mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 09:37:04 -05:00
Compare commits
104 Commits
cody/add-n
...
shbijlan-u
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
279a1ba2c0 | ||
|
|
8233533dcd | ||
|
|
89f23e6d50 | ||
|
|
4cac072fa4 | ||
|
|
aeab6b3e28 | ||
|
|
015e261f29 | ||
|
|
d2a423dde9 | ||
|
|
3ecbfd6532 | ||
|
|
02ecb2d755 | ||
|
|
122df6e846 | ||
|
|
7d6a0a2051 | ||
|
|
6cc8af80a2 | ||
|
|
f61898f718 | ||
|
|
5cb465171e | ||
|
|
0ce37dd18f | ||
|
|
d835b183a5 | ||
|
|
d3cafebff9 | ||
|
|
354b194a25 | ||
|
|
a52d67bb84 | ||
|
|
421ea3d920 | ||
|
|
24f53f1aa1 | ||
|
|
6fc5d11de2 | ||
|
|
d17547d890 | ||
|
|
928e0d4327 | ||
|
|
05327cfbb9 | ||
|
|
8f7717014b | ||
|
|
a47e50b79a | ||
|
|
8f89d88def | ||
|
|
ec97207bb1 | ||
|
|
a2d20b0f47 | ||
|
|
8180cebd75 | ||
|
|
700ab2d782 | ||
|
|
ec9a5a061d | ||
|
|
467630f955 | ||
|
|
eac6b69bae | ||
|
|
441a5b0141 | ||
|
|
70902df6da | ||
|
|
6f893ff0b4 | ||
|
|
bda592a236 | ||
|
|
8b32e8d5ad | ||
|
|
54a065c698 | ||
|
|
b9718678b3 | ||
|
|
3fa40d2c6d | ||
|
|
883e4a4c59 | ||
|
|
e90826b331 | ||
|
|
ac04172f6d | ||
|
|
8c0000beb4 | ||
|
|
35287ab0d8 | ||
|
|
3fe4f8b038 | ||
|
|
1722678469 | ||
|
|
17da7e8706 | ||
|
|
d2e7213ff3 | ||
|
|
882cb76e8a | ||
|
|
37f37a46c1 | ||
|
|
0cd1412421 | ||
|
|
c3ae9f00f6 | ||
|
|
11b02c650c | ||
|
|
606048c71f | ||
|
|
cb1c354d44 | ||
|
|
c868fff5a2 | ||
|
|
bc4e6611c4 | ||
|
|
0a58881b70 | ||
|
|
2544e85c5f | ||
|
|
7fe27501d1 | ||
|
|
624c46e7f9 | ||
|
|
40fbadd85c | ||
|
|
0c1fc25542 | ||
|
|
e8e1357229 | ||
|
|
ad44f8fa2b | ||
|
|
ee63e759f0 | ||
|
|
b81d97ebbf | ||
|
|
249fb6bbb5 | ||
|
|
cda1f3e4cf | ||
|
|
1d05efaac2 | ||
|
|
3adebd1127 | ||
|
|
a6817063df | ||
|
|
a79f8c254a | ||
|
|
fb4f287458 | ||
|
|
41366a4af0 | ||
|
|
74deb14fac | ||
|
|
4ed1d445ae | ||
|
|
b5c15db0b4 | ||
|
|
91d43bade6 | ||
|
|
bd750f5817 | ||
|
|
637bcc5973 | ||
|
|
ba741fb18d | ||
|
|
ac0ad8d487 | ||
|
|
5019ad6c5a | ||
|
|
41a2ebd2b3 | ||
|
|
53e3283d1d | ||
|
|
ba9c4c5465 | ||
|
|
a6c65f00ec | ||
|
|
95072eabc2 | ||
|
|
12905ef254 | ||
|
|
4cf56eee91 | ||
|
|
d345ff6c37 | ||
|
|
560dcac0a0 | ||
|
|
322087a58c | ||
|
|
e255c000ab | ||
|
|
7871e37ec0 | ||
|
|
58e584e7eb | ||
|
|
1b0d75cb45 | ||
|
|
5c38272fb4 | ||
|
|
e026c56f19 |
1
.vscode/settings.json
vendored
Normal file
1
.vscode/settings.json
vendored
Normal file
@@ -0,0 +1 @@
|
||||
{}
|
||||
9
CODE_OF_CONDUCT.md
Normal file
9
CODE_OF_CONDUCT.md
Normal file
@@ -0,0 +1,9 @@
|
||||
# Microsoft Open Source Code of Conduct
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
|
||||
Resources:
|
||||
|
||||
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
|
||||
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
||||
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns
|
||||
@@ -28,7 +28,7 @@ git clone https://github.com/Azure/MachineLearningNotebooks.git
|
||||
pip install azureml-sdk[notebooks,tensorboard]
|
||||
|
||||
# install model explainability component
|
||||
pip install azureml-sdk[explain]
|
||||
pip install azureml-sdk[interpret]
|
||||
|
||||
# install automated ml components
|
||||
pip install azureml-sdk[automl]
|
||||
@@ -86,7 +86,7 @@ If you need additional Azure ML SDK components, you can either modify the Docker
|
||||
pip install azureml-sdk[automl]
|
||||
|
||||
# install the core SDK and model explainability component
|
||||
pip install azureml-sdk[explain]
|
||||
pip install azureml-sdk[interpret]
|
||||
|
||||
# install the core SDK and experimental components
|
||||
pip install azureml-sdk[contrib]
|
||||
|
||||
98
README.md
98
README.md
@@ -1,77 +1,43 @@
|
||||
# Azure Machine Learning service example notebooks
|
||||
# Azure Machine Learning Python SDK notebooks
|
||||
|
||||
> a community-driven repository of examples using mlflow for tracking can be found at https://github.com/Azure/azureml-examples
|
||||
|
||||
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
|
||||
Welcome to the Azure Machine Learning Python SDK notebooks repository!
|
||||
|
||||

|
||||
## Getting started
|
||||
|
||||
These notebooks are recommended for use in an Azure Machine Learning [Compute Instance](https://docs.microsoft.com/azure/machine-learning/concept-compute-instance), where you can run them without any additional set up.
|
||||
|
||||
## Quick installation
|
||||
```sh
|
||||
pip install azureml-sdk
|
||||
```
|
||||
Read more detailed instructions on [how to set up your environment](./NBSETUP.md) using Azure Notebook service, your own Jupyter notebook server, or Docker.
|
||||
However, the notebooks can be run in any development environment with the correct `azureml` packages installed.
|
||||
|
||||
## How to navigate and use the example notebooks?
|
||||
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
|
||||
This [index](./index.md) should assist in navigating the Azure Machine Learning notebook samples and encourage efficient retrieval of topics and content.
|
||||
|
||||
If you want to...
|
||||
|
||||
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/image-classification-mnist-data/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/image-classification-mnist-data/img-classification-part2-deploy.ipynb).
|
||||
* ...learn about experimentation and tracking run history, try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb).
|
||||
* ...train deep learning models at scale, learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb)
|
||||
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
|
||||
* ...deploy models as a batch scoring service, [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
|
||||
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb).
|
||||
|
||||
## Tutorials
|
||||
|
||||
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs).
|
||||
|
||||
## How to use Azure ML
|
||||
|
||||
The [How to use Azure ML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
|
||||
|
||||
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets
|
||||
- [Manage Azure ML Service](./how-to-use-azureml/manage-azureml-service) - Examples how to perform tasks, such as authenticate against Azure ML service in different ways.
|
||||
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
|
||||
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
|
||||
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
|
||||
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
|
||||
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
|
||||
|
||||
---
|
||||
## Documentation
|
||||
|
||||
* Quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
|
||||
* [Python SDK reference](https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py)
|
||||
* Azure ML Data Prep SDK [overview](https://aka.ms/data-prep-sdk), [Python SDK reference](https://aka.ms/aml-data-prep-apiref), and [tutorials and how-tos](https://aka.ms/aml-data-prep-notebooks).
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Community Repository
|
||||
Visit this [community repository](https://github.com/microsoft/MLOps/tree/master/examples) to find useful end-to-end sample notebooks. Also, please follow these [contribution guidelines](https://github.com/microsoft/MLOps/blob/master/contributing.md) when contributing to this repository.
|
||||
|
||||
## Projects using Azure Machine Learning
|
||||
|
||||
Visit following repos to see projects contributed by Azure ML users:
|
||||
- [AML Examples](https://github.com/Azure/azureml-examples)
|
||||
- [Learn about Natural Language Processing best practices using Azure Machine Learning service](https://github.com/microsoft/nlp)
|
||||
- [Pre-Train BERT models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
|
||||
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
|
||||
- [UMass Amherst Student Samples](https://github.com/katiehouse3/microsoft-azure-ml-notebooks) - A number of end-to-end machine learning notebooks, including machine translation, image classification, and customer churn, created by students in the 696DS course at UMass Amherst.
|
||||
|
||||
## Data/Telemetry
|
||||
This repository collects usage data and sends it to Microsoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
|
||||
|
||||
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
|
||||
Install the `azureml.core` Python package:
|
||||
|
||||
```sh
|
||||
""
|
||||
pip install azureml-core
|
||||
```
|
||||
This URL will be slightly different depending on the file.
|
||||
|
||||

|
||||
Install additional packages as needed:
|
||||
|
||||
```sh
|
||||
pip install azureml-mlflow
|
||||
pip install azureml-dataset-runtime
|
||||
pip install azureml-automl-runtime
|
||||
pip install azureml-pipeline
|
||||
pip install azureml-pipeline-steps
|
||||
...
|
||||
```
|
||||
|
||||
We recommend starting with one of the [quickstarts](tutorials/compute-instance-quickstarts).
|
||||
|
||||
## Contributing
|
||||
|
||||
This repository is a push-only mirror. Pull requests are ignored.
|
||||
|
||||
## Code of Conduct
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). Please see the [code of conduct](CODE_OF_CONDUCT.md) for details.
|
||||
|
||||
## Reference
|
||||
|
||||
- [Documentation](https://docs.microsoft.com/azure/machine-learning)
|
||||
|
||||
|
||||
@@ -103,7 +103,7 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -254,6 +254,8 @@
|
||||
"\n",
|
||||
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
|
||||
"\n",
|
||||
"The cluster parameters are:\n",
|
||||
|
||||
@@ -36,9 +36,9 @@
|
||||
"\n",
|
||||
"<a id=\"Introduction\"></a>\n",
|
||||
"## Introduction\n",
|
||||
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.github.io) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.github.io/).\n",
|
||||
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.org) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.org/).\n",
|
||||
"\n",
|
||||
"We will apply the [grid search algorithm](https://fairlearn.github.io/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
|
||||
"We will apply the [grid search algorithm](https://fairlearn.org/v0.4.6/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
|
||||
"\n",
|
||||
"### Setup\n",
|
||||
"\n",
|
||||
@@ -46,9 +46,10 @@
|
||||
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
|
||||
"This notebook also requires the following packages:\n",
|
||||
"* `azureml-contrib-fairness`\n",
|
||||
"* `fairlearn==0.4.6`\n",
|
||||
"* `fairlearn>=0.6.2` (pre-v0.5.0 will work with minor modifications)\n",
|
||||
"* `joblib`\n",
|
||||
"* `shap`\n",
|
||||
"* `liac-arff`\n",
|
||||
"* `raiwidgets~=0.7.0`\n",
|
||||
"\n",
|
||||
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
|
||||
]
|
||||
@@ -62,13 +63,20 @@
|
||||
"# !pip install --upgrade scikit-learn>=0.22.1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"LoadingData\"></a>\n",
|
||||
"## Loading the Data\n",
|
||||
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
|
||||
"We use the well-known `adult` census dataset, which we will fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -78,10 +86,16 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.reductions import GridSearch, DemographicParity, ErrorRate\n",
|
||||
"from fairlearn.widget import FairlearnDashboard\n",
|
||||
"from sklearn import svm\n",
|
||||
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
|
||||
"from raiwidgets import FairnessDashboard\n",
|
||||
"\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.compose import make_column_selector as selector\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
@@ -89,7 +103,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can now load and inspect the data from the `shap` package:"
|
||||
"We can now load and inspect the data:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -98,10 +112,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import fetch_openml\n",
|
||||
"data = fetch_openml(data_id=1590, as_frame=True)\n",
|
||||
"from fairness_nb_utils import fetch_census_dataset\n",
|
||||
"\n",
|
||||
"data = fetch_census_dataset()\n",
|
||||
" \n",
|
||||
"# Extract the items we want\n",
|
||||
"X_raw = data.data\n",
|
||||
"Y = (data.target == '>50K') * 1\n",
|
||||
"y = (data.target == '>50K') * 1\n",
|
||||
"\n",
|
||||
"X_raw[\"race\"].value_counts().to_dict()"
|
||||
]
|
||||
@@ -110,7 +127,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We are going to treat the sex of each individual as a protected attribute (where 0 indicates female and 1 indicates male), and in this particular case we are going separate this attribute out and drop it from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). We also separate out the Race column, but we will not perform any mitigation based on it. Finally, we perform some standard data preprocessing steps to convert the data into a format suitable for the ML algorithms"
|
||||
"We are going to treat the sex and race of each individual as protected attributes, and in this particular case we are going to remove these attributes from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). Protected attributes are often denoted by 'A' in the literature, and we follow that convention here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -120,23 +137,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"A = X_raw[['sex','race']]\n",
|
||||
"X = X_raw.drop(labels=['sex', 'race'],axis = 1)\n",
|
||||
"X_dummies = pd.get_dummies(X)\n",
|
||||
"\n",
|
||||
"sc = StandardScaler()\n",
|
||||
"X_scaled = sc.fit_transform(X_dummies)\n",
|
||||
"X_scaled = pd.DataFrame(X_scaled, columns=X_dummies.columns)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"le = LabelEncoder()\n",
|
||||
"Y = le.fit_transform(Y)"
|
||||
"X_raw = X_raw.drop(labels=['sex', 'race'], axis = 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With our data prepared, we can make the conventional split in to 'test' and 'train' subsets:"
|
||||
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -145,21 +153,76 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_scaled, \n",
|
||||
" Y, \n",
|
||||
" A,\n",
|
||||
" test_size = 0.2,\n",
|
||||
" random_state=0,\n",
|
||||
" stratify=Y)\n",
|
||||
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
|
||||
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Ensure indices are aligned between X, y and A,\n",
|
||||
"# after all the slicing and splitting of DataFrames\n",
|
||||
"# and Series\n",
|
||||
"\n",
|
||||
"# Work around indexing issue\n",
|
||||
"X_train = X_train.reset_index(drop=True)\n",
|
||||
"A_train = A_train.reset_index(drop=True)\n",
|
||||
"X_test = X_test.reset_index(drop=True)\n",
|
||||
"y_train = y_train.reset_index(drop=True)\n",
|
||||
"y_test = y_test.reset_index(drop=True)\n",
|
||||
"A_train = A_train.reset_index(drop=True)\n",
|
||||
"A_test = A_test.reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
|
||||
"\n",
|
||||
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"numeric_transformer = Pipeline(\n",
|
||||
" steps=[\n",
|
||||
" (\"impute\", SimpleImputer()),\n",
|
||||
" (\"scaler\", StandardScaler()),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"categorical_transformer = Pipeline(\n",
|
||||
" [\n",
|
||||
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
|
||||
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"preprocessor = ColumnTransformer(\n",
|
||||
" transformers=[\n",
|
||||
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
|
||||
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = preprocessor.fit_transform(X_train)\n",
|
||||
"X_test = preprocessor.transform(X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -178,7 +241,7 @@
|
||||
"source": [
|
||||
"unmitigated_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
|
||||
"\n",
|
||||
"unmitigated_predictor.fit(X_train, Y_train)"
|
||||
"unmitigated_predictor.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -194,9 +257,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FairlearnDashboard(sensitive_features=A_test, sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=Y_test,\n",
|
||||
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
|
||||
"FairnessDashboard(sensitive_features=A_test,\n",
|
||||
" y_true=y_test,\n",
|
||||
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -246,10 +309,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sweep.fit(X_train, Y_train,\n",
|
||||
"sweep.fit(X_train, y_train,\n",
|
||||
" sensitive_features=A_train.sex)\n",
|
||||
"\n",
|
||||
"predictors = sweep._predictors"
|
||||
"# For Fairlearn pre-v0.5.0, need sweep._predictors\n",
|
||||
"predictors = sweep.predictors_"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -266,16 +330,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"errors, disparities = [], []\n",
|
||||
"for m in predictors:\n",
|
||||
" classifier = lambda X: m.predict(X)\n",
|
||||
" \n",
|
||||
"for predictor in predictors:\n",
|
||||
" error = ErrorRate()\n",
|
||||
" error.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.sex)\n",
|
||||
" error.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
|
||||
" disparity = DemographicParity()\n",
|
||||
" disparity.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.sex)\n",
|
||||
" disparity.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
|
||||
" \n",
|
||||
" errors.append(error.gamma(classifier)[0])\n",
|
||||
" disparities.append(disparity.gamma(classifier).max())\n",
|
||||
" errors.append(error.gamma(predictor.predict)[0])\n",
|
||||
" disparities.append(disparity.gamma(predictor.predict).max())\n",
|
||||
" \n",
|
||||
"all_results = pd.DataFrame( {\"predictor\": predictors, \"error\": errors, \"disparity\": disparities})\n",
|
||||
"\n",
|
||||
@@ -324,17 +386,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"FairlearnDashboard(sensitive_features=A_test, \n",
|
||||
" sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=Y_test.tolist(),\n",
|
||||
" y_pred=predictions_dominant)"
|
||||
"FairnessDashboard(sensitive_features=A_test, \n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=predictions_dominant)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"When using sex as the sensitive feature, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
|
||||
"When using sex as the sensitive feature and accuracy as the metric, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
|
||||
"\n",
|
||||
"By clicking on individual models on the plot, we can inspect their metrics for disparity and accuracy in greater detail. In a real example, we would then pick the model which represented the best trade-off between accuracy and disparity given the relevant business constraints."
|
||||
]
|
||||
@@ -346,7 +407,7 @@
|
||||
"<a id=\"AzureUpload\"></a>\n",
|
||||
"## Uploading a Fairness Dashboard to Azure\n",
|
||||
"\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. By default, the dashboard in Azure Machine Learning Studio also requires the models to be registered. The required stages are therefore:\n",
|
||||
"1. Register the dominant models\n",
|
||||
"1. Precompute all the required metrics\n",
|
||||
"1. Upload to Azure\n",
|
||||
@@ -441,7 +502,7 @@
|
||||
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
|
||||
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
|
||||
" predictions=predictions_dominant_ids,\n",
|
||||
" sensitive_features=sf,\n",
|
||||
" prediction_type='binary_classification')"
|
||||
@@ -520,7 +581,7 @@
|
||||
"<a id=\"Conclusion\"></a>\n",
|
||||
"## Conclusion\n",
|
||||
"\n",
|
||||
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.github.io/) provides that discussion"
|
||||
"In this notebook we have demonstrated how to use the `GridSearch` algorithm from Fairlearn to generate a collection of models, and then present them in the fairness dashboard in Azure Machine Learning Studio. Please remember that this notebook has not attempted to discuss the many considerations which should be part of any approach to unfairness mitigation. The [Fairlearn website](http://fairlearn.org/) provides that discussion"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,5 +3,7 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-fairness
|
||||
- fairlearn==0.4.6
|
||||
- fairlearn>=0.6.2
|
||||
- joblib
|
||||
- liac-arff
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
111
contrib/fairness/fairness_nb_utils.py
Normal file
111
contrib/fairness/fairness_nb_utils.py
Normal file
@@ -0,0 +1,111 @@
|
||||
# ---------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# ---------------------------------------------------------
|
||||
|
||||
"""Utilities for azureml-contrib-fairness notebooks."""
|
||||
|
||||
import arff
|
||||
from collections import OrderedDict
|
||||
from contextlib import closing
|
||||
import gzip
|
||||
import pandas as pd
|
||||
from sklearn.datasets import fetch_openml
|
||||
from sklearn.utils import Bunch
|
||||
import time
|
||||
|
||||
|
||||
def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
|
||||
"""Fetch a given dataset from OpenML with retries as specified."""
|
||||
for i in range(max_retries):
|
||||
try:
|
||||
print("Download attempt {0} of {1}".format(i + 1, max_retries))
|
||||
data = fetch_openml(data_id=data_id, as_frame=True)
|
||||
break
|
||||
except Exception as e: # noqa: B902
|
||||
print("Download attempt failed with exception:")
|
||||
print(e)
|
||||
if i + 1 != max_retries:
|
||||
print("Will retry after {0} seconds".format(retry_delay))
|
||||
time.sleep(retry_delay)
|
||||
retry_delay = retry_delay * 2
|
||||
else:
|
||||
raise RuntimeError("Unable to download dataset from OpenML")
|
||||
|
||||
return data
|
||||
|
||||
|
||||
_categorical_columns = [
|
||||
'workclass',
|
||||
'education',
|
||||
'marital-status',
|
||||
'occupation',
|
||||
'relationship',
|
||||
'race',
|
||||
'sex',
|
||||
'native-country'
|
||||
]
|
||||
|
||||
|
||||
def fetch_census_dataset():
|
||||
"""Fetch the Adult Census Dataset.
|
||||
|
||||
This uses a particular URL for the Adult Census dataset. The code
|
||||
is a simplified version of fetch_openml() in sklearn.
|
||||
|
||||
The data are copied from:
|
||||
https://openml.org/data/v1/download/1595261.gz
|
||||
(as of 2021-03-31)
|
||||
"""
|
||||
try:
|
||||
from urllib import urlretrieve
|
||||
except ImportError:
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
filename = "1595261.gz"
|
||||
data_url = "https://rainotebookscdn.blob.core.windows.net/datasets/"
|
||||
|
||||
remaining_attempts = 5
|
||||
sleep_duration = 10
|
||||
while remaining_attempts > 0:
|
||||
try:
|
||||
urlretrieve(data_url + filename, filename)
|
||||
|
||||
http_stream = gzip.GzipFile(filename=filename, mode='rb')
|
||||
|
||||
with closing(http_stream):
|
||||
def _stream_generator(response):
|
||||
for line in response:
|
||||
yield line.decode('utf-8')
|
||||
|
||||
stream = _stream_generator(http_stream)
|
||||
data = arff.load(stream)
|
||||
except Exception as exc: # noqa: B902
|
||||
remaining_attempts -= 1
|
||||
print("Error downloading dataset from {} ({} attempt(s) remaining)"
|
||||
.format(data_url, remaining_attempts))
|
||||
print(exc)
|
||||
time.sleep(sleep_duration)
|
||||
sleep_duration *= 2
|
||||
continue
|
||||
else:
|
||||
# dataset successfully downloaded
|
||||
break
|
||||
else:
|
||||
raise Exception("Could not retrieve dataset from {}.".format(data_url))
|
||||
|
||||
attributes = OrderedDict(data['attributes'])
|
||||
arff_columns = list(attributes)
|
||||
|
||||
raw_df = pd.DataFrame(data=data['data'], columns=arff_columns)
|
||||
|
||||
target_column_name = 'class'
|
||||
target = raw_df.pop(target_column_name)
|
||||
for col_name in _categorical_columns:
|
||||
dtype = pd.api.types.CategoricalDtype(attributes[col_name])
|
||||
raw_df[col_name] = raw_df[col_name].astype(dtype, copy=False)
|
||||
|
||||
result = Bunch()
|
||||
result.data = raw_df
|
||||
result.target = target
|
||||
|
||||
return result
|
||||
@@ -30,7 +30,7 @@
|
||||
"1. [Training Models](#TrainingModels)\n",
|
||||
"1. [Logging in to AzureML](#LoginAzureML)\n",
|
||||
"1. [Registering the Models](#RegisterModels)\n",
|
||||
"1. [Using the Fairlearn Dashboard](#LocalDashboard)\n",
|
||||
"1. [Using the Fairness Dashboard](#LocalDashboard)\n",
|
||||
"1. [Uploading a Fairness Dashboard to Azure](#AzureUpload)\n",
|
||||
" 1. Computing Fairness Metrics\n",
|
||||
" 1. Uploading to Azure\n",
|
||||
@@ -48,9 +48,10 @@
|
||||
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
|
||||
"This notebook also requires the following packages:\n",
|
||||
"* `azureml-contrib-fairness`\n",
|
||||
"* `fairlearn==0.4.6`\n",
|
||||
"* `fairlearn>=0.6.2` (also works for pre-v0.5.0 with slight modifications)\n",
|
||||
"* `joblib`\n",
|
||||
"* `shap`\n",
|
||||
"* `liac-arff`\n",
|
||||
"* `raiwidgets~=0.7.0`\n",
|
||||
"\n",
|
||||
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
|
||||
]
|
||||
@@ -64,13 +65,20 @@
|
||||
"# !pip install --upgrade scikit-learn>=0.22.1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id=\"LoadingData\"></a>\n",
|
||||
"## Loading the Data\n",
|
||||
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
|
||||
"We use the well-known `adult` census dataset, which we fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -80,9 +88,13 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn import svm\n",
|
||||
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"import pandas as pd"
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.compose import make_column_selector as selector\n",
|
||||
"from sklearn.pipeline import Pipeline"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -98,10 +110,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import fetch_openml\n",
|
||||
"data = fetch_openml(data_id=1590, as_frame=True)\n",
|
||||
"from fairness_nb_utils import fetch_census_dataset\n",
|
||||
"\n",
|
||||
"data = fetch_census_dataset()\n",
|
||||
" \n",
|
||||
"# Extract the items we want\n",
|
||||
"X_raw = data.data\n",
|
||||
"Y = (data.target == '>50K') * 1"
|
||||
"y = (data.target == '>50K') * 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -127,7 +142,7 @@
|
||||
"<a id=\"ProcessingData\"></a>\n",
|
||||
"## Processing the Data\n",
|
||||
"\n",
|
||||
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and put the rest of the feature data into `X`:"
|
||||
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and leave the rest of the feature data in `X_raw`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -137,15 +152,14 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"A = X_raw[['sex','race']]\n",
|
||||
"X = X_raw.drop(labels=['sex', 'race'],axis = 1)\n",
|
||||
"X_dummies = pd.get_dummies(X)"
|
||||
"X_raw = X_raw.drop(labels=['sex', 'race'],axis = 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, we apply a standard set of scalings:"
|
||||
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -154,42 +168,76 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sc = StandardScaler()\n",
|
||||
"X_scaled = sc.fit_transform(X_dummies)\n",
|
||||
"X_scaled = pd.DataFrame(X_scaled, columns=X_dummies.columns)\n",
|
||||
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
|
||||
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"le = LabelEncoder()\n",
|
||||
"Y = le.fit_transform(Y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Finally, we can then split our data into training and test sets, and also make the labels on our test portion of `A` human-readable:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_scaled, \n",
|
||||
" Y, \n",
|
||||
" A,\n",
|
||||
" test_size = 0.2,\n",
|
||||
" random_state=0,\n",
|
||||
" stratify=Y)\n",
|
||||
"# Ensure indices are aligned between X, y and A,\n",
|
||||
"# after all the slicing and splitting of DataFrames\n",
|
||||
"# and Series\n",
|
||||
"\n",
|
||||
"# Work around indexing issue\n",
|
||||
"X_train = X_train.reset_index(drop=True)\n",
|
||||
"A_train = A_train.reset_index(drop=True)\n",
|
||||
"X_test = X_test.reset_index(drop=True)\n",
|
||||
"y_train = y_train.reset_index(drop=True)\n",
|
||||
"y_test = y_test.reset_index(drop=True)\n",
|
||||
"A_train = A_train.reset_index(drop=True)\n",
|
||||
"A_test = A_test.reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
|
||||
"\n",
|
||||
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"numeric_transformer = Pipeline(\n",
|
||||
" steps=[\n",
|
||||
" (\"impute\", SimpleImputer()),\n",
|
||||
" (\"scaler\", StandardScaler()),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"categorical_transformer = Pipeline(\n",
|
||||
" [\n",
|
||||
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
|
||||
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"preprocessor = ColumnTransformer(\n",
|
||||
" transformers=[\n",
|
||||
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
|
||||
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
|
||||
" ]\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = preprocessor.fit_transform(X_train)\n",
|
||||
"X_test = preprocessor.transform(X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -208,7 +256,7 @@
|
||||
"source": [
|
||||
"lr_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
|
||||
"\n",
|
||||
"lr_predictor.fit(X_train, Y_train)"
|
||||
"lr_predictor.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -226,7 +274,7 @@
|
||||
"source": [
|
||||
"svm_predictor = svm.SVC()\n",
|
||||
"\n",
|
||||
"svm_predictor.fit(X_train, Y_train)"
|
||||
"svm_predictor.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -341,12 +389,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fairlearn.widget import FairlearnDashboard\n",
|
||||
"from raiwidgets import FairnessDashboard\n",
|
||||
"\n",
|
||||
"FairlearnDashboard(sensitive_features=A_test, \n",
|
||||
" sensitive_feature_names=['Sex', 'Race'],\n",
|
||||
" y_true=Y_test.tolist(),\n",
|
||||
" y_pred=ys_pred)"
|
||||
"FairnessDashboard(sensitive_features=A_test, \n",
|
||||
" y_true=y_test.tolist(),\n",
|
||||
" y_pred=ys_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -356,7 +403,7 @@
|
||||
"<a id=\"AzureUpload\"></a>\n",
|
||||
"## Uploading a Fairness Dashboard to Azure\n",
|
||||
"\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairlearnDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
|
||||
"Uploading a fairness dashboard to Azure is a two stage process. The `FairnessDashboard` invoked in the previous section relies on the underlying Python kernel to compute metrics on demand. This is obviously not available when the fairness dashboard is rendered in AzureML Studio. The required stages are therefore:\n",
|
||||
"1. Precompute all the required metrics\n",
|
||||
"1. Upload to Azure\n",
|
||||
"\n",
|
||||
@@ -375,7 +422,7 @@
|
||||
"\n",
|
||||
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
|
||||
"\n",
|
||||
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
|
||||
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
|
||||
" predictions=ys_pred,\n",
|
||||
" sensitive_features=sf,\n",
|
||||
" prediction_type='binary_classification')"
|
||||
|
||||
@@ -3,5 +3,7 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-fairness
|
||||
- fairlearn==0.4.6
|
||||
- fairlearn>=0.6.2
|
||||
- joblib
|
||||
- liac-arff
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
@@ -4,6 +4,7 @@ Learn how to use Azure Machine Learning services for experimentation and model m
|
||||
|
||||
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
|
||||
|
||||
* [train-within-notebook](./training/train-within-notebook): Train a model while tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
|
||||
* [train-on-local](./training/train-on-local): Learn how to submit a run to local computer and use Azure ML managed run configuration.
|
||||
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
|
||||
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
|
||||
|
||||
@@ -97,62 +97,96 @@ jupyter notebook
|
||||
<a name="databricks"></a>
|
||||
## Setup using Azure Databricks
|
||||
|
||||
**NOTE**: Please create your Azure Databricks cluster as v6.0 (high concurrency preferred) with **Python 3** (dropdown).
|
||||
**NOTE**: Please create your Azure Databricks cluster as v7.1 (high concurrency preferred) with **Python 3** (dropdown).
|
||||
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
|
||||
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl]** as a PyPi library in Azure Databricks workspace.
|
||||
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
|
||||
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
|
||||
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl).
|
||||
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl) and import into the Azure databricks workspace.
|
||||
- Attach the notebook to the cluster.
|
||||
|
||||
<a name="samples"></a>
|
||||
# Automated ML SDK Sample Notebooks
|
||||
|
||||
- [auto-ml-classification-credit-card-fraud.ipynb](classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)
|
||||
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
|
||||
- Simple example of using automated ML for classification to fraudulent credit card transactions
|
||||
- Uses azure compute for training
|
||||
## Classification
|
||||
- **Classify Credit Card Fraud**
|
||||
- Dataset: [Kaggle's credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
|
||||
- **[Jupyter Notebook (remote run)](classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)**
|
||||
- run the experiment remotely on AML Compute cluster
|
||||
- test the performance of the best model in the local environment
|
||||
- **[Jupyter Notebook (local run)](local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb)**
|
||||
- run experiment in the local environment
|
||||
- use Mimic Explainer for computing feature importance
|
||||
- deploy the best model along with the explainer to an Azure Kubernetes (AKS) cluster, which will compute the raw and engineered feature importances at inference time
|
||||
- **Predict Term Deposit Subscriptions in a Bank**
|
||||
- Dataset: [UCI's bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
|
||||
- **[Jupyter Notebook](classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)**
|
||||
- run experiment remotely on AML Compute cluster to generate ONNX compatible models
|
||||
- view the featurization steps that were applied during training
|
||||
- view feature importance for the best model
|
||||
- download the best model in ONNX format and use it for inferencing using ONNXRuntime
|
||||
- deploy the best model in PKL format to Azure Container Instance (ACI)
|
||||
- **Predict Newsgroup based on Text from News Article**
|
||||
- Dataset: [20 newsgroups text dataset](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html)
|
||||
- **[Jupyter Notebook](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)**
|
||||
- AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data
|
||||
- AutoML will use Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used
|
||||
- Bidirectional Long-Short Term neural network (BiLSTM) will be utilized when a CPU compute is used, thereby optimizing the choice of DNN
|
||||
|
||||
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
|
||||
## Regression
|
||||
- **Predict Performance of Hardware Parts**
|
||||
- Dataset: Hardware Performance Dataset
|
||||
- Simple example of using automated ML for regression
|
||||
- Uses azure compute for training
|
||||
- **[Jupyter Notebook](regression/auto-ml-regression.ipynb)**
|
||||
- run the experiment remotely on AML Compute cluster
|
||||
- get best trained model for a different metric than the one the experiment was optimized for
|
||||
- test the performance of the best model in the local environment
|
||||
- **[Jupyter Notebook (advanced)](regression/auto-ml-regression.ipynb)**
|
||||
- run the experiment remotely on AML Compute cluster
|
||||
- customize featurization: override column purpose within the dataset, configure transformer parameters
|
||||
- get best trained model for a different metric than the one the experiment was optimized for
|
||||
- run a model explanation experiment on the remote cluster
|
||||
- deploy the model along the explainer and run online inferencing
|
||||
|
||||
- [auto-ml-regression-explanation-featurization.ipynb](regression-explanation-featurization/auto-ml-regression-explanation-featurization.ipynb)
|
||||
- Dataset: Hardware Performance Dataset
|
||||
- Shows featurization and excplanation
|
||||
- Uses azure compute for training
|
||||
|
||||
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
|
||||
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
|
||||
- Example of using automated ML for training a forecasting model
|
||||
|
||||
- [auto-ml-classification-credit-card-fraud-local.ipynb](local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb)
|
||||
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
|
||||
- Simple example of using automated ML for classification to fraudulent credit card transactions
|
||||
- Uses local compute for training
|
||||
|
||||
- [auto-ml-classification-bank-marketing-all-features.ipynb](classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)
|
||||
- Dataset: UCI's [bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
|
||||
- Simple example of using automated ML for classification to predict term deposit subscriptions for a bank
|
||||
- Uses azure compute for training
|
||||
|
||||
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
|
||||
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
|
||||
- [auto-ml-forecasting-bike-share.ipynb](forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb)
|
||||
- Dataset: forecasting for a bike-sharing
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
|
||||
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
|
||||
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
|
||||
- Example of training an automated ML forecasting model on multiple time-series
|
||||
- Beer Production Forecasting
|
||||
|
||||
- [auto-ml-continuous-retraining.ipynb](continuous-retraining/auto-ml-continuous-retraining.ipynb)
|
||||
- Continuous retraining using Pipelines and Time-Series TabularDataset
|
||||
## Time Series Forecasting
|
||||
- **Forecast Energy Demand**
|
||||
- Dataset: [NYC energy demand data](http://mis.nyiso.com/public/P-58Blist.htm)
|
||||
- **[Jupyter Notebook](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)**
|
||||
- run experiment remotely on AML Compute cluster
|
||||
- use lags and rolling window features
|
||||
- view the featurization steps that were applied during training
|
||||
- get the best model, use it to forecast on test data and compare the accuracy of predictions against real data
|
||||
- **Forecast Orange Juice Sales (Multi-Series)**
|
||||
- Dataset: [Dominick's grocery sales of orange juice](forecasting-orange-juice-sales/dominicks_OJ.csv)
|
||||
- **[Jupyter Notebook](forecasting-orange-juice-sales/dominicks_OJ.csv)**
|
||||
- run experiment remotely on AML Compute cluster
|
||||
- customize time-series featurization, change column purpose and override transformer hyper parameters
|
||||
- evaluate locally the performance of the generated best model
|
||||
- deploy the best model as a webservice on Azure Container Instance (ACI)
|
||||
- get online predictions from the deployed model
|
||||
- **Forecast Demand of a Bike-Sharing Service**
|
||||
- Dataset: [Bike demand data](forecasting-bike-share/bike-no.csv)
|
||||
- **[Jupyter Notebook](forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb)**
|
||||
- run experiment remotely on AML Compute cluster
|
||||
- integrate holiday features
|
||||
- run rolling forecast for test set that is longer than the forecast horizon
|
||||
- compute metrics on the predictions from the remote forecast
|
||||
- **The Forecast Function Interface**
|
||||
- Dataset: Generated for sample purposes
|
||||
- **[Jupyter Notebook](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)**
|
||||
- train a forecaster using a remote AML Compute cluster
|
||||
- capabilities of forecast function (e.g. forecast farther into the horizon)
|
||||
- generate confidence intervals
|
||||
- **Forecast Beverage Production**
|
||||
- Dataset: [Monthly beer production data](forecasting-beer-remote/Beer_no_valid_split_train.csv)
|
||||
- **[Jupyter Notebook](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)**
|
||||
- train using a remote AML Compute cluster
|
||||
- enable the DNN learning model
|
||||
- forecast on a remote compute cluster and compare different model performance
|
||||
- **Continuous Retraining with NOAA Weather Data**
|
||||
- Dataset: [NOAA weather data from Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/)
|
||||
- **[Jupyter Notebook](continuous-retraining/auto-ml-continuous-retraining.ipynb)**
|
||||
- continuously retrain a model using Pipelines and AutoML
|
||||
- create a Pipeline to upload a time series dataset to an Azure blob
|
||||
- create a Pipeline to run an AutoML experiment and register the best resulting model in the Workspace
|
||||
- publish the training pipeline created and schedule it to run daily
|
||||
|
||||
<a name="documentation"></a>
|
||||
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
|
||||
|
||||
@@ -2,14 +2,15 @@ name: azure_automl
|
||||
dependencies:
