052598110329e-02 3.007795591841460128e-02 2.718263259662880016e-02 -2.902829807069099918e-03 8.847085473348980864e-03 3.119299070280229930e-02 2.791705090337660150e-02
304 7.440129094361959405e-02 -4.464163650698899782e-02 3.475090467166599972e-02 9.417263956341730136e-02 5.759701308243719842e-02 2.029336643725910064e-02 2.286863482154040048e-02 -2.592261998182820038e-03 7.380214692004880006e-02 -2.178823207463989955e-02
305 4.170844488444359899e-02 5.068011873981870252e-02 -3.854031635223530150e-02 5.285819123858220142e-02 7.686035309725310072e-02 1.164299442066459994e-01 -3.971920784793980114e-02 7.120997975363539678e-02 -2.251217192966049885e-02 -1.350401824497050006e-02
306 -9.147093429830140468e-03 5.068011873981870252e-02 -3.961812842611620034e-02 -4.009931749229690007e-02 -8.448724111216979540e-03 1.622243643399520069e-02 -6.549067247654929980e-02 7.120997975363539678e-02 1.776347786711730131e-02 -6.735140813782170000e-02
307 9.015598825267629943e-03 5.068011873981870252e-02 -1.894705840284650021e-03 2.187235499495579841e-02 -3.871968699164179961e-02 -2.480001206043359885e-02 -6.584467611156170040e-03 -3.949338287409189657e-02 -3.980959436433750137e-02 -1.350401824497050006e-02
308 6.713621404158050254e-02 5.068011873981870252e-02 -3.099563183506899924e-02 4.658001526274530187e-03 2.457414448561009990e-02 3.563764106494619888e-02 -2.867429443567860031e-02 3.430885887772629900e-02 2.337484127982079885e-02 8.176444079622779970e-02
309 1.750521923228520000e-03 -4.464163650698899782e-02 -4.608500086940160029e-02 -3.321357610482440076e-02 -7.311850844667000526e-02 -8.147988364433890462e-02 4.495846164606279866e-02 -6.938329078357829971e-02 -6.117659509433449883e-02 -7.977772888232589898e-02
310 -9.147093429830140468e-03 5.068011873981870252e-02 1.338730381358059929e-03 -2.227739861197989939e-03 7.961225881365530110e-02 7.008397186179469995e-02 3.391354823380159783e-02 -2.592261998182820038e-03 2.671425763351279944e-02 8.176444079622779970e-02
311 -5.514554978810590376e-03 -4.464163650698899782e-02 6.492964274033119487e-02 3.564383776990089764e-02 -1.568959820211340015e-03 1.496984258683710031e-02 -1.394774321933030074e-02 7.288388806489919797e-04 -1.811826730789670159e-02 3.205915781821130212e-02
312 9.619652164973699349e-02 -4.464163650698899782e-02 4.013996504107050084e-02 -5.731367096097819691e-02 4.521343735862710239e-02 6.068951800810880315e-02 -2.131101882750449997e-02 3.615391492152170150e-02 1.255315281338930007e-02 2.377494398854190089e-02
313 -7.453278554818210111e-02 -4.464163650698899782e-02 -2.345094731790270046e-02 -5.670610554934250001e-03 -2.083229983502719873e-02 -1.415296435958940044e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -3.845911230135379971e-02 -3.007244590430930078e-02
314 5.987113713954139715e-02 5.068011873981870252e-02 5.307370992764130074e-02 5.285819123858220142e-02 3.282986163481690228e-02 1.966706951368000014e-02 -1.026610541524320026e-02 3.430885887772629900e-02 5.520503808961670089e-02 -1.077697500466389974e-03
315 -2.367724723390840155e-02 -4.464163650698899782e-02 4.013996504107050084e-02 -1.255635194240680048e-02 -9.824676969418109224e-03 -1.000728964429089965e-03 -2.902829807069099918e-03 -2.592261998182820038e-03 -1.190068480150809939e-02 -3.835665973397880263e-02
316 9.015598825267629943e-03 -4.464163650698899782e-02 -2.021751109626000048e-02 -5.387080026724189868e-02 3.145390877661580209e-02 2.060651489904859884e-02 5.600337505832399948e-02 -3.949338287409189657e-02 -1.090443584737709956e-02 -1.077697500466389974e-03
317 1.628067572730669890e-02 5.068011873981870252e-02 1.427247526792889930e-02 1.215130832538269907e-03 1.182945896190920002e-03 -2.135537898074869878e-02 -3.235593223976569732e-02 3.430885887772629900e-02 7.496833602773420036e-02 4.034337164788070335e-02
318 1.991321417832630017e-02 -4.464163650698899782e-02 -3.422906805671169922e-02 5.515343848250200270e-02 6.722868308984519814e-02 7.415490186505870052e-02 -6.584467611156170040e-03 3.283281404268990206e-02 2.472532334280450050e-02 6.933812005172369786e-02
319 8.893144474769780483e-02 -4.464163650698899782e-02 6.727790750762559745e-03 2.531522568869210010e-02 3.007795591841460128e-02 8.706873351046409346e-03 6.336665066649820044e-02 -3.949338287409189657e-02 9.436409146079870192e-03 3.205915781821130212e-02
320 1.991321417832630017e-02 -4.464163650698899782e-02 4.572166603000769880e-03 4.597244985110970211e-02 -1.808039411862490120e-02 -5.454911593043910295e-02 6.336665066649820044e-02 -3.949338287409189657e-02 2.866072031380889965e-02 6.105390622205419948e-02
321 -2.367724723390840155e-02 -4.464163650698899782e-02 3.043965637614240091e-02 -5.670610554934250001e-03 8.236416453005759863e-02 9.200436418706199604e-02 -1.762938102341739949e-02 7.120997975363539678e-02 3.304707235493409972e-02 3.064409414368320182e-03
322 9.619652164973699349e-02 -4.464163650698899782e-02 5.199589785376040191e-02 7.925353333865589600e-02 5.484510736603499803e-02 3.657708645031480105e-02 -7.653558588881050062e-02 1.413221094178629955e-01 9.864637430492799453e-02 6.105390622205419948e-02
323 2.354575262934580082e-02 5.068011873981870252e-02 6.169620651868849837e-02 6.203917986997459916e-02 2.457414448561009990e-02 -3.607335668485669999e-02 -9.126213710515880539e-02 1.553445353507079962e-01 1.333957338374689994e-01 8.176444079622779970e-02
324 7.076875249260000666e-02 5.068011873981870252e-02 -7.283766209689159811e-03 4.941532054484590319e-02 6.034891879883950289e-02 -4.445362044113949918e-03 -5.444575906428809897e-02 1.081111006295440019e-01 1.290194116001679991e-01 5.691179930721949887e-02
325 3.081082953138499989e-02 -4.464163650698899782e-02 5.649978676881649634e-03 1.154374291374709975e-02 7.823630595545419397e-02 7.791268340653299818e-02 -4.340084565202689815e-02 1.081111006295440019e-01 6.604820616309839409e-02 1.963283707370720027e-02
326 -1.882016527791040067e-03 -4.464163650698899782e-02 5.415152200152219958e-02 -6.649465948908450663e-02 7.273249452264969606e-02 5.661858800484489973e-02 -4.340084565202689815e-02 8.486339447772170419e-02 8.449528221240310000e-02 4.862758547755009764e-02
327 4.534098333546320025e-02 5.068011873981870252e-02 -8.361578283570040432e-03 -3.321357610482440076e-02 -7.072771253015849857e-03 1.191310268097639903e-03 -3.971920784793980114e-02 3.430885887772629900e-02 2.993564839653250001e-02 2.791705090337660150e-02
328 7.440129094361959405e-02 -4.464163650698899782e-02 1.145089981388529993e-01 2.875809638242839833e-02 2.457414448561009990e-02 2.499059336410210108e-02 1.918699701745330000e-02 -2.592261998182820038e-03 -6.092541861022970299e-04 -5.219804415301099697e-03
329 -3.820740103798660192e-02 -4.464163650698899782e-02 6.708526688809300642e-02 -6.075654165471439799e-02 -2.908801698423390050e-02 -2.323426975148589965e-02 -1.026610541524320026e-02 -2.592261998182820038e-03 -1.498586820292070049e-03 1.963283707370720027e-02
330 -1.277963188084970010e-02 5.068011873981870252e-02 -5.578530953432969675e-02 -2.227739861197989939e-03 -2.771206412603280031e-02 -2.918409052548700047e-02 1.918699701745330000e-02 -3.949338287409189657e-02 -1.705210460474350029e-02 4.448547856271539702e-02
331 9.015598825267629943e-03 5.068011873981870252e-02 3.043965637614240091e-02 4.252957915737339695e-02 -2.944912678412469915e-03 3.689023491210430272e-02 -6.549067247654929980e-02 7.120997975363539678e-02 -2.364455757213410059e-02 1.549073015887240078e-02
332 8.166636784565869944e-02 5.068011873981870252e-02 -2.560657146566450160e-02 -3.665644679856060184e-02 -7.036660273026780488e-02 -4.640725592391130305e-02 -3.971920784793980114e-02 -2.592261998182820038e-03 -4.118038518800790082e-02 -5.219804415301099697e-03
333 3.081082953138499989e-02 -4.464163650698899782e-02 1.048086894739250069e-01 7.695828609473599757e-02 -1.120062982761920074e-02 -1.133462820348369975e-02 -5.812739686837520292e-02 3.430885887772629900e-02 5.710418744784390155e-02 3.620126473304600273e-02
334 2.717829108036539862e-02 5.068011873981870252e-02 -6.205954135808240159e-03 2.875809638242839833e-02 -1.670444126042380101e-02 -1.627025888008149911e-03 -5.812739686837520292e-02 3.430885887772629900e-02 2.930041326858690010e-02 3.205915781821130212e-02
335 -6.000263174410389727e-02 5.068011873981870252e-02 -4.716281294328249912e-02 -2.288496402361559975e-02 -7.174255558846899528e-02 -5.768060054833450134e-02 -6.584467611156170040e-03 -3.949338287409189657e-02 -6.291294991625119570e-02 -5.492508739331759815e-02
336 5.383060374248070309e-03 -4.464163650698899782e-02 -4.824062501716339796e-02 -1.255635194240680048e-02 1.182945896190920002e-03 -6.637401276640669812e-03 6.336665066649820044e-02 -3.949338287409189657e-02 -5.140053526058249722e-02 -5.906719430815229877e-02
337 -2.004470878288880029e-02 -4.464163650698899782e-02 8.540807214406830050e-02 -3.665644679856060184e-02 9.199583453746550121e-02 8.949917649274570508e-02 -6.180903467246220279e-02 1.450122215054540087e-01 8.094791351127560153e-02 5.276969239238479825e-02
338 1.991321417832630017e-02 5.068011873981870252e-02 -1.267282657909369996e-02 7.007254470726349826e-02 -1.120062982761920074e-02 7.141131042098750048e-03 -3.971920784793980114e-02 3.430885887772629900e-02 5.384369968545729690e-03 3.064409414368320182e-03
339 -6.363517019512339445e-02 -4.464163650698899782e-02 -3.315125598283080038e-02 -3.321357610482440076e-02 1.182945896190920002e-03 2.405114797873349891e-02 -2.499265663159149983e-02 -2.592261998182820038e-03 -2.251217192966049885e-02 -5.906719430815229877e-02
340 2.717829108036539862e-02 -4.464163650698899782e-02 -7.283766209689159811e-03 -5.042792957350569760e-02 7.548440023905199359e-02 5.661858800484489973e-02 3.391354823380159783e-02 -2.592261998182820038e-03 4.344317225278129802e-02 1.549073015887240078e-02
341 -1.641217033186929963e-02 -4.464163650698899782e-02 -1.375063865297449991e-02 1.320442171945160059e-01 -9.824676969418109224e-03 -3.819065120534880214e-03 1.918699701745330000e-02 -3.949338287409189657e-02 -3.581672810154919867e-02 -3.007244590430930078e-02
342 3.081082953138499989e-02 5.068011873981870252e-02 5.954058237092670069e-02 5.630106193231849965e-02 -2.220825269322829892e-02 1.191310268097639903e-03 -3.235593223976569732e-02 -2.592261998182820038e-03 -2.479118743246069845e-02 -1.764612515980519894e-02
343 5.623859868852180283e-02 5.068011873981870252e-02 2.181715978509519982e-02 5.630106193231849965e-02 -7.072771253015849857e-03 1.810132720473240156e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 -2.364455757213410059e-02 2.377494398854190089e-02
344 -2.004470878288880029e-02 -4.464163650698899782e-02 1.858372356345249984e-02 9.072976886968099619e-02 3.934851612593179802e-03 8.706873351046409346e-03 3.759518603788870178e-02 -3.949338287409189657e-02 -5.780006567561250114e-02 7.206516329203029904e-03
345 -1.072256316073579990e-01 -4.464163650698899782e-02 -1.159501450521270051e-02 -4.009931749229690007e-02 4.934129593323050011e-02 6.444729954958319795e-02 -1.394774321933030074e-02 3.430885887772629900e-02 7.026862549151949647e-03 -3.007244590430930078e-02
346 8.166636784565869944e-02 5.068011873981870252e-02 -2.972517914165530208e-03 -3.321357610482440076e-02 4.246153164222479792e-02 5.787118185200299664e-02 -1.026610541524320026e-02 3.430885887772629900e-02 -6.092541861022970299e-04 -1.077697500466389974e-03
347 5.383060374248070309e-03 5.068011873981870252e-02 1.750591148957160101e-02 3.220096707616459941e-02 1.277706088506949944e-01 1.273901403692790091e-01 -2.131101882750449997e-02 7.120997975363539678e-02 6.257518145805600340e-02 1.549073015887240078e-02
348 3.807590643342410180e-02 5.068011873981870252e-02 -2.991781976118810041e-02 -7.452802442965950069e-02 -1.257658268582039982e-02 -1.258722205064180012e-02 4.460445801105040325e-03 -2.592261998182820038e-03 3.711738233435969789e-03 -3.007244590430930078e-02
349 3.081082953138499989e-02 -4.464163650698899782e-02 -2.021751109626000048e-02 -5.670610554934250001e-03 -4.320865536613589623e-03 -2.949723898727649868e-02 7.809320188284639419e-02 -3.949338287409189657e-02 -1.090443584737709956e-02 -1.077697500466389974e-03
