mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-20 01:27:06 -05:00
Compare commits
48 Commits
parasharsh
...
azureml-sd
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2ac62ae1ed | ||
|
|
cad5d5c97c | ||
|
|
d8cf73503e | ||
|
|
4a2d6d637a | ||
|
|
0348e54e21 | ||
|
|
a97d147d01 | ||
|
|
c4ceac032b | ||
|
|
1d3dff5634 | ||
|
|
096dd424db | ||
|
|
fdefea5e82 | ||
|
|
15fb283b78 | ||
|
|
142514a255 | ||
|
|
26678677b3 | ||
|
|
2e2a943f5b | ||
|
|
94ba3f3665 | ||
|
|
da02f93fc2 | ||
|
|
d39af379f8 | ||
|
|
6304fb1eb1 | ||
|
|
b35d14ab72 | ||
|
|
e791456f34 | ||
|
|
9b93e13426 | ||
|
|
3d640393aa | ||
|
|
34d50b0427 | ||
|
|
060a53d256 | ||
|
|
78fba3ceea | ||
|
|
01dc3d0a5b | ||
|
|
ce7ca94a9a | ||
|
|
b8877f1f92 | ||
|
|
b19ec15601 | ||
|
|
e99de11c25 | ||
|
|
212c2e8bf0 | ||
|
|
2aed0a32bf | ||
|
|
25456b84f0 | ||
|
|
897ae13de1 | ||
|
|
e329729e0f | ||
|
|
aacdede890 | ||
|
|
0471f2f8db | ||
|
|
a8a525e704 | ||
|
|
e37f3fa206 | ||
|
|
2c4d6b5188 | ||
|
|
008befcce2 | ||
|
|
b4895bf1f8 | ||
|
|
a27cdbd478 | ||
|
|
a408f3f2cb | ||
|
|
ab2de17978 | ||
|
|
a63f5084e0 | ||
|
|
d26a4b0323 | ||
|
|
3c49d861df |
@@ -1,313 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 00. Installation and configuration\n",
|
||||
"This notebook configures your library of notebooks to connect to an Azure Machine Learning Workspace. In this case, a library contains all of the notebooks in the current folder and any nested folders. You can configure this notebook to use an existing workspace or create a new workspace.\n",
|
||||
"\n",
|
||||
"## What is an Azure ML Workspace and why do I need one?\n",
|
||||
"\n",
|
||||
"An AML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an AML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1. Access Azure Subscription\n",
|
||||
"\n",
|
||||
"In order to create an AML Workspace, first you need access to an Azure Subscription. You can [create your own](https://azure.microsoft.com/en-us/free/) or get your existing subscription information from the [Azure portal](https://portal.azure.com).\n",
|
||||
"\n",
|
||||
"### 2. If you're running on your own local environment, install Azure ML SDK and other libraries\n",
|
||||
"\n",
|
||||
"If you are running in your own environment, follow [SDK installation instructions](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment). If you are running in Azure Notebooks or another Microsoft managed environment, the SDK is already installed.\n",
|
||||
"\n",
|
||||
"Also install following libraries to your environment. Many of the example notebooks depend on them\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"(myenv) $ conda install -y matplotlib tqdm scikit-learn\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Once installation is complete, check the Azure ML SDK version:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"install"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK Version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 3. Make sure your subscription is registered to use ACI\n",
|
||||
"Azure Machine Learning makes use of Azure Container Instance (ACI). You need to ensure your subscription has been registered to use ACI in order be able to deploy a dev/test web service. If you have run through the quickstart experience you have already performed this step. Otherwise you will need to use the [Azure CLI](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest) and execute the following commands.\n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"# check to see if ACI is already registered\n",
|
||||
"(myenv) $ az provider show -n Microsoft.ContainerInstance -o table\n",
|
||||
"\n",
|
||||
"# if ACI is not registered, run this command.\n",
|
||||
"# note you need to be the subscription owner in order to execute this command successfully.\n",
|
||||
"(myenv) $ az provider register -n Microsoft.ContainerInstance\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up your Azure Machine Learning workspace\n",
|
||||
"\n",
|
||||
"### Option 1: You have workspace already\n",
|
||||
"If you ran the Azure Machine Learning [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) in Azure Notebooks, you already have a configured workspace! You can go to your Azure Machine Learning Getting Started library, view *config.json* file, and copy-paste the values for subscription ID, resource group and workspace name below.\n",
|
||||
"\n",
|
||||
"If you have a workspace created another way, [these instructions](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#create-workspace-configuration-file) describe how to get your subscription and workspace information.\n",
|
||||
"\n",
|
||||
"If this cell succeeds, you're done configuring this library! Otherwise continue to follow the instructions in the rest of the notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<my-subscription-id>\")\n",
|
||||
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<my-resource-group>\")\n",
|
||||
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<my-workspace-name>\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name)\n",
|
||||
" ws.write_config()\n",
|
||||
" print('Workspace configuration succeeded. You are all set!')\n",
|
||||
"except:\n",
|
||||
" print('Workspace not found. Run the cells below.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Option 2: You don't have workspace yet\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"#### Requirements\n",
|
||||
"\n",
|
||||
"Inside your Azure subscription, you will need access to a _resource group_, which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the [Azure portal](https://portal.azure.com). If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
|
||||
"\n",
|
||||
"To create or access an Azure ML Workspace, you will need to import the AML library and the following information:\n",
|
||||
"* A name for your workspace\n",
|
||||
"* Your subscription id\n",
|
||||
"* The resource group name\n",
|
||||
"\n",
|
||||
"**Note**: As with other Azure services, there are limits on certain resources (for eg. AmlCompute quota) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Supported Azure Regions\n",
|
||||
"Specify a region where your workspace will be located from the list of [Azure Machine Learning regions](https://linktoregions)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<my-subscription-id>\")\n",
|
||||
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"my-aml-resource-group\")\n",
|
||||
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"my-first-workspace\")\n",
|
||||
"\n",
|
||||
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"eastus2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Create the workspace\n",
|
||||
"This cell will create an AML workspace for you in a subscription provided you have the correct permissions.\n",
|
||||
"\n",
|
||||
"This will fail when:\n",
|
||||
"1. You do not have permission to create a workspace in the resource group\n",
|
||||
"2. You do not have permission to create a resource group if it's non-existing.\n",
|
||||
"2. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
|
||||
"\n",
|
||||
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"create workspace"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import the Workspace class and check the azureml SDK version\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region,\n",
|
||||
" create_resource_group = True,\n",
|
||||
" exist_ok = True)\n",
|
||||
"ws.get_details()\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create compute resources for your training experiments\n",
|
||||
"\n",
|
||||
"Many of the subsequent examples use Azure Machine Learning managed compute (AmlCompute) to train models at scale. To create a **CPU** cluster now, run the cell below. The autoscale settings mean that the cluster will scale down to 0 nodes when inactive and up to 4 nodes when busy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
|
||||
" max_nodes=4)\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To create a **GPU** cluster, run the cell below. Note that your subscription must have sufficient quota for GPU VMs or the command will fail. To increase quota, see [these instructions](https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request). "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your GPU cluster\n",
|
||||
"gpu_cluster_name = \"gpucluster\"\n",
|
||||
"\n",
|
||||
"# Check if cluster exists already\n",
|
||||
"try:\n",
|
||||
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
|
||||
" print('Found existing cluster, use it.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
|
||||
" max_nodes=4)\n",
|
||||
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"gpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Success!\n",
|
||||
"Great, you are ready to move on to the rest of the sample notebooks. A good place to start is the [01.train-model tutorial](./tutorials/01.train-model.ipynb) to learn how to train and then deploy an image classification model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,808 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 01. Train in the Notebook & Deploy Model to ACI\n",
|
||||
"\n",
|
||||
"* Load workspace\n",
|
||||
"* Train a simple regression model directly in the Notebook python kernel\n",
|
||||
"* Record run history\n",
|
||||
"* Find the best model in run history and download it.\n",
|
||||
"* Deploy the model as an Azure Container Instance (ACI)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"1. Make sure you go through the [00. Installation and Configuration](../../00.configuration.ipynb) Notebook first if you haven't. \n",
|
||||
"\n",
|
||||
"2. Install following pre-requisite libraries to your conda environment and restart notebook.\n",
|
||||
"```shell\n",
|
||||
"(myenv) $ conda install -y matplotlib tqdm scikit-learn\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"3. Check that ACI is registered for your Azure Subscription. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!az provider show -n Microsoft.ContainerInstance -o table"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If ACI is not registered, run following command to register it. Note that you have to be a subscription owner, or this command will fail."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!az provider register -n Microsoft.ContainerInstance"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Validate Azure ML SDK installation and get version number for debugging purposes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"install"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment, Run, Workspace\n",
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize Workspace\n",
|
||||
"\n",
|
||||
"Initialize a workspace object from persisted configuration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"create workspace"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set experiment name\n",
|
||||
"Choose a name for experiment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment_name = 'train-in-notebook'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Start a training run in local Notebook"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load diabetes dataset, a well-known small dataset that comes with scikit-learn\n",
|
||||
"from sklearn.datasets import load_diabetes\n",
|
||||
"from sklearn.linear_model import Ridge\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"\n",
|
||||
"X, y = load_diabetes(return_X_y = True)\n",
|
||||
"columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
|
||||
"data = {\n",
|
||||
" \"train\":{\"X\": X_train, \"y\": y_train}, \n",
|
||||
" \"test\":{\"X\": X_test, \"y\": y_test}\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Train a simple Ridge model\n",
|
||||
"Train a very simple Ridge regression model in scikit-learn, and save it as a pickle file."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reg = Ridge(alpha = 0.03)\n",
|
||||
"reg.fit(X=data['train']['X'], y=data['train']['y'])\n",
|
||||
"preds = reg.predict(data['test']['X'])\n",
|
||||
"print('Mean Squared Error is', mean_squared_error(data['test']['y'], preds))\n",
|
||||
"joblib.dump(value=reg, filename='model.pkl');"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Add experiment tracking\n",
|
||||
"Now, let's add Azure ML experiment logging, and upload persisted model into run record as well."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"local run",
|
||||
"outputs upload"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment = Experiment(workspace=ws, name=experiment_name)\n",
|
||||
"run = experiment.start_logging()\n",
|
||||
"\n",
|
||||
"run.tag(\"Description\",\"My first run!\")\n",
|
||||
"run.log('alpha', 0.03)\n",
|
||||
"reg = Ridge(alpha=0.03)\n",
|
||||
"reg.fit(data['train']['X'], data['train']['y'])\n",
|
||||
"preds = reg.predict(data['test']['X'])\n",
|
||||
"run.log('mse', mean_squared_error(data['test']['y'], preds))\n",
|
||||
"joblib.dump(value=reg, filename='model.pkl')\n",
|
||||
"run.upload_file(name='outputs/model.pkl', path_or_stream='./model.pkl')\n",
|
||||
"\n",
|
||||
"run.complete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can browse to the recorded run. Please make sure you use Chrome to navigate the run history page."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Simple parameter sweep\n",
|
||||
"Sweep over alpha values of a sklearn ridge model, and capture metrics and trained model in the Azure ML experiment."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"\n",
|
||||
"model_name = \"model.pkl\"\n",
|
||||
"\n",
|
||||
"# list of numbers from 0 to 1.0 with a 0.05 interval\n",
|
||||
"alphas = np.arange(0.0, 1.0, 0.05)\n",
|
||||
"\n",
|
||||
"# try a bunch of alpha values in a Linear Regression (Ridge) model\n",
|
||||
"for alpha in tqdm(alphas):\n",
|
||||
" # create a bunch of runs, each train a model with a different alpha value\n",
|
||||
" with experiment.start_logging() as run:\n",
|
||||
" # Use Ridge algorithm to build a regression model\n",
|
||||
" reg = Ridge(alpha=alpha)\n",
|
||||
" reg.fit(X=data[\"train\"][\"X\"], y=data[\"train\"][\"y\"])\n",
|
||||
" preds = reg.predict(X=data[\"test\"][\"X\"])\n",
|
||||
" mse = mean_squared_error(y_true=data[\"test\"][\"y\"], y_pred=preds)\n",
|
||||
"\n",
|
||||
" # log alpha, mean_squared_error and feature names in run history\n",
|
||||
" run.log(name=\"alpha\", value=alpha)\n",
|
||||
" run.log(name=\"mse\", value=mse)\n",
|
||||
" run.log_list(name=\"columns\", value=columns)\n",
|
||||
"\n",
|
||||
" with open(model_name, \"wb\") as file:\n",
|
||||
" joblib.dump(value=reg, filename=file)\n",
|
||||
" \n",
|
||||
" # upload the serialized model into run history record\n",
|
||||
" run.upload_file(name=\"outputs/\" + model_name, path_or_stream=model_name)\n",
|
||||
"\n",
|
||||
" # now delete the serialized model from local folder since it is already uploaded to run history \n",
|
||||
" os.remove(path=model_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# now let's take a look at the experiment in Azure portal.\n",
|
||||
"experiment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Select best model from the experiment\n",
|
||||
"Load all experiment run metrics recursively from the experiment into a dictionary object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"runs = {}\n",
|
||||
"run_metrics = {}\n",
|
||||
"\n",
|
||||
"for r in tqdm(experiment.get_runs()):\n",
|
||||
" metrics = r.get_metrics()\n",
|
||||
" if 'mse' in metrics.keys():\n",
|
||||
" runs[r.id] = r\n",
|
||||
" run_metrics[r.id] = metrics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now find the run with the lowest Mean Squared Error value"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run_id = min(run_metrics, key = lambda k: run_metrics[k]['mse'])\n",
|
||||
"best_run = runs[best_run_id]\n",
|
||||
"print('Best run is:', best_run_id)\n",
|
||||
"print('Metrics:', run_metrics[best_run_id])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can add tags to your runs to make them easier to catalog"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"query history"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run.tag(key=\"Description\", value=\"The best one\")\n",
|
||||
"best_run.get_tags()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Plot MSE over alpha\n",
|
||||
"\n",
|
||||
"Let's observe the best model visually by plotting the MSE values over alpha values:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"best_alpha = run_metrics[best_run_id]['alpha']\n",
|
||||
"min_mse = run_metrics[best_run_id]['mse']\n",
|
||||
"\n",
|
||||
"alpha_mse = np.array([(run_metrics[k]['alpha'], run_metrics[k]['mse']) for k in run_metrics.keys()])\n",
|
||||
"sorted_alpha_mse = alpha_mse[alpha_mse[:,0].argsort()]\n",
|
||||
"\n",
|
||||
"plt.plot(sorted_alpha_mse[:,0], sorted_alpha_mse[:,1], 'r--')\n",
|
||||
"plt.plot(sorted_alpha_mse[:,0], sorted_alpha_mse[:,1], 'bo')\n",
|
||||
"\n",
|
||||
"plt.xlabel('alpha', fontsize = 14)\n",
|
||||
"plt.ylabel('mean squared error', fontsize = 14)\n",
|
||||
"plt.title('MSE over alpha', fontsize = 16)\n",
|
||||
"\n",
|
||||
"# plot arrow\n",
|
||||
"plt.arrow(x = best_alpha, y = min_mse + 39, dx = 0, dy = -26, ls = '-', lw = 0.4,\n",
|
||||
" width = 0, head_width = .03, head_length = 8)\n",
|
||||
"\n",
|
||||
"# plot \"best run\" text\n",
|
||||
"plt.text(x = best_alpha - 0.08, y = min_mse + 50, s = 'Best Run', fontsize = 14)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register the best model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Find the model file saved in the run record of best run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"query history"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for f in best_run.get_file_names():\n",
|
||||
" print(f)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we can register this model in the model registry of the workspace"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from history"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = best_run.register_model(model_name='best_model', model_path='outputs/model.pkl')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Verify that the model has been registered properly. If you have done this several times you'd see the version number auto-increases each time."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"register model from history"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import Model\n",
|
||||
"models = Model.list(workspace=ws, name='best_model')\n",
|
||||
"for m in models:\n",
|
||||
" print(m.name, m.version)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also download the registered model. Afterwards, you should see a `model.pkl` file in the current directory. You can then use it for local testing if you'd like."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"download file"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# remove the model file if it is already on disk\n",
|
||||
"if os.path.isfile('model.pkl'): \n",
|
||||
" os.remove('model.pkl')\n",
|
||||
"# download the model\n",
|
||||
"model.download(target_dir=\"./\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Scoring script\n",
|
||||
"\n",
|
||||
"Now we are ready to build a Docker image and deploy the model in it as a web service. The first step is creating the scoring script. For convenience, we have created the scoring script for you. It is printed below as text, but you can also run `%pfile ./score.py` in a cell to show the file.\n",
|
||||
"\n",
|
||||
"Tbe scoring script consists of two functions: `init` that is used to load the model to memory when starting the container, and `run` that makes the prediction when web service is called. Please pay special attention to how the model is loaded in the `init()` function. When Docker image is built for this model, the actual model file is downloaded and placed on disk, and `get_model_path` function returns the local path where the model is placed."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('./score.py', 'r') as scoring_script:\n",