|
||||
# The python interpreter version.
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- pip<=19.3.1
|
||||
- python>=3.5.2,<3.6.8
|
||||
- pip==21.1.2
|
||||
- python>=3.5.2,<3.8
|
||||
- nb_conda
|
||||
- boto3==1.15.18
|
||||
- matplotlib==2.1.0
|
||||
- numpy==1.18.5
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy==1.4.1
|
||||
- scipy>=1.4.1,<=1.5.2
|
||||
- scikit-learn==0.22.1
|
||||
- pandas==0.25.1
|
||||
- py-xgboost<=0.90
|
||||
@@ -17,12 +18,13 @@ dependencies:
|
||||
- holidays==0.9.11
|
||||
- pytorch::pytorch=1.4.0
|
||||
- cudatoolkit=10.1.243
|
||||
- tornado==6.1.0
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets
|
||||
- azureml-widgets~=1.34.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.16.0/validated_win32_requirements.txt [--no-deps]
|
||||
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.34.0/validated_win32_requirements.txt [--no-deps]
|
||||
- arch==4.14
|
||||
|
||||
@@ -2,14 +2,15 @@ name: azure_automl
|
||||
dependencies:
|
||||
# The python interpreter version.
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- pip<=19.3.1
|
||||
- python>=3.5.2,<3.6.8
|
||||
- pip==21.1.2
|
||||
- python>=3.5.2,<3.8
|
||||
- nb_conda
|
||||
- boto3==1.15.18
|
||||
- matplotlib==2.1.0
|
||||
- numpy==1.18.5
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy==1.4.1
|
||||
- scipy>=1.4.1,<=1.5.2
|
||||
- scikit-learn==0.22.1
|
||||
- pandas==0.25.1
|
||||
- py-xgboost<=0.90
|
||||
@@ -17,12 +18,13 @@ dependencies:
|
||||
- holidays==0.9.11
|
||||
- pytorch::pytorch=1.4.0
|
||||
- cudatoolkit=10.1.243
|
||||
- tornado==6.1.0
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets
|
||||
- azureml-widgets~=1.34.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.16.0/validated_linux_requirements.txt [--no-deps]
|
||||
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.34.0/validated_linux_requirements.txt [--no-deps]
|
||||
- arch==4.14
|
||||
|
||||
@@ -2,15 +2,16 @@ name: azure_automl
|
||||
dependencies:
|
||||
# The python interpreter version.
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- pip<=19.3.1
|
||||
- pip==21.1.2
|
||||
- nomkl
|
||||
- python>=3.5.2,<3.6.8
|
||||
- python>=3.5.2,<3.8
|
||||
- nb_conda
|
||||
- boto3==1.15.18
|
||||
- matplotlib==2.1.0
|
||||
- numpy==1.18.5
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy==1.4.1
|
||||
- scipy>=1.4.1,<=1.5.2
|
||||
- scikit-learn==0.22.1
|
||||
- pandas==0.25.1
|
||||
- py-xgboost<=0.90
|
||||
@@ -18,11 +19,13 @@ dependencies:
|
||||
- holidays==0.9.11
|
||||
- pytorch::pytorch=1.4.0
|
||||
- cudatoolkit=9.0
|
||||
- tornado==6.1.0
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-widgets
|
||||
- azureml-widgets~=1.34.0
|
||||
- pytorch-transformers==1.0.0
|
||||
- spacy==2.1.8
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.16.0/validated_darwin_requirements.txt [--no-deps]
|
||||
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
|
||||
- -r https://automlresources-prod.azureedge.net/validated-requirements/1.34.0/validated_darwin_requirements.txt [--no-deps]
|
||||
- arch==4.14
|
||||
|
||||
@@ -32,6 +32,7 @@ if [ $? -ne 0 ]; then
|
||||
fi
|
||||
|
||||
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
|
||||
brew install libomp
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
|
||||
@@ -86,7 +86,6 @@
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.automl.core.featurization import FeaturizationConfig\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.interpret import ExplanationClient"
|
||||
@@ -105,7 +104,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -165,9 +164,12 @@
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -187,7 +189,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=6)\n",
|
||||
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -374,15 +376,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -605,27 +598,21 @@
|
||||
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
|
||||
"from azureml.train.automl import constants\n",
|
||||
"\n",
|
||||
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
|
||||
" python_version_compatible = True\n",
|
||||
"else:\n",
|
||||
" python_version_compatible = False\n",
|
||||
"\n",
|
||||
"import onnxruntime\n",
|
||||
"from azureml.automl.runtime.onnx_convert import OnnxInferenceHelper\n",
|
||||
"\n",
|
||||
"def get_onnx_res(run):\n",
|
||||
" res_path = 'onnx_resource.json'\n",
|
||||
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
|
||||
" with open(res_path) as f:\n",
|
||||
" onnx_res = json.load(f)\n",
|
||||
" return onnx_res\n",
|
||||
" result = json.load(f)\n",
|
||||
" return result\n",
|
||||
"\n",
|
||||
"if python_version_compatible:\n",
|
||||
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
|
||||
" test_df = test_dataset.to_pandas_dataframe()\n",
|
||||
" mdl_bytes = onnx_mdl.SerializeToString()\n",
|
||||
" onnx_res = get_onnx_res(best_run)\n",
|
||||
" onnx_result = get_onnx_res(best_run)\n",
|
||||
"\n",
|
||||
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
|
||||
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_result)\n",
|
||||
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(test_df)\n",
|
||||
"\n",
|
||||
" print(pred_onnx)\n",
|
||||
@@ -714,14 +701,12 @@
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(entry_script=script_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'area': \"bmData\", 'type': \"automl_classification\"}, \n",
|
||||
" description = 'sample service for Automl Classification')\n",
|
||||
"\n",
|
||||
@@ -798,7 +783,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"X_test_json = X_test.to_json(orient='records')\n",
|
||||
@@ -838,7 +822,6 @@
|
||||
"source": [
|
||||
"%matplotlib notebook\n",
|
||||
"from sklearn.metrics import confusion_matrix\n",
|
||||
"import numpy as np\n",
|
||||
"import itertools\n",
|
||||
"\n",
|
||||
"cf =confusion_matrix(actual,y_pred)\n",
|
||||
@@ -899,7 +882,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "anumamah"
|
||||
"name": "ratanase"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
|
||||
@@ -93,7 +93,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -127,6 +127,9 @@
|
||||
"source": [
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -212,7 +215,7 @@
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||
" \"primary_metric\": 'AUC_weighted',\n",
|
||||
" \"enable_early_stopping\": True,\n",
|
||||
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
|
||||
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
|
||||
@@ -255,15 +258,6 @@
|
||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -450,7 +444,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "tzvikei"
|
||||
"name": "ratanase"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
|
||||
@@ -0,0 +1,582 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Text Classification Using Deep Learning**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Evaluate](#Evaluate)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"This notebook demonstrates classification with text data using deep learning in AutoML.\n",
|
||||
"\n",
|
||||
"AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data. Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used, and Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"Notebook synopsis:\n",
|
||||
"\n",
|
||||
"1. Creating an Experiment in an existing Workspace\n",
|
||||
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
|
||||
"3. Registering the best model for future use\n",
|
||||
"4. Evaluating the final model on a test set"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"from azureml.core.run import Run\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"from azureml.core.model import Model \n",
|
||||
"from helper import run_inference, get_result_df\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from sklearn.datasets import fetch_20newsgroups"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose an experiment name.\n",
|
||||
"experiment_name = 'automl-classification-text-dnn'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up a compute cluster\n",
|
||||
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"num_nodes = 2\n",
|
||||
"\n",
|
||||
"# Choose a name for your cluster.\n",
|
||||
"amlcompute_cluster_name = \"dnntext-cluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_NC6\", # CPU for BiLSTM, such as \"STANDARD_DS12_V2\" \n",
|
||||
" # To use BERT (this is recommended for best performance), select a GPU such as \"STANDARD_NC6\" \n",
|
||||
" # or similar GPU option\n",
|
||||
" # available in your workspace\n",
|
||||
" max_nodes = num_nodes)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Get data\n",
|
||||
"For this notebook we will use 20 Newsgroups data from scikit-learn. We filter the data to contain four classes and take a sample as training data. Please note that for accuracy improvement, more data is needed. For this notebook we provide a small-data example so that you can use this template to use with your larger sized data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_dir = \"text-dnn-data\" # Local directory to store data\n",
|
||||
"blobstore_datadir = data_dir # Blob store directory to store data in\n",
|
||||
"target_column_name = 'y'\n",
|
||||
"feature_column_name = 'X'\n",
|
||||
"\n",
|
||||
"def get_20newsgroups_data():\n",
|
||||
" '''Fetches 20 Newsgroups data from scikit-learn\n",
|
||||
" Returns them in form of pandas dataframes\n",
|
||||
" '''\n",
|
||||
" remove = ('headers', 'footers', 'quotes')\n",
|
||||
" categories = [\n",
|
||||
" 'rec.sport.baseball',\n",
|
||||
" 'rec.sport.hockey',\n",
|
||||
" 'comp.graphics',\n",
|
||||
" 'sci.space',\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
" data = fetch_20newsgroups(subset = 'train', categories = categories,\n",
|
||||
" shuffle = True, random_state = 42,\n",
|
||||
" remove = remove)\n",
|
||||
" data = pd.DataFrame({feature_column_name: data.data, target_column_name: data.target})\n",
|
||||
"\n",
|
||||
" data_train = data[:200]\n",
|
||||
" data_test = data[200:300] \n",
|
||||
"\n",
|
||||
" data_train = remove_blanks_20news(data_train, feature_column_name, target_column_name)\n",
|
||||
" data_test = remove_blanks_20news(data_test, feature_column_name, target_column_name)\n",
|
||||
" \n",
|
||||
" return data_train, data_test\n",
|
||||
" \n",
|
||||
"def remove_blanks_20news(data, feature_column_name, target_column_name):\n",
|
||||
" \n",
|
||||
" data[feature_column_name] = data[feature_column_name].replace(r'\\n', ' ', regex=True).apply(lambda x: x.strip())\n",
|
||||
" data = data[data[feature_column_name] != '']\n",
|
||||
" \n",
|
||||
" return data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Fetch data and upload to datastore for use in training"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_train, data_test = get_20newsgroups_data()\n",
|
||||
"\n",
|
||||
"if not os.path.isdir(data_dir):\n",
|
||||
" os.mkdir(data_dir)\n",
|
||||
" \n",
|
||||
"train_data_fname = data_dir + '/train_data.csv'\n",
|
||||
"test_data_fname = data_dir + '/test_data.csv'\n",
|
||||
"\n",
|
||||
"data_train.to_csv(train_data_fname, index=False)\n",
|
||||
"data_test.to_csv(test_data_fname, index=False)\n",
|
||||
"\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"datastore.upload(src_dir=data_dir, target_path=blobstore_datadir,\n",
|
||||
" overwrite=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/train_data.csv')])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Prepare AutoML run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebook uses the blocked_models parameter to exclude some models that can take a longer time to train on some text datasets. You can choose to remove models from the blocked_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"experiment_timeout_minutes\": 30,\n",
|
||||
" \"primary_metric\": 'AUC_weighted',\n",
|
||||
" \"max_concurrent_iterations\": num_nodes, \n",
|
||||
" \"max_cores_per_iteration\": -1,\n",
|
||||
" \"enable_dnn\": True,\n",
|
||||
" \"enable_early_stopping\": True,\n",
|
||||
" \"validation_size\": 0.3,\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
" \"enable_voting_ensemble\": False,\n",
|
||||
" \"enable_stack_ensemble\": False,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" training_data=train_dataset,\n",
|
||||
" label_column_name=target_column_name,\n",
|
||||
" blocked_models = ['LightGBM', 'XGBoostClassifier'],\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Submit AutoML Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"Below we select the best model pipeline from our iterations, use it to test on test data on the same compute cluster."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can test the model locally to get a feel of the input/output. When the model contains BERT, this step will require pytorch and pytorch-transformers installed in your local environment. The exact versions of these packages can be found in the **automl_env.yml** file located in the local copy of your MachineLearningNotebooks folder here:\n",
|
||||
"MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/automl_env.yml"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = automl_run.get_output()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can now see what text transformations are used to convert text data to features for this dataset, including deep learning transformations based on BiLSTM or Transformer (BERT is one implementation of a Transformer) models."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"text_transformations_used = []\n",
|
||||
"for column_group in fitted_model.named_steps['datatransformer'].get_featurization_summary():\n",
|
||||
" text_transformations_used.extend(column_group['Transformations'])\n",
|
||||
"text_transformations_used"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Registering the best model\n",
|
||||
"We now register the best fitted model from the AutoML Run for use in future deployments. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Get results stats, extract the best model from AutoML run, download and register the resultant best model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"summary_df = get_result_df(automl_run)\n",
|
||||
"best_dnn_run_id = summary_df['run_id'].iloc[0]\n",
|
||||
"best_dnn_run = Run(experiment, best_dnn_run_id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_dir = 'Model' # Local folder where the model will be stored temporarily\n",
|
||||
"if not os.path.isdir(model_dir):\n",
|
||||
" os.mkdir(model_dir)\n",
|
||||
" \n",
|
||||
"best_dnn_run.download_file('outputs/model.pkl', model_dir + '/model.pkl')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Register the model in your Azure Machine Learning Workspace. If you previously registered a model, please make sure to delete it so as to replace it with this new model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Register the model\n",
|
||||
"model_name = 'textDNN-20News'\n",
|
||||
"model = Model.register(model_path = model_dir + '/model.pkl',\n",
|
||||
" model_name = model_name,\n",
|
||||
" tags=None,\n",
|
||||
" workspace=ws)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Evaluate on Test Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We now use the best fitted model from the AutoML Run to make predictions on the test set. \n",
|
||||
"\n",
|
||||
"Test set schema should match that of the training set."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/test_data.csv')])\n",
|
||||
"\n",
|
||||
"# preview the first 3 rows of the dataset\n",
|
||||
"test_dataset.take(3).to_pandas_dataframe()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
|
||||
"os.makedirs(script_folder, exist_ok=True)\n",
|
||||
"shutil.copy('infer.py', script_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run,\n",
|
||||
" test_dataset, target_column_name, model_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Display computed metrics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"RunDetails(test_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pd.Series(test_run.get_metrics())"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "anshirga"
|
||||
}
|
||||
],
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
],
|
||||
"datasets": [
|
||||
"None"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"framework": [
|
||||
"None"
|
||||
],
|
||||
"friendly_name": "DNN Text Featurization",
|
||||
"index_order": 2,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"tags": [
|
||||
"None"
|
||||
],
|
||||
"task": "Text featurization using DNNs for classification"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
name: auto-ml-classification-text-dnn
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -0,0 +1,55 @@
|
||||
import pandas as pd
|
||||
from azureml.core import Environment
|
||||
from azureml.train.estimator import Estimator
|
||||
from azureml.core.run import Run
|
||||
|
||||
|
||||
def run_inference(test_experiment, compute_target, script_folder, train_run,
|
||||
test_dataset, target_column_name, model_name):
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
est = Estimator(source_directory=script_folder,
|
||||
entry_script='infer.py',
|
||||
script_params={
|
||||
'--target_column_name': target_column_name,
|
||||
'--model_name': model_name
|
||||
},
|
||||
inputs=[
|
||||
test_dataset.as_named_input('test_data')
|
||||
],
|
||||
compute_target=compute_target,
|
||||
environment_definition=inference_env)
|
||||
|
||||
run = test_experiment.submit(
|
||||
est, tags={
|
||||
'training_run_id': train_run.id,
|
||||
'run_algorithm': train_run.properties['run_algorithm'],
|
||||
'valid_score': train_run.properties['score'],
|
||||
'primary_metric': train_run.properties['primary_metric']
|
||||
})
|
||||
|
||||
run.log("run_algorithm", run.tags['run_algorithm'])
|
||||
return run
|
||||
|
||||
|
||||
def get_result_df(remote_run):
|
||||
|
||||
children = list(remote_run.get_children(recursive=True))
|
||||
summary_df = pd.DataFrame(index=['run_id', 'run_algorithm',
|
||||
'primary_metric', 'Score'])
|
||||
goal_minimize = False
|
||||
for run in children:
|
||||
if('run_algorithm' in run.properties and 'score' in run.properties):
|
||||
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
|
||||
run.properties['primary_metric'],
|
||||
float(run.properties['score'])]
|
||||
if('goal' in run.properties):
|
||||
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
|
||||
|
||||
summary_df = summary_df.T.sort_values(
|
||||
'Score',
|
||||
ascending=goal_minimize).drop_duplicates(['run_algorithm'])
|
||||
summary_df = summary_df.set_index('run_algorithm')
|
||||
|
||||
return summary_df
|
||||
@@ -0,0 +1,60 @@
|
||||
import argparse
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from sklearn.externals import joblib
|
||||
|
||||
from azureml.automl.runtime.shared.score import scoring, constants
|
||||
from azureml.core import Run
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--model_name', type=str, dest='model_name',
|
||||
help='Name of registered model')
|
||||
|
||||
args = parser.parse_args()
|
||||
target_column_name = args.target_column_name
|
||||
model_name = args.model_name
|
||||
|
||||
print('args passed are: ')
|
||||
print('Target column name: ', target_column_name)
|
||||
print('Name of registered model: ', model_name)
|
||||
|
||||
model_path = Model.get_model_path(model_name)
|
||||
# deserialize the model file back into a sklearn model
|
||||
model = joblib.load(model_path)
|
||||
|
||||
run = Run.get_context()
|
||||
# get input dataset by name
|
||||
test_dataset = run.input_datasets['test_data']
|
||||
|
||||
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
|
||||
.to_pandas_dataframe()
|
||||
y_test_df = test_dataset.with_timestamp_columns(None) \
|
||||
.keep_columns(columns=[target_column_name]) \
|
||||
.to_pandas_dataframe()
|
||||
|
||||
predicted = model.predict_proba(X_test_df)
|
||||
|
||||
if isinstance(predicted, pd.DataFrame):
|
||||
predicted = predicted.values
|
||||
|
||||
# Use the AutoML scoring module
|
||||
train_labels = model.classes_
|
||||
class_labels = np.unique(np.concatenate((y_test_df.values, np.reshape(train_labels, (-1, 1)))))
|
||||
classification_metrics = list(constants.CLASSIFICATION_SCALAR_SET)
|
||||
scores = scoring.score_classification(y_test_df.values, predicted,
|
||||
classification_metrics,
|
||||
class_labels, train_labels)
|
||||
|
||||
print("scores:")
|
||||
print(scores)
|
||||
|
||||
for key, value in scores.items():
|
||||
run.log(key, value)
|
||||
@@ -32,13 +32,6 @@
|
||||
"8. [Test Retraining](#Test-Retraining)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -88,7 +81,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -148,9 +141,12 @@
|
||||
"#### Create or Attach existing AmlCompute\n",
|
||||
"\n",
|
||||
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,7 +166,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -352,7 +348,7 @@
|
||||
" \"iteration_timeout_minutes\": 10,\n",
|
||||
" \"experiment_timeout_hours\": 0.25,\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'r2_score',\n",
|
||||
" \"primary_metric\": 'normalized_root_mean_squared_error',\n",
|
||||
" \"max_concurrent_iterations\": 3,\n",
|
||||
" \"max_cores_per_iteration\": -1,\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
@@ -550,7 +546,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "anshirga"
|
||||
"name": "vivijay"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
@@ -49,22 +49,24 @@ print("Argument 1(ds_name): %s" % args.ds_name)
|
||||
|
||||
dstor = ws.get_default_datastore()
|
||||
register_dataset = False
|
||||
end_time = datetime.utcnow()
|
||||
|
||||
try:
|
||||
ds = Dataset.get_by_name(ws, args.ds_name)
|
||||
end_time_last_slice = ds.data_changed_time.replace(tzinfo=None)
|
||||
print("Dataset {0} last updated on {1}".format(args.ds_name,
|
||||
end_time_last_slice))
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
print(traceback.format_exc())
|
||||
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
|
||||
register_dataset = True
|
||||
end_time_last_slice = datetime.today() - relativedelta(weeks=2)
|
||||
end_time = datetime(2021, 5, 1, 0, 0)
|
||||
end_time_last_slice = end_time - relativedelta(weeks=2)
|
||||
|
||||
end_time = datetime.utcnow()
|
||||
train_df = get_noaa_data(end_time_last_slice, end_time)
|
||||
|
||||
if train_df.size > 0:
|
||||
print("Received {0} rows of new data after {0}.".format(
|
||||
print("Received {0} rows of new data after {1}.".format(
|
||||
train_df.shape[0], end_time_last_slice))
|
||||
folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year,
|
||||
end_time.month, end_time.day,
|
||||
|
||||
@@ -5,7 +5,7 @@ set options=%3
|
||||
set PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental"
|
||||
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
|
||||
IF "%automl_env_file%"=="" SET automl_env_file="automl_thin_client_env.yml"
|
||||
|
||||
IF NOT EXIST %automl_env_file% GOTO YmlMissing
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ fi
|
||||
|
||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||
then
|
||||
AUTOML_ENV_FILE="automl_env.yml"
|
||||
AUTOML_ENV_FILE="automl_thin_client_env.yml"
|
||||
fi
|
||||
|
||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||
|
||||
@@ -12,7 +12,7 @@ fi
|
||||
|
||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||
then
|
||||
AUTOML_ENV_FILE="automl_env.yml"
|
||||
AUTOML_ENV_FILE="automl_thin_client_env_mac.yml"
|
||||
fi
|
||||
|
||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||
|
||||
@@ -5,16 +5,14 @@ dependencies:
|
||||
- pip<=19.3.1
|
||||
- python>=3.5.2,<3.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy~=1.18.0
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scikit-learn==0.22.1
|
||||
- pandas==0.25.1
|
||||
- PyJWT < 2.0.0
|
||||
- numpy==1.18.5
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-defaults
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
- azureml-explain-model
|
||||
- pandas
|
||||
|
||||
@@ -6,16 +6,14 @@ dependencies:
|
||||
- nomkl
|
||||
- python>=3.5.2,<3.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy~=1.18.0
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scikit-learn==0.22.1
|
||||
- pandas==0.25.1
|
||||
- PyJWT < 2.0.0
|
||||
- numpy==1.18.5
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-defaults
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
- azureml-explain-model
|
||||
- pandas
|
||||
|
||||
@@ -0,0 +1,420 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Classification of credit card fraudulent transactions on local managed compute **_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n",
|
||||
"1. [Acknowledgements](#Acknowledgements)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
|
||||
"\n",
|
||||
"This notebook is using local managed compute to train the model.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an experiment using an existing workspace.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local managed compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the fitted model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.compute_target import LocalTarget\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-local-managed'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Determine if local docker is configured for Linux images\n",
|
||||
"\n",
|
||||
"Local managed runs will leverage a Linux docker container to submit the run to. Due to this, the docker needs to be configured to use Linux containers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check if Docker is installed and Linux containers are enabled\n",
|
||||
"import subprocess\n",
|
||||
"from subprocess import CalledProcessError\n",
|
||||
"try:\n",
|
||||
" assert subprocess.run(\"docker -v\", shell=True).returncode == 0, 'Local Managed runs require docker to be installed.'\n",
|
||||
" out = subprocess.check_output(\"docker system info\", shell=True).decode('ascii')\n",
|
||||
" assert \"OSType: linux\" in out, 'Docker engine needs to be configured to use Linux containers.' \\\n",
|
||||
" 'https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers'\n",
|
||||
"except CalledProcessError as ex:\n",
|
||||
" raise Exception('Local Managed runs require docker to be installed.') from ex"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
|
||||
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
||||
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
|
||||
"label_column_name = 'Class'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"|**enable_local_managed**|Enable the experimental local-managed scenario.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||
" \"enable_early_stopping\": True,\n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" compute_target = LocalTarget(),\n",
|
||||
" enable_local_managed = True,\n",
|
||||
" training_data = training_data,\n",
|
||||
" label_column_name = label_column_name,\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"parent_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If you need to retrieve a run that already started, use the following code\n",
|
||||
"#from azureml.train.automl.run import AutoMLRun\n",
|
||||
"#parent_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"parent_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Explain model\n",
|
||||
"\n",
|
||||
"Automated ML models can be explained and visualized using the SDK Explainability library. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Analyze results\n",
|
||||
"\n",
|
||||
"### Retrieve the Best Child Run\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_best_child` method returns the best run. Overloads on `get_best_child` allow you to retrieve the best run for *any* logged metric."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run = parent_run.get_best_child()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test the fitted model\n",
|
||||
"\n",
|
||||
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test_df = validation_data.drop_columns(columns=[label_column_name])\n",
|
||||
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Creating ModelProxy for submitting prediction runs to the training environment.\n",
|
||||
"We will create a ModelProxy for the best child run, which will allow us to submit a run that does the prediction in the training environment. Unlike the local client, which can have different versions of some libraries, the training environment will have all the compatible libraries for the model already."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.model_proxy import ModelProxy\n",
|
||||
"best_model_proxy = ModelProxy(best_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# call the predict functions on the model proxy\n",
|
||||
"y_pred = best_model_proxy.predict(X_test_df).to_pandas_dataframe()\n",
|
||||
"y_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Acknowledgements"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
|
||||
"Please cite the following works: \n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
|
||||
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
|
||||
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "sekrupa"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
],
|
||||
"datasets": [
|
||||
"Creditcard"
|
||||
],
|
||||
"deployment": [
|
||||
"None"
|
||||
],
|
||||
"exclude_from_index": false,
|
||||
"file_extension": ".py",
|
||||
"framework": [
|
||||
"None"
|
||||
],
|
||||
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
|
||||
"index_order": 5,
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"tags": [
|
||||
"AutomatedML"
|
||||
],
|
||||
"task": "Classification",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
name: auto-ml-classification-credit-card-fraud-local-managed
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -39,6 +39,7 @@
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
|
||||
"This notebook will also leverage MLFlow for saving models, allowing for more portability of the resulting models. See https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow for more details around MLFlow is AzureML.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
@@ -67,10 +68,8 @@
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
" \n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
@@ -92,7 +91,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -115,9 +114,7 @@
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
"output"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -138,14 +135,15 @@
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"reg-cluster\"\n",
|
||||
"# Try to ensure that the cluster name is unique across the notebooks\n",
|
||||
"cpu_cluster_name = \"reg-model-proxy\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -215,10 +213,11 @@
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'r2_score',\n",
|
||||
" \"enable_early_stopping\": True, \n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we recommend a timeout of at least one hour \n",
|
||||
" \"max_concurrent_iterations\": 4,\n",
|
||||
" \"max_cores_per_iteration\": -1,\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
" \"save_mlflow\": True,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
@@ -272,34 +271,13 @@
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
"\n",
|
||||
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(remote_run).show() "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.wait_for_completion()"
|
||||
"remote_run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -321,6 +299,24 @@
|
||||
"print(best_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Show hyperparameters\n",
|
||||
"Show the model pipeline used for the best run with its hyperparameters."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run_properties = json.loads(best_run.get_details()['properties']['pipeline_script'])\n",
|
||||
"print(json.dumps(run_properties, indent = 1)) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -346,18 +342,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# preview the first 3 rows of the dataset\n",
|
||||
"\n",
|
||||
"test_data = test_data.to_pandas_dataframe()\n",
|
||||
"y_test = test_data['ERP'].fillna(0)\n",
|
||||
"test_data = test_data.drop('ERP', 1)\n",
|
||||
"test_data = test_data.fillna(0)\n",
|
||||
"y_test = test_data.keep_columns('ERP')\n",
|
||||
"test_data = test_data.drop_columns('ERP')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"train_data = train_data.to_pandas_dataframe()\n",
|
||||
"y_train = train_data['ERP'].fillna(0)\n",
|
||||
"train_data = train_data.drop('ERP', 1)\n",
|
||||
"train_data = train_data.fillna(0)\n"
|
||||
"y_train = train_data.keep_columns('ERP')\n",
|
||||
"train_data = train_data.drop_columns('ERP')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -375,7 +365,16 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.model_proxy import ModelProxy\n",
|
||||
"best_model_proxy = ModelProxy(best_run)"
|
||||
"best_model_proxy = ModelProxy(best_run)\n",
|
||||
"y_pred_train = best_model_proxy.predict(train_data)\n",
|
||||
"y_pred_test = best_model_proxy.predict(test_data)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Exploring results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -384,60 +383,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred_train = best_model_proxy.predict(train_data).to_pandas_dataframe().values.flatten()\n",
|
||||
"y_pred_train = y_pred_train.to_pandas_dataframe().values.flatten()\n",
|
||||
"y_train = y_train.to_pandas_dataframe().values.flatten()\n",
|
||||
"y_residual_train = y_train - y_pred_train\n",
|
||||
"\n",
|
||||
"y_pred_test = best_model_proxy.predict(test_data).to_pandas_dataframe().values.flatten()\n",
|
||||
"y_residual_test = y_test - y_pred_test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
||||
"\n",
|
||||
"# Set up a multi-plot chart.\n",
|
||||
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
|
||||
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
|
||||
"f.set_figheight(6)\n",
|
||||
"f.set_figwidth(16)\n",
|
||||
"\n",
|
||||
"# Plot residual values of training set.\n",
|
||||
"a0.axis([0, 360, -100, 100])\n",
|
||||
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
|
||||
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
|
||||
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
|
||||
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)),fontsize = 12)\n",
|
||||
"a0.set_xlabel('Training samples', fontsize = 12)\n",
|
||||
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
|
||||
"\n",
|
||||
"# Plot residual values of test set.\n",
|
||||
"a1.axis([0, 90, -100, 100])\n",
|
||||
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
|
||||
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
|
||||
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
|
||||
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)),fontsize = 12)\n",
|
||||
"a1.set_xlabel('Test samples', fontsize = 12)\n",
|
||||
"a1.set_yticklabels([])\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"test_pred = plt.scatter(y_test, y_pred_test, color='')\n",
|
||||
"test_test = plt.scatter(y_test, y_test, color='g')\n",
|
||||
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
|
||||
"plt.show()"
|
||||
"y_pred_test = y_pred_test.to_pandas_dataframe().values.flatten()\n",
|
||||
"y_test = y_test.to_pandas_dataframe().values.flatten()\n",
|
||||
"y_residual_test = y_test - y_pred_test\n",
|
||||
"print(y_residual_train)\n",
|
||||
"print(y_residual_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -451,7 +405,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "rakellam"
|
||||
"name": "sekrupa"
|
||||
}
|
||||
],
|
||||
"categories": [
|
||||
|
||||
@@ -54,9 +54,8 @@
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)\n",
|
||||
"\n",
|
||||
"Notebook synopsis:\n",
|
||||
"\n",
|
||||
"1. Creating an Experiment in an existing Workspace\n",
|
||||
"2. Configuration and remote run of AutoML for a time-series model exploring Regression learners, Arima, Prophet and DNNs\n",
|
||||
"4. Evaluating the fitted model using a rolling test "
|
||||
@@ -114,7 +113,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -163,7 +162,9 @@
|
||||
},
|
||||
"source": [
|
||||
"### Using AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -186,7 +187,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -219,6 +220,8 @@
|
||||
"\n",
|
||||
"**Time series identifier columns** are identified by values of the columns listed `time_series_id_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
|
||||
"\n",
|
||||
"**Forecast frequency (freq)** This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
|
||||
"\n",
|
||||
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
|
||||
]
|
||||
},
|
||||
@@ -350,9 +353,7 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"|**enable_dnn**|Enable Forecasting DNNs|\n",
|
||||
"\n",
|
||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
|
||||
"|**enable_dnn**|Enable Forecasting DNNs|\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -366,10 +367,13 @@
|
||||
"source": [
|
||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" freq='MS' # Set the forecast frequency to be monthly (start of the month)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
"# We will disable the enable_early_stopping flag to ensure the DNN model is recommended for demonstration purpose.\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" experiment_timeout_hours = 1,\n",
|
||||
" training_data=train_dataset,\n",
|
||||
@@ -380,6 +384,7 @@
|
||||
" max_concurrent_iterations=4,\n",
|
||||
" max_cores_per_iteration=-1,\n",
|
||||
" enable_dnn=True,\n",
|
||||
" enable_early_stopping=False,\n",
|
||||
" forecasting_parameters=forecasting_parameters)"
|
||||
]
|
||||
},
|
||||
@@ -402,8 +407,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output= False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output= True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -420,15 +424,6 @@
|
||||
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
@@ -650,7 +645,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "omkarm"
|
||||
"name": "jialiu"
|
||||
}
|
||||
],
|
||||
"hide_code_all_hidden": false,
|
||||
@@ -669,7 +664,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
"version": "3.6.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -3,11 +3,11 @@ from azureml.core import Environment
|
||||
from azureml.core.conda_dependencies import CondaDependencies
|
||||
from azureml.train.estimator import Estimator
|
||||
from azureml.core.run import Run
|
||||
from azureml.automl.core.shared import constants
|
||||
|
||||
|
||||
def split_fraction_by_grain(df, fraction, time_column_name,
|
||||
grain_column_names=None):
|
||||
|
||||
if not grain_column_names:
|
||||
df['tmp_grain_column'] = 'grain'
|
||||
grain_column_names = ['tmp_grain_column']
|
||||
@@ -17,10 +17,10 @@ def split_fraction_by_grain(df, fraction, time_column_name,
|
||||
.groupby(grain_column_names, group_keys=False))
|
||||
|
||||
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-int(len(dfg) *
|
||||
fraction)] if fraction > 0 else dfg)
|
||||
fraction)] if fraction > 0 else dfg)
|
||||
|
||||
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-int(len(dfg) *
|
||||
fraction):] if fraction > 0 else dfg[:0])
|
||||
fraction):] if fraction > 0 else dfg[:0])
|
||||
|
||||
if 'tmp_grain_column' in grain_column_names:
|
||||
for df2 in (df, df_head, df_tail):
|
||||
@@ -59,11 +59,13 @@ def get_result_df(remote_run):
|
||||
'primary_metric', 'Score'])
|
||||
goal_minimize = False
|
||||
for run in children:
|
||||
if('run_algorithm' in run.properties and 'score' in run.properties):
|
||||
if run.get_status().lower() == constants.RunState.COMPLETE_RUN \
|
||||
and 'run_algorithm' in run.properties and 'score' in run.properties:
|
||||
# We only count in the completed child runs.
|
||||
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
|
||||
run.properties['primary_metric'],
|
||||
float(run.properties['score'])]
|
||||
if('goal' in run.properties):
|
||||
if ('goal' in run.properties):
|
||||
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
|
||||
|
||||
summary_df = summary_df.T.sort_values(
|
||||
@@ -118,7 +120,6 @@ def run_multiple_inferences(summary_df, train_experiment, test_experiment,
|
||||
compute_target, script_folder, test_dataset,
|
||||
lookback_dataset, max_horizon, target_column_name,
|
||||
time_column_name, freq):
|
||||
|
||||
for run_name, run_summary in summary_df.iterrows():
|
||||
print(run_name)
|
||||
print(run_summary)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -10,6 +11,13 @@ from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
from azureml.automl.runtime.shared.score import scoring, constants
|
||||
from azureml.core import Run
|
||||
|
||||
try:
|
||||
import torch
|
||||
|
||||
_torch_present = True
|
||||
except ImportError:
|
||||
_torch_present = False
|
||||
|
||||
|
||||
def align_outputs(y_predicted, X_trans, X_test, y_test,
|
||||
predicted_column_name='predicted',
|
||||
@@ -48,7 +56,7 @@ def align_outputs(y_predicted, X_trans, X_test, y_test,
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = together[together[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
return (clean)
|
||||
|
||||
|
||||
def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
@@ -83,8 +91,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
if origin_time != X[time_column_name].min():
|
||||
# Set the context by including actuals up-to the origin time
|
||||
test_context_expand_wind = (X[time_column_name] < origin_time)
|
||||
context_expand_wind = (
|
||||
X_test_expand[time_column_name] < origin_time)
|
||||
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
|
||||
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
|
||||
|
||||
# Print some debug info
|
||||
@@ -115,8 +122,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
|
||||
# Align forecast with test set for dates within
|
||||
# the current rolling window
|
||||
trans_tindex = X_trans.index.get_level_values(time_column_name)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (
|
||||
trans_tindex < horizon_time)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
|
||||
df_list.append(align_outputs(
|
||||
y_fcst[trans_roll_wind], X_trans[trans_roll_wind],
|
||||
@@ -155,8 +161,7 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
|
||||
if origin_time != X_test[time_column_name].min():
|
||||
# Set the context by including actuals up-to the origin time
|
||||
test_context_expand_wind = (X_test[time_column_name] < origin_time)
|
||||
context_expand_wind = (
|
||||
X_test_expand[time_column_name] < origin_time)
|
||||
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
|
||||
y_query_expand[context_expand_wind] = y_test[
|
||||
test_context_expand_wind]
|
||||
|
||||
@@ -186,10 +191,8 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
|
||||
# Align forecast with test set for dates within the
|
||||
# current rolling window
|
||||
trans_tindex = X_trans.index.get_level_values(time_column_name)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (
|
||||
trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (
|
||||
X_test[time_column_name] >= origin_time)
|
||||
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
|
||||
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
|
||||
df_list.append(align_outputs(y_fcst[trans_roll_wind],
|
||||
X_trans[trans_roll_wind],
|
||||
X_test[test_roll_wind],
|
||||
@@ -221,6 +224,10 @@ def MAPE(actual, pred):
|
||||
return np.mean(APE(actual_safe, pred_safe))
|
||||
|
||||
|
||||
def map_location_cuda(storage, loc):
|
||||
return storage.cuda()
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--max_horizon', type=int, dest='max_horizon',
|
||||
@@ -238,7 +245,6 @@ parser.add_argument(
|
||||
'--model_path', type=str, dest='model_path',
|
||||
default='model.pkl', help='Filename of model to be loaded')
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
max_horizon = args.max_horizon
|
||||
target_column_name = args.target_column_name
|
||||
@@ -246,7 +252,6 @@ time_column_name = args.time_column_name
|
||||
freq = args.freq
|
||||
model_path = args.model_path
|
||||
|
||||
|
||||
print('args passed are: ')
|
||||
print(max_horizon)
|
||||
print(target_column_name)
|
||||
@@ -274,8 +279,19 @@ X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
|
||||
y_lookback_df = lookback_dataset.with_timestamp_columns(
|
||||
None).keep_columns(columns=[target_column_name])
|
||||
|
||||
fitted_model = joblib.load(model_path)
|
||||
|
||||
_, ext = os.path.splitext(model_path)
|
||||
if ext == '.pt':
|
||||
# Load the fc-tcn torch model.
|
||||
assert _torch_present
|
||||
if torch.cuda.is_available():
|
||||
map_location = map_location_cuda
|
||||
else:
|
||||
map_location = 'cpu'
|
||||
with open(model_path, 'rb') as fh:
|
||||
fitted_model = torch.load(fh, map_location=map_location)
|
||||
else:
|
||||
# Load the sklearn pipeline.
|
||||
fitted_model = joblib.load(model_path)
|
||||
|
||||
if hasattr(fitted_model, 'get_lookback'):
|
||||
lookback = fitted_model.get_lookback()
|
||||
|
||||
@@ -71,7 +71,8 @@
|
||||
"\n",
|
||||
"from azureml.core import Workspace, Experiment, Dataset\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from datetime import datetime"
|
||||
"from datetime import datetime\n",
|
||||
"from azureml.automl.core.featurization import FeaturizationConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -87,7 +88,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -129,9 +130,12 @@
|
||||
"source": [
|
||||
"## Compute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -151,7 +155,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -205,6 +209,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'dataset/bike-no.csv')]).with_timestamp_columns(fine_grain_timestamp=time_column_name) \n",
|
||||
"\n",
|
||||
"# Drop the columns 'casual' and 'registered' as these columns are a breakdown of the total and therefore a leak.\n",
|
||||
"dataset = dataset.drop_columns(columns=['casual', 'registered'])\n",
|
||||
"\n",
|
||||
"dataset.take(5).to_pandas_dataframe().reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
@@ -251,7 +259,7 @@
|
||||
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
|
||||
"|**country_or_region_for_holidays**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
|
||||
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
|
||||
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|"
|
||||
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -296,6 +304,25 @@
|
||||
"forecast_horizon = 14"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Convert prediction type to integer\n",
|
||||
"The featurization configuration can be used to change the default prediction type from decimal numbers to integer. This customization can be used in the scenario when the target column is expected to contain whole values as the number of rented bikes per day."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"featurization_config = FeaturizationConfig()\n",
|
||||
"# Force the target column, to be integer type.\n",
|
||||
"featurization_config.add_prediction_transform_type('Integer')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -314,12 +341,13 @@
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
|
||||
" target_lags='auto', # use heuristic based lag setting \n",
|
||||
" drop_column_names=['casual', 'registered'] # these columns are a breakdown of the total and therefore a leak\n",
|
||||
" target_lags='auto', # use heuristic based lag setting\n",
|
||||
" freq='D' # Set the forecast frequency to be daily\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" featurization=featurization_config,\n",
|
||||
" blocked_models = ['ExtremeRandomTrees'], \n",
|
||||
" experiment_timeout_hours=0.3,\n",
|
||||
" training_data=train,\n",
|
||||
@@ -346,8 +374,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -501,7 +528,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download the prediction result for metrics calcuation\n",
|
||||
"### Download the prediction result for metrics calculation\n",
|
||||
"The test data with predictions are saved in artifact outputs/predictions.csv. You can download it and calculation some error metrics for the forecasts and vizualize the predictions vs. the actuals."