350 1.750521923228520000e-03 5.068011873981870252e-02 -5.794093368209150136e-02 -4.354218818603310115e-02 -9.650970703608929835e-02 -4.703355284749029946e-02 -9.862541271333299941e-02 3.430885887772629900e-02 -6.117659509433449883e-02 -7.149351505265640061e-02
351 -2.730978568492789874e-02 5.068011873981870252e-02 6.061839444480759953e-02 1.079441223383619947e-01 1.219056876180000040e-02 -1.759759743927430051e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 7.021129819331020649e-02 1.356118306890790048e-01
352 -8.543040090124079389e-02 5.068011873981870252e-02 -4.069594049999709917e-02 -3.321357610482440076e-02 -8.137422559587689785e-02 -6.958024209633670298e-02 -6.584467611156170040e-03 -3.949338287409189657e-02 -5.780006567561250114e-02 -4.249876664881350324e-02
353 1.264813727628719998e-02 5.068011873981870252e-02 -7.195249064254319316e-02 -4.698505887976939938e-02 -5.110326271545199972e-02 -9.713730673381550107e-02 1.185912177278039964e-01 -7.639450375000099436e-02 -2.028874775162960165e-02 -3.835665973397880263e-02
354 -5.273755484206479882e-02 -4.464163650698899782e-02 -5.578530953432969675e-02 -3.665644679856060184e-02 8.924392882106320368e-02 -3.192768196955810076e-03 8.142083605192099172e-03 3.430885887772629900e-02 1.323726493386760128e-01 3.064409414368320182e-03
355 -2.367724723390840155e-02 5.068011873981870252e-02 4.552902541047500196e-02 2.187235499495579841e-02 1.098832216940800049e-01 8.887287956916670173e-02 7.788079970179680352e-04 3.430885887772629900e-02 7.419253669003070262e-02 6.105390622205419948e-02
356 -7.453278554818210111e-02 5.068011873981870252e-02 -9.439390357450949676e-03 1.498661360748330083e-02 -3.734373413344069942e-02 -2.166852744253820046e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 -3.324878724762579674e-02 1.134862324403770016e-02
357 -5.514554978810590376e-03 5.068011873981870252e-02 -3.315125598283080038e-02 -1.599922263614299983e-02 8.062710187196569719e-03 1.622243643399520069e-02 1.550535921336619952e-02 -2.592261998182820038e-03 -2.832024254799870092e-02 -7.563562196749110123e-02
358 -6.000263174410389727e-02 5.068011873981870252e-02 4.984027370599859730e-02 1.842948430121960079e-02 -1.670444126042380101e-02 -3.012353591085559917e-02 -1.762938102341739949e-02 -2.592261998182820038e-03 4.976865992074899769e-02 -5.906719430815229877e-02
359 -2.004470878288880029e-02 -4.464163650698899782e-02 -8.488623552911400694e-02 -2.632783471735180084e-02 -3.596778127523959923e-02 -3.419446591411950259e-02 4.127682384197570165e-02 -5.167075276314189725e-02 -8.238148325810279449e-02 -4.664087356364819692e-02
360 3.807590643342410180e-02 5.068011873981870252e-02 5.649978676881649634e-03 3.220096707616459941e-02 6.686757328995440036e-03 1.747503028115330106e-02 -2.499265663159149983e-02 3.430885887772629900e-02 1.482271084126630077e-02 6.105390622205419948e-02
361 1.628067572730669890e-02 -4.464163650698899782e-02 2.073934771121430098e-02 2.187235499495579841e-02 -1.395253554402150001e-02 -1.321351897422090062e-02 -6.584467611156170040e-03 -2.592261998182820038e-03 1.331596790892770020e-02 4.034337164788070335e-02
362 4.170844488444359899e-02 -4.464163650698899782e-02 -7.283766209689159811e-03 2.875809638242839833e-02 -4.284754556624519733e-02 -4.828614669464850045e-02 5.232173725423699961e-02 -7.639450375000099436e-02 -7.212845460195599356e-02 2.377494398854190089e-02
363 1.991321417832630017e-02 5.068011873981870252e-02 1.048086894739250069e-01 7.007254470726349826e-02 -3.596778127523959923e-02 -2.667890283117069911e-02 -2.499265663159149983e-02 -2.592261998182820038e-03 3.711738233435969789e-03 4.034337164788070335e-02
364 -4.910501639104519755e-02 5.068011873981870252e-02 -2.452875939178359929e-02 6.750727943574620551e-05 -4.697540414084860200e-02 -2.824464514011839830e-02 -6.549067247654929980e-02 2.840467953758080144e-02 1.919903307856710151e-02 1.134862324403770016e-02
365 1.750521923228520000e-03 5.068011873981870252e-02 -6.205954135808240159e-03 -1.944209332987930153e-02 -9.824676969418109224e-03 4.949091809572019746e-03 -3.971920784793980114e-02 3.430885887772629900e-02 1.482271084126630077e-02 9.833286845556660216e-02
366 3.444336798240450054e-02 -4.464163650698899782e-02 -3.854031635223530150e-02 -1.255635194240680048e-02 9.438663045397699403e-03 5.262240271361550044e-03 -6.584467611156170040e-03 -2.592261998182820038e-03 3.119299070280229930e-02 9.833286845556660216e-02
367 -4.547247794002570037e-02 5.068011873981870252e-02 1.371430516903520136e-01 -1.599922263614299983e-02 4.108557878402369773e-02 3.187985952347179713e-02 -4.340084565202689815e-02 7.120997975363539678e-02 7.102157794598219775e-02 4.862758547755009764e-02
368 -9.147093429830140468e-03 5.068011873981870252e-02 1.705552259806600024e-01 1.498661360748330083e-02 3.007795591841460128e-02 3.375875029420900147e-02 -2.131101882750449997e-02 3.430885887772629900e-02 3.365681290238470291e-02 3.205915781821130212e-02
369 -1.641217033186929963e-02 5.068011873981870252e-02 2.416542455238970041e-03 1.498661360748330083e-02 2.182223876920789951e-02 -1.008203435632550049e-02 -2.499265663159149983e-02 3.430885887772629900e-02 8.553312118743899850e-02 8.176444079622779970e-02
370 -9.147093429830140468e-03 -4.464163650698899782e-02 3.798434089330870317e-02 -4.009931749229690007e-02 -2.496015840963049931e-02 -3.819065120534880214e-03 -4.340084565202689815e-02 1.585829843977170153e-02 -5.145307980263110273e-03 2.791705090337660150e-02
371 1.991321417832630017e-02 -4.464163650698899782e-02 -5.794093368209150136e-02 -5.731367096097819691e-02 -1.568959820211340015e-03 -1.258722205064180012e-02 7.441156407875940126e-02 -3.949338287409189657e-02 -6.117659509433449883e-02 -7.563562196749110123e-02
372 5.260606023750229870e-02 5.068011873981870252e-02 -9.439390357450949676e-03 4.941532054484590319e-02 5.071724879143160031e-02 -1.916333974822199970e-02 -1.394774321933030074e-02 3.430885887772629900e-02 1.193439942037869961e-01 -1.764612515980519894e-02
373 -2.730978568492789874e-02 5.068011873981870252e-02 -2.345094731790270046e-02 -1.599922263614299983e-02 1.356652162000110060e-02 1.277780335431030062e-02 2.655027262562750096e-02 -2.592261998182820038e-03 -1.090443584737709956e-02 -2.178823207463989955e-02
374 -7.453278554818210111e-02 -4.464163650698899782e-02 -1.051720243133190055e-02 -5.670610554934250001e-03 -6.623874415566440021e-02 -5.705430362475540085e-02 -2.902829807069099918e-03 -3.949338287409189657e-02 -4.257210492279420166e-02 -1.077697500466389974e-03
375 -1.072256316073579990e-01 -4.464163650698899782e-02 -3.422906805671169922e-02 -6.764228304218700139e-02 -6.348683843926219983e-02 -7.051968748170529822e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -6.092541861022970299e-04 -7.977772888232589898e-02
376 4.534098333546320025e-02 5.068011873981870252e-02 -2.972517914165530208e-03 1.079441223383619947e-01 3.558176735121919981e-02 2.248540566978590033e-02 2.655027262562750096e-02 -2.592261998182820038e-03 2.801650652326400162e-02 1.963283707370720027e-02
377 -1.882016527791040067e-03 -4.464163650698899782e-02 6.816307896197400240e-02 -5.670610554934250001e-03 1.195148917014880047e-01 1.302084765253850029e-01 -2.499265663159149983e-02 8.670845052151719690e-02 4.613233103941480340e-02 -1.077697500466389974e-03
378 1.991321417832630017e-02 5.068011873981870252e-02 9.961226972405269262e-03 1.842948430121960079e-02 1.494247447820220079e-02 4.471894645684260094e-02 -6.180903467246220279e-02 7.120997975363539678e-02 9.436409146079870192e-03 -6.320930122298699938e-02
379 1.628067572730669890e-02 5.068011873981870252e-02 2.416542455238970041e-03 -5.670610554934250001e-03 -5.696818394814720174e-03 1.089891258357309975e-02 -5.076412126020100196e-02 3.430885887772629900e-02 2.269202256674450122e-02 -3.835665973397880263e-02
380 -1.882016527791040067e-03 -4.464163650698899782e-02 -3.854031635223530150e-02 2.187235499495579841e-02 -1.088932827598989989e-01 -1.156130659793979942e-01 2.286863482154040048e-02 -7.639450375000099436e-02 -4.687948284421659950e-02 2.377494398854190089e-02
381 1.628067572730669890e-02 -4.464163650698899782e-02 2.612840808061879863e-02 5.859630917623830093e-02 -6.073493272285990230e-02 -4.421521669138449989e-02 -1.394774321933030074e-02 -3.395821474270550172e-02 -5.140053526058249722e-02 -2.593033898947460017e-02
382 -7.090024709716259699e-02 5.068011873981870252e-02 -8.919748382463760228e-02 -7.452802442965950069e-02 -4.284754556624519733e-02 -2.573945744580210040e-02 -3.235593223976569732e-02 -2.592261998182820038e-03 -1.290794225416879923e-02 -5.492508739331759815e-02
383 4.897352178648269744e-02 -4.464163650698899782e-02 6.061839444480759953e-02 -2.288496402361559975e-02 -2.358420555142939912e-02 -7.271172671423199729e-02 -4.340084565202689815e-02 -2.592261998182820038e-03 1.041376113589790042e-01 3.620126473304600273e-02
384 5.383060374248070309e-03 5.068011873981870252e-02 -2.884000768730720157e-02 -9.113481248670509197e-03 -3.183992270063620150e-02 -2.887094206369749880e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -1.811826730789670159e-02 7.206516329203029904e-03
385 3.444336798240450054e-02 5.068011873981870252e-02 -2.991781976118810041e-02 4.658001526274530187e-03 9.337178739566659447e-02 8.699398879842949739e-02 3.391354823380159783e-02 -2.592261998182820038e-03 2.405258322689299982e-02 -3.835665973397880263e-02
386 2.354575262934580082e-02 5.068011873981870252e-02 -1.913969902237900103e-02 4.941532054484590319e-02 -6.348683843926219983e-02 -6.112523362801929733e-02 4.460445801105040325e-03 -3.949338287409189657e-02 -2.595242443518940012e-02 -1.350401824497050006e-02
387 1.991321417832630017e-02 -4.464163650698899782e-02 -4.069594049999709917e-02 -1.599922263614299983e-02 -8.448724111216979540e-03 -1.759759743927430051e-02 5.232173725423699961e-02 -3.949338287409189657e-02 -3.075120986455629965e-02 3.064409414368320182e-03
388 -4.547247794002570037e-02 -4.464163650698899782e-02 1.535028734180979987e-02 -7.452802442965950069e-02 -4.972730985725089953e-02 -1.728444897748479883e-02 -2.867429443567860031e-02 -2.592261998182820038e-03 -1.043648208321659998e-01 -7.563562196749110123e-02
389 5.260606023750229870e-02 5.068011873981870252e-02 -2.452875939178359929e-02 5.630106193231849965e-02 -7.072771253015849857e-03 -5.071658967693000106e-03 -2.131101882750449997e-02 -2.592261998182820038e-03 2.671425763351279944e-02 -3.835665973397880263e-02
390 -5.514554978810590376e-03 5.068011873981870252e-02 1.338730381358059929e-03 -8.485663651086830517e-02 -1.120062982761920074e-02 -1.665815205390569834e-02 4.864009945014990260e-02 -3.949338287409189657e-02 -4.118038518800790082e-02 -8.806194271199530021e-02
391 9.015598825267629943e-03 5.068011873981870252e-02 6.924089103585480409e-02 5.974393262605470073e-02 1.769438019460449832e-02 -2.323426975148589965e-02 -4.708248345611389801e-02 3.430885887772629900e-02 1.032922649115240038e-01 7.348022696655839847e-02
392 -2.367724723390840155e-02 -4.464163650698899782e-02 -6.979686649478139548e-02 -6.419941234845069622e-02 -5.935897986465880211e-02 -5.047818592717519953e-02 1.918699701745330000e-02 -3.949338287409189657e-02 -8.913686007934769340e-02 -5.078298047848289754e-02
393 -4.183993948900609910e-02 5.068011873981870252e-02 -2.991781976118810041e-02 -2.227739861197989939e-03 2.182223876920789951e-02 3.657708645031480105e-02 1.182372140927919965e-02 -2.592261998182820038e-03 -4.118038518800790082e-02 6.519601313688899724e-02
394 -7.453278554818210111e-02 -4.464163650698899782e-02 -4.608500086940160029e-02 -4.354218818603310115e-02 -2.908801698423390050e-02 -2.323426975148589965e-02 1.550535921336619952e-02 -3.949338287409189657e-02 -3.980959436433750137e-02 -2.178823207463989955e-02
395 3.444336798240450054e-02 -4.464163650698899782e-02 1.858372356345249984e-02 5.630106193231849965e-02 1.219056876180000040e-02 -5.454911593043910295e-02 -6.917231028063640375e-02 7.120997975363539678e-02 1.300806095217529879e-01 7.206516329203029904e-03