|
||||
" print(scoring_script.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create environment dependency file\n",
|
||||
"\n",
|
||||
"We need a environment dependency file `myenv.yml` to specify which libraries are needed by the scoring script when building the Docker image for web service deployment. We can manually create this file, or we can use the `CondaDependencies` API to automatically create this file."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=[\"scikit-learn\"])\n",
|
||||
"print(myenv.serialize_to_string())\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy web service into an Azure Container Instance\n",
|
||||
"The deployment process takes the registered model and your scoring scrip, and builds a Docker image. It then deploys the Docker image into Azure Container Instance as a running container with an HTTP endpoint readying for scoring calls. Read more about [Azure Container Instance](https://azure.microsoft.com/en-us/services/container-instances/).\n",
|
||||
"\n",
|
||||
"Note ACI is great for quick and cost-effective dev/test deployment scenarios. For production workloads, please use [Azure Kubernentes Service (AKS)](https://azure.microsoft.com/en-us/services/kubernetes-service/) instead. Please follow in struction in [this notebook](11.production-deploy-to-aks.ipynb) to see how that can be done from Azure ML.\n",
|
||||
" \n",
|
||||
"** Note: ** The web service creation can take 6-7 minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
" memory_gb=1, \n",
|
||||
" tags={'sample name': 'AML 101'}, \n",
|
||||
" description='This is a great example.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note the below `WebService.deploy_from_model()` function takes a model object registered under the workspace. It then bakes the model file in the Docker image so it can be looked-up using the `Model.get_model_path()` function in `score.py`. \n",
|
||||
"\n",
|
||||
"If you have a local model file instead of a registered model object, you can also use the `WebService.deploy()` function which would register the model and then deploy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"image_config = ContainerImage.image_configuration(execution_script=\"score.py\", \n",
|
||||
" runtime=\"python\", \n",
|
||||
" conda_file=\"myenv.yml\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# this will take 5-10 minutes to finish\n",
|
||||
"# you can also use \"az container list\" command to find the ACI being deployed\n",
|
||||
"service = Webservice.deploy_from_model(name='my-aci-svc',\n",
|
||||
" deployment_config=aciconfig,\n",
|
||||
" models=[model],\n",
|
||||
" image_config=image_config,\n",
|
||||
" workspace=ws)\n",
|
||||
"\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"## Test web service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print('web service is hosted in ACI:', service.scoring_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Use the `run` API to call the web service with one row of data to get a prediction."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"# score the first row from the test set.\n",
|
||||
"test_samples = json.dumps({\"data\": X_test[0:1, :].tolist()})\n",
|
||||
"service.run(input_data = test_samples)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Feed the entire test set and calculate the errors (residual values)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# score the entire test set.\n",
|
||||
"test_samples = json.dumps({'data': X_test.tolist()})\n",
|
||||
"\n",
|
||||
"result = service.run(input_data = test_samples)\n",
|
||||
"residual = result - y_test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also send raw HTTP request to test the web service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"# 2 rows of input data, each with 10 made-up numerical features\n",
|
||||
"input_data = \"{\\\"data\\\": [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]}\"\n",
|
||||
"\n",
|
||||
"headers = {'Content-Type':'application/json'}\n",
|
||||
"\n",
|
||||
"# for AKS deployment you'd need to the service key in the header as well\n",
|
||||
"# api_key = service.get_key()\n",
|
||||
"# headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ api_key)} \n",
|
||||
"\n",
|
||||
"resp = requests.post(service.scoring_uri, input_data, headers = headers)\n",
|
||||
"print(resp.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Residual graph\n",
|
||||
"Plot a residual value graph to chart the errors on the entire test set. Observe the nice bell curve."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw={'width_ratios':[3, 1], 'wspace':0, 'hspace': 0})\n",
|
||||
"f.suptitle('Residual Values', fontsize = 18)\n",
|
||||
"\n",
|
||||
"f.set_figheight(6)\n",
|
||||
"f.set_figwidth(14)\n",
|
||||
"\n",
|
||||
"a0.plot(residual, 'bo', alpha=0.4);\n",
|
||||
"a0.plot([0,90], [0,0], 'r', lw=2)\n",
|
||||
"a0.set_ylabel('residue values', fontsize=14)\n",
|
||||
"a0.set_xlabel('test data set', fontsize=14)\n",
|
||||
"\n",
|
||||
"a1.hist(residual, orientation='horizontal', color='blue', bins=10, histtype='step');\n",
|
||||
"a1.hist(residual, orientation='horizontal', color='blue', alpha=0.2, bins=10);\n",
|
||||
"a1.set_yticklabels([])\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Delete ACI to clean up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Deleting ACI is super fast!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"deploy service",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"service.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,289 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 03. Train on Azure Container Instance\n",
|
||||
"\n",
|
||||
"* Create Workspace\n",
|
||||
"* Create `train.py` in the project folder.\n",
|
||||
"* Configure an ACI (Azure Container Instance) run\n",
|
||||
"* Execute in ACI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"Make sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check core SDK version number\n",
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize Workspace\n",
|
||||
"\n",
|
||||
"Initialize a workspace object from persisted configuration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"create workspace"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create An Experiment\n",
|
||||
"\n",
|
||||
"**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Experiment\n",
|
||||
"experiment_name = 'train-on-aci'\n",
|
||||
"experiment = Experiment(workspace = ws, name = experiment_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Remote execution on ACI\n",
|
||||
"\n",
|
||||
"The training script `train.py` is already created for you. Let's have a look."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('./train.py', 'r') as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure for using ACI\n",
|
||||
"Linux-based ACI is available in `West US`, `East US`, `West Europe`, `North Europe`, `West US 2`, `Southeast Asia`, `Australia East`, `East US 2`, and `Central US` regions. See details [here](https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quotas#region-availability)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"configure run"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# create a new runconfig object\n",
|
||||
"run_config = RunConfiguration()\n",
|
||||
"\n",
|
||||
"# signal that you want to use ACI to execute script.\n",
|
||||
"run_config.target = \"containerinstance\"\n",
|
||||
"\n",
|
||||
"# ACI container group is only supported in certain regions, which can be different than the region the Workspace is in.\n",
|
||||
"run_config.container_instance.region = 'eastus2'\n",
|
||||
"\n",
|
||||
"# set the ACI CPU and Memory \n",
|
||||
"run_config.container_instance.cpu_cores = 1\n",
|
||||
"run_config.container_instance.memory_gb = 2\n",
|
||||
"\n",
|
||||
"# enable Docker \n",
|
||||
"run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"# set Docker base image to the default CPU-based image\n",
|
||||
"run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
|
||||
"run_config.environment.python.user_managed_dependencies = False\n",
|
||||
"\n",
|
||||
"# auto-prepare the Docker image when used for execution (if it is not already prepared)\n",
|
||||
"run_config.auto_prepare_environment = True\n",
|
||||
"\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Submit the Experiment\n",
|
||||
"Finally, run the training job on the ACI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"remote run",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time \n",
|
||||
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory='./',\n",
|
||||
" script='train.py',\n",
|
||||
" run_config=run_config)\n",
|
||||
"\n",
|
||||
"run = experiment.submit(script_run_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"query history"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Show run details\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"remote run",
|
||||
"aci"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# Shows output of the run on stdout.\n",
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"get metrics"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get all metris logged in the run\n",
|
||||
"run.get_metrics()\n",
|
||||
"metrics = run.get_metrics()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format(\n",
|
||||
" min(metrics['mse']), \n",
|
||||
" metrics['alpha'][np.argmin(metrics['mse'])]\n",
|
||||
"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# show all the files stored within the run record\n",
|
||||
"run.get_file_names()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now you can take a model produced here, register it and then deploy as a web service."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,331 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 05. Train in Spark\n",
|
||||
"* Create Workspace\n",
|
||||
"* Create Experiment\n",
|
||||
"* Copy relevant files to the script folder\n",
|
||||
"* Configure and Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"Make sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check core SDK version number\n",
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize Workspace\n",
|
||||
"\n",
|
||||
"Initialize a workspace object from persisted configuration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Experiment\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment_name = 'train-on-spark'\n",
|
||||
"\n",
|
||||
"from azureml.core import Experiment\n",
|
||||
"exp = Experiment(workspace=ws, name=experiment_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## View `train-spark.py`\n",
|
||||
"\n",
|
||||
"For convenience, we created a training script for you. It is printed below as a text, but you can also run `%pfile ./train-spark.py` in a cell to show the file."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train-spark.py', 'r') as training_script:\n",
|
||||
" print(training_script.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure & Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure an ACI run\n",
|
||||
"Before you try running on an actual Spark cluster, you can use a Docker image with Spark already baked in, and run it in ACI(Azure Container Registry)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# use pyspark framework\n",
|
||||
"aci_run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"\n",
|
||||
"# use ACI to run the Spark job\n",
|
||||
"aci_run_config.target = 'containerinstance'\n",
|
||||
"aci_run_config.container_instance.region = 'eastus2'\n",
|
||||
"aci_run_config.container_instance.cpu_cores = 1\n",
|
||||
"aci_run_config.container_instance.memory_gb = 2\n",
|
||||
"\n",
|
||||
"# specify base Docker image to use\n",
|
||||
"aci_run_config.environment.docker.enabled = True\n",
|
||||
"aci_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_MMLSPARK_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"# specify CondaDependencies\n",
|
||||
"cd = CondaDependencies()\n",
|
||||
"cd.add_conda_package('numpy')\n",
|
||||
"aci_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit script to ACI to run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = '.',\n",
|
||||
" script= 'train-spark.py',\n",
|
||||
" run_config = aci_run_config)\n",
|
||||
"run = exp.submit(script_run_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Note** you can also create a new VM, or attach an existing VM, and use Docker-based execution to run the Spark job. Please see the `04.train-in-vm` for example on how to configure and run in Docker mode in a VM."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Attach an HDI cluster\n",
|
||||
"Now we can use a real Spark cluster, HDInsight for Spark, to run this job. To use HDI commpute target:\n",
|
||||
" 1. Create a Spark for HDI cluster in Azure. Here are some [quick instructions](https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-jupyter-spark-sql). Make sure you use the Ubuntu flavor, NOT CentOS.\n",
|
||||
" 2. Enter the IP address, username and password below"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import HDInsightCompute\n",
|
||||
"from azureml.exceptions import ComputeTargetException\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" # if you want to connect using SSH key instead of username/password you can provide parameters private_key_file and private_key_passphrase\n",
|
||||
" hdi_compute = HDInsightCompute.attach(workspace=ws, \n",
|
||||
" name=\"myhdi\", \n",
|
||||
" address=\"<myhdi-ssh>.azurehdinsight.net\", \n",
|
||||
" ssh_port=22, \n",
|
||||
" username='<ssh-username>', \n",
|
||||
" password='<ssh-pwd>')\n",
|
||||
"\n",
|
||||
"except ComputeTargetException as e:\n",
|
||||
" print(\"Caught = {}\".format(e.message))\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"hdi_compute.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Configure HDI run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# use pyspark framework\n",
|
||||
"hdi_run_config = RunConfiguration(framework=\"pyspark\")\n",
|
||||
"\n",
|
||||
"# Set compute target to the HDI cluster\n",
|
||||
"hdi_run_config.target = hdi_compute.name\n",
|
||||
"\n",
|
||||
"# specify CondaDependencies object to ask system installing numpy\n",
|
||||
"cd = CondaDependencies()\n",
|
||||
"cd.add_conda_package('numpy')\n",
|
||||
"hdi_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit the script to HDI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory = '.',\n",
|
||||
" script= 'train-spark.py',\n",
|
||||
" run_config = hdi_run_config)\n",
|
||||
"run = exp.submit(config=script_run_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get the URL of the run history web page\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get all metris logged in the run\n",
|
||||
"metrics = run.get_metrics()\n",
|
||||
"print(metrics)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "aashishb"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,150 +0,0 @@
|
||||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
||||
|
@@ -1,94 +0,0 @@
|
||||
# Copyright (c) Microsoft. All rights reserved.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import numpy as np
|
||||
import pyspark
|
||||
import os
|
||||
import urllib
|
||||
import sys
|
||||
|
||||
from pyspark.sql.functions import *
|
||||
from pyspark.ml.classification import *
|
||||
from pyspark.ml.evaluation import *
|
||||
from pyspark.ml.feature import *
|
||||
from pyspark.sql.types import StructType, StructField
|
||||
from pyspark.sql.types import DoubleType, IntegerType, StringType
|
||||
|
||||
|
||||
from azureml.core.run import Run
|
||||
|
||||
# initialize logger
|
||||
run = Run.get_context()
|
||||
|
||||
# start Spark session
|
||||
spark = pyspark.sql.SparkSession.builder.appName('Iris').getOrCreate()
|
||||
|
||||
# print runtime versions
|
||||
print('****************')
|
||||
print('Python version: {}'.format(sys.version))
|
||||
print('Spark version: {}'.format(spark.version))
|
||||
print('****************')
|
||||
|
||||
# load iris.csv into Spark dataframe
|
||||
schema = StructType([
|
||||
StructField("sepal-length", DoubleType()),
|
||||
StructField("sepal-width", DoubleType()),
|
||||
StructField("petal-length", DoubleType()),
|
||||
StructField("petal-width", DoubleType()),
|
||||
StructField("class", StringType())
|
||||
])
|
||||
|
||||
data = spark.read.csv('iris.csv', header=False, schema=schema)
|
||||
print("First 10 rows of Iris dataset:")
|
||||
data.show(10)
|
||||
|
||||
# vectorize all numerical columns into a single feature column
|
||||
feature_cols = data.columns[:-1]
|
||||
assembler = pyspark.ml.feature.VectorAssembler(
|
||||
inputCols=feature_cols, outputCol='features')
|
||||
data = assembler.transform(data)
|
||||
|
||||
# convert text labels into indices
|
||||
data = data.select(['features', 'class'])
|
||||
label_indexer = pyspark.ml.feature.StringIndexer(
|
||||
inputCol='class', outputCol='label').fit(data)
|
||||
data = label_indexer.transform(data)
|
||||
|
||||
# only select the features and label column
|
||||
data = data.select(['features', 'label'])
|
||||
print("Reading for machine learning")
|
||||
data.show(10)
|
||||
|
||||
# change regularization rate and you will likely get a different accuracy.
|
||||
reg = 0.01
|
||||
# load regularization rate from argument if present
|
||||
if len(sys.argv) > 1:
|
||||
reg = float(sys.argv[1])
|
||||
|
||||
# log regularization rate
|
||||
run.log("Regularization Rate", reg)
|
||||
|
||||
# use Logistic Regression to train on the training set
|
||||
train, test = data.randomSplit([0.70, 0.30])
|
||||
lr = pyspark.ml.classification.LogisticRegression(regParam=reg)
|
||||
model = lr.fit(train)
|
||||
|
||||
# predict on the test set
|
||||
prediction = model.transform(test)
|
||||
print("Prediction")
|
||||
prediction.show(10)
|
||||
|
||||
# evaluate the accuracy of the model using the test set
|
||||
evaluator = pyspark.ml.evaluation.MulticlassClassificationEvaluator(
|
||||
metricName='accuracy')
|
||||
accuracy = evaluator.evaluate(prediction)
|
||||
|
||||
print()
|
||||
print('#####################################')
|
||||
print('Regularization rate is {}'.format(reg))
|
||||
print("Accuracy is {}".format(accuracy))
|
||||
print('#####################################')
|
||||
print()
|
||||
|
||||
# log accuracy
|
||||
run.log('Accuracy', accuracy)
|
||||
34
NBSETUP.md
Normal file
34
NBSETUP.md
Normal file
@@ -0,0 +1,34 @@
|
||||
# Notebook setup
|
||||
|
||||
---
|
||||
|
||||
To run the notebooks in this repository use one of these methods:
|
||||
|
||||
## Use Azure Notebooks - Jupyter based notebooks in the Azure cloud
|
||||
|
||||
1. [](https://aka.ms/aml-clone-azure-notebooks)
|
||||
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks
|
||||
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
|
||||
1. Open one of the sample notebooks
|
||||
|
||||
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook
|
||||
|
||||

|
||||
|
||||
## **Use your own notebook server**
|
||||
|
||||
Video walkthrough:
|
||||
|
||||
[](https://youtu.be/VIsXeTuW3FU)
|
||||
|
||||
1. Setup a Jupyter Notebook server and [install the Azure Machine Learning SDK](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python)
|
||||
1. Clone [this repository](https://aka.ms/aml-notebooks)
|
||||
1. You may need to install other packages for specific notebook
|
||||
- For example, to run the Azure Machine Learning Data Prep notebooks, install the extra dataprep SDK:
|
||||
```bash
|
||||
pip install azureml-dataprep
|
||||
```
|
||||
|
||||
1. Start your notebook server
|
||||
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
|
||||
1. Open one of the sample notebooks
|
||||
69
README.md
69
README.md
@@ -1,53 +1,40 @@
|
||||
For full documentation for Azure Machine Learning service, visit **https://aka.ms/aml-docs**.