|
||||
]
|
||||
},
|
||||
@@ -548,6 +575,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For more details on what metrics are included and how they are calculated, please refer to [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics). You could also calculate residuals, like described [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Since we did a rolling evaluation on the test set, we can analyze the predictions by their forecast horizon relative to the rolling origin. The model was initially trained at a forecast horizon of 14, so each prediction from the model is associated with a horizon value from 1 to 14. The horizon values are in a column named, \"horizon_origin,\" in the prediction set. For example, we can calculate some of the error metrics grouped by the horizon:"
|
||||
]
|
||||
},
|
||||
@@ -594,7 +624,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "erwright"
|
||||
"name": "jialiu"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
|
||||
@@ -1,22 +1,24 @@
|
||||
import argparse
|
||||
import azureml.train.automl
|
||||
from azureml.core import Run
|
||||
from azureml.core import Dataset, Run
|
||||
from sklearn.externals import joblib
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--test_dataset', type=str, dest='test_dataset',
|
||||
help='Test Dataset')
|
||||
|
||||
args = parser.parse_args()
|
||||
target_column_name = args.target_column_name
|
||||
test_dataset_id = args.test_dataset
|
||||
|
||||
run = Run.get_context()
|
||||
# get input dataset by name
|
||||
test_dataset = run.input_datasets['test_data']
|
||||
ws = run.experiment.workspace
|
||||
|
||||
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
|
||||
# get the input dataset by id
|
||||
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
|
||||
|
||||
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
|
||||
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()
|
||||
|
||||
@@ -1,29 +1,32 @@
|
||||
from azureml.train.estimator import Estimator
|
||||
from azureml.core import ScriptRunConfig
|
||||
|
||||
|
||||
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
|
||||
target_column_name, inference_folder='./forecast'):
|
||||
def run_rolling_forecast(test_experiment, compute_target, train_run,
|
||||
test_dataset, target_column_name,
|
||||
inference_folder='./forecast'):
|
||||
train_run.download_file('outputs/model.pkl',
|
||||
inference_folder + '/model.pkl')
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
est = Estimator(source_directory=inference_folder,
|
||||
entry_script='forecasting_script.py',
|
||||
script_params={
|
||||
'--target_column_name': target_column_name
|
||||
},
|
||||
inputs=[test_dataset.as_named_input('test_data')],
|
||||
compute_target=compute_target,
|
||||
environment_definition=inference_env)
|
||||
config = ScriptRunConfig(source_directory=inference_folder,
|
||||
script='forecasting_script.py',
|
||||
arguments=['--target_column_name',
|
||||
target_column_name,
|
||||
'--test_dataset',
|
||||
test_dataset.as_named_input(test_dataset.name)],
|
||||
compute_target=compute_target,
|
||||
environment=inference_env)
|
||||
|
||||
run = test_experiment.submit(est,
|
||||
tags={
|
||||
'training_run_id': train_run.id,
|
||||
'run_algorithm': train_run.properties['run_algorithm'],
|
||||
'valid_score': train_run.properties['score'],
|
||||
'primary_metric': train_run.properties['primary_metric']
|
||||
})
|
||||
run = test_experiment.submit(config,
|
||||
tags={'training_run_id':
|
||||
train_run.id,
|
||||
'run_algorithm':
|
||||
train_run.properties['run_algorithm'],
|
||||
'valid_score':
|
||||
train_run.properties['score'],
|
||||
'primary_metric':
|
||||
train_run.properties['primary_metric']})
|
||||
|
||||
run.log("run_algorithm", run.tags['run_algorithm'])
|
||||
return run
|
||||
|
||||
@@ -24,10 +24,11 @@
|
||||
"_**Forecasting using the Energy Demand Dataset**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data and Forecasting Configurations](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Introduction](#introduction)\n",
|
||||
"1. [Setup](#setup)\n",
|
||||
"1. [Data and Forecasting Configurations](#data)\n",
|
||||
"1. [Train](#train)\n",
|
||||
"1. [Generate and Evaluate the Forecast](#forecast)\n",
|
||||
"\n",
|
||||
"Advanced Forecasting\n",
|
||||
"1. [Advanced Training](#advanced_training)\n",
|
||||
@@ -38,7 +39,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"# Introduction<a id=\"introduction\"></a>\n",
|
||||
"\n",
|
||||
"In this example we use the associated New York City energy demand dataset to showcase how you can use AutoML for a simple forecasting problem and explore the results. The goal is predict the energy demand for the next 48 hours based on historic time-series data.\n",
|
||||
"\n",
|
||||
@@ -49,15 +50,16 @@
|
||||
"1. Configure AutoML using 'AutoMLConfig'\n",
|
||||
"1. Train the model using AmlCompute\n",
|
||||
"1. Explore the engineered features and results\n",
|
||||
"1. Generate the forecast and compute the out-of-sample accuracy metrics\n",
|
||||
"1. Configuration and remote run of AutoML for a time-series model with lag and rolling window features\n",
|
||||
"1. Run and explore the forecast"
|
||||
"1. Run and explore the forecast with lagging features"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
"# Setup<a id=\"setup\"></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -97,7 +99,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -177,7 +179,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Data\n",
|
||||
"# Data<a id=\"data\"></a>\n",
|
||||
"\n",
|
||||
"We will use energy consumption [data from New York City](http://mis.nyiso.com/public/P-58Blist.htm) for model training. The data is stored in a tabular format and includes energy demand and basic weather data at an hourly frequency. \n",
|
||||
"\n",
|
||||
@@ -301,14 +303,15 @@
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**time_column_name**|The name of your time column.|\n",
|
||||
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|"
|
||||
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
|
||||
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"# Train<a id=\"train\"></a>\n",
|
||||
"\n",
|
||||
"Instantiate an AutoMLConfig object. This config defines the settings and data used to run the experiment. We can provide extra configurations within 'automl_settings', for this forecasting task we add the forecasting parameters to hold all the additional forecasting parameters.\n",
|
||||
"\n",
|
||||
@@ -341,7 +344,9 @@
|
||||
"source": [
|
||||
"from azureml.automl.core.forecasting_parameters import ForecastingParameters\n",
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name, forecast_horizon=forecast_horizon\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
@@ -374,15 +379,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -457,9 +453,11 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Forecasting\n",
|
||||
"# Forecasting<a id=\"forecast\"></a>\n",
|
||||
"\n",
|
||||
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
|
||||
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
|
||||
"\n",
|
||||
"The inference will run on a remote compute. In this example, it will re-use the training compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -468,16 +466,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test = test.to_pandas_dataframe().reset_index(drop=True)\n",
|
||||
"y_test = X_test.pop(target_column_name).values"
|
||||
"test_experiment = Experiment(ws, experiment_name + \"_inference\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Forecast Function\n",
|
||||
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see the [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||
"### Retreiving forecasts from the model\n",
|
||||
"We have created a function called `run_forecast` that submits the test data to the best model determined during the training run and retrieves forecasts. This function uses a helper script `forecasting_script` which is uploaded and expecuted on the remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -486,10 +483,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The featurized data, aligned to y, will also be returned.\n",
|
||||
"# This contains the assumptions that were made in the forecast\n",
|
||||
"# and helps align the forecast to the original data\n",
|
||||
"y_predictions, X_trans = fitted_model.forecast(X_test)"
|
||||
"from run_forecast import run_remote_inference\n",
|
||||
"remote_run_infer = run_remote_inference(test_experiment=test_experiment,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" train_run=best_run,\n",
|
||||
" test_dataset=test,\n",
|
||||
" target_column_name=target_column_name)\n",
|
||||
"remote_run_infer.wait_for_completion(show_output=False)\n",
|
||||
"\n",
|
||||
"# download the inference output file to the local machine\n",
|
||||
"remote_run_infer.download_file('outputs/predictions.csv', 'predictions.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -497,9 +500,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Evaluate\n",
|
||||
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE).\n",
|
||||
"\n",
|
||||
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
|
||||
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). For more metrics that can be used for evaluation after training, please see [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics), and [how to calculate residuals](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -508,9 +509,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from forecasting_helper import align_outputs\n",
|
||||
"\n",
|
||||
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
|
||||
"# load forecast data frame\n",
|
||||
"fcst_df = pd.read_csv('predictions.csv', parse_dates=[time_column_name])\n",
|
||||
"fcst_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -525,8 +526,8 @@
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" y_test=fcst_df[target_column_name],\n",
|
||||
" y_pred=fcst_df['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
@@ -535,8 +536,8 @@
|
||||
" \n",
|
||||
"# Plot outputs\n",
|
||||
"%matplotlib inline\n",
|
||||
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
|
||||
"test_pred = plt.scatter(fcst_df[target_column_name], fcst_df['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(fcst_df[target_column_name], fcst_df[target_column_name], color='g')\n",
|
||||
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@@ -545,23 +546,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Looking at `X_trans` is also useful to see what featurization happened to the data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_trans"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Advanced Training <a id=\"advanced_training\"></a>\n",
|
||||
"# Advanced Training <a id=\"advanced_training\"></a>\n",
|
||||
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, time series identifier columns and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
|
||||
]
|
||||
},
|
||||
@@ -644,7 +629,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Advanced Results<a id=\"advanced_results\"></a>\n",
|
||||
"# Advanced Results<a id=\"advanced_results\"></a>\n",
|
||||
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, time series identifier columns and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
|
||||
]
|
||||
},
|
||||
@@ -654,10 +639,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The featurized data, aligned to y, will also be returned.\n",
|
||||
"# This contains the assumptions that were made in the forecast\n",
|
||||
"# and helps align the forecast to the original data\n",
|
||||
"y_predictions, X_trans = fitted_model_lags.forecast(X_test)"
|
||||
"test_experiment_advanced = Experiment(ws, experiment_name + \"_inference_advanced\")\n",
|
||||
"advanced_remote_run_infer = run_remote_inference(test_experiment=test_experiment_advanced,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" train_run=best_run_lags,\n",
|
||||
" test_dataset=test,\n",
|
||||
" target_column_name=target_column_name,\n",
|
||||
" inference_folder='./forecast_advanced')\n",
|
||||
"advanced_remote_run_infer.wait_for_completion(show_output=False)\n",
|
||||
"\n",
|
||||
"# download the inference output file to the local machine\n",
|
||||
"advanced_remote_run_infer.download_file('outputs/predictions.csv', 'predictions_advanced.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -666,9 +658,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from forecasting_helper import align_outputs\n",
|
||||
"\n",
|
||||
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
|
||||
"fcst_adv_df = pd.read_csv('predictions_advanced.csv', parse_dates=[time_column_name])\n",
|
||||
"fcst_adv_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -683,8 +674,8 @@
|
||||
"\n",
|
||||
"# use automl metrics module\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" y_test=fcst_adv_df[target_column_name],\n",
|
||||
" y_pred=fcst_adv_df['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
@@ -693,8 +684,8 @@
|
||||
" \n",
|
||||
"# Plot outputs\n",
|
||||
"%matplotlib inline\n",
|
||||
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
|
||||
"test_pred = plt.scatter(fcst_adv_df[target_column_name], fcst_adv_df['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(fcst_adv_df[target_column_name], fcst_adv_df[target_column_name], color='g')\n",
|
||||
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@@ -703,7 +694,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "erwright"
|
||||
"name": "jialiu"
|
||||
}
|
||||
],
|
||||
"categories": [
|
||||
@@ -725,7 +716,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.8"
|
||||
"version": "3.6.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -1,5 +1,15 @@
|
||||
"""
|
||||
This is the script that is executed on the compute instance. It relies
|
||||
on the model.pkl file which is uploaded along with this script to the
|
||||
compute instance.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from azureml.core import Dataset, Run
|
||||
from azureml.automl.core.shared.constants import TimeSeriesInternal
|
||||
from sklearn.externals import joblib
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
@@ -42,3 +52,38 @@ def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
|
||||
clean = together[together[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--test_dataset', type=str, dest='test_dataset',
|
||||
help='Test Dataset')
|
||||
|
||||
args = parser.parse_args()
|
||||
target_column_name = args.target_column_name
|
||||
test_dataset_id = args.test_dataset
|
||||
|
||||
run = Run.get_context()
|
||||
ws = run.experiment.workspace
|
||||
|
||||
# get the input dataset by id
|
||||
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
|
||||
|
||||
X_test = test_dataset.to_pandas_dataframe().reset_index(drop=True)
|
||||
y_test = X_test.pop(target_column_name).values
|
||||
|
||||
# generate forecast
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
y_predictions, X_trans = fitted_model.forecast(X_test)
|
||||
|
||||
# align output
|
||||
df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)
|
||||
|
||||
file_name = 'outputs/predictions.csv'
|
||||
export_csv = df_all.to_csv(file_name, header=True, index=False) # added Index
|
||||
|
||||
# Upload the predictions into artifacts
|
||||
run.upload_file(name=file_name, path_or_stream=file_name)
|
||||
@@ -1,22 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def APE(actual, pred):
|
||||
"""
|
||||
Calculate absolute percentage error.
|
||||
Returns a vector of APE values with same length as actual/pred.
|
||||
"""
|
||||
return 100 * np.abs((actual - pred) / actual)
|
||||
|
||||
|
||||
def MAPE(actual, pred):
|
||||
"""
|
||||
Calculate mean absolute percentage error.
|
||||
Remove NA and values where actual is close to zero
|
||||
"""
|
||||
not_na = ~(np.isnan(actual) | np.isnan(pred))
|
||||
not_zero = ~np.isclose(actual, 0.0)
|
||||
actual_safe = actual[not_na & not_zero]
|
||||
pred_safe = pred[not_na & not_zero]
|
||||
return np.mean(APE(actual_safe, pred_safe))
|
||||
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
import shutil
|
||||
from azureml.core import ScriptRunConfig
|
||||
|
||||
|
||||
def run_remote_inference(test_experiment, compute_target, train_run,
|
||||
test_dataset, target_column_name, inference_folder='./forecast'):
|
||||
# Create local directory to copy the model.pkl and forecsting_script.py files into.
|
||||
# These files will be uploaded to and executed on the compute instance.
|
||||
os.makedirs(inference_folder, exist_ok=True)
|
||||
shutil.copy('forecasting_script.py', inference_folder)
|
||||
|
||||
train_run.download_file('outputs/model.pkl',
|
||||
os.path.join(inference_folder, 'model.pkl'))
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
config = ScriptRunConfig(source_directory=inference_folder,
|
||||
script='forecasting_script.py',
|
||||
arguments=['--target_column_name',
|
||||
target_column_name,
|
||||
'--test_dataset',
|
||||
test_dataset.as_named_input(test_dataset.name)],
|
||||
compute_target=compute_target,
|
||||
environment=inference_env)
|
||||
|
||||
run = test_experiment.submit(config,
|
||||
tags={'training_run_id':
|
||||
train_run.id,
|
||||
'run_algorithm':
|
||||
train_run.properties['run_algorithm'],
|
||||
'valid_score':
|
||||
train_run.properties['score'],
|
||||
'primary_metric':
|
||||
train_run.properties['primary_metric']})
|
||||
|
||||
run.log("run_algorithm", run.tags['run_algorithm'])
|
||||
return run
|
||||
@@ -24,7 +24,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"This notebook demonstrates the full interface to the `forecast()` function. \n",
|
||||
"This notebook demonstrates the full interface of the `forecast()` function. \n",
|
||||
"\n",
|
||||
"The best known and most frequent usage of `forecast` enables forecasting on test sets that immediately follows training data. \n",
|
||||
"\n",
|
||||
@@ -94,7 +94,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -263,7 +263,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -283,7 +285,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=6)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -302,7 +304,8 @@
|
||||
"* Set early termination to True, so the iterations through the models will stop when no improvements in accuracy score will be made.\n",
|
||||
"* Set limitations on the length of experiment run to 15 minutes.\n",
|
||||
"* Finally, we set the task to be forecasting.\n",
|
||||
"* We apply the lag lead operator to the target value i.e. we use the previous values as a predictor for the future ones."
|
||||
"* We apply the lag lead operator to the target value i.e. we use the previous values as a predictor for the future ones.\n",
|
||||
"* [Optional] Forecast frequency parameter (freq) represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -318,7 +321,8 @@
|
||||
" time_column_name=TIME_COLUMN_NAME,\n",
|
||||
" forecast_horizon=forecast_horizon,\n",
|
||||
" time_series_id_column_names=[ TIME_SERIES_ID_COLUMN_NAME ],\n",
|
||||
" target_lags=lags\n",
|
||||
" target_lags=lags,\n",
|
||||
" freq='H' # Set the forecast frequency to be hourly\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@@ -809,7 +813,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "erwright"
|
||||
"name": "jialiu"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
|
||||
@@ -24,20 +24,20 @@
|
||||
"_**Orange Juice Sales Forecasting**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Compute](#Compute)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Predict](#Predict)\n",
|
||||
"1. [Operationalize](#Operationalize)"
|
||||
"1. [Introduction](#introduction)\n",
|
||||
"1. [Setup](#setup)\n",
|
||||
"1. [Compute](#compute)\n",
|
||||
"1. [Data](#data)\n",
|
||||
"1. [Train](#train)\n",
|
||||
"1. [Forecast](#forecast)\n",
|
||||
"1. [Operationalize](#operationalize)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"## Introduction<a id=\"introduction\"></a>\n",
|
||||
"In this example, we use AutoML to train, select, and operationalize a time-series forecasting model for multiple time-series.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
|
||||
@@ -49,7 +49,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
"## Setup<a id=\"setup\"></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -60,7 +60,6 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
@@ -82,7 +81,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -122,11 +121,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Compute\n",
|
||||
"## Compute<a id=\"compute\"></a>\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -146,7 +148,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D12_V2',\n",
|
||||
" max_nodes=6)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -157,7 +159,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data\n",
|
||||
"## Data<a id=\"data\"></a>\n",
|
||||
"You are now ready to load the historical orange juice sales data. We will load the CSV file into a plain pandas DataFrame; the time column in the CSV is called _WeekStarting_, so it will be specially parsed into the datetime type."
|
||||
]
|
||||
},
|
||||
@@ -169,6 +171,10 @@
|
||||
"source": [
|
||||
"time_column_name = 'WeekStarting'\n",
|
||||
"data = pd.read_csv(\"dominicks_OJ.csv\", parse_dates=[time_column_name])\n",
|
||||
"\n",
|
||||
"# Drop the columns 'logQuantity' as it is a leaky feature.\n",
|
||||
"data.drop('logQuantity', axis=1, inplace=True)\n",
|
||||
"\n",
|
||||
"data.head()"
|
||||
]
|
||||
},
|
||||
@@ -280,7 +286,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"train_dataset = Dataset.Tabular.from_delimited_files(path=datastore.path('dataset/dominicks_OJ_train.csv'))"
|
||||
"train_dataset = Dataset.Tabular.from_delimited_files(path=datastore.path('dataset/dominicks_OJ_train.csv'))\n",
|
||||
"test_dataset = Dataset.Tabular.from_delimited_files(path=datastore.path('dataset/dominicks_OJ_test.csv'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -325,12 +332,11 @@
|
||||
"source": [
|
||||
"## Customization\n",
|
||||
"\n",
|
||||
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include,\n",
|
||||
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include:\n",
|
||||
"\n",
|
||||
"1. Column purposes update: Override feature type for the specified column. Currently supports DateTime, Categorical and Numeric. This customization can be used in the scenario that the type of the column cannot correctly reflect its purpose. Some numerical columns, for instance, can be treated as Categorical columns which need to be converted to categorical while some can be treated as epoch timestamp which need to be converted to datetime. To tell our SDK to correctly preprocess these columns, a configuration need to be add with the columns and their desired types.\n",
|
||||
"2. Transformer parameters update: Currently supports parameter change for Imputer only. User can customize imputation methods. The supported imputing methods for target column are constant and ffill (forward fill). The supported imputing methods for feature columns are mean, median, most frequent, constant and ffill (forward fill). This customization can be used for the scenario that our customers know which imputation methods fit best to the input data. For instance, some datasets use NaN to represent 0 which the correct behavior should impute all the missing value with 0. To achieve this behavior, these columns need to be configured as constant imputation with `fill_value` 0.\n",
|
||||
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data.\n",
|
||||
"\n",
|
||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
|
||||
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -344,7 +350,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"featurization_config = FeaturizationConfig()\n",
|
||||
"featurization_config.drop_columns = ['logQuantity'] # 'logQuantity' is a leaky feature, so we remove it.\n",
|
||||
"# Force the CPWVOL5 feature to be numeric type.\n",
|
||||
"featurization_config.add_column_purpose('CPWVOL5', 'Numeric')\n",
|
||||
"# Fill missing values in the target column, Quantity, with zeros.\n",
|
||||
@@ -367,14 +372,15 @@
|
||||
"|-|-|\n",
|
||||
"|**time_column_name**|The name of your time column.|\n",
|
||||
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
|
||||
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|"
|
||||
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|\n",
|
||||
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"## Train<a id=\"train\"></a>\n",
|
||||
"\n",
|
||||
"The [AutoMLConfig](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py) object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, the training data, and cross-validation parameters.\n",
|
||||
"\n",
|
||||
@@ -383,7 +389,7 @@
|
||||
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the forecast horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
|
||||
"\n",
|
||||
"We note here that AutoML can sweep over two types of time-series models:\n",
|
||||
"* Models that are trained for each series such as ARIMA and Facebook's Prophet. Note that these models are only available for [Enterprise Edition Workspaces](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace#upgrade).\n",
|
||||
"* Models that are trained for each series such as ARIMA and Facebook's Prophet.\n",
|
||||
"* Models trained across multiple time-series using a regression approach.\n",
|
||||
"\n",
|
||||
"In the first case, AutoML loops over all time-series in your dataset and trains one model (e.g. AutoArima or Prophet, as the case may be) for each series. This can result in long runtimes to train these models if there are a lot of series in the data. One way to mitigate this problem is to fit models for different series in parallel if you have multiple compute cores available. To enable this behavior, set the `max_cores_per_iteration` parameter in your AutoMLConfig as shown in the example in the next cell. \n",
|
||||
@@ -420,7 +426,8 @@
|
||||
"forecasting_parameters = ForecastingParameters(\n",
|
||||
" time_column_name=time_column_name,\n",
|
||||
" forecast_horizon=n_test_periods,\n",
|
||||
" time_series_id_column_names=time_series_id_column_names\n",
|
||||
" time_series_id_column_names=time_series_id_column_names,\n",
|
||||
" freq='W-THU' # Set the forecast frequency to be weekly (start on each Thursday)\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
@@ -452,8 +459,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run"
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -515,9 +521,11 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Forecasting\n",
|
||||
"# Forecast<a id=\"forecast\"></a>\n",
|
||||
"\n",
|
||||
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
|
||||
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
|
||||
"\n",
|
||||
"The inference will run on a remote compute. In this example, it will re-use the training compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -526,17 +534,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test = test\n",
|
||||
"y_test = X_test.pop(target_column_name).values"
|
||||
"test_experiment = Experiment(ws, experiment_name + \"_inference\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test.head()"
|
||||
"### Retreiving forecasts from the model\n",
|
||||
"We have created a function called `run_forecast` that submits the test data to the best model determined during the training run and retrieves forecasts. This function uses a helper script `forecasting_script` which is uploaded and expecuted on the remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -552,18 +558,16 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# forecast returns the predictions and the featurized data, aligned to X_test.\n",
|
||||
"# This contains the assumptions that were made in the forecast\n",
|
||||
"y_predictions, X_trans = fitted_model.forecast(X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
|
||||
"from run_forecast import run_remote_inference\n",
|
||||
"remote_run_infer = run_remote_inference(test_experiment=test_experiment, \n",
|
||||
" compute_target=compute_target,\n",
|
||||
" train_run=best_run,\n",
|
||||
" test_dataset=test_dataset,\n",
|
||||
" target_column_name=target_column_name)\n",
|
||||
"remote_run_infer.wait_for_completion(show_output=False)\n",
|
||||
"\n",
|
||||
"The [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
|
||||
"# download the forecast file to the local machine\n",
|
||||
"remote_run_infer.download_file('outputs/predictions.csv', 'predictions.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -572,7 +576,7 @@
|
||||
"source": [
|
||||
"# Evaluate\n",
|
||||
"\n",
|
||||
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). \n",
|
||||
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). For more metrics that can be used for evaluation after training, please see [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics), and [how to calculate residuals](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
|
||||
"\n",
|
||||
"We'll add predictions and actuals into a single dataframe for convenience in calculating the metrics."
|
||||
]
|
||||
@@ -583,8 +587,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"assign_dict = {'predicted': y_predictions, target_column_name: y_test}\n",
|
||||
"df_all = X_test.assign(**assign_dict)"
|
||||
"# load forecast data frame\n",
|
||||
"fcst_df = pd.read_csv('predictions.csv', parse_dates=[time_column_name])\n",
|
||||
"fcst_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -599,8 +604,8 @@
|
||||
"\n",
|
||||
"# use automl scoring module\n",
|
||||
"scores = scoring.score_regression(\n",
|
||||
" y_test=df_all[target_column_name],\n",
|
||||
" y_pred=df_all['predicted'],\n",
|
||||
" y_test=fcst_df[target_column_name],\n",
|
||||
" y_pred=fcst_df['predicted'],\n",
|
||||
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
|
||||
"\n",
|
||||
"print(\"[Test data scores]\\n\")\n",
|
||||
@@ -609,8 +614,8 @@
|
||||
" \n",
|
||||
"# Plot outputs\n",
|
||||
"%matplotlib inline\n",
|
||||
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
|
||||
"test_pred = plt.scatter(fcst_df[target_column_name], fcst_df['predicted'], color='b')\n",
|
||||
"test_test = plt.scatter(fcst_df[target_column_name], fcst_df[target_column_name], color='g')\n",
|
||||
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@@ -619,7 +624,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Operationalize"
|
||||
"# Operationalize<a id=\"operationalize\"></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -682,8 +687,8 @@
|
||||
"inference_config = InferenceConfig(environment = best_run.get_environment(), \n",
|
||||
" entry_script = script_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 2, \n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
|
||||
" memory_gb = 4, \n",
|
||||
" tags = {'type': \"automl-forecasting\"},\n",
|
||||
" description = \"Automl forecasting sample service\")\n",
|
||||
"\n",
|
||||
@@ -717,12 +722,13 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"X_query = X_test.copy()\n",
|
||||
"X_query = test.copy()\n",
|
||||
"X_query.pop(target_column_name)\n",
|
||||
"# We have to convert datetime to string, because Timestamps cannot be serialized to JSON.\n",
|
||||
"X_query[time_column_name] = X_query[time_column_name].astype(str)\n",
|
||||
"# The Service object accept the complex dictionary, which is internally converted to JSON string.\n",
|
||||
"# The section 'data' contains the data frame in the form of dictionary.\n",
|
||||
"test_sample = json.dumps({'data': X_query.to_dict(orient='records')})\n",
|
||||
"test_sample = json.dumps({\"data\": json.loads(X_query.to_json(orient=\"records\"))})\n",
|
||||
"response = aci_service.run(input_data = test_sample)\n",
|
||||
"# translate from networkese to datascientese\n",
|
||||
"try: \n",
|
||||
@@ -764,7 +770,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "erwright"
|
||||
"name": "jialiu"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
@@ -799,7 +805,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.8"
|
||||
"version": "3.6.9"
|
||||
},
|
||||
"tags": [
|
||||
"None"
|
||||
|
||||
@@ -0,0 +1,89 @@
|
||||
"""
|
||||
This is the script that is executed on the compute instance. It relies
|
||||
on the model.pkl file which is uploaded along with this script to the
|
||||
compute instance.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from azureml.core import Dataset, Run
|
||||
from azureml.automl.core.shared.constants import TimeSeriesInternal
|
||||
from sklearn.externals import joblib
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
|
||||
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
|
||||
predicted_column_name='predicted',
|
||||
horizon_colname='horizon_origin'):
|
||||
"""
|
||||
Demonstrates how to get the output aligned to the inputs
|
||||
using pandas indexes. Helps understand what happened if
|
||||
the output's shape differs from the input shape, or if
|
||||
the data got re-sorted by time and grain during forecasting.
|
||||
|
||||
Typical causes of misalignment are:
|
||||
* we predicted some periods that were missing in actuals -> drop from eval
|
||||
* model was asked to predict past max_horizon -> increase max horizon
|
||||
* data at start of X_test was needed for lags -> provide previous periods
|
||||
"""
|
||||
|
||||
if (horizon_colname in X_trans):
|
||||
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
|
||||
horizon_colname: X_trans[horizon_colname]})
|
||||
else:
|
||||
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
|
||||
|
||||
# y and X outputs are aligned by forecast() function contract
|
||||
df_fcst.index = X_trans.index
|
||||
|
||||
# align original X_test to y_test
|
||||
X_test_full = X_test.copy()
|
||||
X_test_full[target_column_name] = y_test
|
||||
|
||||
# X_test_full's index does not include origin, so reset for merge
|
||||
df_fcst.reset_index(inplace=True)
|
||||
X_test_full = X_test_full.reset_index().drop(columns='index')
|
||||
together = df_fcst.merge(X_test_full, how='right')
|
||||
|
||||
# drop rows where prediction or actuals are nan
|
||||
# happens because of missing actuals
|
||||
# or at edges of time due to lags/rolling windows
|
||||
clean = together[together[[target_column_name,
|
||||
predicted_column_name]].notnull().all(axis=1)]
|
||||
return(clean)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--test_dataset', type=str, dest='test_dataset',
|
||||
help='Test Dataset')
|
||||
|
||||
args = parser.parse_args()
|
||||
target_column_name = args.target_column_name
|
||||
test_dataset_id = args.test_dataset
|
||||
|
||||
run = Run.get_context()
|
||||
ws = run.experiment.workspace
|
||||
|
||||
# get the input dataset by id
|
||||
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
|
||||
|
||||
X_test = test_dataset.to_pandas_dataframe().reset_index(drop=True)
|
||||
y_test = X_test.pop(target_column_name).values
|
||||
|
||||
# generate forecast
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
y_predictions, X_trans = fitted_model.forecast(X_test)
|
||||
|
||||
# align output
|
||||
df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)
|
||||
|
||||
file_name = 'outputs/predictions.csv'
|
||||
export_csv = df_all.to_csv(file_name, header=True, index=False) # added Index
|
||||
|
||||
# Upload the predictions into artifacts
|
||||
run.upload_file(name=file_name, path_or_stream=file_name)
|
||||
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
import shutil
|
||||
from azureml.core import ScriptRunConfig
|
||||
|
||||
|
||||
def run_remote_inference(test_experiment, compute_target, train_run,
|
||||
test_dataset, target_column_name, inference_folder='./forecast'):