396 -6.000263174410389727e-02 -4.464163650698899782e-02 1.338730381358059929e-03 -2.977070541108809906e-02 -7.072771253015849857e-03 -2.166852744253820046e-02 1.182372140927919965e-02 -2.592261998182820038e-03 3.181521750079859684e-02 -5.492508739331759815e-02
397 -8.543040090124079389e-02 5.068011873981870252e-02 -3.099563183506899924e-02 -2.288496402361559975e-02 -6.348683843926219983e-02 -5.423596746864960128e-02 1.918699701745330000e-02 -3.949338287409189657e-02 -9.643322289178400675e-02 -3.421455281914410201e-02
398 5.260606023750229870e-02 -4.464163650698899782e-02 -4.050329988046450294e-03 -3.091832896419060075e-02 -4.697540414084860200e-02 -5.830689747191349775e-02 -1.394774321933030074e-02 -2.583996815000549896e-02 3.605579008983190309e-02 2.377494398854190089e-02
399 1.264813727628719998e-02 -4.464163650698899782e-02 1.535028734180979987e-02 -3.321357610482440076e-02 4.108557878402369773e-02 3.219300798526129881e-02 -2.902829807069099918e-03 -2.592261998182820038e-03 4.506616833626150148e-02 -6.735140813782170000e-02
400 5.987113713954139715e-02 5.068011873981870252e-02 2.289497185897609866e-02 4.941532054484590319e-02 1.631842733640340160e-02 1.183835796894170019e-02 -1.394774321933030074e-02 -2.592261998182820038e-03 3.953987807202419963e-02 1.963283707370720027e-02
401 -2.367724723390840155e-02 -4.464163650698899782e-02 4.552902541047500196e-02 9.072976886968099619e-02 -1.808039411862490120e-02 -3.544705976127759950e-02 7.072992627467229731e-02 -3.949338287409189657e-02 -3.452371533034950118e-02 -9.361911330135799444e-03
402 1.628067572730669890e-02 -4.464163650698899782e-02 -4.500718879552070145e-02 -5.731367096097819691e-02 -3.459182841703849903e-02 -5.392281900686000246e-02 7.441156407875940126e-02 -7.639450375000099436e-02 -4.257210492279420166e-02 4.034337164788070335e-02
403 1.107266754538149961e-01 5.068011873981870252e-02 -3.315125598283080038e-02 -2.288496402361559975e-02 -4.320865536613589623e-03 2.029336643725910064e-02 -6.180903467246220279e-02 7.120997975363539678e-02 1.556684454070180086e-02 4.448547856271539702e-02
404 -2.004470878288880029e-02 -4.464163650698899782e-02 9.726400495675820157e-02 -5.670610554934250001e-03 -5.696818394814720174e-03 -2.386056667506489953e-02 -2.131101882750449997e-02 -2.592261998182820038e-03 6.168584882386619894e-02 4.034337164788070335e-02
405 -1.641217033186929963e-02 -4.464163650698899782e-02 5.415152200152219958e-02 7.007254470726349826e-02 -3.321587555883730170e-02 -2.793149667832890010e-02 8.142083605192099172e-03 -3.949338287409189657e-02 -2.712864555432650121e-02 -9.361911330135799444e-03
406 4.897352178648269744e-02 5.068011873981870252e-02 1.231314947298999957e-01 8.384402748220859403e-02 -1.047654241852959967e-01 -1.008950882752900069e-01 -6.917231028063640375e-02 -2.592261998182820038e-03 3.664579779339879884e-02 -3.007244590430930078e-02
407 -5.637009329308430294e-02 -4.464163650698899782e-02 -8.057498723359039772e-02 -8.485663651086830517e-02 -3.734373413344069942e-02 -3.701280207022530216e-02 3.391354823380159783e-02 -3.949338287409189657e-02 -5.615757309500619965e-02 -1.377672256900120129e-01
408 2.717829108036539862e-02 -4.464163650698899782e-02 9.295275666123460623e-02 -5.272317671413939699e-02 8.062710187196569719e-03 3.970857106821010230e-02 -2.867429443567860031e-02 2.102445536239900062e-02 -4.836172480289190057e-02 1.963283707370720027e-02
409 6.350367559056099842e-02 -4.464163650698899782e-02 -5.039624916492520257e-02 1.079441223383619947e-01 3.145390877661580209e-02 1.935392105189049847e-02 -1.762938102341739949e-02 2.360753382371260159e-02 5.803912766389510147e-02 4.034337164788070335e-02
410 -5.273755484206479882e-02 5.068011873981870252e-02 -1.159501450521270051e-02 5.630106193231849965e-02 5.622106022423609822e-02 7.290230801790049953e-02 -3.971920784793980114e-02 7.120997975363539678e-02 3.056648739841480097e-02 -5.219804415301099697e-03
411 -9.147093429830140468e-03 5.068011873981870252e-02 -2.776219561342629927e-02 8.100872220010799790e-03 4.796534307502930278e-02 3.720338337389379746e-02 -2.867429443567860031e-02 3.430885887772629900e-02 6.604820616309839409e-02 -4.249876664881350324e-02
412 5.383060374248070309e-03 -4.464163650698899782e-02 5.846277029704580186e-02 -4.354218818603310115e-02 -7.311850844667000526e-02 -7.239857825244250256e-02 1.918699701745330000e-02 -7.639450375000099436e-02 -5.140053526058249722e-02 -2.593033898947460017e-02
413 7.440129094361959405e-02 -4.464163650698899782e-02 8.540807214406830050e-02 6.318680331979099896e-02 1.494247447820220079e-02 1.309095181609989944e-02 1.550535921336619952e-02 -2.592261998182820038e-03 6.209315616505399656e-03 8.590654771106250032e-02
414 -5.273755484206479882e-02 -4.464163650698899782e-02 -8.168937664037369826e-04 -2.632783471735180084e-02 1.081461590359879960e-02 7.141131042098750048e-03 4.864009945014990260e-02 -3.949338287409189657e-02 -3.581672810154919867e-02 1.963283707370720027e-02
415 8.166636784565869944e-02 5.068011873981870252e-02 6.727790750762559745e-03 -4.522987001831730094e-03 1.098832216940800049e-01 1.170562411302250028e-01 -3.235593223976569732e-02 9.187460744414439884e-02 5.472400334817909689e-02 7.206516329203029904e-03
416 -5.514554978810590376e-03 -4.464163650698899782e-02 8.883414898524360018e-03 -5.042792957350569760e-02 2.595009734381130070e-02 4.722413415115889884e-02 -4.340084565202689815e-02 7.120997975363539678e-02 1.482271084126630077e-02 3.064409414368320182e-03
417 -2.730978568492789874e-02 -4.464163650698899782e-02 8.001901177466380632e-02 9.876313370696999938e-02 -2.944912678412469915e-03 1.810132720473240156e-02 -1.762938102341739949e-02 3.311917341962639788e-03 -2.952762274177360077e-02 3.620126473304600273e-02
418 -5.273755484206479882e-02 -4.464163650698899782e-02 7.139651518361660176e-02 -7.452802442965950069e-02 -1.532848840222260020e-02 -1.313877426218630021e-03 4.460445801105040325e-03 -2.141183364489639834e-02 -4.687948284421659950e-02 3.064409414368320182e-03
419 9.015598825267629943e-03 -4.464163650698899782e-02 -2.452875939178359929e-02 -2.632783471735180084e-02 9.887559882847110626e-02 9.419640341958869512e-02 7.072992627467229731e-02 -2.592261998182820038e-03 -2.139368094035999993e-02 7.206516329203029904e-03
420 -2.004470878288880029e-02 -4.464163650698899782e-02 -5.470749746044879791e-02 -5.387080026724189868e-02 -6.623874415566440021e-02 -5.736745208654490252e-02 1.182372140927919965e-02 -3.949338287409189657e-02 -7.408887149153539631e-02 -5.219804415301099697e-03
421 2.354575262934580082e-02 -4.464163650698899782e-02 -3.638469220447349689e-02 6.750727943574620551e-05 1.182945896190920002e-03 3.469819567957759671e-02 -4.340084565202689815e-02 3.430885887772629900e-02 -3.324878724762579674e-02 6.105390622205419948e-02
422 3.807590643342410180e-02 5.068011873981870252e-02 1.642809941569069870e-02 2.187235499495579841e-02 3.970962592582259754e-02 4.503209491863210262e-02 -4.340084565202689815e-02 7.120997975363539678e-02 4.976865992074899769e-02 1.549073015887240078e-02
423 -7.816532399920170238e-02 5.068011873981870252e-02 7.786338762690199478e-02 5.285819123858220142e-02 7.823630595545419397e-02 6.444729954958319795e-02 2.655027262562750096e-02 -2.592261998182820038e-03 4.067226371449769728e-02 -9.361911330135799444e-03
424 9.015598825267629943e-03 5.068011873981870252e-02 -3.961812842611620034e-02 2.875809638242839833e-02 3.833367306762140020e-02 7.352860494147960002e-02 -7.285394808472339667e-02 1.081111006295440019e-01 1.556684454070180086e-02 -4.664087356364819692e-02
425 1.750521923228520000e-03 5.068011873981870252e-02 1.103903904628619932e-02 -1.944209332987930153e-02 -1.670444126042380101e-02 -3.819065120534880214e-03 -4.708248345611389801e-02 3.430885887772629900e-02 2.405258322689299982e-02 2.377494398854190089e-02
426 -7.816532399920170238e-02 -4.464163650698899782e-02 -4.069594049999709917e-02 -8.141376581713200000e-02 -1.006375656106929944e-01 -1.127947298232920004e-01 2.286863482154040048e-02 -7.639450375000099436e-02 -2.028874775162960165e-02 -5.078298047848289754e-02
427 3.081082953138499989e-02 5.068011873981870252e-02 -3.422906805671169922e-02 4.367720260718979675e-02 5.759701308243719842e-02 6.883137801463659611e-02 -3.235593223976569732e-02 5.755656502954899917e-02 3.546193866076970125e-02 8.590654771106250032e-02
428 -3.457486258696700065e-02 5.068011873981870252e-02 5.649978676881649634e-03 -5.670610554934250001e-03 -7.311850844667000526e-02 -6.269097593696699999e-02 -6.584467611156170040e-03 -3.949338287409189657e-02 -4.542095777704099890e-02 3.205915781821130212e-02
429 4.897352178648269744e-02 5.068011873981870252e-02 8.864150836571099701e-02 8.728689817594480205e-02 3.558176735121919981e-02 2.154596028441720101e-02 -2.499265663159149983e-02 3.430885887772629900e-02 6.604820616309839409e-02 1.314697237742440128e-01
430 -4.183993948900609910e-02 -4.464163650698899782e-02 -3.315125598283080038e-02 -2.288496402361559975e-02 4.658939021682820258e-02 4.158746183894729970e-02 5.600337505832399948e-02 -2.473293452372829840e-02 -2.595242443518940012e-02 -3.835665973397880263e-02
431 -9.147093429830140468e-03 -4.464163650698899782e-02 -5.686312160821060252e-02 -5.042792957350569760e-02 2.182223876920789951e-02 4.534524338042170144e-02 -2.867429443567860031e-02 3.430885887772629900e-02 -9.918957363154769225e-03 -1.764612515980519894e-02
432 7.076875249260000666e-02 5.068011873981870252e-02 -3.099563183506899924e-02 2.187235499495579841e-02 -3.734373413344069942e-02 -4.703355284749029946e-02 3.391354823380159783e-02 -3.949338287409189657e-02 -1.495647502491130078e-02 -1.077697500466389974e-03
433 9.015598825267629943e-03 -4.464163650698899782e-02 5.522933407540309841e-02 -5.670610554934250001e-03 5.759701308243719842e-02 4.471894645684260094e-02 -2.902829807069099918e-03 2.323852261495349888e-02 5.568354770267369691e-02 1.066170822852360034e-01
434 -2.730978568492789874e-02 -4.464163650698899782e-02 -6.009655782985329903e-02 -2.977070541108809906e-02 4.658939021682820258e-02 1.998021797546959896e-02 1.222728555318910032e-01 -3.949338287409189657e-02 -5.140053526058249722e-02 -9.361911330135799444e-03
435 1.628067572730669890e-02 -4.464163650698899782e-02 1.338730381358059929e-03 8.100872220010799790e-03 5.310804470794310353e-03 1.089891258357309975e-02 3.023191042971450082e-02 -3.949338287409189657e-02 -4.542095777704099890e-02 3.205915781821130212e-02
436 -1.277963188084970010e-02 -4.464163650698899782e-02 -2.345094731790270046e-02 -4.009931749229690007e-02 -1.670444126042380101e-02 4.635943347782499856e-03 -1.762938102341739949e-02 -2.592261998182820038e-03 -3.845911230135379971e-02 -3.835665973397880263e-02
437 -5.637009329308430294e-02 -4.464163650698899782e-02 -7.410811479030500470e-02 -5.042792957350569760e-02 -2.496015840963049931e-02 -4.703355284749029946e-02 9.281975309919469896e-02 -7.639450375000099436e-02 -6.117659509433449883e-02 -4.664087356364819692e-02
438 4.170844488444359899e-02 5.068011873981870252e-02 1.966153563733339868e-02 5.974393262605470073e-02 -5.696818394814720174e-03 -2.566471273376759888e-03 -2.867429443567860031e-02 -2.592261998182820038e-03 3.119299070280229930e-02 7.206516329203029904e-03
439 -5.514554978810590376e-03 5.068011873981870252e-02 -1.590626280073640167e-02 -6.764228304218700139e-02 4.934129593323050011e-02 7.916527725369119917e-02 -2.867429443567860031e-02 3.430885887772629900e-02 -1.811826730789670159e-02 4.448547856271539702e-02
440 4.170844488444359899e-02 5.068011873981870252e-02 -1.590626280073640167e-02 1.728186074811709910e-02 -3.734373413344069942e-02 -1.383981589779990050e-02 -2.499265663159149983e-02 -1.107951979964190078e-02 -4.687948284421659950e-02 1.549073015887240078e-02
441 -4.547247794002570037e-02 -4.464163650698899782e-02 3.906215296718960200e-02 1.215130832538269907e-03 1.631842733640340160e-02 1.528299104862660025e-02 -2.867429443567860031e-02 2.655962349378539894e-02 4.452837402140529671e-02 -2.593033898947460017e-02
442 -4.547247794002570037e-02 -4.464163650698899782e-02 -7.303030271642410587e-02 -8.141376581713200000e-02 8.374011738825870577e-02 2.780892952020790065e-02 1.738157847891100005e-01 -3.949338287409189657e-02 -4.219859706946029777e-03 3.064409414368320182e-03