|
||||
# Sample Notebooks for Azure Machine Learning service
|
||||
# Azure Machine Learning service sample notebooks
|
||||
|
||||
To run the notebooks in this repository use one of these methods:
|
||||
---
|
||||
|
||||
## Use Azure Notebooks - Jupyter based notebooks in the Azure cloud
|
||||
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK
|
||||
which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK
|
||||
allows you the choice of using local or cloud compute resources, while managing
|
||||
and maintaining the complete data science workflow from the cloud.
|
||||
|
||||
1. [](https://aka.ms/aml-clone-azure-notebooks)
|
||||
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
|
||||
1. Follow the instructions in the [00.configuration](00.configuration.ipynb) notebook to create and connect to a workspace.
|
||||
1. Open one of the sample notebooks.
|
||||
* Read [instructions on setting up notebooks](./NBSETUP.md) to run these notebooks.
|
||||
|
||||
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook.
|
||||
* Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
|
||||
|
||||

|
||||
## Getting Started
|
||||
|
||||
These examples will provide you with an effective way to get started using AML. Once you're familiar with
|
||||
some of the capabilities, explore the repository for specific topics.
|
||||
|
||||
## **Use your own notebook server**
|
||||
- [Configuration](./configuration.ipynb) configures your notebook library to easily connect to an
|
||||
Azure Machine Learning workspace, and sets up your workspace to be used by many of the other examples. You should
|
||||
always run this first when setting up a notebook library on a new machine or in a new environment
|
||||
- [Train in notebook](./how-to-use-azureml/training/train-within-notebook) shows how to create a model directly in a notebook while recording
|
||||
metrics and deploy that model to a test service
|
||||
- [Train on remote](./how-to-use-azureml/training/train-on-remote-vm) takes the previous example and shows how to create the model on a cloud compute target
|
||||
- [Production deploy to AKS](./how-to-use-azureml/deployment/production-deploy-to-aks) shows how to create a production grade inferencing webservice
|
||||
|
||||
Video walkthrough:
|
||||
## Tutorials
|
||||
|
||||
[](https://youtu.be/VIsXeTuW3FU)
|
||||
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs)
|
||||
|
||||
1. Setup a Jupyter Notebook server and [install the Azure Machine Learning SDK](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python).
|
||||
1. Clone [this repository](https://aka.ms/aml-notebooks).
|
||||
1. You may need to install other packages for specific notebook.
|
||||
- For example, to run the Azure Machine Learning Data Prep notebooks, install the extra dataprep SDK:
|
||||
```
|
||||
pip install --upgrade azureml-dataprep
|
||||
```
|
||||
## How to use AML
|
||||
|
||||
1. Start your notebook server.
|
||||
1. Follow the instructions in the [00.configuration](00.configuration.ipynb) notebook to create and connect to a workspace.
|
||||
1. Open one of the sample notebooks.
|
||||
The [How to use AML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
|
||||
|
||||
|
||||
|
||||
> Note: **Looking for automated machine learning samples?**
|
||||
> For your convenience, you can use an installation script instead of the steps below for the automated ML notebooks. Go to the [automl folder README](automl/README.md) and follow the instructions. The script installs all packages needed for notebooks in that folder.
|
||||
|
||||
# Contributing
|
||||
|
||||
This project welcomes contributions and suggestions. Most contributions require you to agree to a
|
||||
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
|
||||
the rights to use your contribution. For details, visit https://cla.microsoft.com.
|
||||
|
||||
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
|
||||
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
|
||||
provided by the bot. You will only need to do this once across all repos using our CLA.
|
||||
|
||||
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
||||
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
|
||||
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|
||||
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets.
|
||||
- [Training with Deep Learning](./how-to-use-azureml/training-with-deep-learning) - Examples demonstrating how to build deep learning models using estimators and parameter sweeps
|
||||
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
|
||||
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
|
||||
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
|
||||
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
|
||||
|
||||
@@ -1,224 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 00. Configuration\n",
|
||||
"\n",
|
||||
"In this example you will create an Azure Machine Learning `Workspace` object and initialize your notebook directory to easily reload this object from a configuration file. Typically you will only need to run this once per notebook directory, and all other notebooks in this directory or any sub-directories will automatically use the settings you indicate here.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Prerequisites:\n",
|
||||
"\n",
|
||||
"Before running this notebook, run the `automl_setup` script described in README.md.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Register Machine Learning Services Resource Provider\n",
|
||||
"\n",
|
||||
"Microsoft.MachineLearningServices only needs to be registed once in the subscription.\n",
|
||||
"To register it:\n",
|
||||
"1. Start the Azure portal.\n",
|
||||
"2. Select your `All services` and then `Subscription`.\n",
|
||||
"3. Select the subscription that you want to use.\n",
|
||||
"4. Click on `Resource providers`\n",
|
||||
"3. Click the `Register` link next to Microsoft.MachineLearningServices"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Check the Azure ML Core SDK Version to Validate Your Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK Version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize an Azure ML Workspace\n",
|
||||
"### What is an Azure ML Workspace and Why Do I Need One?\n",
|
||||
"\n",
|
||||
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### What do I Need?\n",
|
||||
"\n",
|
||||
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
|
||||
"* A name for your workspace. You can choose one.\n",
|
||||
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
|
||||
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
|
||||
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"subscription_id = \"<subscription_id>\"\n",
|
||||
"resource_group = \"myrg\"\n",
|
||||
"workspace_name = \"myws\"\n",
|
||||
"workspace_region = \"eastus2\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating a Workspace\n",
|
||||
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
|
||||
"\n",
|
||||
"This will fail when:\n",
|
||||
"1. The workspace already exists.\n",
|
||||
"2. You do not have permission to create a workspace in the resource group.\n",
|
||||
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
|
||||
"\n",
|
||||
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
|
||||
"\n",
|
||||
"**Note:** Creation of a new workspace can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import the Workspace class and check the Azure ML SDK version.\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region)\n",
|
||||
"ws.get_details()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configuring Your Local Environment\n",
|
||||
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace(workspace_name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group)\n",
|
||||
"\n",
|
||||
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can then load the workspace from this config file from any notebook in the current directory."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load workspace configuration from ./aml_config/config.json file.\n",
|
||||
"my_workspace = Workspace.from_config()\n",
|
||||
"my_workspace.get_details()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Folder to Host All Sample Projects\n",
|
||||
"Finally, create a folder where all the sample projects will be hosted."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"sample_projects_folder = './sample_projects'\n",
|
||||
"\n",
|
||||
"if not os.path.isdir(sample_projects_folder):\n",
|
||||
" os.mkdir(sample_projects_folder)\n",
|
||||
" \n",
|
||||
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Success!\n",
|
||||
"Great, you are ready to move on to the rest of the sample notebooks."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,294 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 10: Multi-output\n",
|
||||
"\n",
|
||||
"This notebook shows how to use AutoML to train multi-output problems by leveraging the correlation between the outputs using indicator vectors.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn import datasets\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Transformer Functions\n",
|
||||
"The transformations of inputs `X` and `y` are happening as follows, e.g. `y = {y_1, y_2}`, then `X` becomes\n",
|
||||
" \n",
|
||||
"`X 1 0`\n",
|
||||
" \n",
|
||||
"`X 0 1`\n",
|
||||
"\n",
|
||||
"and `y` becomes,\n",
|
||||
"\n",
|
||||
"`y_1`\n",
|
||||
"\n",
|
||||
"`y_2`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from scipy import sparse\n",
|
||||
"from scipy import linalg\n",
|
||||
"\n",
|
||||
"#Transformer functions\n",
|
||||
"def multi_output_transform_x_y(X, y):\n",
|
||||
" X_new = multi_output_transformer_x(X, y.shape[1])\n",
|
||||
" y_new = multi_output_transform_y(y)\n",
|
||||
" return X_new, y_new\n",
|
||||
"\n",
|
||||
"def multi_output_transformer_x(X, number_of_columns_y):\n",
|
||||
" indicator_vecs = linalg.block_diag(*([np.ones((X.shape[0], 1))] * number_of_columns_y))\n",
|
||||
" if sparse.issparse(X):\n",
|
||||
" X_new = sparse.vstack(np.tile(X, number_of_columns_y))\n",
|
||||
" indicator_vecs = sparse.coo_matrix(indicator_vecs)\n",
|
||||
" X_new = sparse.hstack((X_new, indicator_vecs))\n",
|
||||
" else:\n",
|
||||
" X_new = np.tile(X, (number_of_columns_y, 1))\n",
|
||||
" X_new = np.hstack((X_new, indicator_vecs))\n",
|
||||
" return X_new\n",
|
||||
"\n",
|
||||
"def multi_output_transform_y(y):\n",
|
||||
" return y.reshape(-1, order=\"F\")\n",
|
||||
"\n",
|
||||
"def multi_output_inverse_transform_y(y, number_of_columns_y):\n",
|
||||
" return y.reshape((-1, number_of_columns_y), order = \"F\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## AutoML Experiment Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"experiment_name = 'automl-local-multi-output'\n",
|
||||
"project_folder = './sample_projects/automl-local-multi-output'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data = output, index = ['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Random Dataset for Test Purposes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rng = np.random.RandomState(1)\n",
|
||||
"X_train = np.sort(200 * rng.rand(600, 1) - 100, axis = 0)\n",
|
||||
"y_train = np.array([np.pi * np.sin(X_train).ravel(), np.pi * np.cos(X_train).ravel()]).T\n",
|
||||
"y_train += (0.5 - rng.rand(*y_train.shape))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Perform X and y transformation using the transformer function."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train_transformed, y_train_transformed = multi_output_transform_x_y(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Configure AutoML using the transformed results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log = 'automl_errors_multi.log',\n",
|
||||
" primary_metric = 'r2_score',\n",
|
||||
" iterations = 10,\n",
|
||||
" n_cross_validations = 2,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train_transformed,\n",
|
||||
" y = y_train_transformed,\n",
|
||||
" path = project_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fit the Transformed Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the best fit model.\n",
|
||||
"best_run, fitted_model = local_run.get_output()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generate random data set for predicting.\n",
|
||||
"X_test = np.sort(200 * rng.rand(200, 1) - 100, axis = 0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Transform predict data.\n",
|
||||
"X_test_transformed = multi_output_transformer_x(X_test, y_train.shape[1])\n",
|
||||
"\n",
|
||||
"# Predict and inverse transform the prediction.\n",
|
||||
"y_predict = fitted_model.predict(X_test_transformed)\n",
|
||||
"y_predict = multi_output_inverse_transform_y(y_predict, y_train.shape[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(y_predict)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,227 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 12: Retrieving Training SDK Versions\n",
|
||||
"\n",
|
||||
"This example shows how to find the SDK versions used for an experiment.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn import datasets\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Train models using AutoML"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"experiment_name = 'automl-local-classification'\n",
|
||||
"project_folder = './sample_projects/automl-local-classification'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data=output, index=['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"digits = datasets.load_digits()\n",
|
||||
"X_train = digits.data[10:,:]\n",
|
||||
"y_train = digits.target[10:]\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" primary_metric = 'AUC_weighted',\n",
|
||||
" iterations = 3,\n",
|
||||
" n_cross_validations = 2,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" path = project_folder)\n",
|
||||
"\n",
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Retrieve the SDK versions from RunHistory"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To get the SDK versions from RunHistory, first the run id needs to be recorded. This can either be done by copying it from the output message or by retrieving it after each run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Use a run id copied from an output message.\n",
|
||||
"#run_id = 'AutoML_c0585b1f-a0e6-490b-84c7-3a099468b28e'\n",
|
||||
"\n",
|
||||
"# Retrieve the run id from a run.\n",
|
||||
"run_id = local_run.id\n",
|
||||
"print(run_id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Initialize a new `AutoMLRun` object."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment_name = 'automl-local-classification'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Get parent training SDK versions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ml_run.get_run_sdk_dependencies()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Get the traning SDK versions of a specific run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ml_run.get_run_sdk_dependencies(iteration = 2)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,449 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 15b: Regression with ensembling on remote compute\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html) to showcase how you can use AutoML for a simple regression problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`which enables an extra ensembling iteration.\n",
|
||||
"3. Train the model using remote compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn import datasets\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"experiment_name = 'automl-local-regression'\n",
|
||||
"project_folder = './sample_projects/automl-local-regression'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data = output, index = ['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Remote Linux DSVM\n",
|
||||
"**Note:** If creation fails with a message about Marketplace purchase eligibilty, start creation of a DSVM through the [Azure portal](https://portal.azure.com), and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled this setting, you can exit the portal without actually creating the DSVM, and creation of the DSVM through the notebook should work."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import DsvmCompute\n",
|
||||
"\n",
|
||||
"dsvm_name = 'mydsvm'\n",
|
||||
"try:\n",
|
||||
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
|
||||
" print('Found an existing DSVM.')\n",
|
||||
"except:\n",
|
||||
" print('Creating a new DSVM.')\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
|
||||
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
|
||||
" dsvm_compute.wait_for_completion(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Get Data File\n",
|
||||
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
||||
"In this example, the `get_data()` function returns data using scikit-learn's `diabetes` dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%writefile $project_folder/get_data.py\n",
|
||||
"\n",
|
||||
"# Load the diabetes dataset, a well-known built-in small dataset that comes with scikit-learn.\n",
|
||||
"from sklearn.datasets import load_diabetes\n",
|
||||
"from sklearn.linear_model import Ridge\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"def get_data():\n",
|
||||
" X, y = load_diabetes(return_X_y = True)\n",
|
||||
"\n",
|
||||
" columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']\n",
|
||||
"\n",
|
||||
" X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size = 0.2, random_state = 0)\n",
|
||||
" X_valid, X_test, y_valid, y_test = train_test_split(X_temp, y_temp, test_size = 0.5, random_state = 0)\n",
|
||||
" return { \"X\" : X_train, \"y\" : y_train, \"X_valid\": X_valid, \"y_valid\": y_valid }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**enable_ensembling**|Flag to enable an ensembling iteration after all the other iterations complete.|\n",
|
||||
"|**ensemble_iterations**|Number of iterations during which we choose a fitted pipeline to be part of the final ensemble.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" iteration_timeout_minutes = 10,\n",
|
||||
" iterations = 20,\n",
|
||||
" primary_metric = 'spearman_correlation',\n",
|
||||
" debug_log = 'regression.log',\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" compute_target = dsvm_compute,\n",
|
||||
" data_script = project_folder + \"/get_data.py\",\n",
|
||||
" enable_ensembling = True,\n",
|
||||
" ensemble_iterations = 5,\n",
|
||||
" path = project_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Model\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
"\n",
|
||||
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(local_run).show() "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"#### Retrieve All Child Runs\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = local_run.get_output()\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Best Model Based on Any Other Metric\n",
|
||||
"Show the run and the model that has the smallest `root_mean_squared_error` value."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lookup_metric = \"root_mean_squared_error\"\n",
|
||||
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Model (Ensemble)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Predict on training and test set, and calculate residual values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import load_diabetes\n",
|
||||
"from sklearn.linear_model import Ridge\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"X, y = load_diabetes(return_X_y = True)\n",
|
||||
"\n",
|
||||
"X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size = 0.2, random_state = 0)\n",
|
||||
"X_valid, X_test, y_valid, y_test = train_test_split(X_temp, y_temp, test_size = 0.5, random_state = 0)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"y_pred_train = fitted_model.predict(X_train)\n",
|
||||
"y_residual_train = y_train - y_pred_train\n",
|
||||
"\n",
|
||||
"y_pred_test = fitted_model.predict(X_test)\n",
|
||||
"y_residual_test = y_test - y_pred_test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn import datasets\n",
|
||||
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
||||
"\n",
|
||||
"# Set up a multi-plot chart.\n",
|
||||
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
|
||||
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
|
||||
"f.set_figheight(6)\n",
|
||||
"f.set_figwidth(16)\n",
|
||||
"\n",
|
||||
"# Plot residual values of training set.\n",
|
||||
"a0.axis([0, 360, -200, 200])\n",
|
||||
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
|
||||
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
|
||||
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
|
||||
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)), fontsize = 12)\n",
|
||||
"a0.set_xlabel('Training samples', fontsize = 12)\n",
|
||||
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
|
||||
"\n",
|
||||
"# Plot a histogram.\n",
|
||||
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step');\n",
|
||||
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10);\n",
|
||||
"\n",
|
||||
"# Plot residual values of test set.\n",
|
||||
"a1.axis([0, 90, -200, 200])\n",
|
||||
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
|
||||
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
|
||||
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
|
||||
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)), fontsize = 12)\n",
|
||||
"a1.set_xlabel('Test samples', fontsize = 12)\n",
|
||||
"a1.set_yticklabels([])\n",
|
||||
"\n",
|
||||
"# Plot a histogram.\n",
|
||||
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step')\n",
|
||||
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10)\n",
|
||||
"\n",
|
||||
"plt.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "ratanase"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python [default]",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
306
automl/README.md
306
automl/README.md
@@ -1,306 +0,0 @@
|
||||
# Table of Contents
|
||||
1. [Automated ML Introduction](#introduction)
|
||||
1. [Running samples in Azure Notebooks](#jupyter)
|
||||
1. [Running samples in a Local Conda environment](#localconda)
|
||||
1. [Automated ML SDK Sample Notebooks](#samples)
|
||||
1. [Documentation](#documentation)
|
||||
1. [Running using python command](#pythoncommand)
|
||||
1. [Troubleshooting](#troubleshooting)
|
||||
|
||||
<a name="introduction"></a>
|
||||
# Automated ML introduction
|
||||
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
|
||||
|
||||
|
||||
If you are new to Data Science, AutoML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
|
||||
|
||||
If you are an experienced data scientist, AutoML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. AutoML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
|
||||
|
||||
<a name="jupyter"></a>
|
||||
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
|
||||
|
||||
1. [](https://aka.ms/aml-clone-azure-notebooks)
|
||||
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
|
||||
1. Follow the instructions in the [../00.configuration](00.configuration.ipynb) notebook to create and connect to a workspace.