|
||||
# Create local directory to copy the model.pkl and forecsting_script.py files into.
|
||||
# These files will be uploaded to and executed on the compute instance.
|
||||
os.makedirs(inference_folder, exist_ok=True)
|
||||
shutil.copy('forecasting_script.py', inference_folder)
|
||||
|
||||
train_run.download_file('outputs/model.pkl',
|
||||
os.path.join(inference_folder, 'model.pkl'))
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
config = ScriptRunConfig(source_directory=inference_folder,
|
||||
script='forecasting_script.py',
|
||||
arguments=['--target_column_name',
|
||||
target_column_name,
|
||||
'--test_dataset',
|
||||
test_dataset.as_named_input(test_dataset.name)],
|
||||
compute_target=compute_target,
|
||||
environment=inference_env)
|
||||
|
||||
run = test_experiment.submit(config,
|
||||
tags={'training_run_id':
|
||||
train_run.id,
|
||||
'run_algorithm':
|
||||
train_run.properties['run_algorithm'],
|
||||
'valid_score':
|
||||
train_run.properties['score'],
|
||||
'primary_metric':
|
||||
train_run.properties['primary_metric']})
|
||||
|
||||
run.log("run_algorithm", run.tags['run_algorithm'])
|
||||
return run
|
||||
@@ -0,0 +1,492 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this notebook we will explore the univaraite time-series data to determine the settings for an automated ML experiment. We will follow the thought process depicted in the following diagram:<br/>\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The objective is to answer the following questions:\n",
|
||||
"\n",
|
||||
"<ol>\n",
|
||||
" <li>Is there a seasonal pattern in the data? </li>\n",
|
||||
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
|
||||
" <li> Importance: If we are able to detect regular seasonal patterns, the forecast accuracy may be improved by extracting these patterns and including them as features into the model. </li>\n",
|
||||
" </ul>\n",
|
||||
" <li>Is the data stationary? </li>\n",
|
||||
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
|
||||
" <li> Importance: In the absense of features that capture trend behavior, ML models (regression and tree based) are not well equiped to predict stochastic trends. Working with stationary data solves this problem. </li>\n",
|
||||
" </ul>\n",
|
||||
" <li>Is there a detectable auto-regressive pattern in the stationary data? </li>\n",
|
||||
" <ul style=\"margin-top:-1px; list-style-type:none\"> \n",
|
||||
" <li> Importance: The accuracy of ML models can be improved if serial correlation is modeled by including lags of the dependent/target varaible as features. Including target lags in every experiment by default will result in a regression in accuracy scores if such setting is not warranted. </li>\n",
|
||||
" </ul>\n",
|
||||
"</ol>\n",
|
||||
"\n",
|
||||
"The answers to these questions will help determine the appropriate settings for the automated ML experiment.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import warnings\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from pandas.plotting import register_matplotlib_converters\n",
|
||||
"register_matplotlib_converters() # fixes the future warning issue\n",
|
||||
"\n",
|
||||
"from helper_functions import unit_root_test_wrapper\n",
|
||||
"from statsmodels.tools.sm_exceptions import InterpolationWarning\n",
|
||||
"warnings.simplefilter('ignore', InterpolationWarning)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# set printing options\n",
|
||||
"pd.set_option('display.max_columns', 500)\n",
|
||||
"pd.set_option('display.width', 1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load data\n",
|
||||
"main_data_loc = 'data'\n",
|
||||
"train_file_name = 'S4248SM144SCEN.csv'\n",
|
||||
"\n",
|
||||
"TARGET_COLNAME = 'S4248SM144SCEN'\n",
|
||||
"TIME_COLNAME = 'observation_date'\n",
|
||||
"COVID_PERIOD_START = '2020-03-01'\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(os.path.join(main_data_loc, train_file_name))\n",
|
||||
"df[TIME_COLNAME] = pd.to_datetime(df[TIME_COLNAME], format='%Y-%m-%d')\n",
|
||||
"df.sort_values(by=TIME_COLNAME, inplace=True)\n",
|
||||
"df.set_index(TIME_COLNAME, inplace=True)\n",
|
||||
"df.head(2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# plot the entire dataset\n",
|
||||
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
|
||||
"ax.plot(df)\n",
|
||||
"ax.title.set_text('Original Data Series')\n",
|
||||
"locs, labels = plt.xticks()\n",
|
||||
"plt.xticks(rotation=45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The graph plots the alcohol sales in the United States. Because the data is trending, it can be difficult to see cycles, seasonality or other interestng behaviors due to the scaling issues. For example, if there is a seasonal pattern, which we will discuss later, we cannot see them on the trending data. In such case, it is worth plotting the same data in first differences."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# plot the entire dataset in first differences\n",
|
||||
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
|
||||
"ax.plot(df.diff().dropna())\n",
|
||||
"ax.title.set_text('Data in first differences')\n",
|
||||
"locs, labels = plt.xticks()\n",
|
||||
"plt.xticks(rotation=45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In the previous plot we observe that the data is more volatile towards the end of the series. This period coincides with the Covid-19 period, so we will exclude it from our experiment. Since in this example there are no user-provided features it is hard to make an argument that a model trained on the less volatile pre-covid data will be able to accurately predict the covid period."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 1. Seasonality\n",
|
||||
"\n",
|
||||
"#### Questions that need to be answered in this section:\n",
|
||||
"1. Is there a seasonality?\n",
|
||||
"2. If it's seasonal, does the data exhibit a trend (up or down)?\n",
|
||||
"\n",
|
||||
"It is hard to visually detect seasonality when the data is trending. The reason being is scale of seasonal fluctuations is dwarfed by the range of the trend in the data. One way to deal with this is to de-trend the data by taking the first differences. We will discuss this in more detail in the next section."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# plot the entire dataset in first differences\n",
|
||||
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
|
||||
"ax.plot(df.diff().dropna())\n",
|
||||
"ax.title.set_text('Data in first differences')\n",
|
||||
"locs, labels = plt.xticks()\n",
|
||||
"plt.xticks(rotation=45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For the next plot, we will exclude the Covid period again. We will also shorten the length of data because plotting a very long time series may prevent us from seeing seasonal patterns, if there are any, because the plot may look like a random walk."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# remove COVID period\n",
|
||||
"df = df[:COVID_PERIOD_START]\n",
|
||||
"\n",
|
||||
"# plot the entire dataset in first differences\n",
|
||||
"fig, ax = plt.subplots(figsize=(6,2), dpi=180)\n",
|
||||
"ax.plot(df['2015-01-01':].diff().dropna())\n",
|
||||
"ax.title.set_text('Data in first differences')\n",
|
||||
"locs, labels = plt.xticks()\n",
|
||||
"plt.xticks(rotation=45)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
|
||||
"\n",
|
||||
"Visual examination does not suggest clear seasonal patterns. We will set the STL_TYPE = None, and we will move to the next section that examines stationarity. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Say, we are working with a different data set that shows clear patterns of seasonality, we have several options for setting the settings:is hard to say which option will work best in your case, hence you will need to run both options to see which one results in more accurate forecasts. </li>\n",
|
||||
"<ol>\n",
|
||||
" <li> If the data does not appear to be trending, set DIFFERENCE_SERIES=False, TARGET_LAGS=None and STL_TYPE = \"season\" </li>\n",
|
||||
" <li> If the data appears to be trending, consider one of the following two settings:\n",
|
||||
" <ul>\n",
|
||||
" <ol type=\"a\">\n",
|
||||
" <li> DIFFERENCE_SERIES=True, TARGET_LAGS=None and STL_TYPE = \"season\", or </li>\n",
|
||||
" <li> DIFFERENCE_SERIES=False, TARGET_LAGS=None and STL_TYPE = \"trend_season\" </li>\n",
|
||||
" </ol>\n",
|
||||
" <li> In the first case, by taking first differences we are removing stochastic trend, but we do not remove seasonal patterns. In the second case, we do not remove the stochastic trend and it can be captured by the trend component of the STL decomposition. It is hard to say which option will work best in your case, hence you will need to run both options to see which one results in more accurate forecasts. </li>\n",
|
||||
" </ul>\n",
|
||||
"</ol>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 2. Stationarity\n",
|
||||
"If the data does not exhibit seasonal patterns, we would like to see if the data is non-stationary. Particularly, we want to see if there is a clear trending behavior. If such behavior is observed, we would like to first difference the data and examine the plot of an auto-correlation function (ACF) known as correlogram. If the data is seasonal, differencing it will not get rid off the seasonality and this will be shown on the correlogram as well.\n",
|
||||
"\n",
|
||||
"<ul>\n",
|
||||
" <li> Question: What is stationarity and how to we detect it? </li>\n",
|
||||
" <ul>\n",
|
||||
" <li> This is a fairly complex topic. Please read the following <a href=\"https://otexts.com/fpp2/stationarity.html\"> link </a> for a high level discussion on this subject. </li>\n",
|
||||
" <li> Simply put, we are looking for scenario when examining the time series plots the mean of the series is roughly the same, regardless which time interval you pick to compute it. Thus, trending and seasonal data are examples of non-stationary series. </li>\n",
|
||||
" </ul>\n",
|
||||
"</ul>\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"<ul>\n",
|
||||
" <li> Question: Why do want to work with stationary data?</li>\n",
|
||||
" <ul> \n",
|
||||
" <li> In the absence of features that capture stochastic trends, the ML models that use (deterministic) time based features (hour of the day, day of the week, month of the year, etc) cannot capture such trends, and will over or under predict depending on the behavior of the time series. By working with stationary data, we eliminate the need to predict such trends, which improves the forecast accuracy. Classical time series models such as Arima and Exponential Smoothing handle non-stationary series by design and do not need such transformations. By differencing the data we are still able to run the same family of models. </li>\n",
|
||||
" </ul>\n",
|
||||
"</ul>\n",
|
||||
"\n",
|
||||
"#### Questions that need to be answered in this section:\n",
|
||||
"<ol> \n",
|
||||
" <li> Is the data stationary? </li>\n",
|
||||
" <li> Does the stationarized data (either the original or the differenced series) exhibit a clear auto-regressive pattern?</li>\n",
|
||||
"</ol>\n",
|
||||
"\n",
|
||||
"To answer the first question, we run a series of tests (we call them unit root tests)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# unit root tests\n",
|
||||
"test = unit_root_test_wrapper(df[TARGET_COLNAME])\n",
|
||||
"print('---------------', '\\n')\n",
|
||||
"print('Summary table', '\\n', test['summary'], '\\n')\n",
|
||||
"print('Is the {} series stationary?: {}'.format(TARGET_COLNAME, test['stationary']))\n",
|
||||
"print('---------------', '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In the previous cell, we ran a series of unit root tests. The summary table contains the following columns:\n",
|
||||
"<ul> \n",
|
||||
" <li> test_name is the name of the test.\n",
|
||||
" <ul> \n",
|
||||
" <li> ADF: Augmented Dickey-Fuller test </li>\n",
|
||||
" <li> KPSS: Kwiatkowski-Phillips\u00e2\u20ac\u201cSchmidt\u00e2\u20ac\u201cShin test </li>\n",
|
||||
" <li> PP: Phillips-Perron test\n",
|
||||
" <li> ADF GLS: Augmented Dickey-Fuller using generalized least squares method </li>\n",
|
||||
" <li> AZ: Andrews-Zivot test </li>\n",
|
||||
" </ul>\n",
|
||||
" <li> statistic: test statistic </li>\n",
|
||||
" <li> crit_val: critical value of the test statistic </li>\n",
|
||||
" <li> p_val: p-value of the test statistic. If the p-val is less than 0.05, the null hypothesis is rejected. </li>\n",
|
||||
" <li> stationary: is the series stationary based on the test result? </li>\n",
|
||||
" <li> Null hypothesis: what is being tested. Notice, some test such as ADF and PP assume the process has a unit root and looks for evidence to reject this hypothesis. Other tests, ex.g: KPSS, assumes the process is stationary and looks for evidence to reject such claim.\n",
|
||||
"</ul>\n",
|
||||
"\n",
|
||||
"Each of the tests shows that the original time series is non-stationary. The final decision is based on the majority rule. If, there is a split decision, the algorithm will claim it is stationary. We run a series of tests because each test by itself may not be accurate. In many cases when there are conflicting test results, the user needs to make determination if the series is stationary or not.\n",
|
||||
"\n",
|
||||
"Since we found the series to be non-stationary, we will difference it and then test if the differenced series is stationary."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# unit root tests\n",
|
||||
"test = unit_root_test_wrapper(df[TARGET_COLNAME].diff().dropna())\n",
|
||||
"print('---------------', '\\n')\n",
|
||||
"print('Summary table', '\\n', test['summary'], '\\n')\n",
|
||||
"print('Is the {} series stationary?: {}'.format(TARGET_COLNAME, test['stationary']))\n",
|
||||
"print('---------------', '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Four out of five tests show that the series in first differences is stationary. Notice that this decision is not unanimous. Next, let's plot the original series in first-differences to illustrate the difference between non-stationary (unit root) process vs the stationary one."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# plot original and stationary data\n",
|
||||
"fig = plt.figure(figsize=(10,10))\n",
|
||||
"ax1 = fig.add_subplot(211)\n",
|
||||
"ax1.plot(df[TARGET_COLNAME], '-b')\n",
|
||||
"ax2 = fig.add_subplot(212)\n",
|
||||
"ax2.plot(df[TARGET_COLNAME].diff().dropna(), '-b')\n",
|
||||
"ax1.title.set_text('Original data')\n",
|
||||
"ax2.title.set_text('Data in first differences')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you were asked a question \"What is the mean of the series before and after 2008?\", for the series titled \"Original data\" the mean values will be significantly different. This implies that the first moment of the series (in this case, it is the mean) is time dependent, i.e., mean changes depending on the interval one is looking at. Thus, the series is deemed to be non-stationary. On the other hand, for the series titled \"Data in first differences\" the means for both periods are roughly the same. Hence, the first moment is time invariant; meaning it does not depend on the interval of time one is looking at. In this example it is easy to visually distinguish between stationary and non-stationary data. Often this distinction is not easy to make, therefore we rely on the statistical tests described above to help us make an informed decision. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
|
||||
"Since we found the original process to be non-stationary (contains unit root), we will have to model the data in first differences. As a result, we will set the DIFFERENCE_SERIES parameter to True."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 3 Check if there is a clear autoregressive pattern\n",
|
||||
"We need to determine if we should include lags of the target variable as features in order to improve forecast accuracy. To do this, we will examine the ACF and partial ACF (PACF) plots of the stationary series. In our case, it is a series in first diffrences.\n",
|
||||
"\n",
|
||||
"<ul>\n",
|
||||
" <li> Question: What is an Auto-regressive pattern? What are we looking for? </li>\n",
|
||||
" <ul style=\"list-style-type:none;\">\n",
|
||||
" <li> We are looking for a classical profiles for an AR(p) process such as an exponential decay of an ACF and a the first $p$ significant lags of the PACF. For a more detailed explanation of ACF and PACF please refer to the appendix at the end of this notebook. For illustration purposes, let's examine the ACF/PACF profiles of the simulated data that follows a second order auto-regressive process, abbreviated as an AR(2). <li/>\n",
|
||||
" <li><img src=\"figures/ACF_PACF_for_AR2.png\" class=\"img_class\">\n",
|
||||
" <br/>\n",
|
||||
" The lag order is on the x-axis while the auto- and partial-correlation coefficients are on the y-axis. Vertical lines that are outside the shaded area represent statistically significant lags. Notice, the ACF function decays to zero and the PACF shows 2 significant spikes (we ignore the first spike for lag 0 in both plots since the linear relationship of any series with itself is always 1). <li/>\n",
|
||||
" </ul>\n",
|
||||
"<ul/>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<ul>\n",
|
||||
" <li> Question: What do I do if I observe an auto-regressive behavior? </li>\n",
|
||||
" <ul style=\"list-style-type:none;\">\n",
|
||||
" <li> If such behavior is observed, we might improve the forecast accuracy by enabling the target lags feature in AutoML. There are a few options of doing this </li>\n",
|
||||
" <ol>\n",
|
||||
" <li> Set the target lags parameter to 'auto', or </li>\n",
|
||||
" <li> Specify the list of lags you want to include. Ex.g: target_lags = [1,2,5] </li>\n",
|
||||
" </ol>\n",
|
||||
" </ul>\n",
|
||||
" <br/>\n",
|
||||
" <li> Next, let's examine the ACF and PACF plots of the stationary target variable (depicted below). Here, we do not see a decay in the ACF, instead we see a decay in PACF. It is hard to make an argument the the target variable exhibits auto-regressive behavior. </li>\n",
|
||||
" </ul>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot the ACF/PACF for the series in differences\n",
|
||||
"fig, ax = plt.subplots(1,2,figsize=(10,5))\n",
|
||||
"plot_acf(df[TARGET_COLNAME].diff().dropna().values.squeeze(), ax=ax[0])\n",
|
||||
"plot_pacf(df[TARGET_COLNAME].diff().dropna().values.squeeze(), ax=ax[1])\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<p style=\"font-size:150%; color:blue\"> Conclusion </p>\n",
|
||||
"Since we do not see a clear indication of an AR(p) process, we will not be using target lags and will set the TARGET_LAGS parameter to None."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<p style=\"font-size:150%; color:blue; font-weight: bold\"> AutoML Experiment Settings </p>\n",
|
||||
"Based on the analysis performed, we should try the following settings for the AutoML experiment and use them in the \"2_run_experiment\" notebook.\n",
|
||||
"<ul>\n",
|
||||
" <li> STL_TYPE=None </li>\n",
|
||||
" <li> DIFFERENCE_SERIES=True </li>\n",
|
||||
" <li> TARGET_LAGS=None </li>\n",
|
||||
"</ul>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Appendix: ACF, PACF and Lag Selection\n",
|
||||
"To do this, we will examine the ACF and partial ACF (PACF) plots of the differenced series. \n",
|
||||
"\n",
|
||||
"<ul>\n",
|
||||
" <li> Question: What is the ACF? </li>\n",
|
||||
" <ul style=\"list-style-type:none;\">\n",
|
||||
" <li> To understand the ACF, first let's look at the correlation coefficient $\\rho_{xz}$\n",
|
||||
" \\begin{equation}\n",
|
||||
" \\rho_{xz} = \\frac{\\sigma_{xz}}{\\sigma_{x} \\sigma_{zy}}\n",
|
||||
" \\end{equation}\n",
|
||||
" </li>\n",
|
||||
" where $\\sigma_{xzy}$ is the covariance between two random variables $X$ and $Z$; $\\sigma_x$ and $\\sigma_z$ is the variance for $X$ and $Z$, respectively. The correlation coefficient measures the strength of linear relationship between two random variables. This metric can take any value from -1 to 1. <li/>\n",
|
||||
" <br/>\n",
|
||||
" <li> The auto-correlation coefficient $\\rho_{Y_{t} Y_{t-k}}$ is the time series equivalent of the correlation coefficient, except instead of measuring linear association between two random variables $X$ and $Z$, it measures the strength of a linear relationship between a random variable $Y_t$ and its lag $Y_{t-k}$ for any positive interger value of $k$. </li> \n",
|
||||
" <br />\n",
|
||||
" <li> To visualize the ACF for a particular lag, say lag 2, plot the second lag of a series $y_{t-2}$ on the x-axis, and plot the series itself $y_t$ on the y-axis. The autocorrelation coefficient is the slope of the best fitted regression line and can be interpreted as follows. A one unit increase in the lag of a variable one period ago leads to a $\\rho_{Y_{t} Y_{t-2}}$ units change in the variable in the current period. This interpreation can be applied to any lag. </li> \n",
|
||||
" <br />\n",
|
||||
" <li> In the interpretation posted above we need to be careful not to confuse the word \"leads\" with \"causes\" since these are not the same thing. We do not know the lagged value of the varaible causes it to change. Afterall, there are probably many other features that may explain the movement in $Y_t$. All we are trying to do in this section is to identify situations when the variable contains the strong auto-regressive components that needs to be included in the model to improve forecast accuracy. </li>\n",
|
||||
" </ul>\n",
|
||||
"</ul>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<ul>\n",
|
||||
" <li> Question: What is the PACF? </li>\n",
|
||||
" <ul style=\"list-style-type:none;\">\n",
|
||||
" <li> When describing the ACF we essentially running a regression between a partigular lag of a series, say, lag 4, and the series itself. What this implies is the regression coefficient for lag 4 captures the impact of everything that happens in lags 1, 2 and 3. In other words, if lag 1 is the most important lag and we exclude it from the regression, naturally, the regression model will assign the importance of the 1st lag to the 4th one. Partial auto-correlation function fixes this problem since it measures the contribution of each lag accounting for the information added by the intermediary lags. If we were to illustrate ACF and PACF for the fourth lag using the regression analogy, the difference is a follows: \n",
|
||||
" \\begin{align}\n",
|
||||
" Y_{t} &= a_{0} + a_{4} Y_{t-4} + e_{t} \\\\\n",
|
||||
" Y_{t} &= b_{0} + b_{1} Y_{t-1} + b_{2} Y_{t-2} + b_{3} Y_{t-3} + b_{4} Y_{t-4} + \\varepsilon_{t} \\\\\n",
|
||||
" \\end{align}\n",
|
||||
" </li>\n",
|
||||
" <br/>\n",
|
||||
" <li>\n",
|
||||
" Here, you can think of $a_4$ and $b_{4}$ as the auto- and partial auto-correlation coefficients for lag 4. Notice, in the second equation we explicitely accounting for the intermediate lags by adding them as regrerssors.\n",
|
||||
" </li>\n",
|
||||
" </ul>\n",
|
||||
"</ul>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<ul>\n",
|
||||
" <li> Question: Auto-regressive pattern? What are we looking for? </li>\n",
|
||||
" <ul style=\"list-style-type:none;\">\n",
|
||||
" <li> We are looking for a classical profiles for an AR(p) process such as an exponential decay of an ACF and a the first $p$ significant lags of the PACF. Let's examine the ACF/PACF profiles of the same simulated AR(2) shown in Section 3, and check if the ACF/PACF explanation are refelcted in these plots. <li/>\n",
|
||||
" <li><img src=\"figures/ACF_PACF_for_AR2.png\" class=\"img_class\">\n",
|
||||
" <li> The autocorrelation coefficient for the 3rd lag is 0.6, which can be interpreted that a one unit increase in the value of the target varaible three periods ago leads to 0.6 units increase in the current period. However, the PACF plot shows that the partial autocorrealtion coefficient is zero (from a statistical point of view since it lies within the shaded region). This is happening because the 1st and 2nd lags are good predictors of the target variable. Ommiting these two lags from the regression results in the misleading conclusion that the third lag is a good prediciton. <li/>\n",
|
||||
" <br/>\n",
|
||||
" <li> This is why it is important to examine both the ACF and the PACF plots when tring to determine the auto regressive order for the variable in question. <li/>\n",
|
||||
" </ul>\n",
|
||||
"</ul> "
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "vlbejan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
name: auto-ml-forecasting-univariate-recipe-experiment-settings
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -0,0 +1,560 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Running AutoML experiments\n",
|
||||
"\n",
|
||||
"See the `auto-ml-forecasting-univariate-recipe-experiment-settings` notebook on how to determine settings for seasonal features, target lags and whether the series needs to be differenced or not. To make experimentation user-friendly, the user has to specify several parameters: DIFFERENCE_SERIES, TARGET_LAGS and STL_TYPE. Once these parameters are set, the notebook will generate correct transformations and settings to run experiments, generate forecasts, compute inference set metrics and plot forecast vs actuals. It will also convert the forecast from first differences to levels (original units of measurement) if the DIFFERENCE_SERIES parameter is set to True before calculating inference set metrics.\n",
|
||||
"\n",
|
||||
"<br/>\n",
|
||||
"\n",
|
||||
"The output generated by this notebook is saved in the `experiment_output`folder."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import logging\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"import azureml.automl.runtime\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from helper_functions import (ts_train_test_split, compute_metrics)\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# set printing options\n",
|
||||
"np.set_printoptions(precision=4, suppress=True, linewidth=100)\n",
|
||||
"pd.set_option('display.max_columns', 500)\n",
|
||||
"pd.set_option('display.width', 1000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created a **Workspace**. You will also need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"amlcompute_cluster_name = \"recipe-cluster\"\n",
|
||||
" \n",
|
||||
"found = False\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
"\n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
|
||||
" max_nodes = 6)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\\n\",\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
"\n",
|
||||
"print('Checking cluster status...')\n",
|
||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Data\n",
|
||||
"\n",
|
||||
"Here, we will load the data from the csv file and drop the Covid period."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"main_data_loc = 'data'\n",
|
||||
"train_file_name = 'S4248SM144SCEN.csv'\n",
|
||||
"\n",
|
||||
"TARGET_COLNAME = \"S4248SM144SCEN\"\n",
|
||||
"TIME_COLNAME = \"observation_date\"\n",
|
||||
"COVID_PERIOD_START = '2020-03-01' # start of the covid period. To be excluded from evaluation.\n",
|
||||
"\n",
|
||||
"# load data\n",
|
||||
"df = pd.read_csv(os.path.join(main_data_loc, train_file_name))\n",
|
||||
"df[TIME_COLNAME] = pd.to_datetime(df[TIME_COLNAME], format='%Y-%m-%d')\n",
|
||||
"df.sort_values(by=TIME_COLNAME, inplace=True)\n",
|
||||
"\n",
|
||||
"# remove the Covid period\n",
|
||||
"df = df.query('{} <= \"{}\"'.format(TIME_COLNAME, COVID_PERIOD_START))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Set parameters\n",
|
||||
"\n",
|
||||
"The first set of parameters is based on the analysis performed in the `auto-ml-forecasting-univariate-recipe-experiment-settings` notebook. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# set parameters based on the settings notebook analysis\n",
|
||||
"DIFFERENCE_SERIES = True\n",
|
||||
"TARGET_LAGS = None\n",
|
||||
"STL_TYPE = None"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Next, define additional parameters to be used in the <a href=\"https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig?view=azure-ml-py\"> AutoML config </a> class.\n",
|
||||
"\n",
|
||||
"<ul> \n",
|
||||
" <li> FORECAST_HORIZON: The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 12 periods (i.e. 12 quarters). For more discussion of forecast horizons and guiding principles for setting them, please see the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand\"> energy demand notebook </a>. \n",
|
||||
" </li>\n",
|
||||
" <li> TIME_SERIES_ID_COLNAMES: The names of columns used to group a timeseries. It can be used to create multiple series. If time series identifier is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting. Since we are working with a single series, this list is empty.\n",
|
||||
" </li>\n",
|
||||
" <li> BLOCKED_MODELS: Optional list of models to be blocked from consideration during model selection stage. At this point we want to consider all ML and Time Series models.\n",
|
||||
" <ul>\n",
|
||||
" <li> See the following <a href=\"https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py\"> link </a> for a list of supported Forecasting models</li>\n",
|
||||
" </ul>\n",
|
||||
" </li>\n",
|
||||
"</ul>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# set other parameters\n",
|
||||
"FORECAST_HORIZON = 12\n",
|
||||
"TIME_SERIES_ID_COLNAMES = []\n",
|
||||
"BLOCKED_MODELS = []"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To run AutoML, you also need to create an **Experiment**. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"if isinstance(TARGET_LAGS, list):\n",
|
||||
" TARGET_LAGS_STR = '-'.join(map(str, TARGET_LAGS)) if (len(TARGET_LAGS) > 0) else None\n",
|
||||
"else:\n",
|
||||
" TARGET_LAGS_STR = TARGET_LAGS\n",
|
||||
"\n",
|
||||
"experiment_desc = 'diff-{}_lags-{}_STL-{}'.format(DIFFERENCE_SERIES, TARGET_LAGS_STR, STL_TYPE)\n",
|
||||
"experiment_name = 'alcohol_{}'.format(experiment_desc)\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['SKU'] = ws.sku\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"print(outputDf.T)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create output directory\n",
|
||||
"output_dir = 'experiment_output/{}'.format(experiment_desc)\n",
|
||||
"if not os.path.exists(output_dir):\n",
|
||||
" os.makedirs(output_dir) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# difference data and test for unit root\n",
|
||||
"if DIFFERENCE_SERIES:\n",
|
||||
" df_delta = df.copy()\n",
|
||||
" df_delta[TARGET_COLNAME] = df[TARGET_COLNAME].diff()\n",
|
||||
" df_delta.dropna(axis=0, inplace=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# split the data into train and test set\n",
|
||||
"if DIFFERENCE_SERIES: \n",
|
||||
" # generate train/inference sets using data in first differences\n",
|
||||
" df_train, df_test = ts_train_test_split(df_input=df_delta,\n",
|
||||
" n=FORECAST_HORIZON,\n",
|
||||
" time_colname=TIME_COLNAME,\n",
|
||||
" ts_id_colnames=TIME_SERIES_ID_COLNAMES)\n",
|
||||
"else:\n",
|
||||
" df_train, df_test = ts_train_test_split(df_input=df,\n",
|
||||
" n=FORECAST_HORIZON,\n",
|
||||
" time_colname=TIME_COLNAME,\n",
|
||||
" ts_id_colnames=TIME_SERIES_ID_COLNAMES)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Upload files to the Datastore\n",
|
||||
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace) is paired with the storage account, which contains the default data store. We will use it to upload the bike share data and create [tabular dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_train.to_csv(\"train.csv\", index=False)\n",
|
||||
"df_test.to_csv(\"test.csv\", index=False)\n",
|
||||
"\n",
|
||||
"datastore = ws.get_default_datastore()\n",
|
||||
"datastore.upload_files(files = ['./train.csv'], target_path = 'uni-recipe-dataset/tabular/', overwrite = True,show_progress = True)\n",
|
||||
"datastore.upload_files(files = ['./test.csv'], target_path = 'uni-recipe-dataset/tabular/', overwrite = True,show_progress = True)\n",
|
||||
"\n",
|
||||
"from azureml.core import Dataset\n",
|
||||
"train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'uni-recipe-dataset/tabular/train.csv')])\n",
|
||||
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'uni-recipe-dataset/tabular/test.csv')])\n",
|
||||
"\n",
|
||||
"# print the first 5 rows of the Dataset\n",
|
||||
"train_dataset.to_pandas_dataframe().reset_index(drop=True).head(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Config AutoML"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"time_series_settings = {\n",
|
||||
" 'time_column_name': TIME_COLNAME,\n",
|
||||
" 'forecast_horizon': FORECAST_HORIZON,\n",
|
||||
" 'target_lags': TARGET_LAGS,\n",
|
||||
" 'use_stl': STL_TYPE,\n",
|
||||
" 'blocked_models': BLOCKED_MODELS,\n",
|
||||
" 'time_series_id_column_names': TIME_SERIES_ID_COLNAMES\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
" debug_log='sample_experiment.log',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" experiment_timeout_minutes=20,\n",
|
||||
" iteration_timeout_minutes=5,\n",
|
||||
" enable_early_stopping=True,\n",
|
||||
" training_data=train_dataset,\n",
|
||||
" label_column_name=TARGET_COLNAME,\n",
|
||||
" n_cross_validations=5,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" max_cores_per_iteration=-1,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" **time_series_settings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We will now run the experiment, you can go to Azure ML portal to view the run details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)\n",
|
||||
"remote_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the best model\n",
|
||||
"Below we select the best model from all the training iterations using get_output method."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = remote_run.get_output()\n",
|
||||
"fitted_model.steps"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Inference\n",
|
||||
"\n",
|
||||
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
|
||||
"\n",
|
||||
"The inference will run on a remote compute. In this example, it will re-use the training compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_experiment = Experiment(ws, experiment_name + \"_inference\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Retreiving forecasts from the model\n",
|
||||
"We have created a function called `run_forecast` that submits the test data to the best model determined during the training run and retrieves forecasts. This function uses a helper script `forecasting_script` which is uploaded and expecuted on the remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from run_forecast import run_remote_inference\n",
|
||||
"remote_run = run_remote_inference(test_experiment=test_experiment, \n",
|
||||
" compute_target=compute_target,\n",
|
||||
" train_run=best_run,\n",
|
||||
" test_dataset=test_dataset,\n",
|
||||
" target_column_name=TARGET_COLNAME)\n",
|
||||
"remote_run.wait_for_completion(show_output=False)\n",
|
||||
"\n",
|
||||
"remote_run.download_file('outputs/predictions.csv', f'{output_dir}/predictions.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download the prediction result for metrics calcuation\n",
|
||||
"The test data with predictions are saved in artifact `outputs/predictions.csv`. We will use it to calculate accuracy metrics and vizualize predictions versus actuals."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_trans = pd.read_csv(f'{output_dir}/predictions.csv', parse_dates=[TIME_COLNAME])\n",
|
||||
"X_trans.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# convert forecast in differences to levels\n",
|
||||
"def convert_fcst_diff_to_levels(fcst, yt, df_orig):\n",
|
||||
" \"\"\" Convert forecast from first differences to levels. \"\"\"\n",
|
||||
" fcst = fcst.reset_index(drop=False, inplace=False)\n",
|
||||
" fcst['predicted_level'] = fcst['predicted'].cumsum()\n",
|
||||
" fcst['predicted_level'] = fcst['predicted_level'].astype(float) + float(yt)\n",
|
||||
" # merge actuals\n",
|
||||
" out = pd.merge(fcst,\n",
|
||||
" df_orig[[TIME_COLNAME, TARGET_COLNAME]], \n",
|
||||
" on=[TIME_COLNAME], how='inner')\n",
|
||||
" out.rename(columns={TARGET_COLNAME: 'actual_level'}, inplace=True)\n",
|
||||
" return out"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if DIFFERENCE_SERIES: \n",
|
||||
" # convert forecast in differences to the levels\n",
|
||||
" INFORMATION_SET_DATE = max(df_train[TIME_COLNAME])\n",
|
||||
" YT = df.query('{} == @INFORMATION_SET_DATE'.format(TIME_COLNAME))[TARGET_COLNAME]\n",
|
||||
"\n",
|
||||
" fcst_df = convert_fcst_diff_to_levels(fcst=X_trans, yt=YT, df_orig=df)\n",
|
||||
"else:\n",
|
||||
" fcst_df = X_trans.copy()\n",
|
||||
" fcst_df['actual_level'] = y_test\n",
|
||||
" fcst_df['predicted_level'] = y_predictions\n",
|
||||
"\n",
|
||||
"del X_trans"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Calculate metrics and save output"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# compute metrics\n",
|
||||
"metrics_df = compute_metrics(fcst_df=fcst_df,\n",
|
||||
" metric_name=None,\n",
|
||||
" ts_id_colnames=None)\n",
|
||||
"# save output\n",
|
||||
"metrics_file_name = '{}_metrics.csv'.format(experiment_name)\n",
|
||||
"fcst_file_name = '{}_forecst.csv'.format(experiment_name)\n",
|
||||
"plot_file_name = '{}_plot.pdf'.format(experiment_name)\n",
|
||||
"\n",
|
||||
"metrics_df.to_csv(os.path.join(output_dir, metrics_file_name), index=True)\n",
|
||||
"fcst_df.to_csv(os.path.join(output_dir, fcst_file_name), index=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Generate and save visuals"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plot_df = df.query('{} > \"2010-01-01\"'.format(TIME_COLNAME))\n",
|
||||
"plot_df.set_index(TIME_COLNAME, inplace=True)\n",
|
||||
"fcst_df.set_index(TIME_COLNAME, inplace=True)\n",
|
||||
"\n",
|
||||
"# generate and save plots\n",
|
||||
"fig, ax = plt.subplots(dpi=180)\n",
|
||||
"ax.plot(plot_df[TARGET_COLNAME], '-g', label='Historical')\n",
|
||||
"ax.plot(fcst_df['actual_level'], '-b', label='Actual')\n",
|
||||
"ax.plot(fcst_df['predicted_level'], '-r', label='Forecast')\n",
|
||||
"ax.legend()\n",
|
||||
"ax.set_title(\"Forecast vs Actuals\")\n",
|
||||
"ax.set_xlabel(TIME_COLNAME)\n",
|
||||
"ax.set_ylabel(TARGET_COLNAME)\n",
|
||||
"locs, labels = plt.xticks()\n",
|
||||
"\n",
|
||||
"plt.setp(labels, rotation=45)\n",
|
||||
"plt.savefig(os.path.join(output_dir, plot_file_name))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "vlbejan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
name: auto-ml-forecasting-univariate-recipe-run-experiment
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -0,0 +1,350 @@
|
||||
observation_date,S4248SM144SCEN
|
||||
1992-01-01,4302
|
||||
1992-02-01,4323
|
||||
1992-03-01,4199
|
||||
1992-04-01,4397
|
||||
1992-05-01,4159
|
||||
1992-06-01,4091
|
||||
1992-07-01,4109
|
||||
1992-08-01,4116
|
||||
1992-09-01,4093
|
||||
1992-10-01,4095
|
||||
1992-11-01,4169
|
||||
1992-12-01,4169
|
||||
1993-01-01,4124
|
||||
1993-02-01,4107
|
||||
1993-03-01,4168
|
||||
1993-04-01,4254
|
||||
1993-05-01,4290
|
||||
1993-06-01,4163
|
||||
1993-07-01,4274
|
||||
1993-08-01,4253
|
||||
1993-09-01,4312
|
||||
1993-10-01,4296
|
||||
1993-11-01,4221
|
||||
1993-12-01,4233
|
||||
1994-01-01,4218
|
||||
1994-02-01,4237
|
||||
1994-03-01,4343
|
||||
1994-04-01,4357
|
||||
1994-05-01,4264
|
||||
1994-06-01,4392
|
||||
1994-07-01,4381
|
||||
1994-08-01,4290
|
||||
1994-09-01,4348
|
||||
1994-10-01,4357
|
||||
1994-11-01,4417
|
||||
1994-12-01,4411
|
||||
1995-01-01,4417
|
||||
1995-02-01,4339
|
||||
1995-03-01,4256
|
||||
1995-04-01,4276
|
||||
1995-05-01,4290
|
||||
1995-06-01,4413
|
||||
1995-07-01,4305
|
||||
1995-08-01,4476
|
||||
1995-09-01,4393
|
||||
1995-10-01,4447
|
||||
1995-11-01,4492
|
||||
1995-12-01,4489
|
||||
1996-01-01,4635
|
||||
1996-02-01,4697
|
||||
1996-03-01,4588
|
||||
1996-04-01,4633
|
||||
1996-05-01,4685
|
||||
1996-06-01,4672
|
||||
1996-07-01,4666
|
||||
1996-08-01,4726
|
||||
1996-09-01,4571
|
||||
1996-10-01,4624
|
||||
1996-11-01,4691
|
||||
1996-12-01,4604
|
||||
1997-01-01,4657
|
||||
1997-02-01,4711
|
||||
1997-03-01,4810
|
||||
1997-04-01,4626
|
||||
1997-05-01,4860
|
||||
1997-06-01,4757
|
||||
1997-07-01,4916
|
||||
1997-08-01,4921
|
||||
1997-09-01,4985
|
||||
1997-10-01,4905
|
||||
1997-11-01,4880
|
||||
1997-12-01,5165
|
||||
1998-01-01,4885
|
||||
1998-02-01,4925
|
||||
1998-03-01,5049
|
||||
1998-04-01,5090
|
||||
1998-05-01,5094
|
||||
1998-06-01,4929
|
||||
1998-07-01,5132
|
||||
1998-08-01,5061
|
||||
1998-09-01,5471
|
||||
1998-10-01,5327
|
||||
1998-11-01,5257
|
||||
1998-12-01,5354
|
||||
1999-01-01,5427
|
||||
1999-02-01,5415
|
||||
1999-03-01,5387
|
||||
1999-04-01,5483
|
||||
1999-05-01,5510
|
||||
1999-06-01,5539
|
||||
1999-07-01,5532
|
||||
1999-08-01,5625
|
||||
1999-09-01,5799
|
||||
1999-10-01,5843
|
||||
1999-11-01,5836
|
||||
1999-12-01,5724
|
||||
2000-01-01,5757
|
||||
2000-02-01,5731
|
||||
2000-03-01,5839
|
||||
2000-04-01,5825
|
||||
2000-05-01,5877
|
||||
2000-06-01,5979
|
||||
2000-07-01,5828
|
||||
2000-08-01,6016
|
||||
2000-09-01,6113
|
||||
2000-10-01,6150
|
||||
2000-11-01,6111
|
||||
2000-12-01,6088
|
||||
2001-01-01,6360
|
||||
2001-02-01,6300
|
||||
2001-03-01,5935
|
||||
2001-04-01,6204
|
||||
2001-05-01,6164
|
||||
2001-06-01,6231
|
||||
2001-07-01,6336
|
||||
2001-08-01,6179
|
||||
2001-09-01,6120
|
||||
2001-10-01,6134
|
||||
2001-11-01,6381
|
||||
2001-12-01,6521
|
||||
2002-01-01,6333
|
||||
2002-02-01,6541
|
||||
2002-03-01,6692
|
||||
2002-04-01,6591
|
||||
2002-05-01,6554
|
||||
2002-06-01,6596
|
||||
2002-07-01,6620
|
||||
2002-08-01,6577
|
||||
2002-09-01,6625
|
||||
2002-10-01,6441
|
||||
2002-11-01,6584
|
||||
2002-12-01,6923
|
||||
2003-01-01,6600
|
||||
2003-02-01,6742
|
||||
2003-03-01,6831
|
||||
2003-04-01,6782
|
||||
2003-05-01,6714
|
||||
2003-06-01,6736
|
||||
2003-07-01,7146
|
||||
2003-08-01,7027
|
||||
2003-09-01,6896
|
||||
2003-10-01,7107
|
||||
2003-11-01,6997
|
||||
2003-12-01,7075
|
||||
2004-01-01,7235
|
||||
2004-02-01,7072
|
||||
2004-03-01,6968
|
||||
2004-04-01,7144
|
||||
2004-05-01,7232
|
||||
2004-06-01,7095
|
||||
2004-07-01,7181
|
||||
2004-08-01,7146
|
||||
2004-09-01,7230
|
||||
2004-10-01,7327
|
||||
2004-11-01,7328
|
||||
2004-12-01,7425
|
||||
2005-01-01,7520
|
||||
2005-02-01,7551
|
||||
2005-03-01,7572
|
||||
2005-04-01,7701
|
||||
2005-05-01,7819
|
||||
2005-06-01,7770
|
||||
2005-07-01,7627
|
||||
2005-08-01,7816
|
||||
2005-09-01,7718
|
||||
2005-10-01,7772
|
||||
2005-11-01,7788
|
||||
2005-12-01,7576
|
||||
2006-01-01,7940
|
||||
2006-02-01,8027
|
||||
2006-03-01,7884
|
||||
2006-04-01,8043
|
||||
2006-05-01,7995
|
||||
2006-06-01,8218
|
||||
2006-07-01,8159
|
||||
2006-08-01,8331
|
||||
2006-09-01,8320
|
||||
2006-10-01,8397
|
||||
2006-11-01,8603
|
||||
2006-12-01,8515
|
||||
2007-01-01,8336
|
||||
2007-02-01,8233
|
||||
2007-03-01,8475
|
||||
2007-04-01,8310
|
||||
2007-05-01,8583
|
||||
2007-06-01,8645
|
||||
2007-07-01,8713
|
||||
2007-08-01,8636
|
||||
2007-09-01,8791
|
||||
2007-10-01,8984
|
||||
2007-11-01,8867
|
||||
2007-12-01,9059
|
||||
2008-01-01,8911
|
||||
2008-02-01,8701
|
||||
2008-03-01,8956
|
||||
2008-04-01,9095
|
||||
2008-05-01,9102
|
||||
2008-06-01,9170
|
||||
2008-07-01,9194
|
||||
2008-08-01,9164
|
||||
2008-09-01,9337
|
||||
2008-10-01,9186
|
||||
2008-11-01,9029
|
||||
2008-12-01,9025
|
||||
2009-01-01,9486
|
||||
2009-02-01,9219
|
||||
2009-03-01,9059
|
||||
2009-04-01,9171
|
||||
2009-05-01,9114
|
||||
2009-06-01,8926
|
||||
2009-07-01,9150
|
||||
2009-08-01,9105
|
||||
2009-09-01,9011
|
||||
2009-10-01,8743
|
||||
2009-11-01,8958
|
||||
2009-12-01,8969
|
||||
2010-01-01,8984
|
||||
2010-02-01,9068
|
||||
2010-03-01,9335
|
||||
2010-04-01,9481
|
||||
2010-05-01,9132
|
||||
2010-06-01,9192
|
||||
2010-07-01,9123
|
||||
2010-08-01,9091
|
||||
2010-09-01,9155
|
||||
2010-10-01,9556
|
||||
2010-11-01,9477
|
||||
2010-12-01,9436
|
||||
2011-01-01,9519
|
||||
2011-02-01,9667
|
||||
2011-03-01,9668
|
||||
2011-04-01,9628
|
||||
2011-05-01,9376
|
||||
2011-06-01,9830
|
||||
2011-07-01,9626
|
||||
2011-08-01,9802
|
||||
2011-09-01,9858
|
||||
2011-10-01,9838
|
||||
2011-11-01,9846
|
||||
2011-12-01,9789
|
||||
2012-01-01,9955
|
||||
2012-02-01,9909
|
||||
2012-03-01,9897
|
||||
2012-04-01,9909
|
||||
2012-05-01,10127
|
||||
2012-06-01,10175
|
||||
2012-07-01,10129
|
||||
2012-08-01,10251
|
||||
2012-09-01,10227
|
||||
2012-10-01,10174
|
||||
2012-11-01,10402
|
||||
2012-12-01,10664
|
||||
2013-01-01,10585
|
||||
2013-02-01,10661
|
||||
2013-03-01,10649
|
||||
2013-04-01,10676
|
||||
2013-05-01,10863
|
||||
2013-06-01,10690
|
||||
2013-07-01,11007
|
||||
2013-08-01,10835
|
||||
2013-09-01,10900
|
||||
2013-10-01,10749
|
||||
2013-11-01,10946
|
||||
2013-12-01,10864
|
||||
2014-01-01,10726
|
||||
2014-02-01,10821
|
||||
2014-03-01,10789
|
||||
2014-04-01,10892
|
||||
2014-05-01,10892
|
||||
2014-06-01,10789
|
||||
2014-07-01,10662
|
||||
2014-08-01,10767
|
||||
2014-09-01,10779
|
||||
2014-10-01,10922
|
||||
2014-11-01,10662
|
||||
2014-12-01,10808
|
||||
2015-01-01,10865
|
||||
2015-02-01,10740
|
||||
2015-03-01,10917
|
||||
2015-04-01,10933
|
||||
2015-05-01,11074
|
||||
2015-06-01,11108
|
||||
2015-07-01,11493
|
||||
2015-08-01,11386
|
||||
2015-09-01,11502
|
||||
2015-10-01,11487
|
||||
2015-11-01,11375
|
||||
2015-12-01,11445
|
||||
2016-01-01,11787
|
||||
2016-02-01,11792
|
||||
2016-03-01,11649
|
||||
2016-04-01,11810
|
||||
2016-05-01,11496
|
||||
2016-06-01,11600
|
||||
2016-07-01,11503
|
||||
2016-08-01,11715
|
||||
2016-09-01,11732
|
||||
2016-10-01,11885
|
||||
2016-11-01,12092
|
||||
2016-12-01,11857
|
||||
2017-01-01,11881
|
||||
2017-02-01,12355
|
||||
2017-03-01,12027
|
||||
2017-04-01,12183
|
||||
2017-05-01,12170
|
||||
2017-06-01,12387
|
||||
2017-07-01,12041
|
||||
2017-08-01,12139
|
||||
2017-09-01,11861
|
||||
2017-10-01,12202
|
||||
2017-11-01,12178
|
||||
2017-12-01,12126
|
||||
2018-01-01,11942
|
||||
2018-02-01,12206
|
||||
2018-03-01,12362
|
||||
2018-04-01,12287
|
||||
2018-05-01,12497
|
||||
2018-06-01,12621
|
||||
2018-07-01,12729
|
||||
2018-08-01,12689
|
||||
2018-09-01,12874
|
||||
2018-10-01,12776
|
||||
2018-11-01,12995
|
||||
2018-12-01,13291
|
||||
2019-01-01,13364
|
||||
2019-02-01,13135
|
||||
2019-03-01,13123
|
||||
2019-04-01,13110
|
||||
2019-05-01,13152
|
||||
2019-06-01,13201
|
||||
2019-07-01,13354
|
||||
2019-08-01,13427
|
||||
2019-09-01,13472
|
||||
2019-10-01,13436
|
||||
2019-11-01,13430
|
||||
2019-12-01,13588
|
||||
2020-01-01,13533
|
||||
2020-02-01,13575
|
||||
2020-03-01,13867
|
||||
2020-04-01,12319
|
||||
2020-05-01,13909
|
||||
2020-06-01,13982
|
||||
2020-07-01,15384
|
||||
2020-08-01,15701
|
||||
2020-09-01,15006
|
||||
2020-10-01,15741
|
||||
2020-11-01,14934
|
||||
2020-12-01,13061
|
||||
2021-01-01,15743
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 18 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 212 KiB |
@@ -0,0 +1,46 @@
|
||||
"""
|
||||
This is the script that is executed on the compute instance. It relies
|
||||
on the model.pkl file which is uploaded along with this script to the
|
||||
compute instance.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from azureml.core import Dataset, Run
|
||||
from azureml.automl.core.shared.constants import TimeSeriesInternal
|
||||
from sklearn.externals import joblib
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--target_column_name', type=str, dest='target_column_name',
|
||||
help='Target Column Name')
|
||||
parser.add_argument(
|
||||
'--test_dataset', type=str, dest='test_dataset',
|
||||
help='Test Dataset')
|
||||
|
||||
args = parser.parse_args()
|
||||
target_column_name = args.target_column_name
|
||||
test_dataset_id = args.test_dataset
|
||||
|
||||
run = Run.get_context()
|
||||
ws = run.experiment.workspace
|
||||
|
||||
# get the input dataset by id
|
||||
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
|
||||
|
||||
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
|
||||
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()
|
||||
|
||||
# generate forecast
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
y_pred, X_trans = fitted_model.forecast(X_test_df)
|
||||
|
||||
# rename target column
|
||||
X_trans.reset_index(drop=False, inplace=True)
|
||||
X_trans.rename(columns={TimeSeriesInternal.DUMMY_TARGET_COLUMN: 'predicted'}, inplace=True)
|
||||
X_trans['actual'] = y_test_df[target_column_name].values
|
||||
|
||||
file_name = 'outputs/predictions.csv'
|
||||
export_csv = X_trans.to_csv(file_name, header=True, index=False) # added Index
|
||||
|
||||
# Upload the predictions into artifacts
|
||||
run.upload_file(name=file_name, path_or_stream=file_name)
|
||||
@@ -0,0 +1,250 @@
|
||||
"""
|
||||
Helper functions to determine AutoML experiment settings for forecasting.