View File

@@ -1,442 +0,0 @@
1.510000000000000000e+02
7.500000000000000000e+01
1.410000000000000000e+02
2.060000000000000000e+02
1.350000000000000000e+02
9.700000000000000000e+01
1.380000000000000000e+02
6.300000000000000000e+01
1.100000000000000000e+02
3.100000000000000000e+02
1.010000000000000000e+02
6.900000000000000000e+01
1.790000000000000000e+02
1.850000000000000000e+02
1.180000000000000000e+02
1.710000000000000000e+02
1.660000000000000000e+02
1.440000000000000000e+02
9.700000000000000000e+01
1.680000000000000000e+02
6.800000000000000000e+01
4.900000000000000000e+01
6.800000000000000000e+01
2.450000000000000000e+02
1.840000000000000000e+02
2.020000000000000000e+02
1.370000000000000000e+02
8.500000000000000000e+01
1.310000000000000000e+02
2.830000000000000000e+02
1.290000000000000000e+02
5.900000000000000000e+01
3.410000000000000000e+02
8.700000000000000000e+01
6.500000000000000000e+01
1.020000000000000000e+02
2.650000000000000000e+02
2.760000000000000000e+02
2.520000000000000000e+02
9.000000000000000000e+01
1.000000000000000000e+02
5.500000000000000000e+01
6.100000000000000000e+01
9.200000000000000000e+01
2.590000000000000000e+02
5.300000000000000000e+01
1.900000000000000000e+02
1.420000000000000000e+02
7.500000000000000000e+01
1.420000000000000000e+02
1.550000000000000000e+02
2.250000000000000000e+02
5.900000000000000000e+01
1.040000000000000000e+02
1.820000000000000000e+02
1.280000000000000000e+02
5.200000000000000000e+01
3.700000000000000000e+01
1.700000000000000000e+02
1.700000000000000000e+02
6.100000000000000000e+01
1.440000000000000000e+02
5.200000000000000000e+01
1.280000000000000000e+02
7.100000000000000000e+01
1.630000000000000000e+02
1.500000000000000000e+02
9.700000000000000000e+01
1.600000000000000000e+02
1.780000000000000000e+02
4.800000000000000000e+01
2.700000000000000000e+02
2.020000000000000000e+02
1.110000000000000000e+02
8.500000000000000000e+01
4.200000000000000000e+01
1.700000000000000000e+02
2.000000000000000000e+02
2.520000000000000000e+02
1.130000000000000000e+02
1.430000000000000000e+02
5.100000000000000000e+01
5.200000000000000000e+01
2.100000000000000000e+02
6.500000000000000000e+01
1.410000000000000000e+02
5.500000000000000000e+01
1.340000000000000000e+02
4.200000000000000000e+01
1.110000000000000000e+02
9.800000000000000000e+01
1.640000000000000000e+02
4.800000000000000000e+01
9.600000000000000000e+01
9.000000000000000000e+01
1.620000000000000000e+02
1.500000000000000000e+02
2.790000000000000000e+02
9.200000000000000000e+01
8.300000000000000000e+01
1.280000000000000000e+02
1.020000000000000000e+02
3.020000000000000000e+02
1.980000000000000000e+02
9.500000000000000000e+01
5.300000000000000000e+01
1.340000000000000000e+02
1.440000000000000000e+02
2.320000000000000000e+02
8.100000000000000000e+01
1.040000000000000000e+02
5.900000000000000000e+01
2.460000000000000000e+02
2.970000000000000000e+02
2.580000000000000000e+02
2.290000000000000000e+02
2.750000000000000000e+02
2.810000000000000000e+02
1.790000000000000000e+02
2.000000000000000000e+02
2.000000000000000000e+02
1.730000000000000000e+02
1.800000000000000000e+02
8.400000000000000000e+01
1.210000000000000000e+02
1.610000000000000000e+02
9.900000000000000000e+01
1.090000000000000000e+02
1.150000000000000000e+02
2.680000000000000000e+02
2.740000000000000000e+02
1.580000000000000000e+02
1.070000000000000000e+02
8.300000000000000000e+01
1.030000000000000000e+02
2.720000000000000000e+02
8.500000000000000000e+01
2.800000000000000000e+02
3.360000000000000000e+02
2.810000000000000000e+02
1.180000000000000000e+02
3.170000000000000000e+02
2.350000000000000000e+02
6.000000000000000000e+01
1.740000000000000000e+02
2.590000000000000000e+02
1.780000000000000000e+02
1.280000000000000000e+02
9.600000000000000000e+01
1.260000000000000000e+02
2.880000000000000000e+02
8.800000000000000000e+01
2.920000000000000000e+02
7.100000000000000000e+01
1.970000000000000000e+02
1.860000000000000000e+02
2.500000000000000000e+01
8.400000000000000000e+01
9.600000000000000000e+01
1.950000000000000000e+02
5.300000000000000000e+01
2.170000000000000000e+02
1.720000000000000000e+02
1.310000000000000000e+02
2.140000000000000000e+02
5.900000000000000000e+01
7.000000000000000000e+01
2.200000000000000000e+02
2.680000000000000000e+02
1.520000000000000000e+02
4.700000000000000000e+01
7.400000000000000000e+01
2.950000000000000000e+02
1.010000000000000000e+02
1.510000000000000000e+02
1.270000000000000000e+02
2.370000000000000000e+02
2.250000000000000000e+02
8.100000000000000000e+01
1.510000000000000000e+02
1.070000000000000000e+02
6.400000000000000000e+01
1.380000000000000000e+02
1.850000000000000000e+02
2.650000000000000000e+02
1.010000000000000000e+02
1.370000000000000000e+02
1.430000000000000000e+02
1.410000000000000000e+02
7.900000000000000000e+01
2.920000000000000000e+02
1.780000000000000000e+02
9.100000000000000000e+01
1.160000000000000000e+02
8.600000000000000000e+01
1.220000000000000000e+02
7.200000000000000000e+01
1.290000000000000000e+02
1.420000000000000000e+02
9.000000000000000000e+01
1.580000000000000000e+02
3.900000000000000000e+01
1.960000000000000000e+02
2.220000000000000000e+02
2.770000000000000000e+02
9.900000000000000000e+01
1.960000000000000000e+02
2.020000000000000000e+02
1.550000000000000000e+02
7.700000000000000000e+01
1.910000000000000000e+02
7.000000000000000000e+01
7.300000000000000000e+01
4.900000000000000000e+01
6.500000000000000000e+01
2.630000000000000000e+02
2.480000000000000000e+02
2.960000000000000000e+02
2.140000000000000000e+02
1.850000000000000000e+02
7.800000000000000000e+01
9.300000000000000000e+01
2.520000000000000000e+02
1.500000000000000000e+02
7.700000000000000000e+01
2.080000000000000000e+02
7.700000000000000000e+01
1.080000000000000000e+02
1.600000000000000000e+02
5.300000000000000000e+01
2.200000000000000000e+02
1.540000000000000000e+02
2.590000000000000000e+02
9.000000000000000000e+01
2.460000000000000000e+02
1.240000000000000000e+02
6.700000000000000000e+01
7.200000000000000000e+01
2.570000000000000000e+02
2.620000000000000000e+02
2.750000000000000000e+02
1.770000000000000000e+02
7.100000000000000000e+01
4.700000000000000000e+01
1.870000000000000000e+02
1.250000000000000000e+02
7.800000000000000000e+01
5.100000000000000000e+01
2.580000000000000000e+02
2.150000000000000000e+02
3.030000000000000000e+02
2.430000000000000000e+02
9.100000000000000000e+01
1.500000000000000000e+02
3.100000000000000000e+02
1.530000000000000000e+02
3.460000000000000000e+02
6.300000000000000000e+01
8.900000000000000000e+01
5.000000000000000000e+01
3.900000000000000000e+01
1.030000000000000000e+02
3.080000000000000000e+02
1.160000000000000000e+02
1.450000000000000000e+02
7.400000000000000000e+01
4.500000000000000000e+01
1.150000000000000000e+02
2.640000000000000000e+02
8.700000000000000000e+01
2.020000000000000000e+02
1.270000000000000000e+02
1.820000000000000000e+02
2.410000000000000000e+02
6.600000000000000000e+01
9.400000000000000000e+01
2.830000000000000000e+02
6.400000000000000000e+01
1.020000000000000000e+02
2.000000000000000000e+02
2.650000000000000000e+02
9.400000000000000000e+01
2.300000000000000000e+02
1.810000000000000000e+02
1.560000000000000000e+02
2.330000000000000000e+02
6.000000000000000000e+01
2.190000000000000000e+02
8.000000000000000000e+01
6.800000000000000000e+01
3.320000000000000000e+02
2.480000000000000000e+02
8.400000000000000000e+01
2.000000000000000000e+02
5.500000000000000000e+01
8.500000000000000000e+01
8.900000000000000000e+01
3.100000000000000000e+01
1.290000000000000000e+02
8.300000000000000000e+01
2.750000000000000000e+02
6.500000000000000000e+01
1.980000000000000000e+02
2.360000000000000000e+02
2.530000000000000000e+02
1.240000000000000000e+02
4.400000000000000000e+01
1.720000000000000000e+02
1.140000000000000000e+02
1.420000000000000000e+02
1.090000000000000000e+02
1.800000000000000000e+02
1.440000000000000000e+02
1.630000000000000000e+02
1.470000000000000000e+02
9.700000000000000000e+01
2.200000000000000000e+02
1.900000000000000000e+02
1.090000000000000000e+02
1.910000000000000000e+02
1.220000000000000000e+02
2.300000000000000000e+02
2.420000000000000000e+02
2.480000000000000000e+02
2.490000000000000000e+02
1.920000000000000000e+02
1.310000000000000000e+02
2.370000000000000000e+02
7.800000000000000000e+01
1.350000000000000000e+02
2.440000000000000000e+02
1.990000000000000000e+02
2.700000000000000000e+02
1.640000000000000000e+02
7.200000000000000000e+01
9.600000000000000000e+01
3.060000000000000000e+02
9.100000000000000000e+01
2.140000000000000000e+02
9.500000000000000000e+01
2.160000000000000000e+02
2.630000000000000000e+02
1.780000000000000000e+02
1.130000000000000000e+02
2.000000000000000000e+02
1.390000000000000000e+02
1.390000000000000000e+02
8.800000000000000000e+01
1.480000000000000000e+02
8.800000000000000000e+01
2.430000000000000000e+02
7.100000000000000000e+01
7.700000000000000000e+01
1.090000000000000000e+02
2.720000000000000000e+02
6.000000000000000000e+01
5.400000000000000000e+01
2.210000000000000000e+02
9.000000000000000000e+01
3.110000000000000000e+02
2.810000000000000000e+02
1.820000000000000000e+02
3.210000000000000000e+02
5.800000000000000000e+01
2.620000000000000000e+02
2.060000000000000000e+02
2.330000000000000000e+02
2.420000000000000000e+02
1.230000000000000000e+02
1.670000000000000000e+02
6.300000000000000000e+01
1.970000000000000000e+02
7.100000000000000000e+01
1.680000000000000000e+02
1.400000000000000000e+02
2.170000000000000000e+02
1.210000000000000000e+02
2.350000000000000000e+02
2.450000000000000000e+02
4.000000000000000000e+01
5.200000000000000000e+01
1.040000000000000000e+02
1.320000000000000000e+02
8.800000000000000000e+01
6.900000000000000000e+01
2.190000000000000000e+02
7.200000000000000000e+01
2.010000000000000000e+02
1.100000000000000000e+02
5.100000000000000000e+01
2.770000000000000000e+02
6.300000000000000000e+01
1.180000000000000000e+02
6.900000000000000000e+01
2.730000000000000000e+02
2.580000000000000000e+02
4.300000000000000000e+01
1.980000000000000000e+02
2.420000000000000000e+02
2.320000000000000000e+02
1.750000000000000000e+02
9.300000000000000000e+01
1.680000000000000000e+02
2.750000000000000000e+02
2.930000000000000000e+02
2.810000000000000000e+02
7.200000000000000000e+01
1.400000000000000000e+02
1.890000000000000000e+02
1.810000000000000000e+02
2.090000000000000000e+02
1.360000000000000000e+02
2.610000000000000000e+02
1.130000000000000000e+02
1.310000000000000000e+02
1.740000000000000000e+02
2.570000000000000000e+02
5.500000000000000000e+01
8.400000000000000000e+01
4.200000000000000000e+01
1.460000000000000000e+02
2.120000000000000000e+02
2.330000000000000000e+02
9.100000000000000000e+01
1.110000000000000000e+02
1.520000000000000000e+02
1.200000000000000000e+02
6.700000000000000000e+01
3.100000000000000000e+02
9.400000000000000000e+01
1.830000000000000000e+02
6.600000000000000000e+01
1.730000000000000000e+02
7.200000000000000000e+01
4.900000000000000000e+01
6.400000000000000000e+01
4.800000000000000000e+01
1.780000000000000000e+02
1.040000000000000000e+02
1.320000000000000000e+02
2.200000000000000000e+02
5.700000000000000000e+01
1 1.510000000000000000e+02
2 7.500000000000000000e+01
3 1.410000000000000000e+02
4 2.060000000000000000e+02
5 1.350000000000000000e+02
6 9.700000000000000000e+01
7 1.380000000000000000e+02
8 6.300000000000000000e+01
9 1.100000000000000000e+02
10 3.100000000000000000e+02
11 1.010000000000000000e+02
12 6.900000000000000000e+01
13 1.790000000000000000e+02
14 1.850000000000000000e+02
15 1.180000000000000000e+02
16 1.710000000000000000e+02
17 1.660000000000000000e+02
18 1.440000000000000000e+02
19 9.700000000000000000e+01
20 1.680000000000000000e+02
21 6.800000000000000000e+01
22 4.900000000000000000e+01
23 6.800000000000000000e+01
24 2.450000000000000000e+02
25 1.840000000000000000e+02
26 2.020000000000000000e+02
27 1.370000000000000000e+02
28 8.500000000000000000e+01
29 1.310000000000000000e+02
30 2.830000000000000000e+02
31 1.290000000000000000e+02
32 5.900000000000000000e+01
33 3.410000000000000000e+02
34 8.700000000000000000e+01
35 6.500000000000000000e+01
36 1.020000000000000000e+02
37 2.650000000000000000e+02
38 2.760000000000000000e+02
39 2.520000000000000000e+02
40 9.000000000000000000e+01
41 1.000000000000000000e+02
42 5.500000000000000000e+01
43 6.100000000000000000e+01
44 9.200000000000000000e+01
45 2.590000000000000000e+02
46 5.300000000000000000e+01
47 1.900000000000000000e+02
48 1.420000000000000000e+02
49 7.500000000000000000e+01
50 1.420000000000000000e+02
51 1.550000000000000000e+02
52 2.250000000000000000e+02
53 5.900000000000000000e+01
54 1.040000000000000000e+02
55 1.820000000000000000e+02
56 1.280000000000000000e+02
57 5.200000000000000000e+01
58 3.700000000000000000e+01
59 1.700000000000000000e+02
60 1.700000000000000000e+02
61 6.100000000000000000e+01
62 1.440000000000000000e+02
63 5.200000000000000000e+01
64 1.280000000000000000e+02
65 7.100000000000000000e+01
66 1.630000000000000000e+02
67 1.500000000000000000e+02
68 9.700000000000000000e+01
69 1.600000000000000000e+02
70 1.780000000000000000e+02
71 4.800000000000000000e+01
72 2.700000000000000000e+02
73 2.020000000000000000e+02
74 1.110000000000000000e+02
75 8.500000000000000000e+01
76 4.200000000000000000e+01
77 1.700000000000000000e+02
78 2.000000000000000000e+02
79 2.520000000000000000e+02
80 1.130000000000000000e+02
81 1.430000000000000000e+02
82 5.100000000000000000e+01
83 5.200000000000000000e+01
84 2.100000000000000000e+02
85 6.500000000000000000e+01
86 1.410000000000000000e+02
87 5.500000000000000000e+01
88 1.340000000000000000e+02
89 4.200000000000000000e+01
90 1.110000000000000000e+02
91 9.800000000000000000e+01
92 1.640000000000000000e+02
93 4.800000000000000000e+01
94 9.600000000000000000e+01
95 9.000000000000000000e+01
96 1.620000000000000000e+02
97 1.500000000000000000e+02
98 2.790000000000000000e+02
99 9.200000000000000000e+01
100 8.300000000000000000e+01
101 1.280000000000000000e+02
102 1.020000000000000000e+02
103 3.020000000000000000e+02
104 1.980000000000000000e+02
105 9.500000000000000000e+01
106 5.300000000000000000e+01
107 1.340000000000000000e+02
108 1.440000000000000000e+02
109 2.320000000000000000e+02
110 8.100000000000000000e+01
111 1.040000000000000000e+02
112 5.900000000000000000e+01
113 2.460000000000000000e+02
114 2.970000000000000000e+02
115 2.580000000000000000e+02
116 2.290000000000000000e+02
117 2.750000000000000000e+02
118 2.810000000000000000e+02
119 1.790000000000000000e+02
120 2.000000000000000000e+02
121 2.000000000000000000e+02
122 1.730000000000000000e+02
123 1.800000000000000000e+02
124 8.400000000000000000e+01
125 1.210000000000000000e+02
126 1.610000000000000000e+02
127 9.900000000000000000e+01
128 1.090000000000000000e+02
129 1.150000000000000000e+02
130 2.680000000000000000e+02
131 2.740000000000000000e+02
132 1.580000000000000000e+02
133 1.070000000000000000e+02
134 8.300000000000000000e+01
135 1.030000000000000000e+02
136 2.720000000000000000e+02
137 8.500000000000000000e+01
138 2.800000000000000000e+02
139 3.360000000000000000e+02
140 2.810000000000000000e+02
141 1.180000000000000000e+02
142 3.170000000000000000e+02
143 2.350000000000000000e+02
144 6.000000000000000000e+01
145 1.740000000000000000e+02
146 2.590000000000000000e+02
147 1.780000000000000000e+02
148 1.280000000000000000e+02
149 9.600000000000000000e+01
150 1.260000000000000000e+02
151 2.880000000000000000e+02
152 8.800000000000000000e+01
153 2.920000000000000000e+02
154 7.100000000000000000e+01
155 1.970000000000000000e+02
156 1.860000000000000000e+02
157 2.500000000000000000e+01
158 8.400000000000000000e+01
159 9.600000000000000000e+01
160 1.950000000000000000e+02
161 5.300000000000000000e+01
162 2.170000000000000000e+02
163 1.720000000000000000e+02
164 1.310000000000000000e+02
165 2.140000000000000000e+02
166 5.900000000000000000e+01
167 7.000000000000000000e+01
168 2.200000000000000000e+02
169 2.680000000000000000e+02
170 1.520000000000000000e+02
171 4.700000000000000000e+01
172 7.400000000000000000e+01
173 2.950000000000000000e+02
174 1.010000000000000000e+02
175 1.510000000000000000e+02
176 1.270000000000000000e+02
177 2.370000000000000000e+02
178 2.250000000000000000e+02
179 8.100000000000000000e+01
180 1.510000000000000000e+02
181 1.070000000000000000e+02
182 6.400000000000000000e+01
183 1.380000000000000000e+02
184 1.850000000000000000e+02
185 2.650000000000000000e+02
186 1.010000000000000000e+02
187 1.370000000000000000e+02
188 1.430000000000000000e+02
189 1.410000000000000000e+02
190 7.900000000000000000e+01
191 2.920000000000000000e+02
192 1.780000000000000000e+02
193 9.100000000000000000e+01
194 1.160000000000000000e+02
195 8.600000000000000000e+01
196 1.220000000000000000e+02
197 7.200000000000000000e+01
198 1.290000000000000000e+02
199 1.420000000000000000e+02
200 9.000000000000000000e+01
201 1.580000000000000000e+02
202 3.900000000000000000e+01
203 1.960000000000000000e+02
204 2.220000000000000000e+02
205 2.770000000000000000e+02
206 9.900000000000000000e+01
207 1.960000000000000000e+02
208 2.020000000000000000e+02
209 1.550000000000000000e+02
210 7.700000000000000000e+01
211 1.910000000000000000e+02
212 7.000000000000000000e+01
213 7.300000000000000000e+01
214 4.900000000000000000e+01
215 6.500000000000000000e+01
216 2.630000000000000000e+02
217 2.480000000000000000e+02
218 2.960000000000000000e+02
219 2.140000000000000000e+02
220 1.850000000000000000e+02
221 7.800000000000000000e+01
222 9.300000000000000000e+01
223 2.520000000000000000e+02
224 1.500000000000000000e+02
225 7.700000000000000000e+01
226 2.080000000000000000e+02
227 7.700000000000000000e+01
228 1.080000000000000000e+02
229 1.600000000000000000e+02
230 5.300000000000000000e+01
231 2.200000000000000000e+02
232 1.540000000000000000e+02
233 2.590000000000000000e+02
234 9.000000000000000000e+01
235 2.460000000000000000e+02
236 1.240000000000000000e+02
237 6.700000000000000000e+01
238 7.200000000000000000e+01
239 2.570000000000000000e+02
240 2.620000000000000000e+02
241 2.750000000000000000e+02
242 1.770000000000000000e+02
243 7.100000000000000000e+01
244 4.700000000000000000e+01
245 1.870000000000000000e+02
246 1.250000000000000000e+02
247 7.800000000000000000e+01
248 5.100000000000000000e+01
249 2.580000000000000000e+02
250 2.150000000000000000e+02
251 3.030000000000000000e+02
252 2.430000000000000000e+02
253 9.100000000000000000e+01
254 1.500000000000000000e+02
255 3.100000000000000000e+02
256 1.530000000000000000e+02
257 3.460000000000000000e+02
258 6.300000000000000000e+01
259 8.900000000000000000e+01
260 5.000000000000000000e+01
261 3.900000000000000000e+01
262 1.030000000000000000e+02
263 3.080000000000000000e+02
264 1.160000000000000000e+02
265 1.450000000000000000e+02
266 7.400000000000000000e+01
267 4.500000000000000000e+01
268 1.150000000000000000e+02
269 2.640000000000000000e+02
270 8.700000000000000000e+01
271 2.020000000000000000e+02
272 1.270000000000000000e+02
273 1.820000000000000000e+02
274 2.410000000000000000e+02
275 6.600000000000000000e+01
276 9.400000000000000000e+01
277 2.830000000000000000e+02
278 6.400000000000000000e+01
279 1.020000000000000000e+02
280 2.000000000000000000e+02
281 2.650000000000000000e+02
282 9.400000000000000000e+01
283 2.300000000000000000e+02
284 1.810000000000000000e+02
285 1.560000000000000000e+02
286 2.330000000000000000e+02
287 6.000000000000000000e+01
288 2.190000000000000000e+02
289 8.000000000000000000e+01
290 6.800000000000000000e+01
291 3.320000000000000000e+02
292 2.480000000000000000e+02
293 8.400000000000000000e+01
294 2.000000000000000000e+02
295 5.500000000000000000e+01
296 8.500000000000000000e+01
297 8.900000000000000000e+01
298 3.100000000000000000e+01
299 1.290000000000000000e+02
300 8.300000000000000000e+01
301 2.750000000000000000e+02
302 6.500000000000000000e+01
303 1.980000000000000000e+02
304 2.360000000000000000e+02
305 2.530000000000000000e+02
306 1.240000000000000000e+02
307 4.400000000000000000e+01
308 1.720000000000000000e+02
309 1.140000000000000000e+02
310 1.420000000000000000e+02
311 1.090000000000000000e+02
312 1.800000000000000000e+02
313 1.440000000000000000e+02
314 1.630000000000000000e+02
315 1.470000000000000000e+02
316 9.700000000000000000e+01
317 2.200000000000000000e+02
318 1.900000000000000000e+02
319 1.090000000000000000e+02
320 1.910000000000000000e+02
321 1.220000000000000000e+02
322 2.300000000000000000e+02
323 2.420000000000000000e+02
324 2.480000000000000000e+02
325 2.490000000000000000e+02
326 1.920000000000000000e+02
327 1.310000000000000000e+02
328 2.370000000000000000e+02
329 7.800000000000000000e+01
330 1.350000000000000000e+02
331 2.440000000000000000e+02
332 1.990000000000000000e+02
333 2.700000000000000000e+02
334 1.640000000000000000e+02
335 7.200000000000000000e+01
336 9.600000000000000000e+01
337 3.060000000000000000e+02
338 9.100000000000000000e+01
339 2.140000000000000000e+02
340 9.500000000000000000e+01
341 2.160000000000000000e+02
342 2.630000000000000000e+02
343 1.780000000000000000e+02
344 1.130000000000000000e+02
345 2.000000000000000000e+02
346 1.390000000000000000e+02
347 1.390000000000000000e+02
348 8.800000000000000000e+01
349 1.480000000000000000e+02
350 8.800000000000000000e+01
351 2.430000000000000000e+02
352 7.100000000000000000e+01
353 7.700000000000000000e+01
354 1.090000000000000000e+02
355 2.720000000000000000e+02
356 6.000000000000000000e+01
357 5.400000000000000000e+01
358 2.210000000000000000e+02
359 9.000000000000000000e+01
360 3.110000000000000000e+02
361 2.810000000000000000e+02
362 1.820000000000000000e+02
363 3.210000000000000000e+02
364 5.800000000000000000e+01
365 2.620000000000000000e+02
366 2.060000000000000000e+02
367 2.330000000000000000e+02
368 2.420000000000000000e+02
369 1.230000000000000000e+02
370 1.670000000000000000e+02
371 6.300000000000000000e+01
372 1.970000000000000000e+02
373 7.100000000000000000e+01
374 1.680000000000000000e+02
375 1.400000000000000000e+02
376 2.170000000000000000e+02
377 1.210000000000000000e+02
378 2.350000000000000000e+02
379 2.450000000000000000e+02
380 4.000000000000000000e+01
381 5.200000000000000000e+01
382 1.040000000000000000e+02
383 1.320000000000000000e+02
384 8.800000000000000000e+01
385 6.900000000000000000e+01
386 2.190000000000000000e+02
387 7.200000000000000000e+01
388 2.010000000000000000e+02
389 1.100000000000000000e+02
390 5.100000000000000000e+01
391 2.770000000000000000e+02
392 6.300000000000000000e+01
393 1.180000000000000000e+02
394 6.900000000000000000e+01
395 2.730000000000000000e+02
396 2.580000000000000000e+02
397 4.300000000000000000e+01
398 1.980000000000000000e+02
399 2.420000000000000000e+02
400 2.320000000000000000e+02
401 1.750000000000000000e+02
402 9.300000000000000000e+01
403 1.680000000000000000e+02
404 2.750000000000000000e+02
405 2.930000000000000000e+02
406 2.810000000000000000e+02
407 7.200000000000000000e+01
408 1.400000000000000000e+02
409 1.890000000000000000e+02
410 1.810000000000000000e+02
411 2.090000000000000000e+02
412 1.360000000000000000e+02
413 2.610000000000000000e+02
414 1.130000000000000000e+02
415 1.310000000000000000e+02
416 1.740000000000000000e+02
417 2.570000000000000000e+02
418 5.500000000000000000e+01
419 8.400000000000000000e+01
420 4.200000000000000000e+01
421 1.460000000000000000e+02
422 2.120000000000000000e+02
423 2.330000000000000000e+02
424 9.100000000000000000e+01
425 1.110000000000000000e+02
426 1.520000000000000000e+02
427 1.200000000000000000e+02
428 6.700000000000000000e+01
429 3.100000000000000000e+02
430 9.400000000000000000e+01
431 1.830000000000000000e+02
432 6.600000000000000000e+01
433 1.730000000000000000e+02
434 7.200000000000000000e+01
435 4.900000000000000000e+01
436 6.400000000000000000e+01
437 4.800000000000000000e+01
438 1.780000000000000000e+02
439 1.040000000000000000e+02
440 1.320000000000000000e+02
441 2.200000000000000000e+02
442 5.700000000000000000e+01