|
||||
1. Open one of the sample notebooks.
|
||||
|
||||
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook.
|
||||
|
||||

|
||||
|
||||
<a name="localconda"></a>
|
||||
## Running samples in a Local Conda environment
|
||||
|
||||
To run these notebook on your own notebook server, use these installation instructions.
|
||||
|
||||
The instructions below will install everything you need and then start a Jupyter notebook. To start your Jupyter notebook manually, use:
|
||||
|
||||
```
|
||||
conda activate azure_automl
|
||||
jupyter notebook
|
||||
```
|
||||
|
||||
or on Mac:
|
||||
|
||||
```
|
||||
source activate azure_automl
|
||||
jupyter notebook
|
||||
```
|
||||
|
||||
|
||||
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose Python 3.7 or higher.
|
||||
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
|
||||
There's no need to install mini-conda specifically.
|
||||
|
||||
### 2. Downloading the sample notebooks
|
||||
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The AutoML sample notebooks are in the "automl" folder.
|
||||
|
||||
### 3. Setup a new conda environment
|
||||
The **automl/automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook.
|
||||
It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. It can take about 10 minutes to execute.
|
||||
## Windows
|
||||
Start a conda command windows, cd to the **automl** folder where the sample notebooks were extracted and then run:
|
||||
```
|
||||
automl_setup
|
||||
```
|
||||
## Mac
|
||||
Install "Command line developer tools" if it is not already installed (you can use the command: `xcode-select --install`).
|
||||
|
||||
Start a Terminal windows, cd to the **automl** folder where the sample notebooks were extracted and then run:
|
||||
|
||||
```
|
||||
bash automl_setup_mac.sh
|
||||
```
|
||||
|
||||
## Linux
|
||||
cd to the **automl** folder where the sample notebooks were extracted and then run:
|
||||
|
||||
```
|
||||
bash automl_setup_linux.sh
|
||||
```
|
||||
|
||||
### 4. Running configuration.ipynb
|
||||
- Before running any samples you next need to run the configuration notebook. Click on 00.configuration.ipynb notebook
|
||||
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
|
||||
|
||||
### 5. Running Samples
|
||||
- Please make sure you use the Python [conda env:azure_automl] kernel when trying the sample Notebooks.
|
||||
- Follow the instructions in the individual notebooks to explore various features in AutoML
|
||||
|
||||
<a name="samples"></a>
|
||||
# Automated ML SDK Sample Notebooks
|
||||
- [00.configuration.ipynb](00.configuration.ipynb)
|
||||
- Register Machine Learning Services Resource Provider
|
||||
- Create new Azure ML Workspace
|
||||
- Save Workspace configuration file
|
||||
|
||||
- [01.auto-ml-classification.ipynb](01.auto-ml-classification.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Simple example of using Auto ML for classification
|
||||
- Uses local compute for training
|
||||
|
||||
- [02.auto-ml-regression.ipynb](02.auto-ml-regression.ipynb)
|
||||
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
|
||||
- Simple example of using Auto ML for regression
|
||||
- Uses local compute for training
|
||||
|
||||
- [03.auto-ml-remote-execution.ipynb](03.auto-ml-remote-execution.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Example of using Auto ML for classification using a remote linux DSVM for training
|
||||
- Parallel execution of iterations
|
||||
- Async tracking of progress
|
||||
- Cancelling individual iterations or entire run
|
||||
- Retrieving models for any iteration or logged metric
|
||||
- Specify automl settings as kwargs
|
||||
|
||||
- [03b.auto-ml-remote-batchai.ipynb](03b.auto-ml-remote-batchai.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Example of using automated ML for classification using a remote Batch AI compute for training
|
||||
- Parallel execution of iterations
|
||||
- Async tracking of progress
|
||||
- Cancelling individual iterations or entire run
|
||||
- Retrieving models for any iteration or logged metric
|
||||
- Specify automl settings as kwargs
|
||||
|
||||
- [04.auto-ml-remote-execution-text-data-blob-store.ipynb](04.auto-ml-remote-execution-text-data-blob-store.ipynb)
|
||||
- Dataset: [Burning Man 2016 dataset](https://innovate.burningman.org/datasets-page/)
|
||||
- handling text data with preprocess flag
|
||||
- Reading data from a blob store for remote executions
|
||||
- using pandas dataframes for reading data
|
||||
|
||||
- [05.auto-ml-missing-data-blacklist-early-termination.ipynb](05.auto-ml-missing-data-blacklist-early-termination.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Blacklist certain pipelines
|
||||
- Specify a target metrics to indicate stopping criteria
|
||||
- Handling Missing Data in the input
|
||||
|
||||
- [06.auto-ml-sparse-data-train-test-split.ipynb](06.auto-ml-sparse-data-train-test-split.ipynb)
|
||||
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
|
||||
- Handle sparse datasets
|
||||
- Specify custom train and validation set
|
||||
|
||||
- [07.auto-ml-exploring-previous-runs.ipynb](07.auto-ml-exploring-previous-runs)
|
||||
- List all projects for the workspace
|
||||
- List all AutoML Runs for a given project
|
||||
- Get details for a AutoML Run. (Automl settings, run widget & all metrics)
|
||||
- Download fitted pipeline for any iteration
|
||||
|
||||
- [08.auto-ml-remote-execution-with-DataStore.ipynb](08.auto-ml-remote-execution-with-DataStore.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](https://innovate.burningman.org/datasets-page/)
|
||||
- Download the data and store it in DataStore.
|
||||
|
||||
- [09.auto-ml-classification-with-deployment.ipynb](09.auto-ml-classification-with-deployment.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Simple example of using Auto ML for classification
|
||||
- Registering the model
|
||||
- Creating Image and creating aci service
|
||||
- Testing the aci service
|
||||
|
||||
- [10.auto-ml-multi-output-example.ipynb](10.auto-ml-multi-output-example.ipynb)
|
||||
- Dataset: scikit learn's random example using multi-output pipeline(http://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py)
|
||||
- Simple example of using Auto ML for multi output regression
|
||||
- Handle both the dense and sparse metrix
|
||||
|
||||
- [11.auto-ml-sample-weight.ipynb](11.auto-ml-sample-weight.ipynb)
|
||||
- How to specifying sample_weight
|
||||
- The difference that it makes to test results
|
||||
|
||||
- [12.auto-ml-retrieve-the-training-sdk-versions.ipynb](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)
|
||||
- How to get current and training env SDK versions
|
||||
|
||||
- [13.auto-ml-dataprep.ipynb](13.auto-ml-dataprep.ipynb)
|
||||
- Using DataPrep for reading data
|
||||
|
||||
- [14.auto-ml-model-explanation.ipynb](14.auto-ml-model-explanation.ipynb)
|
||||
- Dataset: sklearn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html)
|
||||
- Explaining the AutoML classification pipeline
|
||||
- Visualizing feature importance in widget
|
||||
|
||||
- [15a.auto-ml-classification-ensemble.ipynb](15a.auto-ml-classification-ensemble.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Enables an extra iteration for generating an Ensemble of models
|
||||
- Uses local compute for training
|
||||
|
||||
- [15b.auto-ml-regression-ensemble.ipynb](15b.auto-ml-regression-ensemble.ipynb)
|
||||
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
|
||||
- Enables an extra iteration for generating an Ensemble of models
|
||||
- Uses remote Linux DSVM for training
|
||||
|
||||
<a name="documentation"></a>
|
||||
# Documentation
|
||||
## Table of Contents
|
||||
1. [Automated ML Settings ](#automlsettings)
|
||||
1. [Cross validation split options](#cvsplits)
|
||||
1. [Get Data Syntax](#getdata)
|
||||
1. [Data pre-processing and featurization](#preprocessing)
|
||||
|
||||
<a name="automlsettings"></a>
|
||||
## Automated ML Settings
|
||||
|
||||
|Property|Description|Default|
|
||||
|-|-|-|
|
||||
|**primary_metric**|This is the metric that you want to optimize.<br><br> Classification supports the following primary metrics <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i><br><br> Regression supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i><br><i>normalized_root_mean_squared_log_error</i>| Classification: accuracy <br><br> Regression: spearman_correlation
|
||||
|**iteration_timeout_minutes**|Time limit in minutes for each iteration|None|
|
||||
|**iterations**|Number of iterations. In each iteration trains the data with a specific pipeline. To get the best result, use at least 100. |100|
|
||||
|**n_cross_validations**|Number of cross validation splits|None|
|
||||
|**validation_size**|Size of validation set as percentage of all training samples|None|
|
||||
|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel|1|
|
||||
|**preprocess**|*True/False* <br>Setting this to *True* enables preprocessing <br>on the input to handle missing data, and perform some common feature extraction<br>*Note: If input data is Sparse you cannot use preprocess=True*|False|
|
||||
|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> You can set it to *-1* to use all cores|1|
|
||||
|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br> Once the target is surpassed the run terminates|None|
|
||||
|**blacklist_models**|*Array* of *strings* indicating models to ignore for Auto ML from the list of models.|None|
|
||||
|**whilelist_models**|*Array* of *strings* use only models listed for Auto ML from the list of models..|None|
|
||||
<a name="cvsplits"></a>
|
||||
## List of models for white list/blacklist
|
||||
**Classification**
|
||||
<br><i>LogisticRegression</i>
|
||||
<br><i>SGD</i>
|
||||
<br><i>MultinomialNaiveBayes</i>
|
||||
<br><i>BernoulliNaiveBayes</i>
|
||||
<br><i>SVM</i>
|
||||
<br><i>LinearSVM</i>
|
||||
<br><i>KNN</i>
|
||||
<br><i>DecisionTree</i>
|
||||
<br><i>RandomForest</i>
|
||||
<br><i>ExtremeRandomTrees</i>
|
||||
<br><i>LightGBM</i>
|
||||
<br><i>GradientBoosting</i>
|
||||
<br><i>TensorFlowDNN</i>
|
||||
<br><i>TensorFlowLinearClassifier</i>
|
||||
<br><br>**Regression**
|
||||
<br><i>ElasticNet</i>
|
||||
<br><i>GradientBoosting</i>
|
||||
<br><i>DecisionTree</i>
|
||||
<br><i>KNN</i>
|
||||
<br><i>LassoLars</i>
|
||||
<br><i>SGD</i>
|
||||
<br><i>RandomForest</i>
|
||||
<br><i>ExtremeRandomTrees</i>
|
||||
<br><i>LightGBM</i>
|
||||
<br><i>TensorFlowLinearRegressor</i>
|
||||
<br><i>TensorFlowDNN</i>
|
||||
|
||||
## Cross validation split options
|
||||
### K-Folds Cross Validation
|
||||
Use *n_cross_validations* setting to specify the number of cross validations. The training data set will be randomly split into *n_cross_validations* folds of equal size. During each cross validation round, one of the folds will be used for validation of the model trained on the remaining folds. This process repeats for *n_cross_validations* rounds until each fold is used once as validation set. Finally, the average scores accross all *n_cross_validations* rounds will be reported, and the corresponding model will be retrained on the whole training data set.
|
||||
|
||||
### Monte Carlo Cross Validation (a.k.a. Repeated Random Sub-Sampling)
|
||||
Use *validation_size* to specify the percentage of the training data set that should be used for validation, and use *n_cross_validations* to specify the number of cross validations. During each cross validation round, a subset of size *validation_size* will be randomly selected for validation of the model trained on the remaining data. Finally, the average scores accross all *n_cross_validations* rounds will be reported, and the corresponding model will be retrained on the whole training data set.
|
||||
|
||||
### Custom train and validation set
|
||||
You can specify seperate train and validation set either through the get_data() or directly to the fit method.
|
||||
|
||||
<a name="getdata"></a>
|
||||
## get_data() syntax
|
||||
The *get_data()* function can be used to return a dictionary with these values:
|
||||
|
||||
|Key|Type|Dependency|Mutually Exclusive with|Description|
|
||||
|:-|:-|:-|:-|:-|
|
||||
|X|Pandas Dataframe or Numpy Array|y|data_train, label, columns|All features to train with|
|
||||
|y|Pandas Dataframe or Numpy Array|X|label|Label data to train with. For classification, this should be an array of integers. |
|
||||
|X_valid|Pandas Dataframe or Numpy Array|X, y, y_valid|data_train, label|*Optional* All features to validate with. If this is not specified, X is split between train and validate|
|
||||
|y_valid|Pandas Dataframe or Numpy Array|X, y, X_valid|data_train, label|*Optional* The label data to validate with. If this is not specified, y is split between train and validate|
|
||||
|sample_weight|Pandas Dataframe or Numpy Array|y|data_train, label, columns|*Optional* A weight value for each label. Higher values indicate that the sample is more important.|
|
||||
|sample_weight_valid|Pandas Dataframe or Numpy Array|y_valid|data_train, label, columns|*Optional* A weight value for each validation label. Higher values indicate that the sample is more important. If this is not specified, sample_weight is split between train and validate|
|
||||
|data_train|Pandas Dataframe|label|X, y, X_valid, y_valid|All data (features+label) to train with|
|
||||
|label|string|data_train|X, y, X_valid, y_valid|Which column in data_train represents the label|
|
||||
|columns|Array of strings|data_train||*Optional* Whitelist of columns to use for features|
|
||||
|cv_splits_indices|Array of integers|data_train||*Optional* List of indexes to split the data for cross validation|
|
||||
|
||||
<a name="preprocessing"></a>
|
||||
## Data pre-processing and featurization
|
||||
If you use `preprocess=True`, the following data preprocessing steps are performed automatically for you:
|
||||
|
||||
1. Dropping high cardinality or no variance features
|
||||
- Features with no useful information are dropped from training and validation sets. These include features with all values missing, same value across all rows or with extremely high cardinality (e.g., hashes, IDs or GUIDs).
|
||||
2. Missing value imputation
|
||||
- For numerical features, missing values are imputed with average of values in the column.
|
||||
- For categorical features, missing values are imputed with most frequent value.
|
||||
3. Generating additional features
|
||||
- For DateTime features: Year, Month, Day, Day of week, Day of year, Quarter, Week of the year, Hour, Minute, Second.
|
||||
- For Text features: Term frequency based on bi-grams and tri-grams, Count vectorizer.
|
||||
4. Transformations and encodings
|
||||
- Numeric features with very few unique values are transformed into categorical features.
|
||||
|
||||
<a name="pythoncommand"></a>
|
||||
# Running using python command
|
||||
Jupyter notebook provides a File / Download as / Python (.py) option for saving the notebook as a Python file.
|
||||
You can then run this file using the python command.
|
||||
However, on Windows the file needs to be modified before it can be run.
|
||||
The following condition must be added to the main code in the file:
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
The main code of the file must be indented so that it is under this condition.
|
||||
|
||||
<a name="troubleshooting"></a>
|
||||
# Troubleshooting
|
||||
## Iterations fail and the log contains "MemoryError"
|
||||
This can be caused by insufficient memory on the DSVM. AutoML loads all training data into memory. So, the available memory should be more than the training data size.
|
||||
If you are using a remote DSVM, memory is needed for each concurrent iteration. The max_concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and max_concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
|
||||
To resolve this issue, allocate a DSVM with more memory or reduce the value specified for max_concurrent_iterations.
|
||||
|
||||
## Iterations show as "Not Responding" in the RunDetails widget.
|
||||
This can be caused by too many concurrent iterations for a remote DSVM. Each concurrent iteration usually takes 100% of a core when it is running. Some iterations can use multiple cores. So, the max_concurrent_iterations setting should always be less than the number of cores of the DSVM.