|
||||
"""
|
||||
import pandas as pd
|
||||
import statsmodels.tsa.stattools as stattools
|
||||
from arch import unitroot
|
||||
from azureml.automl.core.shared import constants
|
||||
from azureml.automl.runtime.shared.score import scoring
|
||||
|
||||
|
||||
def adf_test(series, **kw):
|
||||
"""
|
||||
Wrapper for the augmented Dickey-Fuller test. Allows users to set the lag order.
|
||||
|
||||
:param series: series to test
|
||||
:return: dictionary of results
|
||||
"""
|
||||
if 'lags' in kw.keys():
|
||||
msg = 'Lag order of {} detected. Running the ADF test...'.format(str(kw['lags']))
|
||||
print(msg)
|
||||
statistic, pval, critval, resstore = stattools.adfuller(series,
|
||||
maxlag=kw['lags'],
|
||||
autolag=kw['autolag'],
|
||||
store=kw['store'])
|
||||
else:
|
||||
statistic, pval, critval, resstore = stattools.adfuller(series,
|
||||
autolag=kw['IC'],
|
||||
store=kw['store'])
|
||||
|
||||
output = {'statistic': statistic,
|
||||
'pval': pval,
|
||||
'critical': critval,
|
||||
'resstore': resstore}
|
||||
return output
|
||||
|
||||
|
||||
def kpss_test(series, **kw):
|
||||
"""
|
||||
Wrapper for the KPSS test. Allows users to set the lag order.
|
||||
|
||||
:param series: series to test
|
||||
:return: dictionary of results
|
||||
"""
|
||||
if kw['store']:
|
||||
statistic, p_value, critical_values, rstore = stattools.kpss(series,
|
||||
regression=kw['reg_type'],
|
||||
lags=kw['lags'],
|
||||
store=kw['store'])
|
||||
else:
|
||||
statistic, p_value, lags, critical_values = stattools.kpss(series,
|
||||
regression=kw['reg_type'],
|
||||
lags=kw['lags'])
|
||||
output = {'statistic': statistic,
|
||||
'pval': p_value,
|
||||
'critical': critical_values,
|
||||
'lags': rstore.lags if kw['store'] else lags}
|
||||
|
||||
if kw['store']:
|
||||
output.update({'resstore': rstore})
|
||||
return output
|
||||
|
||||
|
||||
def format_test_output(test_name, test_res, H0_unit_root=True):
|
||||
"""
|
||||
Helper function to format output. Return a dictionary with specific keys. Will be used to
|
||||
construct the summary data frame for all unit root tests.
|
||||
|
||||
TODO: Add functionality of choosing based on the max lag order specified by user.
|
||||
|
||||
:param test_name: name of the test
|
||||
:param test_res: object that contains corresponding test information. Can be None if test failed.
|
||||
:param H0_unit_root: does the null hypothesis of the test assume a unit root process? Some tests do (ADF),
|
||||
some don't (KPSS).
|
||||
:return: dictionary of summary table for all tests and final decision on stationary vs non-stationary.
|
||||
If test failed (test_res is None), return empty dictionary.
|
||||
"""
|
||||
# Check if the test failed by trying to extract the test statistic
|
||||
if test_name in ('ADF', 'KPSS'):
|
||||
try:
|
||||
test_res['statistic']
|
||||
except BaseException:
|
||||
test_res = None
|
||||
else:
|
||||
try:
|
||||
test_res.stat
|
||||
except BaseException:
|
||||
test_res = None
|
||||
|
||||
if test_res is None:
|
||||
return {}
|
||||
|
||||
# extract necessary information
|
||||
if test_name in ('ADF', 'KPSS'):
|
||||
statistic = test_res['statistic']
|
||||
crit_val = test_res['critical']['5%']
|
||||
p_val = test_res['pval']
|
||||
lags = test_res['resstore'].usedlag if test_name == 'ADF' else test_res['lags']
|
||||
else:
|
||||
statistic = test_res.stat
|
||||
crit_val = test_res.critical_values['5%']
|
||||
p_val = test_res.pvalue
|
||||
lags = test_res.lags
|
||||
|
||||
if H0_unit_root:
|
||||
H0 = 'The process is non-stationary'
|
||||
stationary = "yes" if p_val < 0.05 else "not"
|
||||
else:
|
||||
H0 = 'The process is stationary'
|
||||
stationary = "yes" if p_val > 0.05 else "not"
|
||||
|
||||
out = {
|
||||
'test_name': test_name,
|
||||
'statistic': statistic,
|
||||
'crit_val': crit_val,
|
||||
'p_val': p_val,
|
||||
'lags': int(lags),
|
||||
'stationary': stationary,
|
||||
'Null Hypothesis': H0
|
||||
}
|
||||
return out
|
||||
|
||||
|
||||
def unit_root_test_wrapper(series, lags=None):
|
||||
"""
|
||||
Main function to run multiple stationarity tests. Runs five tests and returns a summary table + decision
|
||||
based on the majority rule. If the number of tests that determine a series is stationary equals to the
|
||||
number of tests that deem it non-stationary, we assume the series is non-stationary.
|
||||
* Augmented Dickey-Fuller (ADF),
|
||||
* KPSS,
|
||||
* ADF using GLS,
|
||||
* Phillips-Perron (PP),
|
||||
* Zivot-Andrews (ZA)
|
||||
|
||||
:param lags: (optional) parameter that allows user to run a series of tests for a specific lag value.
|
||||
:param series: series to test
|
||||
:return: dictionary of summary table for all tests and final decision on stationary vs nonstaionary
|
||||
"""
|
||||
# setting for ADF and KPSS tests
|
||||
adf_settings = {
|
||||
'IC': 'AIC',
|
||||
'store': True
|
||||
}
|
||||
|
||||
kpss_settings = {
|
||||
'reg_type': 'c',
|
||||
'lags': 'auto',
|
||||
'store': True
|
||||
}
|
||||
|
||||
arch_test_settings = {} # settings for PP, ADF GLS and ZA tests
|
||||
if lags is not None:
|
||||
adf_settings.update({'lags': lags, 'autolag': None})
|
||||
kpss_settings.update({'lags:': lags})
|
||||
arch_test_settings = {'lags': lags}
|
||||
# Run individual tests
|
||||
adf = adf_test(series, **adf_settings) # ADF test
|
||||
kpss = kpss_test(series, **kpss_settings) # KPSS test
|
||||
pp = unitroot.PhillipsPerron(series, **arch_test_settings) # Phillips-Perron test
|
||||
adfgls = unitroot.DFGLS(series, **arch_test_settings) # ADF using GLS test
|
||||
za = unitroot.ZivotAndrews(series, **arch_test_settings) # Zivot-Andrews test
|
||||
|
||||
# generate output table
|
||||
adf_dict = format_test_output(test_name='ADF', test_res=adf, H0_unit_root=True)
|
||||
kpss_dict = format_test_output(test_name='KPSS', test_res=kpss, H0_unit_root=False)
|
||||
pp_dict = format_test_output(test_name='Philips Perron', test_res=pp, H0_unit_root=True)
|
||||
adfgls_dict = format_test_output(test_name='ADF GLS', test_res=adfgls, H0_unit_root=True)
|
||||
za_dict = format_test_output(test_name='Zivot-Andrews', test_res=za, H0_unit_root=True)
|
||||
|
||||
test_dict = {'ADF': adf_dict, 'KPSS': kpss_dict, 'PP': pp_dict, 'ADF GLS': adfgls_dict, 'ZA': za_dict}
|
||||
test_sum = pd.DataFrame.from_dict(test_dict, orient='index').reset_index(drop=True)
|
||||
|
||||
# decision based on the majority rule
|
||||
if test_sum.shape[0] > 0:
|
||||
ratio = test_sum[test_sum["stationary"] == "yes"].shape[0] / test_sum.shape[0]
|
||||
else:
|
||||
ratio = 1 # all tests fail, assume the series is stationary
|
||||
|
||||
# Majority rule. If the ratio is exactly 0.5, assume the series in non-stationary.
|
||||
stationary = 'YES' if (ratio > 0.5) else 'NO'
|
||||
|
||||
out = {'summary': test_sum, 'stationary': stationary}
|
||||
return out
|
||||
|
||||
|
||||
def ts_train_test_split(df_input, n, time_colname, ts_id_colnames=None):
|
||||
"""
|
||||
Group data frame by time series ID and split on last n rows for each group.
|
||||
|
||||
:param df_input: input data frame
|
||||
:param n: number of observations in the test set
|
||||
:param time_colname: time column
|
||||
:param ts_id_colnames: (optional) list of grain column names
|
||||
:return train and test data frames
|
||||
"""
|
||||
if ts_id_colnames is None:
|
||||
ts_id_colnames = []
|
||||
ts_id_colnames_original = ts_id_colnames.copy()
|
||||
if len(ts_id_colnames) == 0:
|
||||
ts_id_colnames = ['Grain']
|
||||
df_input[ts_id_colnames[0]] = 'dummy'
|
||||
# Sort by ascending time
|
||||
df_grouped = (df_input.sort_values(time_colname).groupby(ts_id_colnames, group_keys=False))
|
||||
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])
|
||||
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])
|
||||
# drop group column name if it was not originally provided
|
||||
if len(ts_id_colnames_original) == 0:
|
||||
df_head.drop(ts_id_colnames, axis=1, inplace=True)
|
||||
df_tail.drop(ts_id_colnames, axis=1, inplace=True)
|
||||
return df_head, df_tail
|
||||
|
||||
|
||||
def compute_metrics(fcst_df, metric_name=None, ts_id_colnames=None):
|
||||
"""
|
||||
Calculate metrics per grain.
|
||||
|
||||
:param fcst_df: forecast data frame. Must contain 2 columns: 'actual_level' and 'predicted_level'
|
||||
:param metric_name: (optional) name of the metric to return
|
||||
:param ts_id_colnames: (optional) list of grain column names
|
||||
:return: dictionary of summary table for all tests and final decision on stationary vs nonstaionary
|
||||
"""
|
||||
if ts_id_colnames is None:
|
||||
ts_id_colnames = []
|
||||
if len(ts_id_colnames) == 0:
|
||||
ts_id_colnames = ['TS_ID']
|
||||
fcst_df[ts_id_colnames[0]] = 'dummy'
|
||||
metrics_list = []
|
||||
for grain, df in fcst_df.groupby(ts_id_colnames):
|
||||
try:
|
||||
scores = scoring.score_regression(
|
||||
y_test=df['actual_level'],
|
||||
y_pred=df['predicted_level'],
|
||||
metrics=list(constants.Metric.SCALAR_REGRESSION_SET))
|
||||
except BaseException:
|
||||
msg = '{}: metrics calculation failed.'.format(grain)
|
||||
print(msg)
|
||||
scores = {}
|
||||
one_grain_metrics_df = pd.DataFrame(list(scores.items()), columns=['metric_name', 'metric']).\
|
||||
sort_values(['metric_name'])
|
||||
one_grain_metrics_df.reset_index(inplace=True, drop=True)
|
||||
if len(ts_id_colnames) < 2:
|
||||
one_grain_metrics_df['grain'] = ts_id_colnames[0]
|
||||
else:
|
||||
one_grain_metrics_df['grain'] = "|".join(list(grain))
|
||||
|
||||
metrics_list.append(one_grain_metrics_df)
|
||||
# collect into a data frame
|
||||
grain_metrics = pd.concat(metrics_list)
|
||||
if metric_name is not None:
|
||||
grain_metrics = grain_metrics.query('metric_name == @metric_name')
|
||||
return grain_metrics
|
||||
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
import shutil
|
||||
from azureml.core import ScriptRunConfig
|
||||
|
||||
|
||||
def run_remote_inference(test_experiment, compute_target, train_run,
|
||||
test_dataset, target_column_name, inference_folder='./forecast'):
|
||||
# Create local directory to copy the model.pkl and forecsting_script.py files into.
|
||||
# These files will be uploaded to and executed on the compute instance.
|
||||
os.makedirs(inference_folder, exist_ok=True)
|
||||
shutil.copy('forecasting_script.py', inference_folder)
|
||||
|
||||
train_run.download_file('outputs/model.pkl',
|
||||
os.path.join(inference_folder, 'model.pkl'))
|
||||
|
||||
inference_env = train_run.get_environment()
|
||||
|
||||
config = ScriptRunConfig(source_directory=inference_folder,
|
||||
script='forecasting_script.py',
|
||||
arguments=['--target_column_name',
|
||||
target_column_name,
|
||||
'--test_dataset',
|
||||
test_dataset.as_named_input(test_dataset.name)],
|
||||
compute_target=compute_target,
|
||||
environment=inference_env)
|
||||
|
||||
run = test_experiment.submit(config,
|
||||
tags={'training_run_id':
|
||||
train_run.id,
|
||||
'run_algorithm':
|
||||
train_run.properties['run_algorithm'],
|
||||
'valid_score':
|
||||
train_run.properties['score'],
|
||||
'primary_metric':
|
||||
train_run.properties['primary_metric']})
|
||||
|
||||
run.log("run_algorithm", run.tags['run_algorithm'])
|
||||
return run
|
||||
@@ -96,7 +96,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -173,7 +173,7 @@
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'average_precision_score_weighted',\n",
|
||||
" \"primary_metric\": 'AUC_weighted',\n",
|
||||
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ability to find the best model possible\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
" \"enable_stack_ensemble\": False\n",
|
||||
@@ -215,15 +215,6 @@
|
||||
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -359,7 +350,7 @@
|
||||
"Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance based on your test data.\n",
|
||||
"\n",
|
||||
"### Run the explanation\n",
|
||||
"#### Download engineered feature importance from artifact store\n",
|
||||
"#### Download the engineered feature importance from artifact store\n",
|
||||
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
|
||||
]
|
||||
},
|
||||
@@ -375,6 +366,25 @@
|
||||
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download the raw feature importance from artifact store\n",
|
||||
"You can use ExplanationClient to download the raw feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_explanations = client.download_model_explanation(raw=True)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||
"print(\"You can visualize the raw explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -426,7 +436,8 @@
|
||||
"\n",
|
||||
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
|
||||
" X_test=X_test, y=y_train, \n",
|
||||
" task='classification')"
|
||||
" task='classification',\n",
|
||||
" automl_run=automl_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -443,11 +454,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret.ext.glassbox import LGBMExplainableModel\n",
|
||||
"from azureml.interpret.mimic_wrapper import MimicWrapper\n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator,\n",
|
||||
" explainable_model=automl_explainer_setup_obj.surrogate_model, \n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_explainer_setup_obj.automl_run,\n",
|
||||
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
|
||||
" classes=automl_explainer_setup_obj.classes,\n",
|
||||
@@ -474,6 +484,29 @@
|
||||
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
|
||||
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the original features in your data. You can also use azure portal url to view the dash board visualization of the feature importance values of the original/raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Compute the raw explanations\n",
|
||||
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True,\n",
|
||||
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
|
||||
" eval_dataset=automl_explainer_setup_obj.X_test_transform,\n",
|
||||
" raw_eval_dataset=automl_explainer_setup_obj.X_test_raw)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||
"print(\"You can visualize the raw explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -589,10 +622,13 @@
|
||||
" automl_explainer_setup_obj = automl_setup_model_explanations(automl_model,\n",
|
||||
" X_test=data, task='classification')\n",
|
||||
" # Retrieve model explanations for engineered explanations\n",
|
||||
" engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform) \n",
|
||||
" engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform)\n",
|
||||
" # Retrieve model explanations for raw explanations\n",
|
||||
" raw_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform, get_raw=True)\n",
|
||||
" # You can return any data type as long as it is JSON-serializable\n",
|
||||
" return {'predictions': predictions.tolist(),\n",
|
||||
" 'engineered_local_importance_values': engineered_local_importance_values}\n"
|
||||
" 'engineered_local_importance_values': engineered_local_importance_values,\n",
|
||||
" 'raw_local_importance_values': raw_local_importance_values}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -725,7 +761,9 @@
|
||||
"# Print the predicted value\n",
|
||||
"print('predictions:\\n{}\\n'.format(output['predictions']))\n",
|
||||
"# Print the engineered feature importances for the predicted value\n",
|
||||
"print('engineered_local_importance_values:\\n{}\\n'.format(output['engineered_local_importance_values']))"
|
||||
"print('engineered_local_importance_values:\\n{}\\n'.format(output['engineered_local_importance_values']))\n",
|
||||
"# Print the raw feature importances for the predicted value\n",
|
||||
"print('raw_local_importance_values:\\n{}\\n'.format(output['raw_local_importance_values']))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -773,7 +811,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "anumamah"
|
||||
"name": "ratanase"
|
||||
}
|
||||
],
|
||||
"category": "tutorial",
|
||||
|
||||
@@ -42,8 +42,6 @@
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Instantiating AutoMLConfig with FeaturizationConfig for customization\n",
|
||||
@@ -79,7 +77,6 @@
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"import azureml.dataprep as dprep\n",
|
||||
"from azureml.automl.core.featurization import FeaturizationConfig\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.core.dataset import Dataset"
|
||||
@@ -98,7 +95,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -132,6 +129,8 @@
|
||||
"### Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
@@ -154,7 +153,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=amlcompute_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -223,9 +222,8 @@
|
||||
"source": [
|
||||
"## Customization\n",
|
||||
"\n",
|
||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
|
||||
"\n",
|
||||
"Supported customization includes:\n",
|
||||
"\n",
|
||||
"1. Column purpose update: Override feature type for the specified column.\n",
|
||||
"2. Transformer parameter update: Update parameters for the specified transformer. Currently supports Imputer and HashOneHotEncoder.\n",
|
||||
"3. Drop columns: Columns to drop from being featurized.\n",
|
||||
@@ -308,15 +306,6 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -447,12 +436,11 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explanations\n",
|
||||
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
|
||||
"This section will walk you through the workflow to compute model explanations for an AutoML model on your remote compute.\n",
|
||||
"\n",
|
||||
"### Retrieve any AutoML Model for explanations\n",
|
||||
"\n",
|
||||
"Below we select the some AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
"Below we select an AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for any logged `metric` or for a particular `iteration`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -461,7 +449,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run, fitted_model = remote_run.get_output(metric='r2_score')"
|
||||
"#automl_run, fitted_model = remote_run.get_output(metric='r2_score')\n",
|
||||
"automl_run, fitted_model = remote_run.get_output(iteration=2)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -551,8 +540,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
@@ -655,7 +642,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Operationailze\n",
|
||||
"## Operationalize\n",
|
||||
"In this section we will show how you can operationalize an AutoML model and the explainer which was used to compute the explanations in the previous section.\n",
|
||||
"\n",
|
||||
"### Register the AutoML model and the scoring explainer\n",
|
||||
@@ -730,14 +717,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
" memory_gb=1, \n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=2, \n",
|
||||
" memory_gb=2, \n",
|
||||
" tags={\"data\": \"Machine Data\", \n",
|
||||
" \"method\" : \"local_explanation\"}, \n",
|
||||
" description='Get local explanations for Machine test data')\n",
|
||||
@@ -905,7 +891,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "anumamah"
|
||||
"name": "anshirga"
|
||||
}
|
||||
],
|
||||
"categories": [
|
||||
|
||||
@@ -4,7 +4,7 @@ import os
|
||||
import joblib
|
||||
|
||||
from interpret.ext.glassbox import LGBMExplainableModel
|
||||
from automl.client.core.common.constants import MODEL_PATH
|
||||
from azureml.automl.core.shared.constants import MODEL_PATH
|
||||
from azureml.core.experiment import Experiment
|
||||
from azureml.core.dataset import Dataset
|
||||
from azureml.core.run import Run
|
||||
@@ -27,7 +27,7 @@ automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
||||
|
||||
# Check if this AutoML model is explainable
|
||||
if not automl_check_model_if_explainable(automl_run):
|
||||
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get(
|
||||
raise Exception("Model explanations are currently not supported for " + automl_run.get_properties().get(
|
||||
'run_algorithm'))
|
||||
|
||||
# Download the best model from the artifact store
|
||||
@@ -38,23 +38,25 @@ fitted_model = joblib.load('model.pkl')
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
|
||||
# Drop the lablled column to get the training set.
|
||||
# Drop the labeled column to get the training set.
|
||||
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
# Get the test dataset from the workspace
|
||||
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
|
||||
# Drop the lablled column to get the testing set.
|
||||
# Drop the labeled column to get the testing set.
|
||||
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
|
||||
# Setup the class for explaining the AtuoML models
|
||||
# Setup the class for explaining the AutoML models
|
||||
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
|
||||
X=X_train, X_test=X_test,
|
||||
y=y_train)
|
||||
y=y_train,
|
||||
automl_run=automl_run)
|
||||
|
||||
# Initialize the Mimic Explainer
|
||||
explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
|
||||
init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,
|
||||
init_dataset=automl_explainer_setup_obj.X_transform,
|
||||
run=automl_explainer_setup_obj.automl_run,
|
||||
features=automl_explainer_setup_obj.engineered_feature_names,
|
||||
feature_maps=[automl_explainer_setup_obj.feature_map],
|
||||
classes=automl_explainer_setup_obj.classes)
|
||||
@@ -66,7 +68,8 @@ engineered_explanations = explainer.explain(['local', 'global'], tag='engineered
|
||||
# Compute the raw explanations
|
||||
raw_explanations = explainer.explain(['local', 'global'], get_raw=True, tag='raw explanations',
|
||||
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
|
||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||
eval_dataset=automl_explainer_setup_obj.X_test_transform,
|
||||
raw_eval_dataset=automl_explainer_setup_obj.X_test_raw)
|
||||
|
||||
print("Engineered and raw explanations computed successfully")
|
||||
|
||||
|
||||
@@ -92,7 +92,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"This notebook was created using version 1.16.0 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version 1.34.0 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
@@ -145,7 +145,7 @@
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
@@ -213,7 +213,7 @@
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"n_cross_validations\": 3,\n",
|
||||
" \"primary_metric\": 'r2_score',\n",
|
||||
" \"primary_metric\": 'normalized_root_mean_squared_error',\n",
|
||||
" \"enable_early_stopping\": True, \n",
|
||||
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
|
||||
" \"max_concurrent_iterations\": 4,\n",
|
||||
@@ -256,15 +256,6 @@
|
||||
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -375,18 +366,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# preview the first 3 rows of the dataset\n",
|
||||
"\n",
|
||||
"test_data = test_data.to_pandas_dataframe()\n",
|
||||
"y_test = test_data['ERP'].fillna(0)\n",
|
||||
"test_data = test_data.drop('ERP', 1)\n",
|
||||
"test_data = test_data.fillna(0)\n",
|
||||
"y_test = test_data.keep_columns('ERP').to_pandas_dataframe()\n",
|
||||
"test_data = test_data.drop_columns('ERP').to_pandas_dataframe()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"train_data = train_data.to_pandas_dataframe()\n",
|
||||
"y_train = train_data['ERP'].fillna(0)\n",
|
||||
"train_data = train_data.drop('ERP', 1)\n",
|
||||
"train_data = train_data.fillna(0)\n"
|
||||
"y_train = train_data.keep_columns('ERP').to_pandas_dataframe()\n",
|
||||
"train_data = train_data.drop_columns('ERP').to_pandas_dataframe()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -396,10 +381,10 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred_train = fitted_model.predict(train_data)\n",
|
||||
"y_residual_train = y_train - y_pred_train\n",
|
||||
"y_residual_train = y_train.values - y_pred_train\n",
|
||||
"\n",
|
||||
"y_pred_test = fitted_model.predict(test_data)\n",
|
||||
"y_residual_test = y_test - y_pred_test"
|
||||
"y_residual_test = y_test.values - y_pred_test"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -462,7 +447,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "rakellam"
|
||||
"name": "ratanase"
|
||||
}
|
||||
],
|
||||
"categories": [
|
||||
|
||||
@@ -17,9 +17,9 @@
|
||||
"\n",
|
||||
"**For Databricks non ML runtime 7.1(scala 2.21, spark 3.0.0) and up, Install AML sdk by running the following command in the first cell of the notebook.**\n",
|
||||
"\n",
|
||||
"%pip install -r https://aka.ms/automl_linux_requirements.txt\n",
|
||||
"%pip install --upgrade --force-reinstall -r https://aka.ms/automl_linux_requirements.txt\n",
|
||||
"\n",
|
||||
"**For Databricks non ML runtime 7.0 and lower, Install AML sdk using init script as shown in [readme](readme.md) before running this notebook.**\n"
|
||||
"**For Databricks non ML runtime 7.0 and lower, Install AML sdk using init script as shown in [readme](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/automl/README.md) before running this notebook.**\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -350,32 +350,6 @@
|
||||
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" #print(properties)\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -352,32 +352,6 @@
|
||||
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" #print(properties)\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -604,4 +578,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
}
|
||||
84
how-to-use-azureml/azure-synapse/README.md
Normal file
84
how-to-use-azureml/azure-synapse/README.md
Normal file
@@ -0,0 +1,84 @@
|
||||
Azure Synapse Analytics is a limitless analytics service that brings together data integration, enterprise data warehousing, and big data analytics. It gives you the freedom to query data on your terms, using either serverless or dedicated resources—at scale. Azure Synapse brings these worlds together with a unified experience to ingest, explore, prepare, manage, and serve data for immediate BI and machine learning needs. A core offering within Azure Synapse Analytics are serverless Apache Spark pools enhanced for big data workloads.
|
||||
|
||||
Synapse in Aml integration is for customers who want to use Apache Spark in Azure Synapse Analytics to prepare data at scale in Azure ML before training their ML model. This will allow customers to work on their end-to-end ML lifecycle including large-scale data preparation, model training and deployment within Azure ML workspace without having to use suboptimal tools for machine learning or switch between multiple tools for data preparation and model training. The ability to perform all ML tasks within Azure ML will reduce time required for customers to iterate on a machine learning project which typically includes multiple rounds of data preparation and training.
|
||||
|
||||
In the public preview, the capabilities are provided:
|
||||
|
||||
- Link Azure Synapse Analytics workspace to Azure Machine Learning workspace (via ARM, UI or SDK)
|
||||
- Attach Apache Spark pools powered by Azure Synapse Analytics as Azure Machine Learning compute targets (via ARM, UI or SDK)
|
||||
- Launch Apache Spark sessions in notebooks and perform interactive data exploration and preparation. This interactive experience leverages Apache Spark magic and customers will have session-level Conda support to install packages.
|
||||
- Productionize ML pipelines by leveraging Apache Spark pools to pre-process big data
|
||||
|
||||
# Using Synapse in Azure machine learning
|
||||
|
||||
## Create synapse resources
|
||||
|
||||
Follow up the documents to create Synapse workspace and resource-setup.sh is available for you to create the resources.
|
||||
|
||||
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace)
|
||||
- Create from [Cli](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace-cli)
|
||||
|
||||
Follow up the documents to create Synapse spark pool
|
||||
|
||||
- Create from [Portal](https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal)
|
||||
- Create from [Cli](https://docs.microsoft.com/en-us/cli/azure/ext/synapse/synapse/spark/pool?view=azure-cli-latest)
|
||||
|
||||
## Link Synapse Workspace
|
||||
|
||||
Make sure you are the owner of synapse workspace so that you can link synapse workspace into AML.
|
||||
You can run resource-setup.py to link the synapse workspace and attach compute
|
||||
|
||||
```python
|
||||
from azureml.core import Workspace
|
||||
ws = Workspace.from_config()
|
||||
|
||||
from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration
|
||||
synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(
|
||||
subscription_id="<subscription id>",
|
||||
resource_group="<resource group",
|
||||
name="<synapse workspace name>"
|
||||
)
|
||||
|
||||
linked_service = LinkedService.register(
|
||||
workspace=ws,
|
||||
name='<link name>',
|
||||
linked_service_config=synapse_link_config)
|
||||
|
||||
```
|
||||
|
||||
## Attach synapse spark pool as AzureML compute
|
||||
|
||||
```python
|
||||
|
||||
from azureml.core.compute import SynapseCompute, ComputeTarget
|
||||
spark_pool_name = "<spark pool name>"
|
||||
attached_synapse_name = "<attached compute name>"
|
||||
|
||||
attach_config = SynapseCompute.attach_configuration(
|
||||
linked_service,
|
||||
type="SynapseSpark",
|
||||
pool_name=spark_pool_name)
|
||||
|
||||
synapse_compute=ComputeTarget.attach(
|
||||
workspace=ws,
|
||||
name=attached_synapse_name,
|
||||
attach_configuration=attach_config)
|
||||
|
||||
synapse_compute.wait_for_completion()
|
||||
```
|
||||
|
||||
## Set up permission
|
||||
|
||||
Grant Spark admin role to system assigned identity of the linked service so that the user can submit experiment run or pipeline run from AML workspace to synapse spark pool.
|
||||
|
||||
Grant Spark admin role to the specific user so that the user can start spark session to synapse spark pool.
|
||||
|
||||
You can get the system assigned identity information by running
|
||||
|
||||
```python
|
||||
print(linked_service.system_assigned_identity_principal_id)
|
||||
```
|
||||
|
||||
- Launch synapse studio of the synapse workspace and grant linked service MSI "Synapse Apache Spark administrator" role.
|
||||
|
||||
- In azure portal grant linked service MSI "Storage Blob Data Contributor" role of the primary adlsgen2 account of synapse workspace to use the library management feature.