View File

@@ -80,9 +80,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register input and output datasets\n",
"## Create trained model\n",
"\n",
"For this example, we have provided a small model (`sklearn_regression_model.pkl` in the notebook's directory) that was trained on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). Here, you will register the data used to create this model in your workspace."
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
]
},
{
@@ -91,9 +91,42 @@
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(model, 'sklearn_regression_model.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register input and output datasets\n",
"\n",
"Here, you will register the data used to create the model in your workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from azureml.core import Dataset\n",
"\n",
"\n",
"np.savetxt('features.csv', dataset_x, delimiter=',')\n",
"np.savetxt('labels.csv', dataset_y, delimiter=',')\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files=['./features.csv', './labels.csv'],\n",
" target_path='sklearn_regression/',\n",
@@ -125,6 +158,8 @@
},
"outputs": [],
"source": [
"import sklearn\n",
"\n",
"from azureml.core import Model\n",
"from azureml.core.resource_configuration import ResourceConfiguration\n",
"\n",
@@ -133,7 +168,7 @@
" model_name='my-sklearn-model', # Name of the registered model in your workspace.\n",
" model_path='./sklearn_regression_model.pkl', # Local file to upload and register as a model.\n",
" model_framework=Model.Framework.SCIKITLEARN, # Framework used to create the model.\n",
" model_framework_version='0.19.1', # Version of scikit-learn used to create the model.\n",
" model_framework_version=sklearn.__version__, # Version of scikit-learn used to create the model.\n",
" sample_input_dataset=input_dataset,\n",
" sample_output_dataset=output_dataset,\n",
" resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),\n",
@@ -174,19 +209,9 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"\n",
"service_name = 'my-sklearn-service'\n",
"\n",
"# Remove any existing service under the same name.\n",
"try:\n",
" Webservice(ws, service_name).delete()\n",
"except WebserviceException:\n",
" pass\n",
"\n",
"service = Model.deploy(ws, service_name, [model])\n",
"service = Model.deploy(ws, service_name, [model], overwrite=True)\n",
"service.wait_for_deployment(show_output=True)"
]
},
@@ -207,10 +232,7 @@
"\n",
"\n",
"input_payload = json.dumps({\n",
" 'data': [\n",
" [ 0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235,\n",
" -0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613]\n",
" ],\n",
" 'data': dataset_x[0:2].tolist(),\n",
" 'method': 'predict' # If you have a classification model, you can get probabilities by changing this to 'predict_proba'.\n",
"})\n",
"\n",
@@ -262,7 +284,7 @@
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn'\n",
" 'scikit-learn=={}'.format(sklearn.__version__)\n",
"])"
]
},
@@ -303,20 +325,12 @@
},
"outputs": [],
"source": [
"from azureml.core import Webservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"\n",
"service_name = 'my-custom-env-service'\n",
"\n",
"# Remove any existing service under the same name.\n",
"try:\n",
" Webservice(ws, service_name).delete()\n",
"except WebserviceException:\n",
" pass\n",
"\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"aci_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"\n",
@@ -324,7 +338,8 @@
" name=service_name,\n",
" models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=aci_config)\n",
" deployment_config=aci_config,\n",
" overwrite=True)\n",
"service.wait_for_deployment(show_output=True)"
]
},
@@ -342,10 +357,7 @@
"outputs": [],
"source": [
"input_payload = json.dumps({\n",
" 'data': [\n",
" [ 0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235,\n",
" -0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613]\n",
" ]\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"output = service.run(input_payload)\n",
@@ -471,7 +483,7 @@
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn'\n",
" 'scikit-learn=={}'.format(sklearn.__version__)\n",
"])\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"# if cpu and memory_in_gb parameters are not provided\n",