|
||||
To resolve this issue, try reducing the value specified for the max_concurrent_iterations setting.
|
||||
|
||||
376
configuration.ipynb
Normal file
376
configuration.ipynb
Normal file
@@ -0,0 +1,376 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Configuration\n",
|
||||
"\n",
|
||||
"_**Setting up your Azure Machine Learning services workspace and configuring your notebook library**_\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"## Table of Contents\n",
|
||||
"\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
" 1. What is an Azure Machine Learning workspace\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
" 1. Azure subscription\n",
|
||||
" 1. Azure ML SDK and other library installation\n",
|
||||
" 1. Azure Container Instance registration\n",
|
||||
"1. [Configure your Azure ML Workspace](#Configure%20your%20Azure%20ML%20workspace)\n",
|
||||
" 1. Workspace parameters\n",
|
||||
" 1. Access your workspace\n",
|
||||
" 1. Create a new workspace\n",
|
||||
" 1. Create compute resources\n",
|
||||
"1. [Next steps](#Next%20steps)\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"This notebook configures your library of notebooks to connect to an Azure Machine Learning (ML) workspace. In this case, a library contains all of the notebooks in the current folder and any nested folders. You can configure this notebook library to use an existing workspace or create a new workspace.\n",
|
||||
"\n",
|
||||
"Typically you will need to run this notebook only once per notebook library as all other notebooks will use connection information that is written here. If you want to redirect your notebook library to work with a different workspace, then you should re-run this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will\n",
|
||||
"* Learn about getting an Azure subscription\n",
|
||||
"* Specify your workspace parameters\n",
|
||||
"* Access or create your workspace\n",
|
||||
"* Add a default compute cluster for your workspace\n",
|
||||
"\n",
|
||||
"### What is an Azure Machine Learning workspace\n",
|
||||
"\n",
|
||||
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inferencing, and the monitoring of deployed models."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"This section describes activities required before you can access any Azure ML services functionality."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1. Azure Subscription\n",
|
||||
"\n",
|
||||
"In order to create an Azure ML Workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com). Later in this notebook you will need information such as your subscription ID in order to create and access AML workspaces.\n",
|
||||
"\n",
|
||||
"### 2. Azure ML SDK and other library installation\n",
|
||||
"\n",
|
||||
"If you are running in your own environment, follow [SDK installation instructions](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment). If you are running in Azure Notebooks or another Microsoft managed environment, the SDK is already installed.\n",
|
||||
"\n",
|
||||
"Also install following libraries to your environment. Many of the example notebooks depend on them\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"(myenv) $ conda install -y matplotlib tqdm scikit-learn\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Once installation is complete, the following cell checks the Azure ML SDK version:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"install"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.0.6 of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you are using an older version of the SDK then this notebook was created using, you should upgrade your SDK.\n",
|
||||
"\n",
|
||||
"### 3. Azure Container Instance registration\n",
|
||||
"Azure Machine Learning uses of [Azure Container Instance (ACI)](https://azure.microsoft.com/services/container-instances) to deploy dev/test web services. An Azure subscription needs to be registered to use ACI. If you or the subscription owner have not yet registered ACI on your subscription, you will need to use the [Azure CLI](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest) and execute the following commands. Note that if you ran through the AML [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) you have already registered ACI. \n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"# check to see if ACI is already registered\n",
|
||||
"(myenv) $ az provider show -n Microsoft.ContainerInstance -o table\n",
|
||||
"\n",
|
||||
"# if ACI is not registered, run this command.\n",
|
||||
"# note you need to be the subscription owner in order to execute this command successfully.\n",
|
||||
"(myenv) $ az provider register -n Microsoft.ContainerInstance\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure your Azure ML workspace\n",
|
||||
"\n",
|
||||
"### Workspace parameters\n",
|
||||
"\n",
|
||||
"To use an AML Workspace, you will need to import the Azure ML SDK and supply the following information:\n",
|
||||
"* Your subscription id\n",
|
||||
"* A resource group name\n",
|
||||
"* (optional) The region that will host your workspace\n",
|
||||
"* A name for your workspace\n",
|
||||
"\n",
|
||||
"You can get your subscription ID from the [Azure portal](https://portal.azure.com).\n",
|
||||
"\n",
|
||||
"You will also need access to a [_resource group_](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the [Azure portal](https://portal.azure.com). If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
|
||||
"\n",
|
||||
"The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.\n",
|
||||
"\n",
|
||||
"The name for your workspace is unique within the subscription and should be descriptive enough to discern among other AML Workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.\n",
|
||||
"\n",
|
||||
"The following cell allows you to specify your workspace parameters. This cell uses the python method `os.getenv` to read values from environment variables which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. \n",
|
||||
"\n",
|
||||
"If you ran the Azure Machine Learning [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) in Azure Notebooks, you already have a configured workspace! You can go to your Azure Machine Learning Getting Started library, view *config.json* file, and copy-paste the values for subscription ID, resource group and workspace name below.\n",
|
||||
"\n",
|
||||
"Replace the default values in the cell below with your workspace parameters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"subscription_id = os.getenv(\"SUBSCRIPTION_ID\", default=\"<my-subscription-id>\")\n",
|
||||
"resource_group = os.getenv(\"RESOURCE_GROUP\", default=\"<my-resource-group>\")\n",
|
||||
"workspace_name = os.getenv(\"WORKSPACE_NAME\", default=\"<my-workspace-name>\")\n",
|
||||
"workspace_region = os.getenv(\"WORKSPACE_REGION\", default=\"eastus2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Access your workspace\n",
|
||||
"\n",
|
||||
"The following cell uses the Azure ML SDK to attempt to load the workspace specified by your parameters. If this cell succeeds, your notebook library will be configured to access the workspace from all notebooks using the `Workspace.from_config()` method. The cell can fail if the specified workspace doesn't exist or you don't have permissions to access it. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name)\n",
|
||||
" # write the details of the workspace to a configuration file to the notebook library\n",
|
||||
" ws.write_config()\n",
|
||||
" print(\"Workspace configuration succeeded. Skip the workspace creation steps below\")\n",
|
||||
"except:\n",
|
||||
" print(\"Workspace not accessible. Change your parameters or create a new workspace below\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a new workspace\n",
|
||||
"\n",
|
||||
"If you don't have an existing workspace and are the owner of the subscription or resource group, you can create a new workspace. If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
|
||||
"\n",
|
||||
"**Note**: As with other Azure services, there are limits on certain resources (for example AmlCompute quota) associated with the Azure ML service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota.\n",
|
||||
"\n",
|
||||
"This cell will create an Azure ML workspace for you in a subscription provided you have the correct permissions.\n",
|
||||
"\n",
|
||||
"This will fail if:\n",
|
||||
"* You do not have permission to create a workspace in the resource group\n",
|
||||
"* You do not have permission to create a resource group if it's non-existing.\n",
|
||||
"* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
|
||||
"\n",
|
||||
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"tags": [
|
||||
"create workspace"
|
||||
]
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"# Create the workspace using the specified parameters\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region,\n",
|
||||
" create_resource_group = True,\n",
|
||||
" exist_ok = True)\n",
|
||||
"ws.get_details()\n",
|
||||
"\n",
|
||||
"# write the details of the workspace to a configuration file to the notebook library\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create compute resources for your training experiments\n",
|
||||
"\n",
|
||||
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
|
||||
"\n",
|
||||
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
|
||||
"\n",
|
||||
"The cluster parameters are:\n",
|
||||
"* vm_size - this describes the virtual machine type and size used in the cluster. All machines in the cluster are the same type. You can get the list of vm sizes available in your region by using the CLI command\n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"az vm list-skus -o tsv\n",
|
||||
"```\n",
|
||||
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while note in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
|
||||
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"To create a **CPU** cluster now, run the cell below. The autoscale settings mean that the cluster will scale down to 0 nodes when inactive and up to 4 nodes when busy."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your CPU cluster\n",
|
||||
"cpu_cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
|
||||
" print(\"Found existing cpucluster\")\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"Creating new cpucluster\")\n",
|
||||
" \n",
|
||||
" # Specify the configuration for the new cluster\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
|
||||
" min_nodes=0,\n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # Create the cluster with the specified name and configuration\n",
|
||||
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
|
||||
" \n",
|
||||
" # Wait for the cluster to complete, show the output log\n",
|
||||
" cpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To create a **GPU** cluster, run the cell below. Note that your subscription must have sufficient quota for GPU VMs or the command will fail. To increase quota, see [these instructions](https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request). "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"# Choose a name for your GPU cluster\n",
|
||||
"gpu_cluster_name = \"gpucluster\"\n",
|
||||
"\n",
|
||||
"# Verify that cluster does not exist already\n",
|
||||
"try:\n",
|
||||
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
|
||||
" print(\"Found existing gpu cluster\")\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print(\"Creating new gpucluster\")\n",
|
||||
" \n",
|
||||
" # Specify the configuration for the new cluster\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
|
||||
" min_nodes=0,\n",
|
||||
" max_nodes=4)\n",
|
||||
" # Create the cluster with the specified name and configuration\n",
|
||||
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
" # Wait for the cluster to complete, show the output log\n",
|
||||
" gpu_cluster.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"---\n",
|
||||
"\n",
|
||||
"## Next steps\n",
|
||||
"\n",
|
||||
"In this notebook you configured this notebook library to connect easily to an Azure ML workspace. You can copy this notebook to your own libraries to connect them to you workspace, or use it to bootstrap new workspaces completely.\n",
|
||||
"\n",
|
||||
"If you came here from another notebook, you can return there and complete that exercise, or you can try out the [Tutorials](./tutorials) or jump into \"how-to\" notebooks and start creating and deploying models. A good place to start is the [train in notebook](./how-to-use-azureml/training/train-in-notebook) example that walks through a simplified but complete end to end machine learning process."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "roastala"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1 +0,0 @@
|
||||
{"cells":[{"cell_type":"markdown","source":["Azure ML & Azure Databricks notebooks by Parashar Shah.\n\nCopyright (c) Microsoft Corporation. All rights reserved.\n\nLicensed under the MIT License."],"metadata":{}},{"cell_type":"markdown","source":["Please ensure you have run this notebook before proceeding."],"metadata":{}},{"cell_type":"markdown","source":["Now we support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package (during private preview). You can select the option to attach the library to all clusters or just one cluster.\n\nProvide this full string to install the SDK:\n\nazureml-sdk[databricks]"],"metadata":{}},{"cell_type":"code","source":["import azureml.core\n\n# Check core SDK version number - based on build number of preview/master.\nprint(\"SDK version:\", azureml.core.VERSION)"],"metadata":{},"outputs":[],"execution_count":4},{"cell_type":"code","source":["subscription_id = \"<your-subscription-id>\"\nresource_group = \"<your-existing-resource-group>\"\nworkspace_name = \"<a-new-or-existing-workspace; it is unrelated to Databricks workspace>\"\nworkspace_region = \"<your-resource group-region>\""],"metadata":{},"outputs":[],"execution_count":5},{"cell_type":"code","source":["# import the Workspace class and check the azureml SDK version\n# exist_ok checks if workspace exists or not.\n\nfrom azureml.core import Workspace\n\nws = Workspace.create(name = workspace_name,\n subscription_id = subscription_id,\n resource_group = resource_group, \n location = workspace_region,\n exist_ok=True)\n\nws.get_details()"],"metadata":{},"outputs":[],"execution_count":6},{"cell_type":"code","source":["ws = Workspace(workspace_name = workspace_name,\n subscription_id = subscription_id,\n resource_group = resource_group)\n\n# persist the subscription id, resource group name, and workspace name in aml_config/config.json.\nws.write_config()"],"metadata":{},"outputs":[],"execution_count":7},{"cell_type":"code","source":["%sh\ncat /databricks/driver/aml_config/config.json"],"metadata":{},"outputs":[],"execution_count":8},{"cell_type":"code","source":["# import the Workspace class and check the azureml SDK version\nfrom azureml.core import Workspace\n\nws = Workspace.from_config()\nprint('Workspace name: ' + ws.name, \n 'Azure region: ' + ws.location, \n 'Subscription id: ' + ws.subscription_id, \n 'Resource group: ' + ws.resource_group, sep = '\\n')"],"metadata":{},"outputs":[],"execution_count":9},{"cell_type":"code","source":["dbutils.notebook.exit(\"success\")"],"metadata":{},"outputs":[],"execution_count":10},{"cell_type":"code","source":[""],"metadata":{},"outputs":[],"execution_count":11}],"metadata":{"name":"01.Installation_and_Configuration","notebookId":3874566296719377},"nbformat":4,"nbformat_minor":0}
|
||||
@@ -1 +0,0 @@
|
||||
{"cells":[{"cell_type":"markdown","source":["Azure ML & Azure Databricks notebooks by Parashar Shah.\n\nCopyright (c) Microsoft Corporation. All rights reserved.\n\nLicensed under the MIT License."],"metadata":{}},{"cell_type":"markdown","source":["Please ensure you have run all previous notebooks in sequence before running this."],"metadata":{}},{"cell_type":"markdown","source":["#Data Ingestion"],"metadata":{}},{"cell_type":"code","source":["import os\nimport urllib"],"metadata":{},"outputs":[],"execution_count":4},{"cell_type":"code","source":["# Download AdultCensusIncome.csv from Azure CDN. This file has 32,561 rows.\nbasedataurl = \"https://amldockerdatasets.azureedge.net\"\ndatafile = \"AdultCensusIncome.csv\"\ndatafile_dbfs = os.path.join(\"/dbfs\", datafile)\n\nif os.path.isfile(datafile_dbfs):\n print(\"found {} at {}\".format(datafile, datafile_dbfs))\nelse:\n print(\"downloading {} to {}\".format(datafile, datafile_dbfs))\n urllib.request.urlretrieve(os.path.join(basedataurl, datafile), datafile_dbfs)"],"metadata":{},"outputs":[],"execution_count":5},{"cell_type":"code","source":["# Create a Spark dataframe out of the csv file.\ndata_all = sqlContext.read.format('csv').options(header='true', inferSchema='true', ignoreLeadingWhiteSpace='true', ignoreTrailingWhiteSpace='true').load(datafile)\nprint(\"({}, {})\".format(data_all.count(), len(data_all.columns)))\ndata_all.printSchema()"],"metadata":{},"outputs":[],"execution_count":6},{"cell_type":"code","source":["#renaming columns\ncolumns_new = [col.replace(\"-\", \"_\") for col in data_all.columns]\ndata_all = data_all.toDF(*columns_new)\ndata_all.printSchema()"],"metadata":{},"outputs":[],"execution_count":7},{"cell_type":"code","source":["display(data_all.limit(5))"],"metadata":{},"outputs":[],"execution_count":8},{"cell_type":"markdown","source":["#Data Preparation"],"metadata":{}},{"cell_type":"code","source":["# Choose feature columns and the label column.\nlabel = \"income\"\nxvals_all = set(data_all.columns) - {label}\n\n#dbutils.widgets.remove(\"xvars_multiselect\")\ndbutils.widgets.removeAll()\n\ndbutils.widgets.multiselect('xvars_multiselect', 'hours_per_week', xvals_all)\nxvars_multiselect = dbutils.widgets.get(\"xvars_multiselect\")\nxvars = xvars_multiselect.split(\",\")\n\nprint(\"label = {}\".format(label))\nprint(\"features = {}\".format(xvars))\n\ndata = data_all.select([*xvars, label])\n\n# Split data into train and test.\ntrain, test = data.randomSplit([0.75, 0.25], seed=123)\n\nprint(\"train ({}, {})\".format(train.count(), len(train.columns)))\nprint(\"test ({}, {})\".format(test.count(), len(test.columns)))"],"metadata":{},"outputs":[],"execution_count":10},{"cell_type":"markdown","source":["#Data Persistence"],"metadata":{}},{"cell_type":"code","source":["# Write the train and test data sets to intermediate storage\ntrain_data_path = \"AdultCensusIncomeTrain\"\ntest_data_path = \"AdultCensusIncomeTest\"\n\ntrain_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTrain\")\ntest_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTest\")\n\ntrain.write.mode('overwrite').parquet(train_data_path)\ntest.write.mode('overwrite').parquet(test_data_path)\nprint(\"train and test datasets saved to {} and {}\".format(train_data_path_dbfs, test_data_path_dbfs))"],"metadata":{},"outputs":[],"execution_count":12},{"cell_type":"code","source":["dbutils.notebook.exit(\"success\")"],"metadata":{},"outputs":[],"execution_count":13},{"cell_type":"code","source":[""],"metadata":{},"outputs":[],"execution_count":14}],"metadata":{"name":"02.Ingest_data","notebookId":3874566296719393},"nbformat":4,"nbformat_minor":0}
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
{"cells":[{"cell_type":"markdown","source":["Azure ML & Azure Databricks notebooks by Parashar Shah.\n\nCopyright (c) Microsoft Corporation. All rights reserved.\n\nLicensed under the MIT License."],"metadata":{}},{"cell_type":"markdown","source":["Please ensure you have run all previous notebooks in sequence before running this. This notebook uses image from ACI notebook for deploying to AKS."],"metadata":{}},{"cell_type":"code","source":["from azureml.core import Workspace\nimport azureml.core\n\n# Check core SDK version number\nprint(\"SDK version:\", azureml.core.VERSION)\n\n#'''\nws = Workspace.from_config()\nprint('Workspace name: ' + ws.name, \n 'Azure region: ' + ws.location, \n 'Subscription id: ' + ws.subscription_id, \n 'Resource group: ' + ws.resource_group, sep = '\\n')\n#'''"],"metadata":{},"outputs":[],"execution_count":3},{"cell_type":"code","source":["# List images by ws\n\nfrom azureml.core.image import ContainerImage\nfor i in ContainerImage.list(workspace = ws):\n print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"],"metadata":{},"outputs":[],"execution_count":4},{"cell_type":"code","source":["from azureml.core.image import Image\nmyimage = Image(workspace=ws, id=\"aciws:25\")"],"metadata":{},"outputs":[],"execution_count":5},{"cell_type":"code","source":["#create AKS compute\n#it may take 20-25 minutes to create a new cluster\n\nfrom azureml.core.compute import AksCompute, ComputeTarget\n\n# Use the default configuration (can also provide parameters to customize)\nprov_config = AksCompute.provisioning_configuration()\n\naks_name = 'ps-aks-clus2' \n\n# Create the cluster\naks_target = ComputeTarget.create(workspace = ws, \n name = aks_name, \n provisioning_configuration = prov_config)\n\naks_target.wait_for_completion(show_output = True)\n\nprint(aks_target.provisioning_state)\nprint(aks_target.provisioning_errors)"],"metadata":{},"outputs":[],"execution_count":6},{"cell_type":"code","source":["from azureml.core.webservice import Webservice\nhelp( Webservice.deploy_from_image)"],"metadata":{},"outputs":[],"execution_count":7},{"cell_type":"code","source":["from azureml.core.webservice import Webservice, AksWebservice\nfrom azureml.core.image import ContainerImage\n\n#Set the web service configuration (using default here)\naks_config = AksWebservice.deploy_configuration()\n\n#unique service name\nservice_name ='ps-aks-service'\n\n# Webservice creation using single command, there is a variant to use image directly as well.\naks_service = Webservice.deploy_from_image(\n workspace=ws, \n name=service_name,\n deployment_config = aks_config,\n image = myimage,\n deployment_target = aks_target\n )\n\naks_service.wait_for_deployment(show_output=True)"],"metadata":{},"outputs":[],"execution_count":8},{"cell_type":"code","source":["#for using the Web HTTP API \nprint(aks_service.scoring_uri)\nprint(aks_service.get_keys())"],"metadata":{},"outputs":[],"execution_count":9},{"cell_type":"code","source":["import json\n\n#get the some sample data\ntest_data_path = \"AdultCensusIncomeTest\"\ntest = spark.read.parquet(test_data_path).limit(5)\n\ntest_json = json.dumps(test.toJSON().collect())\n\nprint(test_json)"],"metadata":{},"outputs":[],"execution_count":10},{"cell_type":"code","source":["#using data defined above predict if income is >50K (1) or <=50K (0)\naks_service.run(input_data=test_json)"],"metadata":{},"outputs":[],"execution_count":11},{"cell_type":"code","source":["#comment to not delete the web service\naks_service.delete()\n#image.delete()\n#model.delete()\n#aks_target.delete()"],"metadata":{},"outputs":[],"execution_count":12},{"cell_type":"code","source":[""],"metadata":{},"outputs":[],"execution_count":13}],"metadata":{"name":"04.DeploytoACI","notebookId":3874566296719318},"nbformat":4,"nbformat_minor":0}
|
||||
Binary file not shown.