|
||||
186
how-to-use-azureml/azure-synapse/Synapse_Job_Scala_Support.ipynb
Normal file
186
how-to-use-azureml/azure-synapse/Synapse_Job_Scala_Support.ipynb
Normal file
@@ -0,0 +1,186 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Get AML workspace which has synapse spark pool attached"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace, Experiment, Dataset, Environment\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Leverage ScriptRunConfig to submit scala job to an attached synapse spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Prepare data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"# Use the default blob storage\n",
|
||||
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
|
||||
"\n",
|
||||
"# We are uploading a sample file in the local directory to be used as a datasource\n",
|
||||
"file_name = \"shakespeare.txt\"\n",
|
||||
"def_blob_store.upload_files(files=[\"./{}\".format(file_name)], overwrite=False)\n",
|
||||
"\n",
|
||||
"# Create file dataset\n",
|
||||
"file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"run_config.target = \"link-pool\"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.memory\"] = \"2g\"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.cores\"] = 2\n",
|
||||
"run_config.spark.configuration[\"spark.executor.memory\"] = \"2g\"\n",
|
||||
"run_config.spark.configuration[\"spark.executor.cores\"] = 1\n",
|
||||
"run_config.spark.configuration[\"spark.executor.instances\"] = 1\n",
|
||||
"# This can be removed if you are using local jars in source folder\n",
|
||||
"run_config.spark.configuration[\"spark.yarn.dist.jars\"]=\"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/wordcount.jar\"\n",
|
||||
"\n",
|
||||
"dir_name = \"wordcount-{}\".format(str(uuid.uuid4()))\n",
|
||||
"input = file_dataset.as_named_input(\"input\").as_hdfs()\n",
|
||||
"output = HDFSOutputDatasetConfig(destination=(ws.get_default_datastore(), \"{}/result\".format(dir_name)))\n",
|
||||
"\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"args = ['--input', input, '--output', output]\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = '.',\n",
|
||||
" script= 'start_script.py',\n",
|
||||
" arguments= args,\n",
|
||||
" run_config = run_config)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"exp = Experiment(workspace=ws, name='synapse-spark')\n",
|
||||
"run = exp.submit(config=script_run_config)\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Leverage SynapseSparkStep in an AML pipeline to add dataprep step on synapse spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import SynapseSparkStep\n",
|
||||
"\n",
|
||||
"configs = {}\n",
|
||||
"#configs[\"spark.yarn.dist.jars\"] = \"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/wordcount.jar\"\n",
|
||||
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
|
||||
" file = 'start_script.py',\n",
|
||||
" jars = \"wasbs://synapse@azuremlexamples.blob.core.windows.net/shared/wordcount.jar\",\n",
|
||||
" source_directory=\".\",\n",
|
||||
" arguments = args,\n",
|
||||
" compute_target = 'link-pool',\n",
|
||||
" driver_memory = \"2g\",\n",
|
||||
" driver_cores = 2,\n",
|
||||
" executor_memory = \"2g\",\n",
|
||||
" executor_cores = 1,\n",
|
||||
" num_executors = 1,\n",
|
||||
" conf = configs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline = Pipeline(workspace=ws, steps=[step_1])\n",
|
||||
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "feli1"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,240 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Interactive Spark Session on Synapse Spark Pool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U \"azureml-synapse\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For JupyterLab, please additionally run:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!jupyter lab build --minimize=False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PLEASE restart kernel and then refresh web page before starting spark session."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 0. Magic Usage"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
|
||||
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
|
||||
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
|
||||
},
|
||||
"gather": {
|
||||
"logged": 1615594584642
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# show help\n",
|
||||
"%synapse ?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 1. Start Synapse Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"gather": {
|
||||
"logged": 1615577715289
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse start -c linktestpool --start-timeout 1000"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# 2. Use Scala"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## (1) Read Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse scala\n",
|
||||
"\n",
|
||||
"var df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
|
||||
"df.show(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## (2) Use Scala Sql"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse scala\n",
|
||||
"\n",
|
||||
"df.createOrReplaceTempView(\"titanic\")\n",
|
||||
"var sqlDF = spark.sql(\"SELECT Name, Fare from titanic\")\n",
|
||||
"sqlDF.show(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Stop Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse stop"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "feli1"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
892
how-to-use-azureml/azure-synapse/Titanic.csv
Normal file
@@ -0,0 +1,892 @@
|
||||
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
|
||||
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
|
||||
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
|
||||
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
|
||||
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
|
||||
5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
|
||||
6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
|
||||
7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
|
||||
8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
|
||||
9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
|
||||
10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
|
||||
11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
|
||||
12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
|
||||
13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
|
||||
14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
|
||||
15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
|
||||
16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
|
||||
17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
|
||||
18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
|
||||
19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
|
||||
20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
|
||||
21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
|
||||
22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
|
||||
23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
|
||||
24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
|
||||
25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
|
||||
26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
|
||||
27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
|
||||
28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
|
||||
29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
|
||||
30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
|
||||
31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
|
||||
32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
|
||||
33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
|
||||
34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
|
||||
35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
|
||||
36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
|
||||
37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
|
||||
38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
|
||||
39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
|
||||
40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
|
||||
41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
|
||||
42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
|
||||
43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
|
||||
44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
|
||||
45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
|
||||
46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
|
||||
47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
|
||||
48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
|
||||
49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
|
||||
50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
|
||||
51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
|
||||
52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
|
||||
53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
|
||||
54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
|
||||
55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
|
||||
56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
|
||||
57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
|
||||
58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
|
||||
59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
|
||||
60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
|
||||
61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
|
||||
62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
|
||||
63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
|
||||
64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
|
||||
65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
|
||||
66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
|
||||
67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
|
||||
68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
|
||||
69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
|
||||
70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
|
||||
71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
|
||||
72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
|
||||
73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
|
||||
74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
|
||||
75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
|
||||
76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
|
||||
77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
|
||||
78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
|
||||
79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
|
||||
80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
|
||||
81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
|
||||
82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
|
||||
83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
|
||||
84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
|
||||
85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
|
||||
86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
|
||||
87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
|
||||
88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
|
||||
89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
|
||||
90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
|
||||
91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
|
||||
92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
|
||||
93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
|
||||
94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
|
||||
95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
|
||||
96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
|
||||
97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
|
||||
98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
|
||||
99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
|
||||
100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
|
||||
101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
|
||||
102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
|
||||
103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
|
||||
104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
|
||||
105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
|
||||
106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
|
||||
107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
|
||||
108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
|
||||
109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
|
||||
110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
|
||||
111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
|
||||
112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
|
||||
113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
|
||||
114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
|
||||
115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
|
||||
116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
|
||||
117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
|
||||
118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
|
||||
119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
|
||||
120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
|
||||
121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
|
||||
122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
|
||||
123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
|
||||
124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
|
||||
125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
|
||||
126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
|
||||
127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
|
||||
128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
|
||||
129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
|
||||
130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
|
||||
131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
|
||||
132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
|
||||
133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
|
||||
134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
|
||||
135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
|
||||
136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
|
||||
137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
|
||||
138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
|
||||
139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
|
||||
140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
|
||||
141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
|
||||
142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
|
||||
143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
|
||||
144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
|
||||
145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
|
||||
146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
|
||||
147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
|
||||
148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
|
||||
149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
|
||||
150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
|
||||
151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
|
||||
152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
|
||||
153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
|
||||
154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
|
||||
155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
|
||||
156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
|
||||
157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
|
||||
158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
|
||||
159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
|
||||
160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
|
||||
161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
|
||||
162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
|
||||
163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
|
||||
164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
|
||||
165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
|
||||
166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
|
||||
167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
|
||||
168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
|
||||
169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
|
||||
170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
|
||||
171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
|
||||
172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
|
||||
173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
|
||||
174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
|
||||
175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
|
||||
176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
|
||||
177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
|
||||
178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
|
||||
179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
|
||||
180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
|
||||
181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
|
||||
182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
|
||||
183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
|
||||
184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
|
||||
185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
|
||||
186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
|
||||
187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
|
||||
188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
|
||||
189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
|
||||
190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
|
||||
191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
|
||||
192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
|
||||
193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
|
||||
194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
|
||||
195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
|
||||
196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
|
||||
197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
|
||||
198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
|
||||
199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
|
||||
200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
|
||||
201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
|
||||
202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
|
||||
203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
|
||||
204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
|
||||
205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
|
||||
206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
|
||||
207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
|
||||
208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
|
||||
209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
|
||||
210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
|
||||
211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
|
||||
212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
|
||||
213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
|
||||
214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
|
||||
215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
|
||||
216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
|
||||
217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
|
||||
218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
|
||||
219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
|
||||
220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
|
||||
221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
|
||||
222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
|
||||
223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
|
||||
224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
|
||||
225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
|
||||
226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
|
||||
227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
|
||||
228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
|
||||
229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
|
||||
230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
|
||||
231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
|
||||
232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
|
||||
233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
|
||||
234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
|
||||
235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
|
||||
236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
|
||||
237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
|
||||
238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
|
||||
239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
|
||||
240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
|
||||
241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
|
||||
242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
|
||||
243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
|
||||
244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
|
||||
245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
|
||||
246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
|
||||
247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
|
||||
248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
|
||||
249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
|
||||
250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
|
||||
251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
|
||||
252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
|
||||
253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
|
||||
254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
|
||||
255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
|
||||
256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
|
||||
257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
|
||||
258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
|
||||
259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
|
||||
260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
|
||||
261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
|
||||
262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
|
||||
263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
|
||||
264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
|
||||
265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
|
||||
266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
|
||||
267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
|
||||
268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
|
||||
269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
|
||||
270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
|
||||
271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
|
||||
272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
|
||||
273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
|
||||
274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
|
||||
275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
|
||||
276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
|
||||
277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
|
||||
278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
|
||||
279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
|
||||
280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
|
||||
281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
|
||||
282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
|
||||
283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
|
||||
284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
|
||||
285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
|
||||
286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
|
||||
287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
|
||||
288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
|
||||
289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
|
||||
290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
|
||||
291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
|
||||
292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
|
||||
293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
|
||||
294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
|
||||
295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
|
||||
296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
|
||||
297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
|
||||
298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
|
||||
299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
|
||||
300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
|
||||
301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
|
||||
302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
|
||||
303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
|
||||
304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
|
||||
305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
|
||||
306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
|
||||
307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
|
||||
308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
|
||||
309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
|
||||
310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
|
||||
311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
|
||||
312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
|
||||
314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
|
||||
315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
|
||||
316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
|
||||
317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
|
||||
318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
|
||||
319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
|
||||
320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
|
||||
321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
|
||||
322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
|
||||
323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
|
||||
324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
|
||||
325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
|
||||
326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
|
||||
327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
|
||||
328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
|
||||
329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
|
||||
330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
|
||||
331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
|
||||
332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
|
||||
333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
|
||||
334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
|
||||
335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
|
||||
336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
|
||||
337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
|
||||
338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
|
||||
339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
|
||||
340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
|
||||
341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
|
||||
342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
|
||||
343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
|
||||
344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
|
||||
345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
|
||||
346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
|
||||
347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
|
||||
348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
|
||||
349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
|
||||
350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
|
||||
351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
|
||||
352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
|
||||
353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
|
||||
354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
|
||||
355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
|
||||
356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
|
||||
357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
|
||||
358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
|
||||
359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
|
||||
360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
|
||||
361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
|
||||
362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
|
||||
363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
|
||||
364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
|
||||
365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
|
||||
366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
|
||||
367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
|
||||
368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
|
||||
369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
|
||||
370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
|
||||
371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
|
||||
372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
|
||||
373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
|
||||
374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
|
||||
375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
|
||||
376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
|
||||
377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
|
||||
378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
|
||||
379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
|
||||
380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
|
||||
381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
|
||||
382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
|
||||
383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
|
||||
384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
|
||||
385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
|
||||
386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
|
||||
387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
|
||||
388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
|
||||
389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
|
||||
390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
|
||||
391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
|
||||
392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
|
||||
393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
|
||||
394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
|
||||
395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
|
||||
396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
|
||||
397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
|
||||
398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
|
||||
399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
|
||||
400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
|
||||
401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
|
||||
402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
|
||||
403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
|
||||
404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
|
||||
405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
|
||||
406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
|
||||
407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
|
||||
408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
|
||||
409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
|
||||
410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
|
||||
411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
|
||||
412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
|
||||
413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
|
||||
414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
|
||||
415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
|
||||
416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
|
||||
417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
|
||||
418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
|
||||
419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
|
||||
420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
|
||||
421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
|
||||
422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
|
||||
423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
|
||||
424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
|
||||
425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
|
||||
426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
|
||||
427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
|
||||
428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
|
||||
429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
|
||||
430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
|
||||
431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
|
||||
432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
|
||||
433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
|
||||
434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
|
||||
435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
|
||||
436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
|
||||
437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
|
||||
438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
|
||||
439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
|
||||
440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
|
||||
441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
|
||||
442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
|
||||
443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
|
||||
444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
|
||||
445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
|
||||
446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
|
||||
447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
|
||||
448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
|
||||
449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
|
||||
450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
|
||||
451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
|
||||
452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
|
||||
453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
|
||||
454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
|
||||
455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
|
||||
456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
|
||||
457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
|
||||
458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
|
||||
459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
|
||||
460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
|
||||
461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
|
||||
462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
|
||||
463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
|
||||
464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
|
||||
465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
|
||||
466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
|
||||
467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
|
||||
468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
|
||||
469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
|
||||
470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
|
||||
471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
|
||||
472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
|
||||
473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
|
||||
474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
|
||||
475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
|
||||
476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
|
||||
477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
|
||||
478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
|
||||
479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
|
||||
480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
|
||||
481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
|
||||
482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
|
||||
483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
|
||||
484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
|
||||
485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
|
||||
486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
|
||||
487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
|
||||
488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
|
||||
489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
|
||||
490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
|
||||
491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
|
||||
492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
|
||||
493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
|
||||
494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
|
||||
495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
|
||||
496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
|
||||
497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
|
||||
498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
|
||||
499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
|
||||
500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
|
||||
501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
|
||||
502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
|
||||
503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
|
||||
504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
|
||||
505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
|
||||
506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
|
||||
507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
|
||||
508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
|
||||
509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
|
||||
510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
|
||||
511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
|
||||
512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
|
||||
513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
|
||||
514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
|
||||
515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
|
||||
516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
|
||||
517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
|
||||
518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
|
||||
519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
|
||||
520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
|
||||
521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
|
||||
522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
|
||||
523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
|
||||
524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
|
||||
525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
|
||||
526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
|
||||
527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
|
||||
528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
|
||||
529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
|
||||
530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
|
||||
531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
|
||||
532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
|
||||
533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
|
||||
534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
|
||||
535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
|
||||
536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
|
||||
537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
|
||||
538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
|
||||
539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
|
||||
540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
|
||||
541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
|
||||
542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
|
||||
543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
|
||||
544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
|
||||
545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
|
||||
546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
|
||||
547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
|
||||
548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
|
||||
549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
|
||||
550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
|
||||
551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
|
||||
552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
|
||||
553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
|
||||
554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
|
||||
555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
|
||||
556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
|
||||
557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
|
||||
558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
|
||||
559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
|
||||
560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
|
||||
561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
|
||||
562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
|
||||
563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
|
||||
564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
|
||||
565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
|
||||
566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
|
||||
567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
|
||||
568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
|
||||
569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
|
||||
570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
|
||||
571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
|
||||
572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
|
||||
573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
|
||||
574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
|
||||
575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
|
||||
576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
|
||||
577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
|
||||
578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
|
||||
579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
|
||||
580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
|
||||
581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
|
||||
582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
|
||||
583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
|
||||
584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
|
||||
585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
|
||||
586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
|
||||
587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
|
||||
588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
|
||||
589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
|
||||
590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
|
||||
591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
|
||||
592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
|
||||
593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
|
||||
594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
|
||||
595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
|
||||
596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
|
||||
597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
|
||||
598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
|
||||
599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
|
||||
600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
|
||||
601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
|
||||
602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
|
||||
603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
|
||||
604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
|
||||
605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
|
||||
606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
|
||||
607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
|
||||
608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
|
||||
609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
|
||||
610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
|
||||
611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
|
||||
612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
|
||||
613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
|
||||
614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
|
||||
615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
|
||||
616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
|
||||
617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
|
||||
618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
|
||||
619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
|
||||
620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
|
||||
621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
|
||||
622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
|
||||
623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
|
||||
624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
|
||||
625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
|
||||
626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
|
||||
627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
|
||||
628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
|
||||
629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
|
||||
630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
|
||||
631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
|
||||
632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
|
||||
633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
|
||||
634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
|
||||
635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
|
||||
636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
|
||||
637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
|
||||
638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
|
||||
639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
|
||||
640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
|
||||
641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
|
||||
642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
|
||||
643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
|
||||
644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
|
||||
645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
|
||||
646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
|
||||
647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
|
||||
648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
|
||||
649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
|
||||
650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
|
||||
651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
|
||||
652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
|
||||
653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
|
||||
654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
|
||||
655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
|
||||
656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
|
||||
657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
|
||||
658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
|
||||
659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
|
||||
660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
|
||||
661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
|
||||
662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
|
||||
663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
|
||||
664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
|
||||
665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
|
||||
666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
|
||||
667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
|
||||
668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
|
||||
669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
|
||||
670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
|
||||
671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
|
||||
672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
|
||||
673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
|
||||
674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
|
||||
675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
|
||||
676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
|
||||
677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
|
||||
678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
|
||||
679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
|
||||
680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
|
||||
681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
|
||||
682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
|
||||
683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
|
||||
684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
|
||||
685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
|
||||
686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
|
||||
687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
|
||||
688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
|
||||
689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
|
||||
690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
|
||||
691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
|
||||
692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
|
||||
693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
|
||||
694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
|
||||
695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
|
||||
696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
|
||||
697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
|
||||
698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
|
||||
699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
|
||||
700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
|
||||
701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
|
||||
702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
|
||||
703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
|
||||
704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
|
||||
705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
|
||||
706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
|
||||
707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
|
||||
708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
|
||||
709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
|
||||
710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
|
||||
711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
|
||||
712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
|
||||
713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
|
||||
714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
|
||||
715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
|
||||
716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
|
||||
717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
|
||||
718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
|
||||
719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
|
||||
720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
|
||||
721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
|
||||
722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
|
||||
723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
|
||||
724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
|
||||
725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
|
||||
726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
|
||||
727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
|
||||
728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
|
||||
729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
|
||||
730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
|
||||
731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
|
||||
732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
|
||||
733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
|
||||
734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
|
||||
735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
|
||||
736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
|
||||
737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
|
||||
738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
|
||||
739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
|
||||
740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
|
||||
741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
|
||||
742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
|
||||
743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
|
||||
744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
|
||||
745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
|
||||
746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
|
||||
747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
|
||||
748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
|
||||
749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
|
||||
750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
|
||||
751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
|
||||
752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
|
||||
753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
|
||||
754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
|
||||
755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
|
||||
756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
|
||||
757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
|
||||
758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
|
||||
759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
|
||||
760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
|
||||
761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
|
||||
762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
|
||||
763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
|
||||
764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
|
||||
765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
|
||||
766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
|
||||
767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
|
||||
768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
|
||||
769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
|
||||
770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
|
||||
771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
|
||||
772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
|
||||
773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
|
||||
774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
|
||||
775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
|
||||
776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
|
||||
777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
|
||||
778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
|
||||
779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
|
||||
780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
|
||||
781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
|
||||
782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
|
||||
783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
|
||||
784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
|
||||
785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
|
||||
786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
|
||||
787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
|
||||
788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
|
||||
789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
|
||||
790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
|
||||
791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
|
||||
792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
|
||||
793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
|
||||
794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
|
||||
795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
|
||||
796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
|
||||
797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
|
||||
798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
|
||||
799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
|
||||
800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
|
||||
801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
|
||||
802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
|
||||
803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
|
||||
804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
|
||||
805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
|
||||
806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
|
||||
807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
|
||||
808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
|
||||
809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
|
||||
810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
|
||||
811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
|
||||
812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
|
||||
813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
|
||||
814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
|
||||
815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
|
||||
816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
|
||||
817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
|
||||
818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
|
||||
819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
|
||||
820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
|
||||
821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
|
||||
822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
|
||||
823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
|
||||
824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
|
||||
825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
|
||||
826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
|
||||
827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
|
||||
828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
|
||||
829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
|
||||
830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
|
||||
831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
|
||||
832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
|
||||
833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
|
||||
834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
|
||||
835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
|
||||
836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
|
||||
837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
|
||||
838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
|
||||
839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
|
||||
840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
|
||||
841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
|
||||
842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
|
||||
843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
|
||||
844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
|
||||
845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
|
||||
846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
|
||||
847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
|
||||
848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
|
||||
849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
|
||||
850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
|
||||
851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
|
||||
852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
|
||||
853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
|
||||
854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
|
||||
855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
|
||||
856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
|
||||
857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
|
||||
858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
|
||||
859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
|
||||
860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
|
||||
861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
|
||||
862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
|
||||
863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
|
||||
864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
|
||||
865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
|
||||
866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
|
||||
867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
|
||||
868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
|
||||
869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
|
||||
870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
|
||||
871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
|
||||
872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
|
||||
873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
|
||||
874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
|
||||
875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
|
||||
876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
|
||||
877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
|
||||
878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
|
||||
879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
|
||||
880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
|
||||
881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
|
||||
882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
|
||||
883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
|
||||
884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
|
||||
885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
|
||||
886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
|
||||
887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
|
||||
888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
|
||||
889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
|
||||
890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
|
||||
891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
|
||||
|
270
how-to-use-azureml/azure-synapse/shakespeare.txt
Normal file
270
how-to-use-azureml/azure-synapse/shakespeare.txt
Normal file
@@ -0,0 +1,270 @@
|
||||
This is the 100th Etext file presented by Project Gutenberg, and
|
||||
is presented in cooperation with World Library, Inc., from their
|
||||
Library of the Future and Shakespeare CDROMS. Project Gutenberg
|
||||
often releases Etexts that are NOT placed in the Public Domain!!
|
||||
|
||||
Shakespeare
|
||||
|
||||
*This Etext has certain copyright implications you should read!*
|
||||
|
||||
<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM
|
||||
SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC., AND IS
|
||||
PROVIDED BY PROJECT GUTENBERG ETEXT OF ILLINOIS BENEDICTINE COLLEGE
|
||||
WITH PERMISSION. ELECTRONIC AND MACHINE READABLE COPIES MAY BE
|
||||
DISTRIBUTED SO LONG AS SUCH COPIES (1) ARE FOR YOUR OR OTHERS
|
||||
PERSONAL USE ONLY, AND (2) ARE NOT DISTRIBUTED OR USED
|
||||
COMMERCIALLY. PROHIBITED COMMERCIAL DISTRIBUTION INCLUDES BY ANY
|
||||
SERVICE THAT CHARGES FOR DOWNLOAD TIME OR FOR MEMBERSHIP.>>
|
||||
|
||||
*Project Gutenberg is proud to cooperate with The World Library*
|
||||
in the presentation of The Complete Works of William Shakespeare
|
||||
for your reading for education and entertainment. HOWEVER, THIS
|
||||
IS NEITHER SHAREWARE NOR PUBLIC DOMAIN. . .AND UNDER THE LIBRARY
|
||||
OF THE FUTURE CONDITIONS OF THIS PRESENTATION. . .NO CHARGES MAY
|
||||
BE MADE FOR *ANY* ACCESS TO THIS MATERIAL. YOU ARE ENCOURAGED!!
|
||||
TO GIVE IT AWAY TO ANYONE YOU LIKE, BUT NO CHARGES ARE ALLOWED!!
|
||||
|
||||
|
||||
**Welcome To The World of Free Plain Vanilla Electronic Texts**
|
||||
|
||||
**Etexts Readable By Both Humans and By Computers, Since 1971**
|
||||
|
||||
*These Etexts Prepared By Hundreds of Volunteers and Donations*
|
||||
|
||||
Information on contacting Project Gutenberg to get Etexts, and
|
||||
further information is included below. We need your donations.
|
||||
|
||||
|
||||
The Complete Works of William Shakespeare
|
||||
|
||||
January, 1994 [Etext #100]
|
||||
|
||||
|
||||
The Library of the Future Complete Works of William Shakespeare
|
||||
Library of the Future is a TradeMark (TM) of World Library Inc.
|
||||
******This file should be named shaks12.txt or shaks12.zip*****
|
||||
|
||||
Corrected EDITIONS of our etexts get a new NUMBER, shaks13.txt
|
||||
VERSIONS based on separate sources get new LETTER, shaks10a.txt
|
||||
|
||||
If you would like further information about World Library, Inc.
|
||||
Please call them at 1-800-443-0238 or email julianc@netcom.com
|
||||
Please give them our thanks for their Shakespeare cooperation!
|
||||
|
||||
|
||||
The official release date of all Project Gutenberg Etexts is at
|
||||
Midnight, Central Time, of the last day of the stated month. A
|
||||
preliminary version may often be posted for suggestion, comment
|
||||
and editing by those who wish to do so. To be sure you have an
|
||||
up to date first edition [xxxxx10x.xxx] please check file sizes
|
||||
in the first week of the next month. Since our ftp program has
|
||||
a bug in it that scrambles the date [tried to fix and failed] a
|
||||
look at the file size will have to do, but we will try to see a
|
||||
new copy has at least one byte more or less.
|
||||
|
||||
|
||||
Information about Project Gutenberg (one page)
|
||||
|
||||
We produce about two million dollars for each hour we work. The
|
||||
fifty hours is one conservative estimate for how long it we take
|
||||
to get any etext selected, entered, proofread, edited, copyright
|
||||
searched and analyzed, the copyright letters written, etc. This
|
||||
projected audience is one hundred million readers. If our value
|
||||
per text is nominally estimated at one dollar, then we produce 2
|
||||
million dollars per hour this year we, will have to do four text
|
||||
files per month: thus upping our productivity from one million.
|
||||
The Goal of Project Gutenberg is to Give Away One Trillion Etext
|
||||
Files by the December 31, 2001. [10,000 x 100,000,000=Trillion]
|
||||
This is ten thousand titles each to one hundred million readers,
|
||||
which is 10% of the expected number of computer users by the end
|
||||
of the year 2001.
|
||||
|
||||
We need your donations more than ever!
|
||||
|
||||
All donations should be made to "Project Gutenberg/IBC", and are
|
||||
tax deductible to the extent allowable by law ("IBC" is Illinois
|
||||
Benedictine College). (Subscriptions to our paper newsletter go
|
||||
to IBC, too)
|
||||
|
||||
For these and other matters, please mail to:
|
||||
|
||||
Project Gutenberg
|
||||
P. O. Box 2782
|
||||
Champaign, IL 61825
|
||||
|
||||
When all other email fails try our Michael S. Hart, Executive Director:
|
||||
hart@vmd.cso.uiuc.edu (internet) hart@uiucvmd (bitnet)
|
||||
|
||||
We would prefer to send you this information by email
|
||||
(Internet, Bitnet, Compuserve, ATTMAIL or MCImail).
|
||||
|
||||
******
|
||||
If you have an FTP program (or emulator), please
|
||||
FTP directly to the Project Gutenberg archives:
|
||||
[Mac users, do NOT point and click. . .type]
|
||||
|
||||
ftp mrcnext.cso.uiuc.edu
|
||||
login: anonymous
|
||||
password: your@login
|
||||
cd etext/etext91
|
||||
or cd etext92
|
||||
or cd etext93 [for new books] [now also in cd etext/etext93]
|
||||
or cd etext/articles [get suggest gut for more information]
|
||||
dir [to see files]
|
||||
get or mget [to get files. . .set bin for zip files]
|
||||
GET 0INDEX.GUT
|
||||
for a list of books
|
||||
and
|
||||
GET NEW GUT for general information
|
||||
and
|
||||
MGET GUT* for newsletters.
|
||||
|
||||
**Information prepared by the Project Gutenberg legal advisor**
|
||||
|
||||
|
||||
***** SMALL PRINT! for COMPLETE SHAKESPEARE *****
|
||||
|
||||
THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM
|
||||
SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC.,
|
||||
AND IS PROVIDED BY PROJECT GUTENBERG ETEXT OF
|
||||
ILLINOIS BENEDICTINE COLLEGE WITH PERMISSION.
|
||||
|
||||
Since unlike many other Project Gutenberg-tm etexts, this etext
|
||||
is copyright protected, and since the materials and methods you
|
||||
use will effect the Project's reputation, your right to copy and
|
||||
distribute it is limited by the copyright and other laws, and by
|
||||
the conditions of this "Small Print!" statement.
|
||||
|
||||
1. LICENSE
|
||||
|
||||
A) YOU MAY (AND ARE ENCOURAGED) TO DISTRIBUTE ELECTRONIC AND
|
||||
MACHINE READABLE COPIES OF THIS ETEXT, SO LONG AS SUCH COPIES
|
||||
(1) ARE FOR YOUR OR OTHERS PERSONAL USE ONLY, AND (2) ARE NOT
|
||||
DISTRIBUTED OR USED COMMERCIALLY. PROHIBITED COMMERCIAL
|
||||
DISTRIBUTION INCLUDES BY ANY SERVICE THAT CHARGES FOR DOWNLOAD
|
||||
TIME OR FOR MEMBERSHIP.
|
||||
|
||||
B) This license is subject to the conditions that you honor
|
||||
the refund and replacement provisions of this "small print!"
|
||||
statement; and that you distribute exact copies of this etext,
|
||||
including this Small Print statement. Such copies can be
|
||||
compressed or any proprietary form (including any form resulting
|
||||
from word processing or hypertext software), so long as
|
||||
*EITHER*:
|
||||
|
||||
(1) The etext, when displayed, is clearly readable, and does
|
||||
*not* contain characters other than those intended by the
|
||||
author of the work, although tilde (~), asterisk (*) and
|
||||
underline (_) characters may be used to convey punctuation
|
||||
intended by the author, and additional characters may be used
|
||||
to indicate hypertext links; OR
|
||||
|
||||
(2) The etext is readily convertible by the reader at no
|
||||
expense into plain ASCII, EBCDIC or equivalent form by the
|
||||
program that displays the etext (as is the case, for instance,
|
||||
with most word processors); OR
|
||||
|
||||
(3) You provide or agree to provide on request at no
|
||||
additional cost, fee or expense, a copy of the etext in plain
|
||||
ASCII.
|
||||
|
||||
2. LIMITED WARRANTY; DISCLAIMER OF DAMAGES
|
||||
|
||||
This etext may contain a "Defect" in the form of incomplete,
|
||||
inaccurate or corrupt data, transcription errors, a copyright or
|
||||
other infringement, a defective or damaged disk, computer virus,
|
||||
or codes that damage or cannot be read by your equipment. But
|
||||
for the "Right of Replacement or Refund" described below, the
|
||||
Project (and any other party you may receive this etext from as
|
||||
a PROJECT GUTENBERG-tm etext) disclaims all liability to you for
|
||||
damages, costs and expenses, including legal fees, and YOU HAVE
|
||||
NO REMEDIES FOR NEGLIGENCE OR UNDER STRICT LIABILITY, OR FOR
|
||||
BREACH OF WARRANTY OR CONTRACT, INCLUDING BUT NOT LIMITED TO
|
||||
INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES, EVEN IF
|
||||
YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
If you discover a Defect in this etext within 90 days of receiv-
|
||||
ing it, you can receive a refund of the money (if any) you paid
|
||||
for it by sending an explanatory note within that time to the
|
||||
person you received it from. If you received it on a physical
|
||||
medium, you must return it with your note, and such person may
|
||||
choose to alternatively give you a replacement copy. If you
|
||||
received it electronically, such person may choose to
|
||||
alternatively give you a second opportunity to receive it
|
||||
electronically.
|
||||
|
||||
THIS ETEXT IS OTHERWISE PROVIDED TO YOU "AS-IS". NO OTHER
|
||||
WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, ARE MADE TO YOU AS
|
||||
TO THE ETEXT OR ANY MEDIUM IT MAY BE ON, INCLUDING BUT NOT
|
||||
LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
|
||||
PARTICULAR PURPOSE. Some states do not allow disclaimers of
|
||||
implied warranties or the exclusion or limitation of consequen-
|
||||
tial damages, so the above disclaimers and exclusions may not
|
||||
apply to you, and you may have other legal rights.
|
||||
|
||||
3. INDEMNITY: You will indemnify and hold the Project, its
|
||||
directors, officers, members and agents harmless from all lia-
|
||||
bility, cost and expense, including legal fees, that arise
|
||||
directly or indirectly from any of the following that you do or
|
||||
cause: [A] distribution of this etext, [B] alteration,
|
||||
modification, or addition to the etext, or [C] any Defect.
|
||||
|
||||
4. WHAT IF YOU *WANT* TO SEND MONEY EVEN IF YOU DON'T HAVE TO?
|
||||
Project Gutenberg is dedicated to increasing the number of
|
||||
public domain and licensed works that can be freely distributed
|
||||
in machine readable form. The Project gratefully accepts
|
||||
contributions in money, time, scanning machines, OCR software,
|
||||
public domain etexts, royalty free copyright licenses, and
|
||||
whatever else you can think of. Money should be paid to "Pro-
|
||||
ject Gutenberg Association / Illinois Benedictine College".