View File

@@ -2,3 +2,5 @@ name: model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -1,8 +0,0 @@
name: project_environment
dependencies:
- python=3.6.2
- pip:
- azureml-defaults
- scikit-learn
- numpy
- inference-schema[numpy-support]

View File

@@ -75,6 +75,33 @@
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"sk_model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(sk_model, \"sklearn_regression_model.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -148,13 +175,10 @@
"outputs": [],
"source": [
"%%writefile source_directory/x/y/score.py\n",
"import os\n",
"import pickle\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
@@ -165,16 +189,17 @@
" # It holds the path to the directory that contains the deployed model (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # If there are multiple models, this value is the path to the directory containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
" global name\n",
" # note here, entire source directory on inference config gets added into image\n",
" # bellow is the example how you can use any extra files in image\n",
" # Note here, the entire source directory from inference config gets added into image.\n",
" # Below is an example of how you can use any extra files in image.\n",
" with open('./source_directory/extradata.json') as json_file:\n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
@@ -182,37 +207,13 @@
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" # You can return any JSON-serializable object.\n",
" return \"Hello \" + name + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please note that you must indicate azureml-defaults with verion >= 1.0.45 as a pip dependency for your environemnt. This package contains the functionality needed to host the model as a web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile source_directory/env/myenv.yml\n",
"name: project_environment\n",
"dependencies:\n",
" - python=3.6.2\n",
" - pip:\n",
" - azureml-defaults\n",
" - scikit-learn\n",
" - numpy\n",
" - inference-schema[numpy-support]"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -249,11 +250,16 @@
"metadata": {},
"outputs": [],
"source": [
"import sklearn\n",
"\n",
"from azureml.core.environment import Environment\n",
"from azureml.core.model import InferenceConfig\n",
"\n",
"\n",
"myenv = Environment.from_conda_specification(name='myenv', file_path='myenv.yml')\n",
"myenv = Environment('myenv')\n",
"myenv.python.conda_dependencies.add_pip_package(\"inference-schema[numpy-support]\")\n",
"myenv.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"myenv.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))\n",
"\n",
"# explicitly set base_image to None when setting base_dockerfile\n",
"myenv.docker.base_image = None\n",
@@ -262,7 +268,7 @@
"\n",
"inference_config = InferenceConfig(source_directory=source_directory,\n",
" entry_script=\"x/y/score.py\",\n",
" environment=myenv)\n"
" environment=myenv)"
]
},
{
@@ -352,15 +358,10 @@
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': [\n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n",
" ]\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"sample_input = bytes(sample_input, encoding='utf-8')\n",
"\n",
"print(local_service.run(input_data=sample_input))"
"print(local_service.run(sample_input))"
]
},
{
@@ -379,12 +380,10 @@
"outputs": [],
"source": [
"%%writefile source_directory/x/y/score.py\n",
"import os\n",
"import pickle\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
@@ -395,17 +394,18 @@
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
" global name, from_location\n",
" # note here, entire source directory on inference config gets added into image\n",
" # bellow is the example how you can use any extra files in image\n",
" # Note here, the entire source directory from inference config gets added into image.\n",
" # Below is an example of how you can use any extra files in image.\n",
" with open('source_directory/extradata.json') as json_file: \n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
" from_location = data[\"people\"][0][\"from\"]\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
@@ -413,8 +413,8 @@
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return \"Hello \" + name + \" from \" + from_location + \" here is your result = \" + str(result)\n",
" # You can return any JSON-serializable object.\n",
" return \"Hello \" + name + \" from \" + from_location + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
@@ -430,7 +430,7 @@
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# After calling reload(), run() will return the updated message.\n",
"local_service.run(input_data=sample_input)"
"local_service.run(sample_input)"
]
},
{

View File

@@ -71,6 +71,33 @@
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"sk_model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(sk_model, \"sklearn_regression_model.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -82,9 +109,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
"Here we are registering the serialized file `sklearn_regression_model.pkl` in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
"You can add tags and descriptions to your models. Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
]
},
{
@@ -119,11 +146,62 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import sklearn\n",
"\n",
"from azureml.core.environment import Environment\n",
"\n",
"environment = Environment(\"LocalDeploy\")\n",
"environment.python.conda_dependencies = CondaDependencies(\"myenv.yml\")"
"environment.python.conda_dependencies.add_pip_package(\"inference-schema[numpy-support]\")\n",
"environment.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"environment.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Provide the Scoring Script\n",
"\n",
"This Python script handles the model execution inside the service container. The `init()` method loads the model file, and `run(data)` is called for every input to the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # You can return any JSON-serializable object.\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
@@ -145,113 +223,6 @@
" environment=environment)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Profiling\n",
"\n",
"Profile your model to understand how much CPU and memory the service, created as a result of its deployment, will need. Profiling returns information such as CPU usage, memory usage, and response latency. It also provides a CPU and memory recommendation based on the resource usage. You can profile your model (or more precisely the service built based on your model) on any CPU and/or memory combination where 0.1 <= CPU <= 3.5 and 0.1GB <= memory <= 15GB. If you do not provide a CPU and/or memory requirement, we will test it on the default configuration of 3.5 CPU and 15GB memory.\n",
"\n",
"In order to profile your model you will need:\n",
"- a registered model\n",
"- an entry script\n",
"- an inference configuration\n",
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
"\n",
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
"\n",
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
"\n",
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from azureml.core import Datastore\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.data import dataset_type_definitions\n",
"\n",
"\n",
"# create a string that can be put in the body of the request\n",
"serialized_input_json = json.dumps({\n",
" 'data': [\n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n",
" ]\n",
"})\n",
"dataset_content = []\n",
"for i in range(100):\n",
" dataset_content.append(serialized_input_json)\n",
"dataset_content = '\\n'.join(dataset_content)\n",
"file_name = 'sample_request_data_diabetes.txt'\n",
"f = open(file_name, 'w')\n",
"f.write(dataset_content)\n",
"f.close()\n",
"\n",
"# upload the txt file created above to the Datastore and create a dataset from it\n",
"data_store = Datastore.get_default(ws)\n",
"data_store.upload_files(['./' + file_name], target_path='sample_request_data_diabetes')\n",
"datastore_path = [(data_store, 'sample_request_data_diabetes' +'/' + file_name)]\n",
"sample_request_data_diabetes = Dataset.Tabular.from_delimited_files(\n",
" datastore_path,\n",
" separator='\\n',\n",
" infer_column_types=True,\n",
" header=dataset_type_definitions.PromoteHeadersBehavior.NO_HEADERS)\n",
"sample_request_data_diabetes = sample_request_data_diabetes.register(workspace=ws,\n",
" name='sample_request_data_diabetes',\n",
" create_new_version=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have an input dataset we are ready to go ahead with profiling. In this case we are testing the previously introduced sklearn regression model on 1 CPU and 0.5 GB memory. The memory usage and recommendation presented in the result is measured in Gigabytes. The CPU usage and recommendation is measured in CPU cores."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.model import Model, InferenceConfig\n",
"\n",
"\n",
"environment = Environment('my-sklearn-environment')\n",
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn'\n",
"])\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"# if cpu and memory_in_gb parameters are not provided\n",
"# the model will be profiled on default configuration of\n",
"# 3.5CPU and 15GB memory\n",
"profile = Model.profile(ws,\n",
" 'profile-%s' % datetime.now().strftime('%m%d%Y-%H%M%S'),\n",
" [model],\n",
" inference_config,\n",
" input_dataset=sample_request_data_diabetes,\n",
" cpu=1.0,\n",
" memory_in_gb=0.5)\n",
"\n",
"# profiling is a long running operation and may take up to 25 min\n",
"profile.wait_for_completion(True)\n",
"details = profile.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -338,15 +309,10 @@
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': [\n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n",
" ]\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"sample_input = bytes(sample_input, encoding='utf-8')\n",
"\n",
"local_service.run(input_data=sample_input)"
"local_service.run(sample_input)"
]
},
{
@@ -365,12 +331,10 @@
"outputs": [],
"source": [
"%%writefile score.py\n",
"import os\n",
"import pickle\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
@@ -381,10 +345,10 @@
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
@@ -392,8 +356,8 @@
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return 'hello from updated score.py'\n",
" # You can return any JSON-serializable object.\n",
" return 'Hello from the updated score.py: ' + str(result.tolist())\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
@@ -409,7 +373,7 @@
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# After calling reload(), run() will return the updated message.\n",
"local_service.run(input_data=sample_input)"
"local_service.run(sample_input)"
]
},
{

View File

@@ -1,35 +0,0 @@
import os
import pickle
import json
import numpy as np
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
def init():
global model
# AZUREML_MODEL_DIR is an environment variable created during deployment.
# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
# For multiple models, it points to the folder containing all deployed models (./azureml-models)
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
output_sample = np.array([3726.995])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
try:
result = model.predict(data)
# you can return any datatype as long as it is JSON-serializable
return result.tolist()
except Exception as e:
error = str(e)
return error

View File

@@ -108,9 +108,9 @@
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn'\n",
" 'scikit-learn==0.19.1',\n",
" 'scipy'\n",
"])"
]
},

View File

@@ -5,7 +5,7 @@
"metadata": {},
"source": [
"# Enabling App Insights for Services in Production\n",
"With this notebook, you can learn how to enable App Insights for standard service monitoring, plus, we provide examples for doing custom logging within a scoring files in a model. \n",
"With this notebook, you can learn how to enable App Insights for standard service monitoring, plus, we provide examples for doing custom logging within a scoring files in a model.\n",
"\n",
"\n",
"## What does Application Insights monitor?\n",
@@ -45,11 +45,13 @@
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import json\n",
"\n",
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import AksWebservice\n",
"import azureml.core\n",
"import json\n",
"\n",
"print(azureml.core.VERSION)"
]
},
@@ -67,7 +69,7 @@
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
@@ -84,13 +86,13 @@
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"from azureml.core import Model\n",
"\n",
"model = Model.register(model_path=\"sklearn_regression_model.pkl\", # This points to a local file.\n",
" model_name=\"sklearn_regression_model.pkl\", # This is the name the model is registered as.\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Ridge regression model to predict diabetes\",\n",
" workspace=ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
@@ -120,7 +122,7 @@
"import os\n",
"import pickle\n",
"import json\n",
"import numpy \n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"import time\n",
@@ -129,15 +131,15 @@
" global model\n",
" #Print statement for appinsights custom traces:\n",
" print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))\n",
" \n",
"\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" \n",
"\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
" \n",
"\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
@@ -168,9 +170,9 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'],\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn==0.20.3'],\n",
" pip_packages=['azureml-defaults'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
@@ -190,9 +192,8 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.environment import Environment\n",
"\n",
"from azureml.core.model import InferenceConfig\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
@@ -213,11 +214,11 @@
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aci_deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}, \n",
" description = 'Predict diabetes using regression model',\n",
" enable_app_insights = True)"
"aci_deployment_config = AciWebservice.deploy_configuration(cpu_cores=1,\n",
" memory_gb=1,\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Predict diabetes using regression model\",\n",
" enable_app_insights=True)"
]
},
{
@@ -226,29 +227,14 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"aci_service_name = \"aci-service-appinsights\"\n",
"\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aci_deployment_config, overwrite=True)\n",
"aci_service.wait_for_deployment(show_output=True)\n",
"\n",
"aci_service_name = 'my-aci-service-4'\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aci_deployment_config)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
" [101,9,8,37,6,45,4,3,2,41]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding='utf8')"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -256,7 +242,15 @@
"outputs": [],
"source": [
"if aci_service.state == \"Healthy\":\n",
" prediction = aci_service.run(input_data=test_sample)\n",
" test_sample = json.dumps({\n",
" \"data\": [\n",
" [1,28,13,45,54,6,57,8,8,10],\n",
" [101,9,8,37,6,45,4,3,2,41]\n",
" ]\n",
" })\n",
"\n",
" prediction = aci_service.run(test_sample)\n",
"\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service. Error: \", aci_service.error)"
@@ -282,14 +276,21 @@
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"from azureml.exceptions import ComputeTargetException\n",
"\n",
"aks_name = 'my-aks-test3' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
"aks_name = \"my-aks\"\n",
"\n",
"try:\n",
" aks_target = ComputeTarget(ws, aks_name)\n",
" print(\"Using existing AKS cluster {}.\".format(aks_name))\n",
"except ComputeTargetException:\n",
" print(\"Creating a new AKS cluster {}.\".format(aks_name))\n",
"\n",
" # Use the default configuration (can also provide parameters to customize).\n",
" prov_config = AksCompute.provisioning_configuration()\n",
" aks_target = ComputeTarget.create(workspace=ws,\n",
" name=aks_name,\n",
" provisioning_configuration=prov_config)"
]
},
{
@@ -299,7 +300,8 @@
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)"
"if aks_target.provisioning_state != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
@@ -323,13 +325,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"```python \n",
"```python\n",
"%%time\n",
"resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
"create_name= 'myaks4'\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace = ws, \n",
" name = create_name, \n",
"aks_target = ComputeTarget.attach(workspace=ws,\n",
" name=create_name,\n",
" attach_configuration=attach_config)\n",
"## Wait for the operation to complete\n",
"aks_target.wait_for_provisioning(True)```"
@@ -349,7 +351,7 @@
"metadata": {},
"outputs": [],
"source": [
"#Set the web service configuration\n",
"# Set the web service configuration.\n",
"aks_deployment_config = AksWebservice.deploy_configuration(enable_app_insights=True)"
]
},
@@ -366,15 +368,16 @@
"metadata": {},
"outputs": [],
"source": [
"if aks_target.provisioning_state== \"Succeeded\": \n",
" aks_service_name ='aks-w-dc5'\n",
"if aks_target.provisioning_state == \"Succeeded\":\n",
" aks_service_name = \"aks-service-appinsights\"\n",
" aks_service = Model.deploy(ws,\n",
" aks_service_name, \n",
" [model], \n",
" inference_config, \n",
" aks_deployment_config, \n",
" deployment_target = aks_target) \n",
" aks_service.wait_for_deployment(show_output = True)\n",
" aks_service_name,\n",
" [model],\n",
" inference_config,\n",
" aks_deployment_config,\n",
" deployment_target=aks_target,\n",
" overwrite=True)\n",
" aks_service.wait_for_deployment(show_output=True)\n",
" print(aks_service.state)\n",
"else:\n",
" raise ValueError(\"AKS provisioning failed. Error: \", aks_service.error)"
@@ -395,13 +398,14 @@
"source": [
"%%time\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
" [101,9,8,37,6,45,4,3,2,41]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding='utf8')\n",
"\n",
"if aks_service.state == \"Healthy\":\n",
" test_sample = json.dumps({\n",
" \"data\": [\n",
" [1,28,13,45,54,6,57,8,8,10],\n",
" [101,9,8,37,6,45,4,3,2,41]\n",
" ]\n",
" })\n",
"\n",
" prediction = aks_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
@@ -435,7 +439,7 @@
"outputs": [],
"source": [
"aks_service.update(enable_app_insights=False)\n",
"aks_service.wait_for_deployment(show_output = True)"
"aks_service.wait_for_deployment(show_output=True)"
]
},
{
@@ -461,7 +465,7 @@
"metadata": {
"authors": [
{
"name": "shipatel"
"name": "gopalv"
}
],
"kernelspec": {