@@ -1,29 +0,0 @@
|
||||
# Azure Databricks - Azure Machine Learning SDK Sample Notebooks
|
||||
|
||||
**NOTE**: With the latest version of Azure Machine Learning SDK, there are some API changes due to which previous version of notebooks will not work.
|
||||
Please remove the previous SDK version and install the latest SDK by installing **azureml-sdk[databricks]** as a PyPi library in Azure Databricks workspace.
|
||||
|
||||
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
|
||||
|
||||
**NOTE**: Some packages like psutil upgrade libs that can cause a conflict, please install such packages by freezing lib version. Eg. "pstuil **cryptography==1.5 pyopenssl==16.0.0 ipython=2.2.0**" to avoid install error. This issue is related to Databricks and not related to AML SDK.
|
||||
|
||||
**NOTE**: You should at least have contributor access to your Azure subcription to run some of the notebooks.
|
||||
|
||||
The iPython Notebooks have to be run sequentially after making changes based on your subscription. The corresponding DBC archive contains all the notebooks and can be imported into your Databricks workspace. You can the run notebooks after importing .dbc instead of downloading individually.
|
||||
|
||||
This set of notebooks are related to Income prediction experiment based on this [dataset](https://archive.ics.uci.edu/ml/datasets/adult) and demonstrate how to data prep, train and operationalize a Spark ML model with Azure ML Python SDK from within Azure Databricks. For details on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks)
|
||||
|
||||
(Recommended) [Azure Databricks AML SDK notebooks](Databricks_AMLSDK_github.dbc) A single DBC package to import all notebooks in your Azure Databricks workspace.
|
||||
|
||||
01. [Installation and Configuration](01.Installation_and_Configuration.ipynb): Install the Azure ML Python SDK and Initialize an Azure ML Workspace and save the Workspace configuration file.
|
||||
02. [Ingest data](02.Ingest_data.ipynb): Download the Adult Census Income dataset and split it into train and test sets.
|
||||
03. [Build model](03a.Build_model.ipynb): Train a binary classification model in Azure Databricks with a Spark ML Pipeline.
|
||||
04. [Build model with Run History](03b.Build_model_runHistory.ipynb): Train model and also capture run history (tracking) with Azure ML Python SDK.
|
||||
05. [Deploy to ACI](04.Deploy_to_ACI.ipynb): Deploy model to Azure Container Instance (ACI) with Azure ML Python SDK.
|
||||
06. [Deploy to AKS](04.Deploy_to_AKS_existingImage.ipynb): Deploy model to Azure Kubernetis Service (AKS) with Azure ML Python SDK from an existing Image with model, conda and score file.
|
||||
|
||||
Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
|
||||
All notebooks in this folder are licensed under the MIT License.
|
||||
|
||||
Apache®, Apache Spark, and Spark® are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.
|
||||
File diff suppressed because it is too large
Load Diff
16
how-to-use-azureml/README.md
Normal file
16
how-to-use-azureml/README.md
Normal file
@@ -0,0 +1,16 @@
|
||||
## Examples to get started with Azure Machine Learning service
|
||||
|
||||
Learn how to use Azure Machine Learning services for experimentation and model management.
|
||||
|
||||
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
|
||||
|
||||
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
|
||||
* [train-on-local](./training/train-on-local): Learn how to submit a run and use Azure ML managed run configuration.
|
||||
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
|
||||
* [logging-api](./training/logging-api): Learn about the details of logging metrics to run history.
|
||||
* [register-model-create-image-deploy-service](./deployment/register-model-create-image-deploy-service): Learn about the details of model management.
|
||||
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
|
||||
* [enable-data-collection-for-models-in-aks](./deployment/enable-data-collection-for-models-in-aks) Learn about data collection APIs for deployed model.
|
||||
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
|
||||
|
||||
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
|
||||
265
how-to-use-azureml/automated-machine-learning/README.md
Normal file
265
how-to-use-azureml/automated-machine-learning/README.md
Normal file
@@ -0,0 +1,265 @@
|
||||
# Table of Contents
|
||||
1. [Automated ML Introduction](#introduction)
|
||||
1. [Running samples in Azure Notebooks](#jupyter)
|
||||
1. [Running samples in Azure Databricks](#databricks)
|
||||
1. [Running samples in a Local Conda environment](#localconda)
|
||||
1. [Automated ML SDK Sample Notebooks](#samples)
|
||||
1. [Documentation](#documentation)
|
||||
1. [Running using python command](#pythoncommand)
|
||||
1. [Troubleshooting](#troubleshooting)
|
||||
|
||||
<a name="introduction"></a>
|
||||
# Automated ML introduction
|
||||
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
|
||||
|
||||
|
||||
If you are new to Data Science, AutoML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
|
||||
|
||||
If you are an experienced data scientist, AutoML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. AutoML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
|
||||
|
||||
Below are the three execution environments supported by AutoML.
|
||||
|
||||
|
||||
<a name="jupyter"></a>
|
||||
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
|
||||
|
||||
1. [](https://aka.ms/aml-clone-azure-notebooks)
|
||||
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
|
||||
1. Follow the instructions in the [configuration](configuration.ipynb) notebook to create and connect to a workspace.
|
||||
1. Open one of the sample notebooks.
|
||||
|
||||
<a name="databricks"></a>
|
||||
## Running samples in Azure Databricks
|
||||
|
||||
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
|
||||
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
|
||||
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl_databricks]** as a PyPi library in Azure Databricks workspace.
|
||||
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
|
||||
- Download the sample notebook AutoML_Databricks_local_06.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
|
||||
- Attach the notebook to the cluster.
|
||||
|
||||
<a name="localconda"></a>
|
||||
## Running samples in a Local Conda environment
|
||||
|
||||
To run these notebook on your own notebook server, use these installation instructions.
|
||||
|
||||
The instructions below will install everything you need and then start a Jupyter notebook. To start your Jupyter notebook manually, use:
|
||||
|
||||
```
|
||||
conda activate azure_automl
|
||||
jupyter notebook
|
||||
```
|
||||
|
||||
or on Mac:
|
||||
|
||||
```
|
||||
source activate azure_automl
|
||||
jupyter notebook
|
||||
```
|
||||
|
||||
|
||||
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.7 or higher.
|
||||
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
|
||||
There's no need to install mini-conda specifically.
|
||||
|
||||
### 2. Downloading the sample notebooks
|
||||
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The AutoML sample notebooks are in the "automl" folder.
|
||||
|
||||
### 3. Setup a new conda environment
|
||||
The **automl/automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook.
|
||||
It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
|
||||
## Windows
|
||||
Start an **Anaconda Prompt** window, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
|
||||
```
|
||||
automl_setup
|
||||
```
|
||||
## Mac
|
||||
Install "Command line developer tools" if it is not already installed (you can use the command: `xcode-select --install`).
|
||||
|
||||
Start a Terminal windows, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
|
||||
|
||||
```
|
||||
bash automl_setup_mac.sh
|
||||
```
|
||||
|
||||
## Linux
|
||||
cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
|
||||
|
||||
```
|
||||
bash automl_setup_linux.sh
|
||||
```
|
||||
|
||||
### 4. Running configuration.ipynb
|
||||
- Before running any samples you next need to run the configuration notebook. Click on configuration.ipynb notebook
|
||||
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
|
||||
|
||||
### 5. Running Samples
|
||||
- Please make sure you use the Python [conda env:azure_automl] kernel when trying the sample Notebooks.
|
||||
- Follow the instructions in the individual notebooks to explore various features in AutoML
|
||||
|
||||
<a name="samples"></a>
|
||||
# Automated ML SDK Sample Notebooks
|
||||
- [configuration.ipynb](configuration.ipynb)
|
||||
- Create new Azure ML Workspace
|
||||
- Save Workspace configuration file
|
||||
|
||||
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Simple example of using Auto ML for classification
|
||||
- Uses local compute for training
|
||||
|
||||
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
|
||||
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
|
||||
- Simple example of using Auto ML for regression
|
||||
- Uses local compute for training
|
||||
|
||||
- [auto-ml-remote-execution.ipynb](remote-execution/auto-ml-remote-execution.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Example of using Auto ML for classification using a remote linux DSVM for training
|
||||
- Parallel execution of iterations
|
||||
- Async tracking of progress
|
||||
- Cancelling individual iterations or entire run
|
||||
- Retrieving models for any iteration or logged metric
|
||||
- Specify automl settings as kwargs
|
||||
|
||||
- [auto-ml-remote-batchai.ipynb](remote-batchai/auto-ml-remote-batchai.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Example of using automated ML for classification using remote AmlCompute for training
|
||||
- Parallel execution of iterations
|
||||
- Async tracking of progress
|
||||
- Cancelling individual iterations or entire run
|
||||
- Retrieving models for any iteration or logged metric
|
||||
- Specify automl settings as kwargs
|
||||
|
||||
- [auto-ml-remote-attach.ipynb](remote-attach/auto-ml-remote-attach.ipynb)
|
||||
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
|
||||
- handling text data with preprocess flag
|
||||
- Reading data from a blob store for remote executions
|
||||
- using pandas dataframes for reading data
|
||||
|
||||
- [auto-ml-missing-data-blacklist-early-termination.ipynb](missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Blacklist certain pipelines
|
||||
- Specify a target metrics to indicate stopping criteria
|
||||
- Handling Missing Data in the input
|
||||
|
||||
- [auto-ml-sparse-data-train-test-split.ipynb](sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.ipynb)
|
||||
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
|
||||
- Handle sparse datasets
|
||||
- Specify custom train and validation set
|
||||
|
||||
- [auto-ml-exploring-previous-runs.ipynb](exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb)
|
||||
- List all projects for the workspace
|
||||
- List all AutoML Runs for a given project
|
||||
- Get details for a AutoML Run. (Automl settings, run widget & all metrics)
|
||||
- Download fitted pipeline for any iteration
|
||||
|
||||
- [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
|
||||
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
|
||||
- Download the data and store it in DataStore.
|
||||
|
||||
- [auto-ml-classification-with-deployment.ipynb](classification-with-deployment/auto-ml-classification-with-deployment.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Simple example of using Auto ML for classification
|
||||
- Registering the model
|
||||
- Creating Image and creating aci service
|
||||
- Testing the aci service
|
||||
|
||||
- [auto-ml-sample-weight.ipynb](sample-weight/auto-ml-sample-weight.ipynb)
|
||||
- How to specifying sample_weight
|
||||
- The difference that it makes to test results
|
||||
|
||||
- [auto-ml-dataprep.ipynb](dataprep/auto-ml-dataprep.ipynb)
|
||||
- Using DataPrep for reading data
|
||||
|
||||
- [auto-ml-dataprep-remote-execution.ipynb](dataprep-remote-execution/auto-ml-dataprep-remote-execution.ipynb)
|
||||
- Using DataPrep for reading data with remote execution
|
||||
|
||||
- [auto-ml-classification-local-azuredatabricks.ipynb](classification-local-azuredatabricks/auto-ml-classification-local-azuredatabricks.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](https://innovate.burningman.org/datasets-page/)
|
||||
- Example of using AutoML for classification using Azure Databricks as the platform for training
|
||||
|
||||
- [auto-ml-classification-with-whitelisting.ipynb](classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb)
|
||||
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
|
||||
- Simple example of using Auto ML for classification with whitelisting tensorflow models.
|
||||
- Uses local compute for training
|
||||
|
||||
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
|
||||
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
|
||||
- Example of using AutoML for training a forecasting model
|
||||
|
||||
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
|
||||
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
|
||||
- Example of training an AutoML forecasting model on multiple time-series
|
||||
|
||||
<a name="documentation"></a>
|
||||
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
|
||||
|
||||
<a name="pythoncommand"></a>
|
||||
# Running using python command
|
||||
Jupyter notebook provides a File / Download as / Python (.py) option for saving the notebook as a Python file.
|
||||
You can then run this file using the python command.
|
||||
However, on Windows the file needs to be modified before it can be run.
|
||||
The following condition must be added to the main code in the file:
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
The main code of the file must be indented so that it is under this condition.
|
||||
|
||||
<a name="troubleshooting"></a>
|
||||
# Troubleshooting
|
||||
## automl_setup fails
|
||||
1. On windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
|
||||
2. Check that you have conda 64-bit installed rather than 32-bit. You can check this with the command `conda info`. The `platform` should be `win-64` for Windows or `osx-64` for Mac.
|
||||
3. Check that you have conda 4.4.10 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
|
||||
4. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
|
||||
|
||||
## configuration.ipynb fails
|
||||
1) For local conda, make sure that you have susccessfully run automl_setup first.
|
||||
2) Check that the subscription_id is correct. You can find the subscription_id in the Azure Portal by selecting All Service and then Subscriptions. The characters "<" and ">" should not be included in the subscription_id value. For example, `subscription_id = "12345678-90ab-1234-5678-1234567890abcd"` has the valid format.
|
||||
3) Check that you have Contributor or Owner access to the Subscription.