|
||||
|
||||
WRITE TO US! We can be reached at:
|
||||
Internet: hart@vmd.cso.uiuc.edu
|
||||
Bitnet: hart@uiucvmd
|
||||
CompuServe: >internet:hart@.vmd.cso.uiuc.edu
|
||||
Attmail: internet!vmd.cso.uiuc.edu!Hart
|
||||
Mail: Prof. Michael Hart
|
||||
P.O. Box 2782
|
||||
Champaign, IL 61825
|
||||
|
||||
This "Small Print!" by Charles B. Kramer, Attorney
|
||||
Internet (72600.2026@compuserve.com); TEL: (212-254-5093)
|
||||
**** SMALL PRINT! FOR __ COMPLETE SHAKESPEARE ****
|
||||
["Small Print" V.12.08.93]
|
||||
|
||||
<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM
|
||||
SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC., AND IS
|
||||
PROVIDED BY PROJECT GUTENBERG ETEXT OF ILLINOIS BENEDICTINE COLLEGE
|
||||
WITH PERMISSION. ELECTRONIC AND MACHINE READABLE COPIES MAY BE
|
||||
DISTRIBUTED SO LONG AS SUCH COPIES (1) ARE FOR YOUR OR OTHERS
|
||||
PERSONAL USE ONLY, AND (2) ARE NOT DISTRIBUTED OR USED
|
||||
COMMERCIALLY. PROHIBITED COMMERCIAL DISTRIBUTION INCLUDES BY ANY
|
||||
SERVICE THAT CHARGES FOR DOWNLOAD TIME OR FOR MEMBERSHIP.>>
|
||||
|
||||
|
||||
1609
|
||||
|
||||
THE SONNETS
|
||||
|
||||
by William Shakespeare
|
||||
|
||||
|
||||
THE END
|
||||
|
||||
|
||||
|
||||
<<THIS ELECTRONIC VERSION OF THE COMPLETE WORKS OF WILLIAM
|
||||
SHAKESPEARE IS COPYRIGHT 1990-1993 BY WORLD LIBRARY, INC., AND IS
|
||||
PROVIDED BY PROJECT GUTENBERG ETEXT OF ILLINOIS BENEDICTINE COLLEGE
|
||||
WITH PERMISSION. ELECTRONIC AND MACHINE READABLE COPIES MAY BE
|
||||
DISTRIBUTED SO LONG AS SUCH COPIES (1) ARE FOR YOUR OR OTHERS
|
||||
PERSONAL USE ONLY, AND (2) ARE NOT DISTRIBUTED OR USED
|
||||
COMMERCIALLY. PROHIBITED COMMERCIAL DISTRIBUTION INCLUDES BY ANY
|
||||
SERVICE THAT CHARGES FOR DOWNLOAD TIME OR FOR MEMBERSHIP.>>
|
||||
|
||||
|
||||
|
||||
End of this Etext of The Complete Works of William Shakespeare
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,507 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Using Synapse Spark Pool as a Compute Target from Azure Machine Learning Remote Run\n",
|
||||
"1. To use Synapse Spark Pool as a compute target from Experiment Run, [ScriptRunConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) is used, the same as other Experiment Runs. This notebook demonstrates how to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster.\n",
|
||||
"2. To use Synapse Spark Pool as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [SynapseSparkStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.synapse_spark_step.synapsesparkstep?view=azure-ml-py) is used. This notebook demonstrates how to leverage SynapseSparkStep in Azure Machine Learning Pipeline.\n",
|
||||
"\n",
|
||||
"## Before you begin:\n",
|
||||
"1. **Create an Azure Synapse workspace**, check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-workspace) for more information.\n",
|
||||
"2. **Create Spark Pool in Synapse workspace**: check [this] (https://docs.microsoft.com/en-us/azure/synapse-analytics/quickstart-create-apache-spark-pool-portal) for more information."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Azure Machine Learning and Pipeline SDK-specific imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment\n",
|
||||
"from azureml.core import LinkedService, SynapseWorkspaceLinkedServiceConfiguration\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute, SynapseCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"from azureml.core.datastore import Datastore\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep, SynapseSparkStep\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Link Synapse workspace to AML \n",
|
||||
"You have to be an \"Owner\" of Synapse workspace resource to perform linking. You can check your role in the Azure resource management portal, if you don't have an \"Owner\" role, you can contact an \"Owner\" to link the workspaces for you."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"# Replace with your resource info before running.\n",
|
||||
"\n",
|
||||
"synapse_subscription_id=os.getenv(\"SYNAPSE_SUBSCRIPTION_ID\", \"<my-synapse-subscription-id>\")\n",
|
||||
"synapse_resource_group=os.getenv(\"SYNAPSE_RESOURCE_GROUP\", \"<my-synapse-resource-group>\")\n",
|
||||
"synapse_workspace_name=os.getenv(\"SYNAPSE_WORKSPACE_NAME\", \"<my-synapse-workspace-name>\")\n",
|
||||
"synapse_linked_service_name=os.getenv(\"SYNAPSE_LINKED_SERVICE_NAME\", \"<my-synapse-linked-service-name>\")\n",
|
||||
"\n",
|
||||
"synapse_link_config = SynapseWorkspaceLinkedServiceConfiguration(\n",
|
||||
" subscription_id=synapse_subscription_id,\n",
|
||||
" resource_group=synapse_resource_group,\n",
|
||||
" name=synapse_workspace_name\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"linked_service = LinkedService.register(\n",
|
||||
" workspace=ws,\n",
|
||||
" name=synapse_linked_service_name,\n",
|
||||
" linked_service_config=synapse_link_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Linked service property\n",
|
||||
"\n",
|
||||
"A MSI (system_assigned_identity_principal_id) will be generated for each linked service, for example:\n",
|
||||
"\n",
|
||||
"name=synapselink,</p>\n",
|
||||
"type=Synapse, </p>\n",
|
||||
"linked_service_resource_id=/subscriptions/4faaaf21-663f-4391-96fd-47197c630979/resourceGroups/static_resources_synapse_test/providers/Microsoft.Synapse/workspaces/synapsetest2, </p>\n",
|
||||
"system_assigned_identity_principal_id=eb355d52-3806-4c5a-aec9-91447e8cfc2e </p>\n",
|
||||
"\n",
|
||||
"#### Make sure you grant \"Synapse Apache Spark Administrator\" role of the synapse workspace to the generated workspace linking MSI in Synapse studio portal before you submit job."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"linked_service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"LinkedService.list(ws)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Attach Synapse spark pool as AML compute target"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"synapse_spark_pool_name=os.getenv(\"SYNAPSE_SPARK_POOL_NAME\", \"<my-synapse-spark-pool-name>\")\n",
|
||||
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")\n",
|
||||
"\n",
|
||||
"attach_config = SynapseCompute.attach_configuration(\n",
|
||||
" linked_service,\n",
|
||||
" type=\"SynapseSpark\",\n",
|
||||
" pool_name=synapse_spark_pool_name)\n",
|
||||
"\n",
|
||||
"synapse_compute=ComputeTarget.attach(\n",
|
||||
" workspace=ws,\n",
|
||||
" name=synapse_compute_name,\n",
|
||||
" attach_configuration=attach_config)\n",
|
||||
"\n",
|
||||
"synapse_compute.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Start an experiment run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prepare data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Use the default blob storage\n",
|
||||
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
|
||||
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
|
||||
"\n",
|
||||
"# We are uploading a sample file in the local directory to be used as a datasource\n",
|
||||
"file_name = \"Titanic.csv\"\n",
|
||||
"def_blob_store.upload_files(files=[\"./{}\".format(file_name)], overwrite=False)\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tabular dataset as input"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||
"input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## File dataset as input"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Dataset\n",
|
||||
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||
"input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Output config: the output will be registered as a File dataset\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.data import HDFSOutputDatasetConfig\n",
|
||||
"output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Dataprep script"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.makedirs(\"code\", exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile code/dataprep.py\n",
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"import azureml.core\n",
|
||||
"from pyspark.sql import SparkSession\n",
|
||||
"from azureml.core import Run, Dataset\n",
|
||||
"\n",
|
||||
"print(azureml.core.VERSION)\n",
|
||||
"print(os.environ)\n",
|
||||
"\n",
|
||||
"import argparse\n",
|
||||
"parser = argparse.ArgumentParser()\n",
|
||||
"parser.add_argument(\"--tabular_input\")\n",
|
||||
"parser.add_argument(\"--file_input\")\n",
|
||||
"parser.add_argument(\"--output_dir\")\n",
|
||||
"args = parser.parse_args()\n",
|
||||
"\n",
|
||||
"# use dataset sdk to read tabular dataset\n",
|
||||
"run_context = Run.get_context()\n",
|
||||
"dataset = Dataset.get_by_id(run_context.experiment.workspace,id=args.tabular_input)\n",
|
||||
"sdf = dataset.to_spark_dataframe()\n",
|
||||
"sdf.show()\n",
|
||||
"\n",
|
||||
"# use hdfs path to read file dataset\n",
|
||||
"spark= SparkSession.builder.getOrCreate()\n",
|
||||
"sdf = spark.read.option(\"header\", \"true\").csv(args.file_input)\n",
|
||||
"sdf.show()\n",
|
||||
"\n",
|
||||
"sdf.coalesce(1).write\\\n",
|
||||
".option(\"header\", \"true\")\\\n",
|
||||
".mode(\"append\")\\\n",
|
||||
".csv(args.output_dir)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up Conda dependency for the following Script Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.environment import CondaDependencies\n",
|
||||
"conda_dep = CondaDependencies()\n",
|
||||
"conda_dep.add_pip_package(\"azureml-core==1.20.0\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## How to leverage ScriptRunConfig to submit an experiment run to an attached Synapse Spark cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import RunConfiguration\n",
|
||||
"from azureml.core import ScriptRunConfig \n",
|
||||
"from azureml.core import Experiment\n",
|
||||
"\n",
|
||||
"run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"run_config.target = synapse_compute_name\n",
|
||||
"\n",
|
||||
"run_config.spark.configuration[\"spark.driver.memory\"] = \"1g\" \n",
|
||||
"run_config.spark.configuration[\"spark.driver.cores\"] = 2 \n",
|
||||
"run_config.spark.configuration[\"spark.executor.memory\"] = \"1g\" \n",
|
||||
"run_config.spark.configuration[\"spark.executor.cores\"] = 1 \n",
|
||||
"run_config.spark.configuration[\"spark.executor.instances\"] = 1 \n",
|
||||
"\n",
|
||||
"run_config.environment.python.conda_dependencies = conda_dep\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = './code',\n",
|
||||
" script= 'dataprep.py',\n",
|
||||
" arguments = [\"--tabular_input\", input1, \n",
|
||||
" \"--file_input\", input2,\n",
|
||||
" \"--output_dir\", output],\n",
|
||||
" run_config = run_config) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment \n",
|
||||
"exp = Experiment(workspace=ws, name=\"synapse-spark\") \n",
|
||||
"run = exp.submit(config=script_run_config) \n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## How to leverage SynapseSparkStep in an AML pipeline to orchestrate data prep step on Synapse Spark and training step on AzureML compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" max_nodes=1)\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile code/train.py\n",
|
||||
"import glob\n",
|
||||
"import os\n",
|
||||
"import sys\n",
|
||||
"from os import listdir\n",
|
||||
"from os.path import isfile, join\n",
|
||||
"\n",
|
||||
"mypath = os.environ[\"step2_input\"]\n",
|
||||
"files = [f for f in listdir(mypath) if isfile(join(mypath, f))]\n",
|
||||
"for file in files:\n",
|
||||
" with open(join(mypath,file)) as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"titanic_tabular_dataset = Dataset.Tabular.from_delimited_files(path=[(def_blob_store, file_name)])\n",
|
||||
"titanic_file_dataset = Dataset.File.from_files(path=[(def_blob_store, file_name)])\n",
|
||||
"\n",
|
||||
"step1_input1 = titanic_tabular_dataset.as_named_input(\"tabular_input\")\n",
|
||||
"step1_input2 = titanic_file_dataset.as_named_input(\"file_input\").as_hdfs()\n",
|
||||
"step1_output = HDFSOutputDatasetConfig(destination=(def_blob_store,\"test\")).register_on_complete(name=\"registered_dataset\")\n",
|
||||
"\n",
|
||||
"step2_input = step1_output.as_input(\"step2_input\").as_download()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"env = Environment(name=\"myenv\")\n",
|
||||
"env.python.conda_dependencies.add_pip_package(\"azureml-core==1.20.0\")\n",
|
||||
"\n",
|
||||
"step_1 = SynapseSparkStep(name = 'synapse-spark',\n",
|
||||
" file = 'dataprep.py',\n",
|
||||
" source_directory=\"./code\", \n",
|
||||
" inputs=[step1_input1, step1_input2],\n",
|
||||
" outputs=[step1_output],\n",
|
||||
" arguments = [\"--tabular_input\", step1_input1, \n",
|
||||
" \"--file_input\", step1_input2,\n",
|
||||
" \"--output_dir\", step1_output],\n",
|
||||
" compute_target = synapse_compute_name,\n",
|
||||
" driver_memory = \"7g\",\n",
|
||||
" driver_cores = 4,\n",
|
||||
" executor_memory = \"7g\",\n",
|
||||
" executor_cores = 2,\n",
|
||||
" num_executors = 1,\n",
|
||||
" environment = env)\n",
|
||||
"\n",
|
||||
"step_2 = PythonScriptStep(script_name=\"train.py\",\n",
|
||||
" arguments=[step2_input],\n",
|
||||
" inputs=[step2_input],\n",
|
||||
" compute_target=cpu_cluster_name,\n",
|
||||
" source_directory=\"./code\",\n",
|
||||
" allow_reuse=False)\n",
|
||||
"\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=[step_1, step_2])\n",
|
||||
"pipeline_run = pipeline.submit('synapse-pipeline', regenerate_outputs=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "yunzhan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -0,0 +1,327 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Interactive Spark Session on Synapse Spark Pool"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Install package"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -U \"azureml-synapse\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For JupyterLab, please additionally run:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!jupyter lab build --minimize=False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## PLEASE restart kernel and then refresh web page before starting spark session."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 0. How to leverage Spark Magic for interactive Spark experience"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.busy": "2020-06-05T03:22:14.965395Z",
|
||||
"iopub.status.idle": "2020-06-05T03:22:14.970398Z",
|
||||
"shell.execute_reply": "2020-06-05T03:22:14.969397Z",
|
||||
"shell.execute_reply.started": "2020-06-05T03:22:14.965395Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# show help\n",
|
||||
"%synapse ?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Start Synapse Session"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"synapse_compute_name=os.getenv(\"SYNAPSE_COMPUTE_NAME\", \"<my-synapse-compute-name>\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute linked to the Compute Instance's workspace with an aml envrionment.\n",
|
||||
"# conda dependencies specified in the environment will be installed before the spark session started.\n",
|
||||
"\n",
|
||||
"%synapse start -c $synapse_compute_name -e AzureML-Minimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute from anther workspace via its config file\n",
|
||||
"\n",
|
||||
"# %synapse start -c <compute-name> -f config.json"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# use Synapse compute from anther workspace via subscription_id, resource_group and workspace_name\n",
|
||||
"\n",
|
||||
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# start a spark session with an AML environment, \n",
|
||||
"# %synapse start -c <compute-name> -s <subscription-id> -r <resource group> -w <workspace-name> -e AzureML-Minimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Data prepration\n",
|
||||
"\n",
|
||||
"Three types of datastore are supported in synapse spark, and you have two ways to load the data.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"| Datastore Type | Data Acess |\n",
|
||||
"|--------------------|-------------------------------|\n",
|
||||
"| Blob | Credential |\n",
|
||||
"| Adlsgen1 | Credential & Credential-less |\n",
|
||||
"| Adlsgen2 | Credential & Credential-less |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Example 1: Data loading by HDFS path"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Read data from Blob**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup access key or sas token\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.key.<storage account name>.blob.core.windows.net\", \"<acess key>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.sas.<container name>.<storage account name>.blob.core.windows.net\", \"sas token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.parquet(\"wasbs://<container name>@<storage account name>.blob.core.windows.net/<path>\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Read data from Adlsgen1**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup service pricinpal which has access of the data\n",
|
||||
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.access.token.provider.type\",\"ClientCredential\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.client.id\", \"<client id>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.credential\", \"<client secret>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.adl.account.<storage account name>.oauth2.refresh.url\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.csv(\"adl://<storage account name>.azuredatalakestore.net/<path>\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"**Read data from Adlsgen2**\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# setup service pricinpal which has access of the data\n",
|
||||
"# If no data Credential is setup, the user identity will be used to do access control\n",
|
||||
"\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.auth.type.<storage account name>.dfs.core.windows.net\",\"OAuth\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth.provider.type.<storage account name>.dfs.core.windows.net\", \"org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.id.<storage account name>.dfs.core.windows.net\", \"<client id>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.secret.<storage account name>.dfs.core.windows.net\", \"<client secret>\")\n",
|
||||
"sc._jsc.hadoopConfiguration().set(\"fs.azure.account.oauth2.client.endpoint.<storage account name>.dfs.core.windows.net\", \"https://login.microsoftonline.com/<tenant id>/oauth2/token\")\n",
|
||||
"\n",
|
||||
"df = spark.read.csv(\"abfss://<container name>@<storage account>.dfs.core.windows.net/<path>\")\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"execution": {
|
||||
"iopub.execute_input": "2020-06-04T08:11:18.812276Z",
|
||||
"iopub.status.busy": "2020-06-04T08:11:18.812276Z",
|
||||
"iopub.status.idle": "2020-06-04T08:11:23.854526Z",
|
||||
"shell.execute_reply": "2020-06-04T08:11:23.853525Z",
|
||||
"shell.execute_reply.started": "2020-06-04T08:11:18.812276Z"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%synapse\n",
|
||||
"\n",
|
||||
"from pyspark.sql.functions import col, desc\n",
|
||||
"\n",
|
||||
"df = spark.read.option(\"header\", \"true\").csv(\"wasbs://demo@dprepdata.blob.core.windows.net/Titanic.csv\")\n",
|
||||
"df.filter(col('Survived') == 1).groupBy('Age').count().orderBy(desc('count')).show(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Example 2: Data loading by AML Dataset\n",
|
||||
"\n",
|
||||
"You can create tabular data by following the [guidance](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-register-datasets) and use to_spark_dataframe() to load the data.\n",
|
||||
"\n",
|
||||
"```text\n",
|
||||
"%%synapse\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"print(azureml.core.VERSION)\n",
|
||||
"\n",
|
||||
"from azureml.core import Workspace, Dataset\n",
|
||||
"ws = Workspace.get(name='<workspace name>', subscription_id='<subscription id>', resource_group='<resource group>')\n",
|
||||
"ds = Dataset.get_by_name(ws, \"<tabular dataset name>\")\n",
|
||||
"df = ds.to_spark_dataframe()\n",
|
||||
"\n",
|
||||
"# You can do more data transformation on spark dataframe\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 3. Session Metadata\n",
|
||||
"After session started, you can check the session's metadata, find the links to Synapse portal."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse meta"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 4. Stop Session\n",
|
||||
"When current session reach the status timeout, dead or any failure, you must explicitly stop it before start new one. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%synapse stop"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "yunzhan"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "0.28.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
18
how-to-use-azureml/azure-synapse/start_script.py
Normal file
18
how-to-use-azureml/azure-synapse/start_script.py
Normal file
@@ -0,0 +1,18 @@
|
||||
from pyspark.sql import SparkSession
|
||||
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", default="")
|
||||
parser.add_argument("--output", default="")
|
||||
|
||||
args, unparsed = parser.parse_known_args()
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
sc = spark.sparkContext
|
||||
|
||||
arr = sc._gateway.new_array(sc._jvm.java.lang.String, 2)
|
||||
arr[0] = args.input
|
||||
arr[1] = args.output
|
||||
|
||||
obj = sc._jvm.WordCount
|
||||
obj.main(arr)
|
||||
@@ -77,7 +77,7 @@
|
||||
"source": [
|
||||
"## Create trained model\n",
|
||||
"\n",
|
||||
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
|
||||
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset). "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -382,13 +382,111 @@
|
||||
"source": [
|
||||
"## Update Service\n",
|
||||
"\n",
|
||||
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"local_service.update(models=[SomeOtherModelObject],\n",
|
||||
"If you want to change your model(s), Conda dependencies or deployment configuration, call `update()` to rebuild the Docker image.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_service.update(models=[model],\n",
|
||||
" inference_config=inference_config,\n",
|
||||
" deployment_config=local_config)\n",
|
||||
"```"
|
||||
" deployment_config=deployment_config)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy model to AKS cluster based on the LocalWebservice's configuration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This is a one time setup for AKS Cluster. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your AKS cluster\n",
|
||||
"aks_name = 'my-aks-9' \n",
|
||||
"\n",
|
||||
"# Verify the cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" # Use the default configuration (can also provide parameters to customize)\n",
|
||||
" prov_config = AksCompute.provisioning_configuration()\n",
|
||||
"\n",
|
||||
" # Create the cluster\n",
|
||||
" aks_target = ComputeTarget.create(workspace = ws, \n",
|
||||
" name = aks_name, \n",
|
||||
" provisioning_configuration = prov_config)\n",
|
||||
"\n",
|
||||
"if aks_target.get_status() != \"Succeeded\":\n",
|
||||
" aks_target.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import AksWebservice\n",
|
||||
"# Set the web service configuration (using default here)\n",
|
||||
"aks_config = AksWebservice.deploy_configuration()\n",
|
||||
"\n",
|
||||
"# # Enable token auth and disable (key) auth on the webservice\n",
|
||||
"# aks_config = AksWebservice.deploy_configuration(token_auth_enabled=True, auth_enabled=False)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_service_name ='aks-service-1'\n",
|
||||
"\n",
|
||||
"aks_service = local_service.deploy_to_cloud(name=aks_service_name,\n",
|
||||
" deployment_config=aks_config,\n",
|
||||
" deployment_target=aks_target)\n",
|
||||
"\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)\n",
|
||||
"print(aks_service.state)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Test aks service\n",
|
||||
"\n",
|
||||
"sample_input = json.dumps({\n",
|
||||
" 'data': dataset_x[0:2].tolist()\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"aks_service.run(sample_input)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Delete the service if not needed.\n",
|
||||
"aks_service.delete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -157,7 +157,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Provision the AKS Cluster\n",
|
||||
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster."
|
||||
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -267,7 +267,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AKS compute if you haven't done so."
|
||||
"### Create AKS compute if you haven't done so.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -276,21 +278,24 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.core.compute import ComputeTarget, AksCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"aks_name = \"my-aks\"\n",
|
||||
"aks_name = \"my-aks-insights\"\n",
|
||||
"\n",
|
||||
"creating_compute = False\n",
|
||||
"try:\n",
|
||||
" aks_target = ComputeTarget(ws, aks_name)\n",
|
||||
" print(\"Using existing AKS cluster {}.\".format(aks_name))\n",
|
||||
" print(\"Using existing AKS compute target {}.\".format(aks_name))\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"Creating a new AKS cluster {}.\".format(aks_name))\n",
|
||||
" print(\"Creating a new AKS compute target {}.\".format(aks_name))\n",
|
||||
"\n",
|
||||
" # Use the default configuration (can also provide parameters to customize).\n",
|
||||
" prov_config = AksCompute.provisioning_configuration()\n",
|
||||
" aks_target = ComputeTarget.create(workspace=ws,\n",
|
||||
" name=aks_name,\n",
|
||||
" provisioning_configuration=prov_config)"
|
||||
" provisioning_configuration=prov_config)\n",
|
||||
" creating_compute = True"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -300,7 +305,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"if aks_target.provisioning_state != \"Succeeded\":\n",
|
||||
"if creating_compute and aks_target.provisioning_state != \"Succeeded\":\n",
|
||||
" aks_target.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
@@ -380,7 +385,7 @@
|
||||
" aks_service.wait_for_deployment(show_output=True)\n",
|
||||
" print(aks_service.state)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"AKS provisioning failed. Error: \", aks_service.error)"
|
||||
" raise ValueError(\"AKS cluster provisioning failed. Error: \", aks_target.provisioning_errors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -458,7 +463,9 @@
|
||||
"%%time\n",
|
||||
"aks_service.delete()\n",
|
||||
"aci_service.delete()\n",
|
||||
"model.delete()"
|
||||
"model.delete()\n",
|
||||
"if creating_compute:\n",
|
||||
" aks_target.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -94,6 +94,17 @@ def main():
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
|
||||
# Use Azure Open Datasets for MNIST dataset
|
||||
datasets.MNIST.resources = [
|
||||
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
|
||||
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
|
||||
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
|
||||
"d53e105ee54ea40749a09fcbcd1e9432"),
|
||||
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
|
||||
"9fb629c4189551a2d022fa330f9573f3"),
|
||||
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
|
||||
"ec29112dd5afa0611ce80d1b7f02629c")
|
||||
]
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
datasets.MNIST('data', train=True, download=True,
|
||||
transform=transforms.Compose([transforms.ToTensor(),
|
||||
|
||||
@@ -70,16 +70,16 @@
|
||||
"\n",
|
||||
"import urllib.request\n",
|
||||
"\n",
|
||||
"onnx_model_url = \"https://www.cntk.ai/OnnxModels/emotion_ferplus/opset_7/emotion_ferplus.tar.gz\"\n",
|
||||
"onnx_model_url = \"https://github.com/onnx/models/blob/master/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-7.tar.gz?raw=true\"\n",
|
||||
"\n",
|
||||
"urllib.request.urlretrieve(onnx_model_url, filename=\"emotion_ferplus.tar.gz\")\n",
|
||||
"urllib.request.urlretrieve(onnx_model_url, filename=\"emotion-ferplus-7.tar.gz\")\n",
|
||||
"\n",
|
||||
"# the ! magic command tells our jupyter notebook kernel to run the following line of \n",
|
||||
"# code from the command line instead of the notebook kernel\n",
|
||||
"\n",
|
||||
"# We use tar and xvcf to unzip the files we just retrieved from the ONNX model zoo\n",
|
||||
"\n",
|
||||
"!tar xvzf emotion_ferplus.tar.gz"
|
||||
"!tar xvzf emotion-ferplus-7.tar.gz"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -570,7 +570,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure(figsize = (16, 6), frameon=False)\n",
|
||||
"plt.figure(figsize = (16, 6))\n",
|
||||
"plt.subplot(1, 8, 1)\n",
|
||||
"\n",
|
||||
"plt.text(x = 0, y = -30, s = \"True Label: \", fontsize = 13, color = 'black')\n",
|
||||
|
||||
@@ -70,9 +70,9 @@
|
||||
"\n",
|
||||
"import urllib.request\n",
|
||||
"\n",
|
||||
"onnx_model_url = \"https://www.cntk.ai/OnnxModels/mnist/opset_7/mnist.tar.gz\"\n",
|
||||
"onnx_model_url = \"https://github.com/onnx/models/blob/master/vision/classification/mnist/model/mnist-7.tar.gz?raw=true\"\n",
|
||||
"\n",
|
||||
"urllib.request.urlretrieve(onnx_model_url, filename=\"mnist.tar.gz\")"
|
||||
"urllib.request.urlretrieve(onnx_model_url, filename=\"mnist-7.tar.gz\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -86,7 +86,7 @@
|
||||
"\n",
|
||||
"# We use tar and xvcf to unzip the files we just retrieved from the ONNX model zoo\n",
|
||||
"\n",
|
||||
"!tar xvzf mnist.tar.gz"
|
||||
"!tar xvzf mnist-7.tar.gz"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -521,7 +521,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure(figsize = (16, 6), frameon=False)\n",
|
||||
"plt.figure(figsize = (16, 6))\n",
|
||||
"plt.subplot(1, 8, 1)\n",
|
||||
"\n",
|
||||
"plt.text(x = 0, y = -30, s = \"True Label: \", fontsize = 13, color = 'black')\n",
|
||||
@@ -684,18 +684,7 @@
|
||||
"\n",
|
||||
"A convolution layer is a set of filters. Each filter is defined by a weight (**W**) matrix, and bias ($b$).\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"These filters are scanned across the image performing the dot product between the weights and corresponding input value ($x$). The bias value is added to the output of the dot product and the resulting sum is optionally mapped through an activation function. This process is illustrated in the following animation."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Image(url=\"https://www.cntk.ai/jup/cntk103d_conv2d_final.gif\", width= 200)"
|
||||
"These filters are scanned across the image performing the dot product between the weights and corresponding input value ($x$). The bias value is added to the output of the dot product and the resulting sum is optionally mapped through an activation function."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -707,24 +696,6 @@
|
||||
"The MNIST model from the ONNX Model Zoo uses maxpooling to update the weights in its convolutions, summarized by the graphic below. You can see the entire workflow of our pre-trained model in the following image, with our input images and our output probabilities of each of our 10 labels. If you're interested in exploring the logic behind creating a Deep Learning model further, please look at the [training tutorial for our ONNX MNIST Convolutional Neural Network](https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_103D_MNIST_ConvolutionalNeuralNetwork.ipynb). "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Max-Pooling for Convolutional Neural Nets\n",
|
||||
"\n",
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Pre-Trained Model Architecture\n",
|
||||
"\n",
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
||||
@@ -211,6 +211,8 @@
|
||||
"# Provision the AKS Cluster with SSL\n",
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
|
||||
]
|
||||
},
|
||||
@@ -226,7 +228,7 @@
|
||||
"# Leaf domain label generates a name using the formula\n",
|
||||
"# \"<leaf-domain-label>######.<azure-region>.cloudapp.azure.net\"\n",
|
||||
"# where \"######\" is a random series of characters\n",
|
||||
"provisioning_config.enable_ssl(leaf_domain_label = \"contoso\")\n",
|
||||
"provisioning_config.enable_ssl(leaf_domain_label = \"contoso\", overwrite_existing_domain = True)\n",
|
||||
"\n",
|
||||
"aks_name = 'my-aks-ssl-1' \n",
|
||||
"# Create the cluster\n",
|
||||
|
||||
@@ -325,7 +325,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Provision the AKS Cluster\n",
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
|
||||
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -121,8 +121,6 @@
|
||||
"source": [
|
||||
"You can now create and/or use an Environment object when deploying a Webservice. The Environment can have been previously registered with your Workspace, or it will be registered with it as a part of the Webservice deployment.\n",
|
||||
"\n",
|
||||
"In this notebook, we will be using 'AzureML-PySpark-MmlSpark-0.15', a curated environment.\n",
|
||||
"\n",
|
||||
"More information can be found in our [using environments notebook](../training/using-environments/using-environments.ipynb)."
|
||||
]
|
||||
},
|
||||
@@ -132,9 +130,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Environment\n",
|
||||
"\n",
|
||||
"env = Environment.get(ws, name='AzureML-PySpark-MmlSpark-0.15')\n"
|
||||
"from azureml.core import Environment\r\n",
|
||||
"from azureml.core.environment import SparkPackage\r\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\r\n",
|
||||
"\r\n",
|
||||
"myenv = Environment('my-pyspark-environment')\r\n",
|
||||
"myenv.docker.base_image = \"mcr.microsoft.com/mmlspark/release:0.15\"\r\n",
|
||||
"myenv.inferencing_stack_version = \"latest\"\r\n",
|
||||
"myenv.python.conda_dependencies = CondaDependencies.create(pip_packages=[\"azureml-core\",\"azureml-defaults\",\"azureml-telemetry\",\"azureml-train-restclients-hyperdrive\",\"azureml-train-core\"], python_version=\"3.6.2\")\r\n",
|
||||
"myenv.python.conda_dependencies.add_channel(\"conda-forge\")\r\n",
|
||||
"myenv.spark.packages = [SparkPackage(\"com.microsoft.ml.spark\", \"mmlspark_2.11\", \"0.15\"), SparkPackage(\"com.microsoft.azure\", \"azure-storage\", \"2.0.0\"), SparkPackage(\"org.apache.hadoop\", \"hadoop-azure\", \"2.7.0\")]\r\n",
|
||||
"myenv.spark.repositories = [\"https://mmlspark.azureedge.net/maven\"]\r\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -171,7 +177,7 @@
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=env)"
|
||||
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -23,7 +23,7 @@
|
||||
"# Train and explain models remotely via Azure Machine Learning Compute\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"_**This notebook showcases how to use the Azure Machine Learning Interpretability SDK to train and explain a regression model remotely on an Azure Machine Leanrning Compute Target (AMLCompute).**_\n",
|
||||
"_**This notebook showcases how to use the Azure Machine Learning Interpretability SDK to train and explain a regression model remotely on an Azure Machine Learning Compute Target (AMLCompute).**_\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -35,10 +35,7 @@
|
||||
" 1. Initialize a Workspace\n",
|
||||
" 1. Create an Experiment\n",
|
||||
" 1. Introduction to AmlCompute\n",
|
||||
" 1. Submit an AmlCompute run in a few different ways\n",
|
||||
" 1. Option 1: Provision as a run based compute target \n",
|
||||
" 1. Option 2: Provision as a persistent compute target (Basic)\n",
|
||||
" 1. Option 3: Provision as a persistent compute target (Advanced)\n",
|
||||
" 1. Submit an AmlCompute run\n",
|
||||
"1. Additional operations to perform on AmlCompute\n",
|
||||
"1. [Download model explanations from Azure Machine Learning Run History](#Download)\n",
|
||||
"1. [Visualize explanations](#Visualize)\n",
|
||||
@@ -158,7 +155,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Submit an AmlCompute run in a few different ways\n",
|
||||
"## Submit an AmlCompute run\n",
|
||||
"\n",
|
||||
"First lets check which VM families are available in your region. Azure is a regional service and some specialized SKUs (especially GPUs) are only available in certain regions. Since AmlCompute is created in the region of your workspace, we will use the supported_vms () function to see if the VM family we want to use ('STANDARD_D2_V2') is supported.\n",
|
||||
"\n",
|
||||
@@ -204,7 +201,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Option 1: Provision a compute target (Basic)\n",
|
||||
"### Provision a compute target\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
|
||||
"\n",
|
||||
@@ -218,7 +217,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
@@ -258,11 +256,8 @@
|
||||
"# Set compute target to AmlCompute target created in previous step\n",
|
||||
"run_config.target = cpu_cluster.name\n",
|
||||
"\n",
|
||||
"# Enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
" 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
@@ -271,7 +266,7 @@
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
"for dist in list(available_packages):\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
@@ -290,7 +285,6 @@
|
||||
"azureml_pip_packages.extend([sklearn_dep, pandas_dep])\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"from azureml.core import Run\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"src = ScriptRunConfig(source_directory=project_folder, \n",
|
||||
@@ -327,183 +321,6 @@
|
||||
"run.get_metrics()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Option 2: Provision a compute target (Advanced)\n",
|
||||
"\n",
|
||||
"You can also specify additional properties or change defaults while provisioning AmlCompute using a more advanced configuration. This is useful when you want a dedicated cluster of 4 nodes (for example you can set the min_nodes and max_nodes to 4), or want the compute to be within an existing VNet in your subscription.\n",
|
||||
"\n",
|
||||
"In addition to `vm_size` and `max_nodes`, you can specify:\n",
|
||||
"* `min_nodes`: Minimum nodes (default 0 nodes) to downscale to while running a job on AmlCompute\n",
|
||||
"* `vm_priority`: Choose between 'dedicated' (default) and 'lowpriority' VMs when provisioning AmlCompute. Low Priority VMs use Azure's excess capacity and are thus cheaper but risk your run being pre-empted\n",
|
||||
"* `idle_seconds_before_scaledown`: Idle time (default 120 seconds) to wait after run completion before auto-scaling to min_nodes\n",
|
||||
"* `vnet_resourcegroup_name`: Resource group of the **existing** VNet within which AmlCompute should be provisioned\n",
|
||||
"* `vnet_name`: Name of VNet\n",
|
||||
"* `subnet_name`: Name of SubNet within the VNet"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"cpu-cluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" vm_priority='lowpriority',\n",
|
||||
" min_nodes=2,\n",
|
||||
" max_nodes=4,\n",
|
||||
" idle_seconds_before_scaledown='300',\n",
|
||||
" vnet_resourcegroup_name='<my-resource-group>',\n",
|
||||
" vnet_name='<my-vnet-name>',\n",
|
||||
" subnet_name='<my-subnet-name>')\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure & Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# Create a new RunConfig object\n",
|
||||
"run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to AmlCompute target created in previous step\n",
|
||||
"run_config.target = cpu_cluster.name\n",
|
||||
"\n",
|
||||
"# Enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
"for dist in available_packages:\n",
|
||||
" if dist.key == 'scikit-learn':\n",
|
||||
" sklearn_ver = dist.version\n",
|
||||
" elif dist.key == 'pandas':\n",
|
||||
" pandas_ver = dist.version\n",
|
||||
"sklearn_dep = 'scikit-learn'\n",
|
||||
"pandas_dep = 'pandas'\n",
|
||||
"if sklearn_ver:\n",
|
||||
" sklearn_dep = 'scikit-learn=={}'.format(sklearn_ver)\n",
|
||||
"if pandas_ver:\n",
|
||||
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
|
||||
"# Specify CondaDependencies obj\n",
|
||||
"# The CondaDependencies specifies the conda and pip packages that are installed in the environment\n",
|
||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||
"azureml_pip_packages.extend([sklearn_dep, pandas_dep])\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"from azureml.core import Run\n",
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"src = ScriptRunConfig(source_directory=project_folder, \n",
|
||||
" script='train_explain.py', \n",
|
||||
" run_config=run_config) \n",
|
||||
"run = experiment.submit(config=src)\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# Shows output of the run on stdout.\n",
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run.get_metrics()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Additional operations to perform on AmlCompute\n",
|
||||
"\n",
|
||||
"You can perform more operations on AmlCompute such as updating the node counts or deleting the compute. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get_status () gets the latest status of the AmlCompute target\n",
|
||||
"cpu_cluster.get_status().serialize()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Update () takes in the min_nodes, max_nodes and idle_seconds_before_scaledown and updates the AmlCompute target\n",
|
||||
"# cpu_cluster.update(min_nodes=1)\n",
|
||||
"# cpu_cluster.update(max_nodes=10)\n",
|
||||
"cpu_cluster.update(idle_seconds_before_scaledown=300)\n",
|
||||
"# cpu_cluster.update(min_nodes=2, max_nodes=4, idle_seconds_before_scaledown=600)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Delete () is used to deprovision and delete the AmlCompute target. Useful if you want to re-use the compute name \n",
|
||||
"# 'cpu-cluster' in this case but use a different VM family for instance.\n",
|
||||
"\n",
|
||||
"# cpu_cluster.delete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -597,7 +414,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Retrieve x_test for visualization\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test_boston_housing.pkl'\n",
|
||||
"run.download_file('x_test_boston_housing.pkl', output_file_path=x_test_path)"
|
||||
]
|
||||
@@ -625,7 +441,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -634,7 +450,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, original_model, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, original_model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,9 +3,12 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-interpret
|
||||
- interpret-community[visualization]
|
||||
- flask
|
||||
- flask-cors
|
||||
- gevent>=1.3.6
|
||||
- jinja2
|
||||
- ipython
|
||||
- matplotlib
|
||||
- azureml-contrib-interpret
|
||||
- sklearn-pandas<2.0.0
|
||||
- azureml-dataset-runtime
|
||||
- ipywidgets
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
@@ -57,7 +57,7 @@
|
||||
"Problem: IBM employee attrition classification with scikit-learn (run model explainer locally and upload explanation to the Azure Machine Learning Run History)\n",
|
||||
"\n",
|
||||
"1. Train a SVM classification model using Scikit-learn\n",
|
||||
"2. Run 'explain_model' with AML Run History, which leverages run history service to store and manage the explanation data\n",
|
||||
"2. Run 'explain-model-sample' with AML Run History, which leverages run history service to store and manage the explanation data\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"Setup: If you are using Jupyter notebooks, the extensions should be installed automatically with the package.\n",
|
||||
@@ -87,7 +87,6 @@
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.svm import SVC\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Explainers:\n",
|
||||
"# 1. SHAP Tabular Explainer\n",
|
||||
@@ -226,36 +225,6 @@
|
||||
" ('classifier', SVC(C=1.0, probability=True))])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'''\n",
|
||||
"# Uncomment below if sklearn-pandas is not installed\n",
|
||||
"#!pip install sklearn-pandas\n",
|
||||
"from sklearn_pandas import DataFrameMapper\n",
|
||||
"\n",
|
||||
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"numeric_transformations = [([f], Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])) for f in numerical]\n",
|
||||
"\n",
|
||||
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
|
||||
"\n",
|
||||
"transformations = numeric_transformations + categorical_transformations\n",
|
||||
"\n",
|
||||
"# Append classifier to preprocessing pipeline.\n",
|
||||
"# Now we have a full prediction pipeline.\n",
|
||||
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
|
||||
" ('classifier', SVC(C=1.0, probability=True))]) \n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -475,7 +444,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment_name = 'explain_model'\n",
|
||||
"experiment_name = 'explain-model-sample'\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"run = experiment.start_logging()\n",
|
||||
"client = ExplanationClient.from_run(run)"
|
||||
@@ -563,7 +532,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -572,7 +541,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(downloaded_global_explanation, model, datasetX=x_test)"
|
||||
"ExplanationDashboard(downloaded_global_explanation, model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,7 +3,11 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-interpret
|
||||
- interpret-community[visualization]
|
||||
- flask
|
||||
- flask-cors
|
||||
- gevent>=1.3.6
|
||||
- jinja2
|
||||
- ipython
|
||||
- matplotlib
|
||||
- azureml-contrib-interpret
|
||||
- ipywidgets
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
@@ -166,12 +166,11 @@
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"import joblib\n",
|
||||
"from sklearn.compose import ColumnTransformer\n",
|
||||
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
|
||||
"from sklearn.impute import SimpleImputer\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.ensemble import RandomForestClassifier\n",
|
||||
"from sklearn_pandas import DataFrameMapper\n",
|
||||
"\n",
|
||||
"from interpret.ext.blackbox import TabularExplainer\n",
|
||||
"\n",
|
||||
@@ -201,21 +200,26 @@
|
||||
"# Store the numerical columns in a list numerical\n",
|
||||
"numerical = attritionXData.columns.difference(categorical)\n",
|
||||
"\n",
|
||||
"numeric_transformations = [([f], Pipeline(steps=[\n",
|
||||
"# We create the preprocessing pipelines for both numeric and categorical data.\n",
|
||||
"numeric_transformer = Pipeline(steps=[\n",
|
||||
" ('imputer', SimpleImputer(strategy='median')),\n",
|
||||
" ('scaler', StandardScaler())])) for f in numerical]\n",
|
||||
" ('scaler', StandardScaler())])\n",
|
||||
"\n",
|
||||
"categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]\n",
|
||||
"categorical_transformer = Pipeline(steps=[\n",
|
||||
" ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),\n",
|
||||
" ('onehot', OneHotEncoder(handle_unknown='ignore'))])\n",
|
||||
"\n",
|
||||
"transformations = numeric_transformations + categorical_transformations\n",
|
||||
"transformations = ColumnTransformer(\n",
|
||||
" transformers=[\n",
|
||||
" ('num', numeric_transformer, numerical),\n",
|
||||
" ('cat', categorical_transformer, categorical)])\n",
|
||||
"\n",
|
||||
"# Append classifier to preprocessing pipeline.\n",
|
||||
"# Now we have a full prediction pipeline.\n",
|
||||
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n",
|
||||
"clf = Pipeline(steps=[('preprocessor', transformations),\n",
|
||||
" ('classifier', RandomForestClassifier())])\n",
|
||||
"\n",
|
||||
"# Split data into train and test\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"x_train, x_test, y_train, y_test = train_test_split(attritionXData,\n",
|
||||
" target,\n",
|
||||
" test_size=0.2,\n",
|
||||
@@ -290,7 +294,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -299,7 +303,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, clf, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, clf, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -323,7 +327,7 @@
|
||||
"\n",
|
||||
"# azureml-defaults is required to host the model as a web service.\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
|
||||
" 'azureml-defaults', 'azureml-core', 'azureml-telemetry',\n",
|
||||
" 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
" \n",
|
||||
@@ -350,8 +354,7 @@
|
||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages,\n",
|
||||
" pin_sdk_version=False)\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=['pyyaml', sklearn_dep, pandas_dep] + azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())\n",
|
||||
@@ -377,11 +380,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"from azureml.exceptions import WebserviceException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
@@ -395,7 +397,12 @@
|
||||
"\n",
|
||||
"# Use configs and models generated above\n",
|
||||
"service = Model.deploy(ws, 'model-scoring-deploy-local', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
"try:\n",
|
||||
" service.wait_for_deployment(show_output=True)\n",
|
||||
"except WebserviceException as e:\n",
|
||||
" print(e.message)\n",
|
||||
" print(service.get_logs())\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,8 +3,11 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-interpret
|
||||
- interpret-community[visualization]
|
||||
- flask
|
||||
- flask-cors
|
||||
- gevent>=1.3.6
|
||||
- jinja2
|
||||
- ipython
|
||||
- matplotlib
|
||||
- azureml-contrib-interpret
|
||||
- sklearn-pandas<2.0.0
|
||||
- ipywidgets
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
@@ -204,6 +204,8 @@
|
||||
"source": [
|
||||
"### Provision a compute target\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"You can provision an AmlCompute resource by simply defining two parameters thanks to smart defaults. By default it autoscales from 0 nodes and provisions dedicated VMs to run your job in a container. This is useful when you want to continously re-use the same target, debug it between jobs or simply share the resource with other users of your workspace.\n",
|
||||
"\n",
|
||||
"* `vm_size`: VM family of the nodes provisioned by AmlCompute. Simply choose from the supported_vmsizes() above\n",
|
||||
@@ -216,7 +218,6 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
@@ -257,9 +258,6 @@
|
||||
"# Set compute target to AmlCompute target created in previous step\n",
|
||||
"run_config.target = cpu_cluster.name\n",
|
||||
"\n",
|
||||
"# Enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# Set Docker base image to the default CPU-based image\n",
|
||||
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
@@ -267,7 +265,7 @@
|
||||
"run_config.environment.python.user_managed_dependencies = False\n",
|
||||
"\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
" 'azureml-defaults', 'azureml-telemetry', 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
@@ -294,7 +292,7 @@
|
||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
|
||||
"azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||
"# Now submit a run on AmlCompute\n",
|
||||
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
||||
@@ -381,7 +379,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Retrieve x_test for visualization\n",
|
||||
"import joblib\n",
|
||||
"x_test_path = './x_test.pkl'\n",
|
||||
"run.download_file('x_test_ibm.pkl', output_file_path=x_test_path)\n",
|
||||
"x_test = joblib.load(x_test_path)"
|
||||
@@ -401,7 +398,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from interpret_community.widget import ExplanationDashboard"
|
||||
"from raiwidgets import ExplanationDashboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -410,7 +407,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ExplanationDashboard(global_explanation, original_svm_model, datasetX=x_test)"
|
||||
"ExplanationDashboard(global_explanation, original_svm_model, dataset=x_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -427,18 +424,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"# WARNING: to install this, g++ needs to be available on the Docker image and is not by default (look at the next cell)\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-defaults', 'azureml-contrib-interpret', 'azureml-core', 'azureml-telemetry',\n",
|
||||
" 'azureml-defaults', 'azureml-core', 'azureml-telemetry',\n",
|
||||
" 'azureml-interpret'\n",
|
||||
"]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"# Note: this is to pin the scikit-learn and pandas versions to be same as notebook.\n",
|
||||
"# In production scenario user would choose their dependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"available_packages = pkg_resources.working_set\n",
|
||||
"sklearn_ver = None\n",
|
||||
"pandas_ver = None\n",
|
||||
@@ -458,7 +452,7 @@
|
||||
"# the submitted job is run in. Note the remote environment(s) needs to be similar to the local\n",
|
||||
"# environment, otherwise if a model is trained or deployed in a different environment this can\n",
|
||||
"# cause errors. Please take extra care when specifying your dependencies in a production environment.\n",
|
||||
"azureml_pip_packages.extend(['sklearn-pandas', 'pyyaml', sklearn_dep, pandas_dep])\n",
|
||||
"azureml_pip_packages.extend(['pyyaml', sklearn_dep, pandas_dep])\n",
|
||||
"myenv = CondaDependencies.create(pip_packages=azureml_pip_packages)\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
@@ -484,11 +478,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.environment import Environment\n",
|
||||
"from azureml.exceptions import WebserviceException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
@@ -502,7 +495,12 @@
|
||||
"\n",
|
||||
"# Use configs and models generated above\n",
|
||||
"service = Model.deploy(ws, 'model-scoring-service', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
"try:\n",
|
||||
" service.wait_for_deployment(show_output=True)\n",
|
||||
"except WebserviceException as e:\n",
|
||||
" print(e.message)\n",
|
||||
" print(service.get_logs())\n",
|
||||
" raise"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -3,10 +3,13 @@ dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-interpret
|
||||
- interpret-community[visualization]
|
||||
- flask
|
||||
- flask-cors
|
||||
- gevent>=1.3.6
|
||||
- jinja2
|
||||
- ipython
|
||||
- matplotlib
|
||||
- azureml-contrib-interpret
|
||||
- sklearn-pandas<2.0.0
|
||||
- azureml-dataset-runtime
|
||||
- azureml-core
|
||||
- ipywidgets
|
||||
- raiwidgets~=0.7.0
|
||||
|
||||
@@ -5,13 +5,13 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import zipfile
|
||||
from sklearn.model_selection import train_test_split
|
||||
import joblib
|
||||
from sklearn.compose import ColumnTransformer
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
||||
from sklearn.impute import SimpleImputer
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn_pandas import DataFrameMapper
|
||||
|
||||
from azureml.core.run import Run
|
||||
from interpret.ext.blackbox import TabularExplainer
|
||||
@@ -57,16 +57,22 @@ for col, value in attritionXData.iteritems():
|
||||
# store the numerical columns
|
||||
numerical = attritionXData.columns.difference(categorical)