View File

@@ -115,6 +115,11 @@
"# Convert from CoreML into ONNX\n",
"onnx_model = onnxmltools.convert_coreml(coreml_model, 'TinyYOLOv2')\n",
"\n",
"# Fix the preprocessor bias in the ImageScaler\n",
"for init in onnx_model.graph.initializer:\n",
" if init.name == 'scalerPreprocessor_bias':\n",
" init.dims[1] = 1\n",
"\n",
"# Save ONNX model\n",
"onnxmltools.utils.save_model(onnx_model, 'tinyyolov2.onnx')\n",
"\n",
@@ -255,7 +260,7 @@
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime==0.4.0\", \"azureml-core\", \"azureml-defaults\"])\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime\", \"azureml-core\", \"azureml-defaults\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
@@ -316,7 +321,7 @@
"metadata": {},
"outputs": [],
"source": [
"aci_service_name = 'my-aci-service-15ad'\n",
"aci_service_name = 'my-aci-service-tiny-yolo'\n",
"print(\"Service\", aci_service_name)\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
"aci_service.wait_for_deployment(True)\n",

View File

@@ -4,4 +4,5 @@ dependencies:
- azureml-sdk
- numpy
- git+https://github.com/apple/coremltools@v2.1
- onnx<1.7.0
- onnxmltools

View File

@@ -5,5 +5,5 @@ dependencies:
- azureml-widgets
- matplotlib
- numpy
- onnx
- onnx<1.7.0
- opencv-python-headless

View File

@@ -5,5 +5,5 @@ dependencies:
- azureml-widgets
- matplotlib
- numpy
- onnx
- onnx<1.7.0
- opencv-python-headless

View File

@@ -0,0 +1,354 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, provisioning a cluster with ssl (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.model import Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_model\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the Environment\n",
"Create an environment that the model will be deployed with"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"conda_deps = CondaDependencies.create(conda_packages=['numpy', 'scikit-learn==0.19.1', 'scipy'], pip_packages=['azureml-defaults', 'inference-schema'])\n",
"myenv = Environment(name='myenv')\n",
"myenv.python.conda_dependencies = conda_deps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use a custom Docker image\n",
"\n",
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
"\n",
"Only supported with `python` runtime.\n",
"```python\n",
"# use an image available in public Container Registry without authentication\n",
"myenv.docker.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
"\n",
"# or, use an image available in a private Container Registry\n",
"myenv.docker.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
"myenv.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
"myenv.docker.base_image_registry.username = \"username\"\n",
"myenv.docker.base_image_registry.password = \"password\"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Write the Entry Script\n",
"Write the script that will be used to predict on your model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score_ssl.py\n",
"import os\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.standard_py_parameter_type import StandardPythonParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"\n",
"standard_sample_input = {'a': 10, 'b': 9, 'c': 8, 'd': 7, 'e': 6, 'f': 5, 'g': 4, 'h': 3, 'i': 2, 'j': 1 }\n",
"standard_sample_output = {'outcome': 1}\n",
"\n",
"@input_schema('param', StandardPythonParameterType(standard_sample_input))\n",
"@output_schema(StandardPythonParameterType(standard_sample_output))\n",
"def run(param):\n",
" try:\n",
" raw_data = [param['a'], param['b'], param['c'], param['d'], param['e'], param['f'], param['g'], param['h'], param['i'], param['j']]\n",
" data = numpy.array([raw_data])\n",
" result = model.predict(data)\n",
" return { 'outcome' : result[0] }\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the InferenceConfig\n",
"Create the inference config that will be used when deploying the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inf_config = InferenceConfig(entry_script='score_ssl.py', environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster with SSL\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"\n",
"provisioning_config = AksCompute.provisioning_configuration()\n",
"# Leaf domain label generates a name using the formula\n",
"# \"<leaf-domain-label>######.<azure-region>.cloudapp.azure.net\"\n",
"# where \"######\" is a random series of characters\n",
"provisioning_config.enable_ssl(leaf_domain_label = \"contoso\")\n",
"\n",
"aks_name = 'my-aks-ssl-1' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = provisioning_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sample-deploy-to-aks"
]
},
"outputs": [],
"source": [
"%%time\n",
"\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"aks_service_name ='aks-service-ssl-1'\n",
"\n",
"aks_service = Model.deploy(workspace=ws,\n",
" name=aks_service_name,\n",
" models=[model],\n",
" inference_config=inf_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target,\n",
" overwrite=True)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service using run method\n",
"We test the web sevice by passing data.\n",
"Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"standard_sample_input = json.dumps({'param': {'a': 10, 'b': 9, 'c': 8, 'd': 7, 'e': 6, 'f': 5, 'g': 4, 'h': 3, 'i': 2, 'j': 1 }})\n",
"\n",
"aks_service.run(input_data=standard_sample_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks-ssl
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -109,7 +109,7 @@
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"conda_deps = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-defaults'])\n",
"conda_deps = CondaDependencies.create(conda_packages=['numpy','scikit-learn==0.19.1','scipy'], pip_packages=['azureml-defaults', 'inference-schema'])\n",
"myenv = Environment(name='myenv')\n",
"myenv.python.conda_dependencies = conda_deps"
]
@@ -300,7 +300,8 @@
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn'\n",
" 'scikit-learn==0.19.1',\n",
" 'scipy'\n",
"])\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"# if cpu and memory_in_gb parameters are not provided\n",

File diff suppressed because one or more lines are too long

View File

@@ -1,260 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/tensorflow/tensorflow-model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register TensorFlow SavedModel and deploy as webservice\n",
"\n",
"Following this notebook, you will:\n",
"\n",
" - Learn how to register a TF SavedModel in your Azure Machine Learning Workspace.\n",
" - Deploy your model as a web service in an Azure Container Instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and create a workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number.\n",
"print('SDK version:', azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Create a [Workspace](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py) object from your persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the Model\n",
"\n",
"Download and extract the model from https://amlsamplenotebooksdata.blob.core.windows.net/data/flowers_model.tar.gz to \"models\" directory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import tarfile\n",
"import urllib.request\n",
"\n",
"# create directory for model\n",
"model_dir = 'models'\n",
"if not os.path.isdir(model_dir):\n",
" os.mkdir(model_dir)\n",
"\n",
"url=\"https://amlsamplenotebooksdata.blob.core.windows.net/data/flowers_model.tar.gz\"\n",
"response = urllib.request.urlretrieve(url, model_dir + \"/flowers_model.tar.gz\")\n",
"tar = tarfile.open(model_dir + \"/flowers_model.tar.gz\", \"r:gz\")\n",
"tar.extractall(model_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register model\n",
"\n",
"Register a file or folder as a model by calling [Model.register()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none-). For this example, we have provided a TensorFlow SavedModel (`flowers_model` in the notebook's directory).\n",
"\n",
"In addition to the content of the model file itself, your registered model will also store model metadata -- model description, tags, and framework information -- that will be useful when managing and deploying models in your workspace. Using tags, for instance, you can categorize your models and apply filters when listing models in your workspace. Also, marking this model with the scikit-learn framework will simplify deploying it as a web service, as we'll see later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core import Model\n",
"\n",
"model = Model.register(workspace=ws,\n",
" model_name='flowers', # Name of the registered model in your workspace.\n",
" model_path= model_dir + '/flowers_model', # Local Tensorflow SavedModel folder to upload and register as a model.\n",
" model_framework=Model.Framework.TENSORFLOW, # Framework used to create the model.\n",
" model_framework_version='1.14.0', # Version of Tensorflow used to create the model.\n",
" description='Flowers model')\n",
"\n",
"print('Name:', model.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model\n",
"\n",
"Deploy your model as a web service using [Model.deploy()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config--deployment-config-none--deployment-target-none-). Web services take one or more models, load them in an environment, and run them on one of several supported deployment targets.\n",
"\n",
"For this example, we will deploy your TensorFlow SavedModel to an Azure Container Instance (ACI)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use a default environment (for supported models)\n",
"\n",
"The Azure Machine Learning service provides a default environment for supported model frameworks, including TensorFlow, based on the metadata you provided when registering your model. This is the easiest way to deploy your model.\n",
"\n",
"**Note**: This step can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"service_name = 'tensorflow-flower-service'\n",
"\n",
"# Remove any existing service under the same name.\n",
"try:\n",
" Webservice(ws, service_name).delete()\n",
"except WebserviceException:\n",
" pass\n",
"\n",
"service = Model.deploy(ws, service_name, [model])\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After your model is deployed, perform a call to the web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"headers = {'Content-Type': 'application/json'}\n",
"\n",
"if service.auth_enabled:\n",
" headers['Authorization'] = 'Bearer '+ service.get_keys()[0]\n",
"elif service.token_auth_enabled:\n",
" headers['Authorization'] = 'Bearer '+ service.get_token()[0]\n",
"\n",
"scoring_uri = service.scoring_uri # If you have a SavedModel with classify and regress, \n",
" # you can change the scoring_uri from 'uri:predict' to 'uri:classify' or 'uri:regress'.\n",
"print(scoring_uri)\n",
"\n",
"with open('tensorflow-flower-predict-input.json', 'rb') as data_file:\n",
" response = requests.post(\n",
" scoring_uri, data=data_file, headers=headers)\n",
"print(response.status_code)\n",
"print(response.elapsed)\n",
"print(response.json())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are finished testing your service, clean up the deployment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,4 +0,0 @@
name: tensorflow-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk

View File

@@ -58,7 +58,7 @@
"\n",
"Problem: Boston Housing Price Prediction with scikit-learn (train a model and run an explainer remotely via AMLCompute, and download and visualize the remotely-calculated explanations.)\n",
"\n",
"| ![explanations-run-history](./img/explanations-run-history.PNG) |\n",
"| ![explanations-run-history](./img/explanations-run-history.png) |\n",
"|:--:|\n"
]
},
@@ -204,104 +204,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Option 1: Provision as a run based compute target\n",
"### Option 1: Provision a compute target (Basic)\n",
"\n",
"You can provision AmlCompute as a compute target at run-time. In this case, the compute is auto-created for your run, scales up to max_nodes that you specify, and then **deleted automatically** after the run completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.runconfig import DEFAULT_CPU_IMAGE\n",
"\n",
"# create a new runconfig object\n",
"run_config = RunConfiguration()\n",
"\n",
"# signal that you want to use AmlCompute to execute script.\n",
"run_config.target = \"amlcompute\"\n",
"\n",
"# AmlCompute will be created in the same region as workspace\n",
"# Set vm size for AmlCompute\n",
"run_config.amlcompute.vm_size = 'STANDARD_D2_V2'\n",
"\n",
"# enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"# set Docker base image to the default CPU-based image\n",
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
"\n",
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"run_config.environment.python.user_managed_dependencies = False\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret', 'sklearn-pandas', 'azureml-dataprep'\n",
"]\n",
"\n",
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
"# In production scenario user would choose their dependencies\n",
"import pkg_resources\n",
"available_packages = pkg_resources.working_set\n",
"sklearn_ver = None\n",
"pandas_ver = None\n",
"for dist in available_packages:\n",
" if dist.key == 'scikit-learn':\n",
" sklearn_ver = dist.version\n",
" elif dist.key == 'pandas':\n",
" pandas_ver = dist.version\n",
"sklearn_dep = 'scikit-learn'\n",
"pandas_dep = 'pandas'\n",
"if sklearn_ver:\n",
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=azureml_pip_packages)\n",
"\n",
"# Now submit a run on AmlCompute\n",
"from azureml.core.script_run_config import ScriptRunConfig\n",
"\n",
"script_run_config = ScriptRunConfig(source_directory=project_folder,\n",
" script='train_explain.py',\n",
" run_config=run_config)\n",
"\n",
"run = experiment.submit(script_run_config)\n",
"\n",
"# Show run details\n",
"run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# Shows output of the run on stdout.\n",
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Option 2: Provision as a persistent compute target (Basic)\n",
"\n",
"You can provision a persistent AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"\n",
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
"* `max_nodes`: Maximum nodes to autoscale to while running a job on AmlCompute"
@@ -347,18 +252,17 @@
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"# Create a new RunConfig object\n",
"run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n",
"\n",
"# enable Docker \n",
"# Enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret', 'azureml-dataprep'\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n",
"\n",
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
@@ -378,9 +282,13 @@
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=azureml_pip_packages)\n",
"# Specify CondaDependencies obj\n",
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend([sklearn_dep, pandas_dep])\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
"\n",
"from azureml.core import Run\n",
"from azureml.core import ScriptRunConfig\n",
@@ -392,6 +300,13 @@
"run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -416,7 +331,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Option 3: Provision as a persistent compute target (Advanced)\n",
"### Option 2: Provision a compute target (Advanced)\n",
"\n",
"You can also specify additional properties or change defaults while provisioning AmlCompute using a more advanced configuration. This is useful when you want a dedicated cluster of 4 nodes (for example you can set the min_nodes and max_nodes to 4), or want the compute to be within an existing VNet in your subscription.\n",
"\n",
@@ -475,18 +390,17 @@
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"# Create a new RunConfig object\n",
"run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n",
"\n",
"# enable Docker \n",
"# Enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret', 'azureml-dataprep'\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n",
"\n",
"\n",
@@ -508,9 +422,13 @@
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=azureml_pip_packages)\n",
"# Specify CondaDependencies obj\n",
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend([sklearn_dep, pandas_dep])\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
"\n",
"from azureml.core import Run\n",
"from azureml.core import ScriptRunConfig\n",
@@ -542,19 +460,6 @@
"run.get_metrics()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient\n",
"\n",
"client = ExplanationClient.from_run(run)\n",
"# Get the top k (e.g., 4) most important features with their importance values\n",
"explanation = client.download_model_explanation(top_k=4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -670,9 +575,9 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve model for visualization and deployment\n",
"# Retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"from sklearn.externals import joblib\n",
"import joblib\n",
"original_model = Model(ws, 'model_explain_model_on_amlcomp')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_model = joblib.load(model_path)"
@@ -691,8 +596,8 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve x_test for visualization\n",
"from sklearn.externals import joblib\n",
"# Retrieve x_test for visualization\n",
"import joblib\n",
"x_test_path = './x_test_boston_housing.pkl'\n",
"run.download_file('x_test_boston_housing.pkl', output_file_path=x_test_path)"
]