|
||||
4) Check that the region is one of the supported regions: `eastus2`, `eastus`, `westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`
|
||||
5) Check that you have access to the region using the Azure Portal.
|
||||
|
||||
## workspace.from_config fails
|
||||
If the call `ws = Workspace.from_config()` fails:
|
||||
1) Make sure that you have run the `configuration.ipynb` notebook successfully.
|
||||
2) If you are running a notebook from a folder that is not under the folder where you ran `configuration.ipynb`, copy the folder aml_config and the file config.json that it contains to the new folder. Workspace.from_config reads the config.json for the notebook folder or it parent folder.
|
||||
3) If you are switching to a new subscription, resource group, workspace or region, make sure that you run the `configuration.ipynb` notebook again. Changing config.json directly will only work if the workspace already exists in the specified resource group under the specified subscription.
|
||||
4) If you want to change the region, please change the workspace, resource group or subscription. `Workspace.create` will not create or update a workspace if it already exists, even if the region specified is different.
|
||||
|
||||
## Sample notebook fails
|
||||
If a sample notebook fails with an error that property, method or library does not exist:
|
||||
1) Check that you have selected correct kernel in jupyter notebook. The kernel is displayed in the top right of the notebook page. It can be changed using the `Kernel | Change Kernel` menu option. For Azure Notebooks, it should be `Python 3.6`. For local conda environments, it should be the conda envioronment name that you specified in automl_setup. The default is azure_automl. Note that the kernel is saved as part of the notebook. So, if you switch to a new conda environment, you will have to select the new kernel in the notebook.
|
||||
2) Check that the notebook is for the SDK version that you are using. You can check the SDK version by executing `azureml.core.VERSION` in a jupyter notebook cell. You can download previous version of the sample notebooks from GitHub by clicking the `Branch` button, selecting the `Tags` tab and then selecting the version.
|
||||
|
||||
## Remote run: DsvmCompute.create fails
|
||||
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
|
||||
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.
|
||||
2) `The requested VM size xxxxx is not available in the current region.` You can select a different region or vm_size.
|
||||
|
||||
## Remote run: Unable to establish SSH connection
|
||||
AutoML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
|
||||
1) The DSVM is not ready for SSH connections. When DSVM creation completes, the DSVM might still not be ready to acceept SSH connections. The sample notebooks have a one minute delay to allow for this.
|
||||
2) Your Azure Subscription may restrict the IP address ranges that can access the DSVM on port 22. You can check this in the Azure Portal by selecting the Virtual Machine and then clicking Networking. The Virtual Machine name is the name that you provided in the notebook plus 10 alpha numeric characters to make the name unique. The Inbound Port Rules define what can access the VM on specific ports. Note that there is a priority priority order. So, a Deny entry with a low priority number will override a Allow entry with a higher priority number.
|
||||
|
||||
## Remote run: setup iteration fails
|
||||
This is often an issue with the `get_data` method.
|
||||
1) Check that the `get_data` method is valid by running it locally.
|
||||
2) Make sure that `get_data` isn't referring to any local files. `get_data` is executed on the remote DSVM. So, it doesn't have direct access to local data files. Instead you can store the data files with DataStore. See [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
|
||||
3) You can get to the error log for the setup iteration by clicking the `Click here to see the run in Azure portal` link, click `Back to Experiment`, click on the highest run number and then click on Logs.
|
||||
|
||||
## Remote run: disk full
|
||||
AutoML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
|
||||
You can delete the files under /tmp/azureml_runs or just delete the VM and create a new one.
|
||||
If your get_data downloads files, make sure the delete them or they can use disk space as well.
|
||||
When using DataStore, it is good to specify an absolute path for the files so that they are downloaded just once. If you specify a relative path, it will download a file for each iteration.
|
||||
|
||||
## Remote run: Iterations fail and the log contains "MemoryError"
|
||||
This can be caused by insufficient memory on the DSVM. AutoML loads all training data into memory. So, the available memory should be more than the training data size.
|
||||
If you are using a remote DSVM, memory is needed for each concurrent iteration. The max_concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and max_concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
|
||||
To resolve this issue, allocate a DSVM with more memory or reduce the value specified for max_concurrent_iterations.
|
||||
|
||||
## Remote run: Iterations show as "Not Responding" in the RunDetails widget.
|
||||
This can be caused by too many concurrent iterations for a remote DSVM. Each concurrent iteration usually takes 100% of a core when it is running. Some iterations can use multiple cores. So, the max_concurrent_iterations setting should always be less than the number of cores of the DSVM.
|
||||
To resolve this issue, try reducing the value specified for the max_concurrent_iterations setting.
|
||||
@@ -8,9 +8,10 @@ dependencies:
|
||||
- numpy>=1.11.0,<1.15.0
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=0.19.0,<0.20.0
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scikit-learn>=0.18.0,<=0.19.1
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- tensorflow>=1.12.0
|
||||
|
||||
# Required for azuremlftk
|
||||
- dill
|
||||
@@ -23,9 +24,9 @@ dependencies:
|
||||
- pip:
|
||||
|
||||
# Required for azuremlftk
|
||||
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18313.5a1-py3-none-any.whl
|
||||
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
|
||||
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-sdk[automl,notebooks]
|
||||
- azureml-sdk[automl,notebooks,explain]
|
||||
- pandas_ml
|
||||
|
||||
@@ -8,9 +8,10 @@ dependencies:
|
||||
- numpy>=1.15.3
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=0.19.0,<0.20.0
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scikit-learn>=0.18.0,<=0.19.1
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- tensorflow>=1.12.0
|
||||
|
||||
# Required for azuremlftk
|
||||
- dill
|
||||
@@ -23,9 +24,10 @@ dependencies:
|
||||
- pip:
|
||||
|
||||
# Required for azuremlftk
|
||||
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18313.5a1-py3-none-any.whl
|
||||
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
|
||||
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-sdk[automl,notebooks]
|
||||
- azureml-sdk[automl,notebooks,explain]
|
||||
- pandas_ml
|
||||
|
||||
|
||||
@@ -11,8 +11,8 @@ IF NOT EXIST %automl_env_file% GOTO YmlMissing
|
||||
call conda activate %conda_env_name% 2>nul:
|
||||
|
||||
if not errorlevel 1 (
|
||||
echo Upgrading azureml-sdk[automl] in existing conda environment %conda_env_name%
|
||||
call pip install --upgrade azureml-sdk[automl,notebooks]
|
||||
echo Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment %conda_env_name%
|
||||
call pip install --upgrade azureml-sdk[automl,notebooks,explain]
|
||||
if errorlevel 1 goto ErrorExit
|
||||
) else (
|
||||
call conda env create -f %automl_env_file% -n %conda_env_name%
|
||||
@@ -21,25 +21,17 @@ if not errorlevel 1 (
|
||||
call conda activate %conda_env_name% 2>nul:
|
||||
if errorlevel 1 goto ErrorExit
|
||||
|
||||
call pip install psutil
|
||||
|
||||
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
|
||||
|
||||
call jupyter nbextension install --py azureml.widgets --user
|
||||
if errorlevel 1 goto ErrorExit
|
||||
|
||||
call jupyter nbextension enable --py azureml.widgets --user
|
||||
if errorlevel 1 goto ErrorExit
|
||||
|
||||
echo.
|
||||
echo.
|
||||
echo ***************************************
|
||||
echo * AutoML setup completed successfully *
|
||||
echo ***************************************
|
||||
echo.
|
||||
echo Starting jupyter notebook - please run notebook 00.configuration
|
||||
echo Starting jupyter notebook - please run the configuration notebook
|
||||
echo.
|
||||
jupyter notebook --log-level=50
|
||||
jupyter notebook --log-level=50 --notebook-dir='..\..'
|
||||
|
||||
goto End
|
||||
|
||||
@@ -21,23 +21,21 @@ fi
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
echo "Upgrading azureml-sdk[automl] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks]
|
||||
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks,explain]
|
||||
else
|
||||
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
|
||||
source activate $CONDA_ENV_NAME &&
|
||||
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
|
||||
jupyter nbextension install --py azureml.widgets --user &&
|
||||
jupyter nbextension enable --py azureml.widgets --user &&
|
||||
echo "" &&
|
||||
echo "" &&
|
||||
echo "***************************************" &&
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run notebook 00.configuration" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
@@ -21,15 +21,13 @@ fi
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
echo "Upgrading azureml-sdk[automl] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks]
|
||||
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks,explain]
|
||||
else
|
||||
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
|
||||
source activate $CONDA_ENV_NAME &&
|
||||
conda install lightgbm -c conda-forge -y &&
|
||||
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
|
||||
jupyter nbextension install --py azureml.widgets --user &&
|
||||
jupyter nbextension enable --py azureml.widgets --user &&
|
||||
pip install numpy==1.15.3
|
||||
echo "" &&
|
||||
echo "" &&
|
||||
@@ -37,9 +35,9 @@ else
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run notebook 00.configuration" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
@@ -13,11 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 09: Classification with Deployment\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Classification with Deployment**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Deploy](#Deploy)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) to showcase how you can use AutoML for a simple classification problem and deploy it to an Azure Container Instance (ACI).\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an experiment using an existing workspace.\n",
|
||||
@@ -27,14 +42,14 @@
|
||||
"5. Register the model.\n",
|
||||
"6. Create a container image.\n",
|
||||
"7. Create an Azure Container Instance (ACI) service.\n",
|
||||
"8. Test the ACI service.\n"
|
||||
"8. Test the ACI service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -94,8 +109,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -113,14 +126,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
@@ -156,8 +169,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -171,10 +182,21 @@
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy\n",
|
||||
"\n",
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
@@ -442,7 +464,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test a Web Service"
|
||||
"## Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -13,25 +13,43 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 15a: Classification with ensembling on local compute\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Classification using whitelist models**_\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig` which enables an extra ensembling iteration.\n",
|
||||
"3. Train the model using local compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model.\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"This notebooks shows how can automl can be trained on a a selected list of models,see the readme.md for the models.\n",
|
||||
"This trains the model exclusively on tensorflow based models.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model on a whilelisted models using local compute. \n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -68,8 +86,8 @@
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"experiment_name = 'automl-local-classification'\n",
|
||||
"project_folder = './sample_projects/automl-local-classification'\n",
|
||||
"experiment_name = 'automl-local-whitelist'\n",
|
||||
"project_folder = './sample_projects/automl-local-whitelist'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -89,8 +107,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -108,7 +124,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load Training Data"
|
||||
"## Data\n",
|
||||
"\n",
|
||||
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -121,18 +139,16 @@
|
||||
"\n",
|
||||
"digits = datasets.load_digits()\n",
|
||||
"\n",
|
||||
"# Exclude the first 50 rows from training so that they can be used for test.\n",
|
||||
"X_train = digits.data[150:,:]\n",
|
||||
"y_train = digits.target[150:]\n",
|
||||
"X_valid = digits.data[50:150]\n",
|
||||
"y_valid = digits.target[50:150]"
|
||||
"# Exclude the first 100 rows from training so that they can be used for test.\n",
|
||||
"X_train = digits.data[100:,:]\n",
|
||||
"y_train = digits.target[100:]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
@@ -145,11 +161,8 @@
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
|
||||
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
|
||||
"|**enable_ensembling**|Flag to enable an ensembling iteration after all the other iterations complete.|\n",
|
||||
"|**ensemble_iterations**|Number of iterations during which we choose a fitted pipeline to be part of the final ensemble.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -159,17 +172,16 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'classification.log',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" primary_metric = 'AUC_weighted',\n",
|
||||
" iteration_timeout_minutes = 60,\n",
|
||||
" iterations = 10,\n",
|
||||
" n_cross_validations = 3,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" X_valid = X_valid,\n",
|
||||
" y_valid = y_valid,\n",
|
||||
" enable_ensembling = True,\n",
|
||||
" ensemble_iterations = 5,\n",
|
||||
" enable_tf=True,\n",
|
||||
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"],\n",
|
||||
" path = project_folder)"
|
||||
]
|
||||
},
|
||||
@@ -177,8 +189,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Model\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -205,37 +215,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Optionally, you can continue an interrupted local run by calling `continue_experiment` without the `iterations` parameter, or run more iterations for a completed run by specifying the `iterations` parameter:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = local_run.continue_experiment(X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" X_valid = X_valid,\n",
|
||||
" y_valid = y_valid,\n",
|
||||
" show_output = True,\n",
|
||||
" iterations = 5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -291,7 +271,7 @@
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -349,7 +329,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -370,7 +350,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Testing Our Best Pipeline\n",
|
||||
"#### Testing Our Best Fitted Model\n",
|
||||
"We will try to predict 2 digits and see how our model works."
|
||||
]
|
||||
},
|
||||
@@ -397,11 +377,11 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "ratanase"
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python [default]",
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
@@ -13,25 +13,42 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 01: Classification with Local Compute\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Classification with Local Compute**_\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model.\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -89,8 +106,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -108,7 +123,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load Training Data\n",
|
||||
"## Data\n",
|
||||
"\n",
|
||||
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
|
||||
]
|
||||
@@ -132,14 +147,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
@@ -170,8 +185,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -213,20 +226,11 @@
|
||||
" iterations = 5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -340,7 +344,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"## Test \n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -0,0 +1,154 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning Configuration\n",
|
||||
"\n",
|
||||
"In this example you will create an Azure Machine Learning `Workspace` object and initialize your notebook directory to easily reload this object from a configuration file. Typically you will only need to run this once per notebook directory, and all other notebooks in this directory or any sub-directories will automatically use the settings you indicate here.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Check the Azure ML Core SDK Version to Validate Your Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK Version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize an Azure ML Workspace\n",
|
||||
"### What is an Azure ML Workspace and Why Do I Need One?\n",
|
||||
"\n",
|
||||
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### What do I Need?\n",
|
||||
"\n",
|
||||
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
|
||||
"* A name for your workspace. You can choose one.\n",
|
||||
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
|
||||
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
|
||||
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"subscription_id = \"<subscription_id>\"\n",
|
||||
"resource_group = \"myrg\"\n",
|
||||
"workspace_name = \"myws\"\n",
|
||||
"workspace_region = \"eastus2\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating a Workspace\n",
|
||||
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
|
||||
"\n",
|
||||
"This will fail when:\n",
|
||||
"1. The workspace already exists.\n",
|
||||
"2. You do not have permission to create a workspace in the resource group.\n",
|
||||
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
|
||||
"\n",
|
||||
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
|
||||
"\n",
|
||||
"**Note:** Creation of a new workspace can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import the Workspace class and check the Azure ML SDK version.\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region)\n",
|
||||
"ws.get_details()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configuring Your Local Environment\n",
|
||||
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace(workspace_name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group)\n",
|
||||
"\n",
|
||||
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -13,10 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 13: Prepare Data using `azureml.dataprep` for Remote Execution (DSVM)\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Prepare Data using `azureml.dataprep` for Remote Execution (DSVM)**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [setup](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
|
||||
@@ -28,8 +44,15 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -47,8 +70,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
@@ -103,7 +124,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Loading Data using DataPrep"
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -127,8 +148,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Review the Data Preparation Result\n",
|
||||
"\n",
|
||||
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
|
||||
]
|
||||
},
|
||||
@@ -145,7 +164,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"This creates a general AutoML settings object applicable for both local and remote runs."
|
||||
]
|
||||
@@ -166,13 +185,6 @@
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Remote Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -186,7 +198,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dsvm_name = 'mydsvmd'\n",
|
||||
"dsvm_name = 'mydsvmc'\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" while ws.compute_targets[dsvm_name].provisioning_state == 'Creating':\n",
|
||||
@@ -198,7 +210,9 @@
|
||||
" print('Creating a new DSVM.')\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
|
||||
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
|
||||
" dsvm_compute.wait_for_completion(show_output = True)"
|
||||
" dsvm_compute.wait_for_completion(show_output = True)\n",
|
||||
" print(\"Waiting one minute for ssh to be accessible\")\n",
|
||||
" time.sleep(60) # Wait for ssh to be accessible"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -251,11 +265,20 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -369,7 +392,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -13,10 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 13: Prepare Data using `azureml.dataprep` for Local Execution\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Prepare Data using `azureml.dataprep` for Local Execution**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [setup](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
|
||||
@@ -28,8 +44,15 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -47,8 +70,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
@@ -101,7 +122,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Loading Data using DataPrep"
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -125,7 +146,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Review the Data Preparation Result\n",
|
||||
"### Review the Data Preparation Result\n",
|
||||
"\n",
|
||||
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
|
||||
]
|
||||
@@ -143,7 +164,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"This creates a general AutoML settings object applicable for both local and remote runs."