|
||||
|
||||
numeric_transformations = [([f], Pipeline(steps=[
|
||||
# We create the preprocessing pipelines for both numeric and categorical data.
|
||||
numeric_transformer = Pipeline(steps=[
|
||||
('imputer', SimpleImputer(strategy='median')),
|
||||
('scaler', StandardScaler())])) for f in numerical]
|
||||
('scaler', StandardScaler())])
|
||||
|
||||
categorical_transformations = [([f], OneHotEncoder(handle_unknown='ignore', sparse=False)) for f in categorical]
|
||||
categorical_transformer = Pipeline(steps=[
|
||||
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
|
||||
('onehot', OneHotEncoder(handle_unknown='ignore'))])
|
||||
|
||||
transformations = numeric_transformations + categorical_transformations
|
||||
transformations = ColumnTransformer(
|
||||
transformers=[
|
||||
('num', numeric_transformer, numerical),
|
||||
('cat', categorical_transformer, categorical)])
|
||||
|
||||
# append classifier to preprocessing pipeline
|
||||
clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),
|
||||
clf = Pipeline(steps=[('preprocessor', transformations),
|
||||
('classifier', LogisticRegression(solver='lbfgs'))])
|
||||
|
||||
# get the run this was submitted from to interact with run history
|
||||
|
||||
@@ -9,7 +9,7 @@ These notebooks below are designed to go in sequence.
|
||||
4. [aml-pipelines-data-transfer.ipynb](https://aka.ms/pl-data-trans): This notebook shows how you transfer data between supported datastores.
|
||||
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](https://aka.ms/pl-databricks): This notebooks shows how you can use Pipelines to send your compute payload to Azure Databricks.
|
||||
6. [aml-pipelines-use-adla-as-compute-target.ipynb](https://aka.ms/pl-adla): This notebook shows how you can use Azure Data Lake Analytics (ADLA) as a compute target.
|
||||
7. [aml-pipelines-how-to-use-estimatorstep.ipynb](https://aka.ms/pl-estimator): This notebook shows how to use the EstimatorStep.
|
||||
7. [aml-pipelines-with-commandstep.ipynb](aml-pipelines-with-commandstep.ipynb): This notebook shows how to use the CommandStep.
|
||||
8. [aml-pipelines-parameter-tuning-with-hyperdrive.ipynb](https://aka.ms/pl-hyperdrive): HyperDriveStep in Pipelines shows how you can do hyper parameter tuning using Pipelines.
|
||||
9. [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb](https://aka.ms/pl-azbatch): AzureBatchStep can be used to run your custom code in AzureBatch cluster.
|
||||
10. [aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb](https://aka.ms/pl-schedule): Once you publish a Pipeline, you can schedule it to trigger based on an interval or on data change in a defined datastore.
|
||||
@@ -19,5 +19,6 @@ These notebooks below are designed to go in sequence.
|
||||
14. [aml-pipelines-how-to-use-pipeline-drafts.ipynb](http://aka.ms/pl-pl-draft): This notebook shows how to use Pipeline Drafts. Pipeline Drafts are mutable pipelines which can be used to submit runs and create Published Pipelines.
|
||||
15. [aml-pipelines-hot-to-use-modulestep.ipynb](https://aka.ms/pl-modulestep): This notebook shows how to define Module, ModuleVersion and how to use them in an AML Pipeline using ModuleStep.
|
||||
16. [aml-pipelines-with-notebook-runner-step.ipynb](https://aka.ms/pl-nbrstep): This notebook shows how you can run another notebook as a step in Azure Machine Learning Pipeline.
|
||||
17. [aml-pipelines-with-commandstep-r.ipynb](aml-pipelines-with-commandstep-r.ipynb): This notebook shows how to use CommandStep to run R scripts.
|
||||
|
||||

|
||||
|
||||
@@ -22,6 +22,8 @@
|
||||
"# Azure Machine Learning Pipeline with DataTransferStep\n",
|
||||
"This notebook is used to demonstrate the use of DataTransferStep in an Azure Machine Learning Pipeline.\n",
|
||||
"\n",
|
||||
"> **Note:** In Azure Machine Learning, you can write output data directly to Azure Blob Storage, Azure Data Lake Storage Gen 1, Azure Data Lake Storage Gen 2, Azure FileShare without going through extra DataTransferStep. Learn how to use [OutputFileDatasetConfig](https://docs.microsoft.com/python/api/azureml-core/azureml.data.output_dataset_config.outputfiledatasetconfig?view=azure-ml-py) to achieve that with sample notebooks [here](https://aka.ms/pipeline-with-dataset).**\n",
|
||||
"\n",
|
||||
"In certain cases, you will need to transfer data from one data location to another. For example, your data may be in Azure SQL Database and you may want to move it to Azure Data Lake storage. Or, your data is in an ADLS account and you want to make it available in the Blob storage. The built-in **DataTransferStep** class helps you transfer data in these situations.\n",
|
||||
"\n",
|
||||
"The below examples show how to move data between different storage types supported in Azure Machine Learning.\n",
|
||||
@@ -124,7 +126,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from msrest.exceptions import HttpOperationError\n",
|
||||
"from azureml.exceptions import UserErrorException\n",
|
||||
"\n",
|
||||
"blob_datastore_name='MyBlobDatastore'\n",
|
||||
"account_name=os.getenv(\"BLOB_ACCOUNTNAME_62\", \"<my-account-name>\") # Storage account name\n",
|
||||
@@ -134,7 +136,7 @@
|
||||
"try:\n",
|
||||
" blob_datastore = Datastore.get(ws, blob_datastore_name)\n",
|
||||
" print(\"Found Blob Datastore with name: %s\" % blob_datastore_name)\n",
|
||||
"except HttpOperationError:\n",
|
||||
"except UserErrorException:\n",
|
||||
" blob_datastore = Datastore.register_azure_blob_container(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=blob_datastore_name,\n",
|
||||
@@ -178,7 +180,7 @@
|
||||
"try:\n",
|
||||
" adls_datastore = Datastore.get(ws, datastore_name)\n",
|
||||
" print(\"Found datastore with name: %s\" % datastore_name)\n",
|
||||
"except HttpOperationError:\n",
|
||||
"except UserErrorException:\n",
|
||||
" adls_datastore = Datastore.register_azure_data_lake(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=datastore_name,\n",
|
||||
@@ -268,7 +270,7 @@
|
||||
"try:\n",
|
||||
" sql_datastore = Datastore.get(ws, sql_datastore_name)\n",
|
||||
" print(\"Found sql database datastore with name: %s\" % sql_datastore_name)\n",
|
||||
"except HttpOperationError:\n",
|
||||
"except UserErrorException:\n",
|
||||
" sql_datastore = Datastore.register_azure_sql_database(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=sql_datastore_name,\n",
|
||||
@@ -310,7 +312,7 @@
|
||||
"try:\n",
|
||||
" psql_datastore = Datastore.get(ws, psql_datastore_name)\n",
|
||||
" print(\"Found PostgreSQL database datastore with name: %s\" % psql_datastore_name)\n",
|
||||
"except HttpOperationError:\n",
|
||||
"except UserErrorException:\n",
|
||||
" psql_datastore = Datastore.register_azure_postgre_sql(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=psql_datastore_name,\n",
|
||||
@@ -351,7 +353,7 @@
|
||||
"try:\n",
|
||||
" mysql_datastore = Datastore.get(ws, mysql_datastore_name)\n",
|
||||
" print(\"Found MySQL database datastore with name: %s\" % mysql_datastore_name)\n",
|
||||
"except HttpOperationError:\n",
|
||||
"except UserErrorException:\n",
|
||||
" mysql_datastore = Datastore.register_azure_my_sql(\n",
|
||||
" workspace=ws,\n",
|
||||
" datastore_name=mysql_datastore_name,\n",
|
||||
|
||||
@@ -209,6 +209,8 @@
|
||||
"#### Retrieve or create a Azure Machine Learning compute\n",
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. We will create an Azure Machine Learning Compute containing **STANDARD_D2_V2 CPU VMs**. This process is broken down into the following steps:\n",
|
||||
"\n",
|
||||
"1. Create the configuration\n",
|
||||
|
||||
@@ -341,7 +341,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline = Pipeline(workspace=ws, steps=[step])\n",
|
||||
"pipeline_run = Experiment(ws, 'azurebatch_experiment').submit(pipeline)"
|
||||
"pipeline_run = Experiment(ws, 'azurebatch_sample').submit(pipeline)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
name: aml-pipelines-how-to-use-estimatorstep
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-widgets
|
||||
@@ -55,7 +55,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Target\n",
|
||||
"Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline."
|
||||
"Retrieve an already attached Azure Machine Learning Compute to use in the Pipeline.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -130,7 +132,7 @@
|
||||
"\n",
|
||||
"pipeline_draft = PipelineDraft.create(ws, name=\"TestPipelineDraft\",\n",
|
||||
" description=\"draft description\",\n",
|
||||
" experiment_name=\"helloworld\",\n",
|
||||
" experiment_name=\"pipeline_draft_sample\",\n",
|
||||
" pipeline=pipeline,\n",
|
||||
" continue_on_step_failure=True,\n",
|
||||
" tags={'dev': 'true'},\n",
|
||||
|
||||
@@ -42,13 +42,13 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment, Datastore, Dataset\n",
|
||||
"from azureml.core import Workspace, Environment, Experiment, Datastore, Dataset, ScriptRunConfig\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.train.dnn import TensorFlow\n",
|
||||
"# from azureml.train.hyperdrive import *\n",
|
||||
"from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun, PythonScriptStep\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData, TrainingOutput\n",
|
||||
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal\n",
|
||||
"from azureml.train.hyperdrive import choice, loguniform\n",
|
||||
"\n",
|
||||
@@ -119,12 +119,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"os.makedirs('./data/mnist', exist_ok=True)\n",
|
||||
"data_folder = os.path.join(os.getcwd(), 'data/mnist')\n",
|
||||
"os.makedirs(data_folder, exist_ok=True)\n",
|
||||
"\n",
|
||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz', filename = './data/mnist/train-images.gz')\n",
|
||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', filename = './data/mnist/train-labels.gz')\n",
|
||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', filename = './data/mnist/test-images.gz')\n",
|
||||
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')"
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-images.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'train-labels.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-images-idx3-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'test-images.gz'))\n",
|
||||
"urllib.request.urlretrieve('https://azureopendatastorage.blob.core.windows.net/mnist/t10k-labels-idx1-ubyte.gz',\n",
|
||||
" filename=os.path.join(data_folder, 'test-labels.gz'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -144,11 +149,11 @@
|
||||
"from utils import load_data\n",
|
||||
"\n",
|
||||
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
|
||||
"X_train = load_data('./data/mnist/train-images.gz', False) / 255.0\n",
|
||||
"y_train = load_data('./data/mnist/train-labels.gz', True).reshape(-1)\n",
|
||||
"X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / np.float32(255.0)\n",
|
||||
"X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / np.float32(255.0)\n",
|
||||
"y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)\n",
|
||||
"y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)\n",
|
||||
"\n",
|
||||
"X_test = load_data('./data/mnist/test-images.gz', False) / 255.0\n",
|
||||
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
|
||||
"\n",
|
||||
"count = 0\n",
|
||||
"sample_size = 30\n",
|
||||
@@ -205,6 +210,8 @@
|
||||
"## Retrieve or create a Azure Machine Learning compute\n",
|
||||
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
|
||||
"\n",
|
||||
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n",
|
||||
"\n",
|
||||
"1. Create the configuration\n",
|
||||
@@ -230,9 +237,24 @@
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
" compute_target.wait_for_completion(show_output=True, timeout_in_minutes=20)\n",
|
||||
"compute_target.wait_for_completion(show_output=True, timeout_in_minutes=20)\n",
|
||||
"\n",
|
||||
"print(\"Azure Machine Learning Compute attached\")"
|
||||
"print(\"Azure Machine Learning Compute attached\")\n",
|
||||
"\n",
|
||||
"cpu_cluster_name = \"cpu-cluster\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print(\"Found existing cpu-cluster\")\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"Creating new cpu-cluster\")\n",
|
||||
" \n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
|
||||
" min_nodes=0,\n",
|
||||
" max_nodes=4)\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
" \n",
|
||||
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -260,13 +282,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create TensorFlow estimator\n",
|
||||
"Next, we construct an [TensorFlow](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py) estimator object.\n",
|
||||
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker.\n",
|
||||
"\n",
|
||||
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release.\n",
|
||||
"\n",
|
||||
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
|
||||
"## Retrieve an Environment\n",
|
||||
"In this tutorial, we will use one of Azure ML's curated TensorFlow environments for training. Curated environments are available in your workspace by default. Specifically, we will use the TensorFlow 2.0 GPU curated environment."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -275,12 +292,45 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"est = TensorFlow(source_directory=script_folder, \n",
|
||||
" compute_target=compute_target,\n",
|
||||
" entry_script='tf_mnist.py', \n",
|
||||
" use_gpu=True,\n",
|
||||
" framework_version='2.0',\n",
|
||||
" pip_packages=['azureml-dataset-runtime[pandas,fuse]'])"
|
||||
"tf_env = Environment.get(ws, name='AzureML-TensorFlow-2.0-GPU')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup an input for the ScriptRunConfig step\n",
|
||||
"You can mount dataset to remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_folder = dataset.as_mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure the training job\n",
|
||||
"Create a ScriptRunConfig object to specify the configuration details of your training job, including your training script, environment to use, and the compute target to run on"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"src = ScriptRunConfig(source_directory=script_folder,\n",
|
||||
" script='tf_mnist.py',\n",
|
||||
" arguments=['--data-folder', data_folder],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" environment=tf_env)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -344,7 +394,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hd_config = HyperDriveConfig(estimator=est, \n",
|
||||
"hd_config = HyperDriveConfig(run_config=src, \n",
|
||||
" hyperparameter_sampling=ps,\n",
|
||||
" policy=early_termination_policy,\n",
|
||||
" primary_metric_name='validation_acc', \n",
|
||||
@@ -353,25 +403,6 @@
|
||||
" max_concurrent_runs=4)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Add HyperDrive as a step of pipeline\n",
|
||||
"\n",
|
||||
"### Setup an input for the hypderdrive step\n",
|
||||
"You can mount dataset to remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_folder = dataset.as_mount()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -380,7 +411,6 @@
|
||||
"HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n",
|
||||
"- **name:** Name of the step\n",
|
||||
"- **hyperdrive_config:** A HyperDriveConfig that defines the configuration for this HyperDrive run\n",
|
||||
"- **estimator_entry_script_arguments:** List of command-line arguments for estimator entry script\n",
|
||||
"- **inputs:** List of input port bindings\n",
|
||||
"- **outputs:** List of output port bindings\n",
|
||||
"- **metrics_output:** Optional value specifying the location to store HyperDrive run metrics as a JSON file\n",
|
||||
@@ -400,16 +430,55 @@
|
||||
"source": [
|
||||
"metrics_output_name = 'metrics_output'\n",
|
||||
"metrics_data = PipelineData(name='metrics_data',\n",
|
||||
" datastore=datastore,\n",
|
||||
" pipeline_output_name=metrics_output_name)\n",
|
||||
" datastore=datastore,\n",
|
||||
" pipeline_output_name=metrics_output_name,\n",
|
||||
" training_output=TrainingOutput(\"Metrics\"))\n",
|
||||
"\n",
|
||||
"model_output_name = 'model_output'\n",
|
||||
"saved_model = PipelineData(name='saved_model',\n",
|
||||
" datastore=datastore,\n",
|
||||
" pipeline_output_name=model_output_name,\n",
|
||||
" training_output=TrainingOutput(\"Model\",\n",
|
||||
" model_file=\"outputs/model/saved_model.pb\"))\n",
|
||||
"\n",
|
||||
"hd_step_name='hd_step01'\n",
|
||||
"hd_step = HyperDriveStep(\n",
|
||||
" name=hd_step_name,\n",
|
||||
" hyperdrive_config=hd_config,\n",
|
||||
" estimator_entry_script_arguments=['--data-folder', data_folder],\n",
|
||||
" inputs=[data_folder],\n",
|
||||
" metrics_output=metrics_data)"
|
||||
" outputs=[metrics_data, saved_model])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Find and register best model\n",
|
||||
"When all the jobs finish, we can choose to register the model that has the highest accuracy through an additional PythonScriptStep.\n",
|
||||
"\n",
|
||||
"Through this additional register_model_step, we register the chosen files as a model named `tf-dnn-mnist` under the workspace for deployment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conda_dep = CondaDependencies()\n",
|
||||
"conda_dep.add_pip_package(\"azureml-sdk\")\n",
|
||||
"\n",
|
||||
"rcfg = RunConfiguration(conda_dependencies=conda_dep)\n",
|
||||
"\n",
|
||||
"register_model_step = PythonScriptStep(script_name='register_model.py',\n",
|
||||
" name=\"register_model_step01\",\n",
|
||||
" inputs=[saved_model],\n",
|
||||
" compute_target=cpu_cluster,\n",
|
||||
" arguments=[\"--saved-model\", saved_model],\n",
|
||||
" allow_reuse=True,\n",
|
||||
" runconfig=rcfg)\n",
|
||||
"\n",
|
||||
"register_model_step.run_after(hd_step)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -425,7 +494,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline = Pipeline(workspace=ws, steps=[hd_step])\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=[hd_step, register_model_step])\n",
|
||||
"pipeline_run = exp.submit(pipeline)"
|
||||
]
|
||||
},
|
||||
@@ -500,58 +569,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Find and register best model\n",
|
||||
"When all the jobs finish, we can find out the one that has the highest accuracy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hd_step_run = HyperDriveStepRun(step_run=pipeline_run.find_step_run(hd_step_name)[0])\n",
|
||||
"best_run = hd_step_run.get_best_run_by_primary_metric()\n",
|
||||
"best_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now let's list the model files uploaded during the run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(best_run.get_file_names())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can then register the folder (and all files in it) as a model named `tf-dnn-mnist` under the workspace for deployment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = best_run.register_model(model_name='tf-dnn-mnist', model_path='outputs/model')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For model deployment, please refer to [Training, hyperparameter tune, and deploy with TensorFlow](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb)."
|
||||
"For model deployment, please refer to [Training, hyperparameter tune, and deploy with TensorFlow](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb)."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -41,14 +41,14 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Datastore, Experiment, Dataset\n",
|
||||
"from azureml.data import OutputFileDatasetConfig\n",
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)\n",
|
||||
"\n",
|
||||
"from azureml.data.data_reference import DataReference\n",
|
||||
"from azureml.pipeline.core import Pipeline, PipelineData\n",
|
||||
"from azureml.pipeline.core import Pipeline\n",
|
||||
"from azureml.pipeline.steps import PythonScriptStep\n",
|
||||
"from azureml.pipeline.core.graph import PipelineParameter\n",
|
||||
"\n",
|
||||
@@ -68,7 +68,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Targets\n",
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute"
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -140,9 +142,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define intermediate data using PipelineData\n",
|
||||
"processed_data1 = PipelineData(\"processed_data1\",datastore=def_blob_store)\n",
|
||||
"print(\"PipelineData object created\")"
|
||||
"# Define intermediate data using OutputFileDatasetConfig\n",
|
||||
"processed_data1 = OutputFileDatasetConfig(name=\"processed_data1\")\n",
|
||||
"print(\"Output dataset object created\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,9 +172,7 @@
|
||||
"\n",
|
||||
"trainStep = PythonScriptStep(\n",
|
||||
" script_name=\"train.py\", \n",
|
||||
" arguments=[\"--input_data\", blob_input_data, \"--output_train\", processed_data1],\n",
|
||||
" inputs=[blob_input_data],\n",
|
||||
" outputs=[processed_data1],\n",
|
||||
" arguments=[\"--input_data\", blob_input_data.as_mount(), \"--output_train\", processed_data1],\n",
|
||||
" compute_target=aml_compute, \n",
|
||||
" source_directory=source_directory\n",
|
||||
")\n",
|
||||
@@ -195,16 +195,14 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# extractStep to use the intermediate data produced by step4\n",
|
||||
"# extractStep to use the intermediate data produced by trainStep\n",
|
||||
"# This step also produces an output processed_data2\n",
|
||||
"processed_data2 = PipelineData(\"processed_data2\", datastore=def_blob_store)\n",
|
||||
"processed_data2 = OutputFileDatasetConfig(name=\"processed_data2\")\n",
|
||||
"source_directory = \"publish_run_extract\"\n",
|
||||
"\n",
|
||||
"extractStep = PythonScriptStep(\n",
|
||||
" script_name=\"extract.py\",\n",
|
||||
" arguments=[\"--input_extract\", processed_data1, \"--output_extract\", processed_data2],\n",
|
||||
" inputs=[processed_data1],\n",
|
||||
" outputs=[processed_data2],\n",
|
||||
" arguments=[\"--input_extract\", processed_data1.as_input(), \"--output_extract\", processed_data2],\n",
|
||||
" compute_target=aml_compute, \n",
|
||||
" source_directory=source_directory)\n",
|
||||
"print(\"extractStep created\")"
|
||||
@@ -256,15 +254,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Now define step6 that takes two inputs (both intermediate data), and produce an output\n",
|
||||
"processed_data3 = PipelineData(\"processed_data3\", datastore=def_blob_store)\n",
|
||||
"# Now define compareStep that takes two inputs (both intermediate data), and produce an output\n",
|
||||
"processed_data3 = OutputFileDatasetConfig(name=\"processed_data3\")\n",
|
||||
"\n",
|
||||
"# You can register the output as dataset after job completion\n",
|
||||
"processed_data3 = processed_data3.register_on_complete(\"compare_result\")\n",
|
||||
"\n",
|
||||
"source_directory = \"publish_run_compare\"\n",
|
||||
"\n",
|
||||
"compareStep = PythonScriptStep(\n",
|
||||
" script_name=\"compare.py\",\n",
|
||||
" arguments=[\"--compare_data1\", processed_data1, \"--compare_data2\", processed_data2, \"--output_compare\", processed_data3, \"--pipeline_param\", pipeline_param],\n",
|
||||
" inputs=[processed_data1, processed_data2],\n",
|
||||
" outputs=[processed_data3], \n",
|
||||
" arguments=[\"--compare_data1\", processed_data1.as_input(), \"--compare_data2\", processed_data2.as_input(), \"--output_compare\", processed_data3, \"--pipeline_param\", pipeline_param], \n",
|
||||
" compute_target=aml_compute, \n",
|
||||
" source_directory=source_directory)\n",
|
||||
"print(\"compareStep created\")"
|
||||
@@ -327,7 +327,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# submit a pipeline run\n",
|
||||
"pipeline_run1 = Experiment(ws, 'Pipeline_experiment').submit(pipeline1)\n",
|
||||
"pipeline_run1 = Experiment(ws, 'Pipeline_experiment_sample').submit(pipeline1)\n",
|
||||
"# publish a pipeline from the submitted pipeline run\n",
|
||||
"published_pipeline2 = pipeline_run1.publish_pipeline(name=\"My_New_Pipeline2\", description=\"My Published Pipeline Description\", version=\"0.1\", continue_on_step_failure=True)\n",
|
||||
"published_pipeline2"
|
||||
|
||||
@@ -19,8 +19,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# How to Setup a Schedule for a Published Pipeline\n",
|
||||
"In this notebook, we will show you how you can run an already published pipeline on a schedule."
|
||||
"# How to Setup a Schedule for a Published Pipeline or Pipeline Endpoint\n",
|
||||
"In this notebook, we will show you how you can run an already published pipeline or a pipeline endpoint on a schedule."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -54,7 +54,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Compute Targets\n",
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute"
|
||||
"#### Retrieve an already attached Azure Machine Learning Compute\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -159,6 +161,43 @@
|
||||
"print(\"Newly published pipeline id: {}\".format(published_pipeline1.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Create a Pipeline Endpoint\n",
|
||||
"Alternatively, you can create a schedule to run a pipeline endpoint instead of a published pipeline. You will need this to create a schedule against a pipeline endpoint in the last section of this notebook. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core import PipelineEndpoint\n",
|
||||
"\n",
|
||||
"pipeline_endpoint = PipelineEndpoint.publish(workspace=ws, name=\"ScheduledPipelineEndpoint\",\n",
|
||||
" pipeline=pipeline1, description=\"Publish pipeline endpoint for schedule test\")\n",
|
||||
"pipeline_endpoint"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -196,14 +235,24 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a schedule for the pipeline using a recurrence\n",
|
||||
"### Create a schedule for the published pipeline using a recurrence\n",
|
||||
"This schedule will run on a specified recurrence interval."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.pipeline.core.schedule import ScheduleRecurrence, Schedule\n",
|
||||
@@ -212,7 +261,7 @@
|
||||
"\n",
|
||||
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
|
||||
" pipeline_id=pub_pipeline_id, \n",
|
||||
" experiment_name='Schedule_Run',\n",
|
||||
" experiment_name='Schedule-run-sample',\n",
|
||||
" recurrence=recurrence,\n",
|
||||
" wait_for_provisioning=True,\n",
|
||||
" description=\"Schedule Run\")\n",
|
||||
@@ -308,7 +357,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"gather": {
|
||||
"logged": 1606157800044
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
|
||||
@@ -394,7 +447,7 @@
|
||||
"\n",
|
||||
"schedule = Schedule.create(workspace=ws, name=\"My_Schedule\",\n",
|
||||
" pipeline_id=pub_pipeline_id, \n",
|
||||
" experiment_name='Schedule_Run',\n",
|
||||
" experiment_name='Schedule-run-sample',\n",
|
||||
" datastore=datastore,\n",
|
||||
" wait_for_provisioning=True,\n",
|
||||
" description=\"Schedule Run\")\n",
|
||||
@@ -410,7 +463,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"gather": {
|
||||
"logged": 1606157862620
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
|
||||
@@ -419,14 +476,151 @@
|
||||
"schedule = Schedule.get(ws, schedule_id)\n",
|
||||
"print(\"Disabled schedule {}. New status is: {}\".format(schedule.id, schedule.status))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Create a schedule for a pipeline endpoint\n",
|
||||
"Alternative to creating schedules for a published pipeline, you can also create schedules to run pipeline endpoints.\n",
|
||||
"Retrieve the pipeline endpoint id to create a schedule. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"gather": {
|
||||
"logged": 1606157888851
|
||||
},
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pipeline_endpoint_by_name = PipelineEndpoint.get(workspace=ws, name=\"ScheduledPipelineEndpoint\")\n",
|
||||
"published_pipeline_endpoint_id = pipeline_endpoint_by_name.id\n",
|
||||
"\n",
|
||||
"recurrence = ScheduleRecurrence(frequency=\"Day\", interval=2, hours=[22], minutes=[30]) # Runs every other day at 10:30pm\n",
|
||||
"\n",
|
||||
"schedule = Schedule.create_for_pipeline_endpoint(workspace=ws, name=\"My_Endpoint_Schedule\",\n",
|
||||
" pipeline_endpoint_id=published_pipeline_endpoint_id,\n",
|
||||
" experiment_name='Schedule-run-sample',\n",
|
||||
" recurrence=recurrence, description=\"Schedule_Run\",\n",
|
||||
" wait_for_provisioning=True)\n",
|
||||
"\n",
|
||||
"# You may want to make sure that the schedule is provisioned properly\n",
|
||||
"# before making any further changes to the schedule\n",
|
||||
"\n",
|
||||
"print(\"Created schedule with id: {}\".format(schedule.id))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Get all schedules for a given pipeline endpoint\n",
|
||||
"Once you have the pipeline endpoint ID, then you can get all schedules for that pipeline endopint."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"schedules_for_pipeline_endpoints = Schedule.\\\n",
|
||||
" get_schedules_for_pipeline_endpoint_id(ws,\n",
|
||||
" pipeline_endpoint_id=published_pipeline_endpoint_id)\n",
|
||||
"print('Got all schedules for pipeline endpoint:', published_pipeline_endpoint_id, 'Count:',\n",
|
||||
" len(schedules_for_pipeline_endpoints))\n",
|
||||
"\n",
|
||||
"print('done')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"### Disable the schedule created for running the pipeline endpont\n",
|
||||
"Recall the best practice of disabling schedules when not in use.\n",
|
||||
"The number of schedule triggers allowed per month per region per subscription is 100,000.\n",
|
||||
"This is calculated using the project trigger counts for all active schedules."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"jupyter": {
|
||||
"outputs_hidden": false,
|
||||
"source_hidden": false
|
||||
},
|
||||
"nteract": {
|
||||
"transient": {
|
||||
"deleting": false
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
|
||||
"print(\"Using schedule with id: {}\".format(fetched_schedule.id))\n",
|
||||
"\n",
|
||||
"# Set the wait_for_provisioning flag to False if you do not want to wait \n",
|
||||
"# for the call to provision the schedule in the backend.\n",
|
||||
"fetched_schedule.disable(wait_for_provisioning=True)\n",
|
||||
"fetched_schedule = Schedule.get(ws, schedule_id)\n",
|
||||
"print(\"Disabled schedule {}. New status is: {}\".format(fetched_schedule.id, fetched_schedule.status))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "sanpil"
|
||||
"name": "shbijlan"
|
||||
}
|
||||
],
|
||||
"categories": [
|
||||
"how-to-use-azureml",
|
||||
"machine-learning-pipelines",
|
||||
"intro-to-pipelines"
|
||||
],
|
||||
"category": "tutorial",
|
||||
"compute": [
|
||||
"AML Compute"
|
||||
@@ -441,7 +635,7 @@
|
||||
"framework": [
|
||||
"Azure ML"
|
||||
],
|
||||
"friendly_name": "How to Setup a Schedule for a Published Pipeline",
|
||||
"friendly_name": "How to Setup a Schedule for a Published Pipeline or Pipeline Endpoint",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
@@ -459,6 +653,9 @@
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"nteract": {
|
||||
"version": "nteract-front-end@1.0.0"
|
||||
},
|
||||
"order_index": 10,
|
||||
"star_tag": [
|
||||
"featured"
|
||||
@@ -466,7 +663,7 @@
|
||||
"tags": [
|
||||
"None"
|
||||
],
|
||||
"task": "Demonstrates the use of Schedules for Published Pipelines"
|
||||
"task": "Demonstrates the use of Schedules for Published Pipelines and Pipeline endpoints"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
|
||||
@@ -78,7 +78,9 @@
|
||||
"source": [
|
||||
"#### Initialization, Steps to create a Pipeline\n",
|
||||
"\n",
|
||||
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step."
|
||||
"The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -553,7 +555,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"pipeline_run = Experiment(ws, name=\"submit_from_endpoint\").submit(pipeline_endpoint_by_name, tags={'endpoint_tag': \"1\"}, pipeline_version=\"0\")"
|
||||
"pipeline_run = Experiment(ws, name=\"submit_endpoint_sample\").submit(pipeline_endpoint_by_name, tags={'endpoint_tag': \"1\"}, pipeline_version=\"0\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
@@ -109,7 +109,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -47,8 +47,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"from azureml.core import Workspace, Experiment, Dataset\n",
|
||||
"from azureml.core import Workspace, Experiment, Dataset, RunConfiguration\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.environment import CondaDependencies\n",
|
||||
"from azureml.data.dataset_consumption_config import DatasetConsumptionConfig\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
@@ -111,7 +112,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create or Attach an AmlCompute cluster\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource."
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you get the default `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -221,6 +224,18 @@
|
||||
"Note that the ```file_ds_consumption``` and ```tabular_ds_consumption``` are specified as both arguments and inputs to create a step."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conda_dep = CondaDependencies()\n",
|
||||
"conda_dep.add_pip_package(\"pandas\")\n",
|
||||
"\n",
|
||||
"run_config = RunConfiguration(conda_dependencies=conda_dep)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -233,7 +248,8 @@
|
||||
" arguments=[\"--param1\", file_ds_consumption, \"--param2\", tabular_ds_consumption],\n",
|
||||
" inputs=[file_ds_consumption, tabular_ds_consumption],\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" source_directory=source_directory)\n",
|
||||
" source_directory=source_directory,\n",
|
||||
" runconfig=run_config)\n",
|
||||
"\n",
|
||||
"print(\"train_step created\")\n",
|
||||
"\n",
|
||||
@@ -496,7 +512,7 @@
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"order_index": 13,
|
||||
"order_index": 13.0,
|
||||
"star_tag": [
|
||||
"featured"
|
||||
],
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user