View File

@@ -7,5 +7,5 @@ dependencies:
- matplotlib
- azureml-contrib-interpret
- sklearn-pandas
- azureml-dataprep
- azureml-dataset-runtime
- ipywidgets

View File

@@ -7,7 +7,7 @@ from interpret.ext.blackbox import TabularExplainer
from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient
from sklearn.model_selection import train_test_split
from azureml.core.run import Run
from sklearn.externals import joblib
import joblib
import os
import numpy as np

View File

@@ -122,7 +122,7 @@
"metadata": {},
"outputs": [],
"source": [
"# get the IBM employee attrition dataset\n",
"# Get the IBM employee attrition dataset\n",
"outdirname = 'dataset.6.21.19'\n",
"try:\n",
" from urllib import urlretrieve\n",
@@ -163,7 +163,7 @@
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(attritionXData, \n",
" target, \n",
" test_size = 0.2,\n",
" test_size=0.2,\n",
" random_state=0,\n",
" stratify=target)"
]
@@ -223,7 +223,7 @@
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', SVC(kernel='linear', C = 1.0, probability=True))])"
" ('classifier', SVC(C=1.0, probability=True))])"
]
},
{
@@ -249,7 +249,7 @@
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
" ('classifier', SVC(kernel='linear', C = 1.0, probability=True))]) \n",
" ('classifier', SVC(C=1.0, probability=True))]) \n",
"\n",
"\n",
"\n",
@@ -393,7 +393,7 @@
"metadata": {},
"outputs": [],
"source": [
"# feature shap values for all features and all data points in the training data\n",
"# Feature shap values for all features and all data points in the training data\n",
"print('local importance values: {}'.format(global_explanation.local_importance_values))"
]
},
@@ -450,8 +450,7 @@
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Experiment, Run\n",
"from interpret.ext.blackbox import TabularExplainer\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
@@ -576,6 +575,23 @@
"ExplanationDashboard(downloaded_global_explanation, model, datasetX=x_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## End\n",
"Complete the run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.complete()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -3,7 +3,7 @@ import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model

View File

@@ -3,7 +3,7 @@ import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model

View File

@@ -141,7 +141,7 @@
"metadata": {},
"outputs": [],
"source": [
"# get IBM attrition data\n",
"# Get IBM attrition data\n",
"import os\n",
"import pandas as pd\n",
"\n",
@@ -165,7 +165,7 @@
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.externals import joblib\n",
"import joblib\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.pipeline import Pipeline\n",
@@ -218,17 +218,17 @@
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(attritionXData,\n",
" target,\n",
" test_size = 0.2,\n",
" test_size=0.2,\n",
" random_state=0,\n",
" stratify=target)\n",
"\n",
"# preprocess the data and fit the classification model\n",
"# Preprocess the data and fit the classification model\n",
"clf.fit(x_train, y_train)\n",
"model = clf.steps[-1][1]\n",
"\n",
"model_file_name = 'log_reg.pkl'\n",
"\n",
"# save model in the outputs folder so it automatically get uploaded\n",
"# Save model in the outputs folder so it automatically get uploaded\n",
"with open(model_file_name, 'wb') as file:\n",
" joblib.dump(value=clf, filename=os.path.join('./outputs/',\n",
" model_file_name))"
@@ -345,9 +345,12 @@
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"myenv = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
"# Specify CondaDependencies obj\n",
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"myenv = CondaDependencies.create(pip_packages=['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
" pin_sdk_version=False)\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
@@ -364,7 +367,7 @@
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"# retrieve scoring explainer for deployment\n",
"# Retrieve scoring explainer for deployment\n",
"scoring_explainer_model = Model(ws, 'IBM_attrition_explainer')"
]
},
@@ -412,11 +415,11 @@
"\n",
"headers = {'Content-Type':'application/json'}\n",
"\n",
"# send request to service\n",
"# Send request to service\n",
"print(\"POST to url\", service.scoring_uri)\n",
"resp = requests.post(service.scoring_uri, sample_data, headers=headers)\n",
"\n",
"print(\"POST to url\", service.scoring_uri)\n",
"# can covert back to Python objects from json string if desired\n",
"# Can covert back to Python objects from json string if desired\n",
"print(\"prediction:\", resp.text)\n",
"result = json.loads(resp.text)"
]
@@ -427,7 +430,7 @@
"metadata": {},
"outputs": [],
"source": [
"#plot the feature importance for the prediction\n",
"# Plot the feature importance for the prediction\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt; plt.rcdefaults()\n",
"\n",

View File

@@ -63,7 +63,7 @@
"7.\tCreate an image and register it in the image registry.\n",
"8.\tDeploy the image as a web service in Azure.\n",
"\n",
"| ![azure-machine-learning-cycle](./img/azure-machine-learning-cycle.PNG) |\n",
"| ![azure-machine-learning-cycle](./img/azure-machine-learning-cycle.png) |\n",
"|:--:|"
]
},
@@ -156,7 +156,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Submit an AmlCompute run in a few different ways\n",
"## Submit an AmlCompute run\n",
"\n",
"First lets check which VM families are available in your region. Azure is a regional service and some specialized SKUs (especially GPUs) are only available in certain regions. Since AmlCompute is created in the region of your workspace, we will use the supported_vms () function to see if the VM family we want to use ('STANDARD_D2_V2') is supported.\n",
"\n",
@@ -202,9 +202,43 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Provision as a run based compute target\n",
"### Provision a compute target\n",
"\n",
"You can provision AmlCompute as a compute target at run-time. In this case, the compute is auto-created for your run, scales up to max_nodes that you specify, and then **deleted automatically** after the run completes."
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
"\n",
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
"* `max_nodes`: Maximum nodes to autoscale to while running a job on AmlCompute"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=4)\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run"
]
},
{
@@ -217,31 +251,23 @@
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.runconfig import DEFAULT_CPU_IMAGE\n",
"\n",
"# create a new runconfig object\n",
"# Create a new runconfig object\n",
"run_config = RunConfiguration()\n",
"\n",
"# signal that you want to use AmlCompute to execute script.\n",
"run_config.target = \"amlcompute\"\n",
"# Set compute target to AmlCompute target created in previous step\n",
"run_config.target = cpu_cluster.name\n",
"\n",
"# AmlCompute will be created in the same region as workspace\n",
"# Set vm size for AmlCompute\n",
"run_config.amlcompute.vm_size = 'STANDARD_D2_V2'\n",
"\n",
"# enable Docker \n",
"# Enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"# set Docker base image to the default CPU-based image\n",
"# Set Docker base image to the default CPU-based image\n",
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
"\n",
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"# Use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"run_config.environment.python.user_managed_dependencies = False\n",
"\n",
"# auto-prepare the Docker image when used for execution (if it is not already prepared)\n",
"run_config.auto_prepare_environment = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-interpret', 'azureml-dataprep'\n",
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
"]\n",
" \n",
"\n",
@@ -263,9 +289,13 @@
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=['sklearn_pandas', 'pyyaml'] + azureml_pip_packages,\n",
"# Specify CondaDependencies obj\n",
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages,\n",
" pin_sdk_version=False)\n",
"# Now submit a run on AmlCompute\n",
"from azureml.core.script_run_config import ScriptRunConfig\n",
@@ -323,9 +353,9 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve model for visualization and deployment\n",
"# Retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"from sklearn.externals import joblib\n",
"import joblib\n",
"original_model = Model(ws, 'amlcompute_deploy_model')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_svm_model = joblib.load(model_path)"
@@ -337,7 +367,7 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve global explanation for visualization\n",
"# Retrieve global explanation for visualization\n",
"from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient\n",
"\n",
"# get model explanation data\n",
@@ -351,8 +381,8 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve x_test for visualization\n",
"from sklearn.externals import joblib\n",
"# Retrieve x_test for visualization\n",
"import joblib\n",
"x_test_path = './x_test.pkl'\n",
"run.download_file('x_test_ibm.pkl', output_file_path=x_test_path)\n",
"x_test = joblib.load(x_test_path)"
@@ -392,13 +422,6 @@
"Deploy Model and ScoringExplainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
@@ -431,9 +454,13 @@
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"# specify CondaDependencies obj\n",
"myenv = CondaDependencies.create(conda_packages=[sklearn_dep, pandas_dep],\n",
" pip_packages=['sklearn-pandas', 'pyyaml'] + azureml_pip_packages,\n",
"# Specify CondaDependencies obj\n",
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
"myenv = CondaDependencies.create(pip_packages=azureml_pip_packages,\n",
" pin_sdk_version=False)\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
@@ -449,7 +476,7 @@
"metadata": {},
"outputs": [],
"source": [
"# retrieve scoring explainer for deployment\n",
"# Retrieve scoring explainer for deployment\n",
"scoring_explainer_model = Model(ws, 'IBM_attrition_explainer')"
]
},
@@ -488,17 +515,17 @@
"source": [
"import requests\n",
"\n",
"# create data to test service with\n",
"# Create data to test service with\n",
"examples = x_test[:4]\n",
"input_data = examples.to_json()\n",
"\n",
"headers = {'Content-Type':'application/json'}\n",
"\n",
"# send request to service\n",
"# Send request to service\n",
"print(\"POST to url\", service.scoring_uri)\n",
"resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"\n",
"print(\"POST to url\", service.scoring_uri)\n",
"# can covert back to Python objects from json string if desired\n",
"# Can covert back to Python objects from json string if desired\n",
"print(\"prediction:\", resp.text)"
]
},
@@ -528,13 +555,6 @@
"1. [Inferencing time: deploy a locally-trained model and explainer](./train-explain-model-locally-and-deploy.ipynb)\n",
"1. [Inferencing time: deploy a locally-trained keras model and explainer](./train-explain-model-keras-locally-and-deploy.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -7,6 +7,6 @@ dependencies:
- matplotlib
- azureml-contrib-interpret
- sklearn-pandas
- azureml-dataprep
- azureml-dataset-runtime
- azureml-core
- ipywidgets

View File

@@ -6,7 +6,7 @@ import os
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
import joblib
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline

View File

@@ -342,7 +342,7 @@
"## Running a few steps in parallel\n",
"Here we are looking at a simple scenario where we are running a few steps (all involving PythonScriptStep) in parallel. Running nodes in **parallel** is the default behavior for steps in a pipeline.\n",
"\n",
"We already have one step defined earlier. Let's define few more steps."
"We already have one step defined earlier. Let's define few more steps. For step3, we are using customized conda-dependency, and job might fail when \"azureml-defaults\" (or other meta package) is not in pip-package list. We need to be aware if we are not using any of the meta packages (azureml-sdk, azureml-defaults, azureml-core), and we recommend installing \"azureml-defaults\"."
]
},
{
@@ -637,7 +637,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.2"
},
"order_index": 1,
"tags": [

View File

@@ -252,7 +252,7 @@
"source": [
"binaries_folder = \"azurebatch/job_binaries\"\n",
"if not os.path.isdir(binaries_folder):\n",
" os.mkdir(binaries_folder)\n",
" os.makedirs(binaries_folder)\n",
"\n",
"file_name=\"azurebatch.cmd\"\n",
"with open(path.join(binaries_folder, file_name), 'w') as f:\n",

View File

@@ -544,7 +544,7 @@
"metadata": {
"authors": [
{
"name": "sanpil"
"name": "nagaur"
}
],
"category": "tutorial",

View File

@@ -40,7 +40,7 @@
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Datastore, Experiment\n",
"from azureml.core import Workspace, Datastore, Experiment, Dataset\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
@@ -109,7 +109,7 @@
"metadata": {},
"source": [
"## Building Pipeline Steps with Inputs and Outputs\n",
"As mentioned earlier, a step in the pipeline can take data as input. This data can be a data source that lives in one of the accessible data locations, or intermediate data produced by a previous step in the pipeline."
"A step in the pipeline can take [dataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py) as input. This dataset can be a data source that lives in one of the accessible data locations, or intermediate data produced by a previous step in the pipeline."
]
},
{
@@ -118,13 +118,20 @@
"metadata": {},
"outputs": [],
"source": [
"# Reference the data uploaded to blob storage using DataReference\n",
"# Uploading data to the datastore\n",
"data_path = def_blob_store.upload_files([\"./20news.pkl\"], target_path=\"20newsgroups\", overwrite=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Reference the data uploaded to blob storage using file dataset\n",
"# Assign the datasource to blob_input_data variable\n",
"blob_input_data = DataReference(\n",
" datastore=def_blob_store,\n",
" data_reference_name=\"test_data\",\n",
" path_on_datastore=\"20newsgroups/20news.pkl\")\n",
"print(\"DataReference object created\")"
"blob_input_data = Dataset.File.from_files(data_path).as_named_input(\"test_data\")\n",
"print(\"Dataset created\")"
]
},
{
@@ -142,8 +149,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Define a Step that consumes a datasource and produces intermediate data.\n",
"In this step, we define a step that consumes a datasource and produces intermediate data.\n",
"#### Define a Step that consumes a dataset and produces intermediate data.\n",
"In this step, we define a step that consumes a dataset and produces intermediate data.\n",
"\n",
"**Open `train.py` in the local machine and examine the arguments, inputs, and outputs for the script. That will give you a good sense of why the script argument names used below are important.** \n",
"\n",

Some files were not shown because too many files have changed in this diff Show More