|
||||
]
|
||||
@@ -164,13 +185,6 @@
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Local Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -202,11 +216,20 @@
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -320,7 +343,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -13,24 +13,38 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 07: Exploring Previous Runs\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Exploring Previous Runs**_\n",
|
||||
"\n",
|
||||
"In this example we present some examples on navigating previously executed runs. We also show how you can download a fitted model for any previous run.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. List all experiments in a workspace.\n",
|
||||
"2. List all AutoML runs in an experiment.\n",
|
||||
"3. Get details for an AutoML run, including settings, run widget, and all metrics.\n",
|
||||
"4. Download a fitted pipeline for any iteration.\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Explore](#Explore)\n",
|
||||
"1. [Download](#Download)\n",
|
||||
"1. [Register](#Register)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# List all AutoML Experiments in a Workspace"
|
||||
"## Introduction\n",
|
||||
"In this example we present some examples on navigating previously executed runs. We also show how you can download a fitted model for any previous run.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. List all experiments in a workspace.\n",
|
||||
"2. List all AutoML runs in an experiment.\n",
|
||||
"3. Get details for an AutoML run, including settings, run widget, and all metrics.\n",
|
||||
"4. Download a fitted pipeline for any iteration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -64,29 +78,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"experiment_list = Experiment.list(workspace=ws)\n",
|
||||
"\n",
|
||||
"summary_df = pd.DataFrame(index = ['No of Runs'])\n",
|
||||
"pattern = re.compile('^AutoML_[^_]*$')\n",
|
||||
"for experiment in experiment_list:\n",
|
||||
" all_runs = list(experiment.get_runs())\n",
|
||||
" automl_runs = []\n",
|
||||
" for run in all_runs:\n",
|
||||
" if(pattern.match(run.id)):\n",
|
||||
" automl_runs.append(run) \n",
|
||||
" summary_df[experiment.name] = [len(automl_runs)]\n",
|
||||
" \n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"summary_df.T"
|
||||
"ws = Workspace.from_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -104,7 +102,38 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# List AutoML runs for an experiment\n",
|
||||
"## Explore"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### List Experiments"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiment_list = Experiment.list(workspace=ws)\n",
|
||||
"\n",
|
||||
"summary_df = pd.DataFrame(index = ['No of Runs'])\n",
|
||||
"for experiment in experiment_list:\n",
|
||||
" automl_runs = list(experiment.get_runs(type='automl'))\n",
|
||||
" summary_df[experiment.name] = [len(automl_runs)]\n",
|
||||
" \n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"summary_df.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### List runs for an experiment\n",
|
||||
"Set `experiment_name` to any experiment name from the result of the Experiment.list cell to load the AutoML runs."
|
||||
]
|
||||
},
|
||||
@@ -118,11 +147,9 @@
|
||||
"\n",
|
||||
"proj = ws.experiments[experiment_name]\n",
|
||||
"summary_df = pd.DataFrame(index = ['Type', 'Status', 'Primary Metric', 'Iterations', 'Compute', 'Name'])\n",
|
||||
"pattern = re.compile('^AutoML_[^_]*$')\n",
|
||||
"all_runs = list(proj.get_runs(properties={'azureml.runsource': 'automl'}))\n",
|
||||
"automl_runs = list(proj.get_runs(type='automl'))\n",
|
||||
"automl_runs_project = []\n",
|
||||
"for run in all_runs:\n",
|
||||
" if(pattern.match(run.id)):\n",
|
||||
"for run in automl_runs:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" tags = run.get_tags()\n",
|
||||
" amlsettings = eval(properties['RawAMLSettingsString'])\n",
|
||||
@@ -146,7 +173,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Get details for an AutoML run\n",
|
||||
"### Get details for a run\n",
|
||||
"\n",
|
||||
"Copy the project name and run id from the previous cell output to find more details on a particular run."
|
||||
]
|
||||
@@ -207,14 +234,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Download fitted models"
|
||||
"## Download"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Download the Best Model for Any Given Metric"
|
||||
"### Download the Best Model for Any Given Metric"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -232,7 +259,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Download the Model for Any Given Iteration"
|
||||
"### Download the Model for Any Given Iteration"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -250,7 +277,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Register fitted model for deployment\n",
|
||||
"## Register"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Register fitted model for deployment\n",
|
||||
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
|
||||
]
|
||||
},
|
||||
@@ -270,7 +304,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register the Best Model for Any Given Metric"
|
||||
"### Register the Best Model for Any Given Metric"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -290,7 +324,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register the Model for Any Given Iteration"
|
||||
"### Register the Model for Any Given Iteration"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -0,0 +1,418 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Energy Demand Forecasting**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example, we show how AutoML can be used for energy demand forecasting.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you would see\n",
|
||||
"1. Creating an Experiment in an existing Workspace\n",
|
||||
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
|
||||
"3. Training the Model using local compute\n",
|
||||
"4. Exploring the results\n",
|
||||
"5. Testing the fitted model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import logging\n",
|
||||
"import warnings\n",
|
||||
"# Squash warning messages for cleaner output in the notebook\n",
|
||||
"warnings.showwarning = lambda *args, **kwargs: None\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"experiment_name = 'automl-energydemandforecasting'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-energydemandforecasting'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data=output, index=['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data\n",
|
||||
"Read energy demanding data from file, and preview data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = pd.read_csv(\"nyc_energy.csv\", parse_dates=['timeStamp'])\n",
|
||||
"data.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Split the data to train and test\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = data[data['timeStamp'] < '2017-02-01']\n",
|
||||
"test = data[data['timeStamp'] >= '2017-02-01']\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Prepare the test data, we will feed X_test to the fitted model and get prediction"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_test = test.pop('demand').values\n",
|
||||
"X_test = test"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Split the train data to train and valid\n",
|
||||
"\n",
|
||||
"Use one month's data as valid data\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train = train[train['timeStamp'] < '2017-01-01']\n",
|
||||
"X_valid = train[train['timeStamp'] >= '2017-01-01']\n",
|
||||
"y_train = X_train.pop('demand').values\n",
|
||||
"y_valid = X_valid.pop('demand').values\n",
|
||||
"print(X_train.shape)\n",
|
||||
"print(y_train.shape)\n",
|
||||
"print(X_valid.shape)\n",
|
||||
"print(y_valid.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|forecasting|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
||||
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
|
||||
"|**X_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"time_column_name = 'timeStamp'\n",
|
||||
"automl_settings = {\n",
|
||||
" \"time_column_name\": time_column_name,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'forecasting',\n",
|
||||
" debug_log = 'automl_nyc_energy_errors.log',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" iterations = 10,\n",
|
||||
" iteration_timeout_minutes = 5,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
" X_valid = X_valid,\n",
|
||||
" y_valid = y_valid,\n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
|
||||
"You will see the currently running iterations printing to the console."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = local_run.get_output()\n",
|
||||
"fitted_model.steps"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"\n",
|
||||
"Predict on training and test set, and calculate residual values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred = fitted_model.predict(X_test)\n",
|
||||
"y_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Define a Check Data Function\n",
|
||||
"\n",
|
||||
"Remove the nan values from y_test to avoid error when calculate metrics "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def _check_calc_input(y_true, y_pred, rm_na=True):\n",
|
||||
" \"\"\"\n",
|
||||
" Check that 'y_true' and 'y_pred' are non-empty and\n",
|
||||
" have equal length.\n",
|
||||
"\n",
|
||||
" :param y_true: Vector of actual values\n",
|
||||
" :type y_true: array-like\n",
|
||||
"\n",
|
||||
" :param y_pred: Vector of predicted values\n",
|
||||
" :type y_pred: array-like\n",
|
||||
"\n",
|
||||
" :param rm_na:\n",
|
||||
" If rm_na=True, remove entries where y_true=NA and y_pred=NA.\n",
|
||||
" :type rm_na: boolean\n",
|
||||
"\n",
|
||||
" :return:\n",
|
||||
" Tuple (y_true, y_pred). if rm_na=True,\n",
|
||||
" the returned vectors may differ from their input values.\n",
|
||||
" :rtype: Tuple with 2 entries\n",
|
||||
" \"\"\"\n",
|
||||
" if len(y_true) != len(y_pred):\n",
|
||||
" raise ValueError(\n",
|
||||
" 'the true values and prediction values do not have equal length.')\n",
|
||||
" elif len(y_true) == 0:\n",
|
||||
" raise ValueError(\n",
|
||||
" 'y_true and y_pred are empty.')\n",
|
||||
" # if there is any non-numeric element in the y_true or y_pred,\n",
|
||||
" # the ValueError exception will be thrown.\n",
|
||||
" y_true = np.array(y_true).astype(float)\n",
|
||||
" y_pred = np.array(y_pred).astype(float)\n",
|
||||
" if rm_na:\n",
|
||||
" # remove entries both in y_true and y_pred where at least\n",
|
||||
" # one element in y_true or y_pred is missing\n",
|
||||
" y_true_rm_na = y_true[~(np.isnan(y_true) | np.isnan(y_pred))]\n",
|
||||
" y_pred_rm_na = y_pred[~(np.isnan(y_true) | np.isnan(y_pred))]\n",
|
||||
" return (y_true_rm_na, y_pred_rm_na)\n",
|
||||
" else:\n",
|
||||
" return y_true, y_pred"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Use the Check Data Function to remove the nan values from y_test to avoid error when calculate metrics "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_test,y_pred = _check_calc_input(y_test,y_pred)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Calculate metrics for the prediction\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
|
||||
"# Explained variance score: 1 is perfect prediction\n",
|
||||
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
|
||||
"print('R2 score: %.2f' % r2_score(y_test, y_pred))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Plot outputs\n",
|
||||
"%matplotlib notebook\n",
|
||||
"test_pred = plt.scatter(y_test, y_pred, color='b')\n",
|
||||
"test_test = plt.scatter(y_test, y_test, color='g')\n",
|
||||
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
|
||||
"plt.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "xiaga"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,413 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Orange Juice Sales Forecasting**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example, we use AutoML to find and tune a time-series forecasting model.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook, you will:\n",
|
||||
"1. Create an Experiment in an existing Workspace\n",
|
||||
"2. Instantiate an AutoMLConfig \n",
|
||||
"3. Find and train a forecasting model using local compute\n",
|
||||
"4. Evaluate the performance of the model\n",
|
||||
"\n",
|
||||
"The examples in the follow code samples use the [University of Chicago's Dominick's Finer Foods dataset](https://research.chicagobooth.edu/kilts/marketing-databases/dominicks) to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import logging\n",
|
||||
"import warnings\n",
|
||||
"# Squash warning messages for cleaner output in the notebook\n",
|
||||
"warnings.showwarning = lambda *args, **kwargs: None\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun\n",
|
||||
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"experiment_name = 'automl-ojsalesforecasting'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-ojsalesforecasting'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data=output, index=['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data\n",
|
||||
"You are now ready to load the historical orange juice sales data. We will load the CSV file into a plain pandas DataFrame; the time column in the CSV is called _WeekStarting_, so it will be specially parsed into the datetime type."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"time_column_name = 'WeekStarting'\n",
|
||||
"data = pd.read_csv(\"dominicks_OJ.csv\", parse_dates=[time_column_name])\n",
|
||||
"data.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Each row in the DataFrame holds a quantity of weekly sales for an OJ brand at a single store. The data also includes the sales price, a flag indicating if the OJ brand was advertised in the store that week, and some customer demographic information based on the store location. For historical reasons, the data also include the logarithm of the sales quantity. The Dominick's grocery data is commonly used to illustrate econometric modeling techniques where logarithms of quantities are generally preferred. \n",
|
||||
"\n",
|
||||
"The task is now to build a time-series model for the _Quantity_ column. It is important to note that this dataset is comprised of many individual time-series - one for each unique combination of _Store_ and _Brand_. To distinguish the individual time-series, we thus define the **grain** - the columns whose values determine the boundaries between time-series: "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"grain_column_names = ['Store', 'Brand']\n",
|
||||
"nseries = data.groupby(grain_column_names).ngroups\n",
|
||||
"print('Data contains {0} individual time-series.'.format(nseries))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Data Splitting\n",
|
||||
"For the purposes of demonstration and later forecast evaluation, we now split the data into a training and a testing set. The test set will contain the final 20 weeks of observed sales for each time-series."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ntest_periods = 20\n",
|
||||
"\n",
|
||||
"def split_last_n_by_grain(df, n):\n",
|
||||
" \"\"\"\n",
|
||||
" Group df by grain and split on last n rows for each group\n",
|
||||
" \"\"\"\n",
|
||||
" df_grouped = (df.sort_values(time_column_name) # Sort by ascending time\n",
|
||||
" .groupby(grain_column_names, group_keys=False))\n",
|
||||
" df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])\n",
|
||||
" df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])\n",
|
||||
" return df_head, df_tail\n",
|
||||
"\n",
|
||||
"X_train, X_test = split_last_n_by_grain(data, ntest_periods)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Modeling\n",
|
||||
"\n",
|
||||
"For forecasting tasks, AutoML uses pre-processing and estimation steps that are specific to time-series. AutoML will undertake the following pre-processing steps:\n",
|
||||
"* Detect time-series sample frequency (e.g. hourly, daily, weekly) and create new records for absent time points to make the series regular. A regular time series has a well-defined frequency and has a value at every sample point in a contiguous time span \n",
|
||||
"* Impute missing values in the target (via forward-fill) and feature columns (using median column values) \n",
|
||||
"* Create grain-based features to enable fixed effects across different series\n",
|
||||
"* Create time-based features to assist in learning seasonal patterns\n",
|
||||
"* Encode categorical variables to numeric quantities\n",
|
||||
"\n",
|
||||
"AutoML will currently train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series.\n",
|
||||
"\n",
|
||||
"You are almost ready to start an AutoML training job. We will first need to create a validation set from the existing training set (i.e. for hyper-parameter tuning): "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nvalidation_periods = 20\n",
|
||||
"X_train, X_validate = split_last_n_by_grain(X_train, nvalidation_periods)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We also need to separate the target column from the rest of the DataFrame: "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"target_column_name = 'Quantity'\n",
|
||||
"y_train = X_train.pop(target_column_name).values\n",
|
||||
"y_validate = X_validate.pop(target_column_name).values "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, and the training and validation data. \n",
|
||||
"\n",
|
||||
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time and the grain column names. A time column is required for forecasting, while the grain is optional. If a grain is not given, the forecaster assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak. \n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|forecasting|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
||||
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
|
||||
"|**X**|Training matrix of features, shape = [n_training_samples, n_features]|\n",
|
||||
"|**y**|Target values, shape = [n_training_samples, ]|\n",
|
||||
"|**X_valid**|Validation matrix of features, shape = [n_validation_samples, n_features]|\n",
|
||||
"|**y_valid**|Target values for validation, shape = [n_validation_samples, ]\n",
|
||||
"|**enable_ensembling**|Allow AutoML to create ensembles of the best performing models\n",
|
||||
"|**debug_log**|Log file path for writing debugging information\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" 'time_column_name': time_column_name,\n",
|
||||
" 'grain_column_names': grain_column_names,\n",
|
||||
" 'drop_column_names': ['logQuantity']\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
" debug_log='automl_oj_sales_errors.log',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" iterations=10,\n",
|
||||
" X=X_train,\n",
|
||||
" y=y_train,\n",
|
||||
" X_valid=X_validate,\n",
|
||||
" y_valid=y_validate,\n",
|
||||
" enable_ensembling=False,\n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can now submit a new training run. For local runs, the execution is synchronous. Depending on the data and number of iterations this operation may take several minutes.\n",
|
||||
"Information from each iteration will be printed to the console."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"Each run within an Experiment stores serialized (i.e. pickled) pipelines from the AutoML iterations. We can now retrieve the pipeline with the best performance on the validation dataset:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_pipeline = local_run.get_output()\n",
|
||||
"fitted_pipeline.steps"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Make Predictions from the Best Fitted Model\n",
|
||||
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_test = X_test.pop(target_column_name).values"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_test.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data. \n",
|
||||
"\n",
|
||||
"The target predictions can be retrieved by calling the `predict` method on the best model:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred = fitted_pipeline.predict(X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Calculate evaluation metrics for the prediction\n",
|
||||
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def MAPE(actual, pred):\n",
|
||||
" \"\"\"\n",
|
||||
" Calculate mean absolute percentage error.\n",
|
||||
" Remove NA and values where actual is close to zero\n",
|
||||
" \"\"\"\n",
|
||||
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
|
||||
" not_zero = ~np.isclose(actual, 0.0)\n",
|
||||
" actual_safe = actual[not_na & not_zero]\n",
|
||||
" pred_safe = pred[not_na & not_zero]\n",
|
||||
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
|
||||
" return np.mean(APE)\n",
|
||||
"\n",
|
||||
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
|
||||
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
|
||||
"print('MAPE: %.2f' % MAPE(y_test, y_pred))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "erwright"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -13,11 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 05: Blacklisting Models, Early Termination, and Handling Missing Data\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Blacklisting Models, Early Termination, and Handling Missing Data**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for handling missing values in data. We also provide a stopping metric indicating a target for the primary metrics so that AutoML can terminate the run without necessarly going through all the iterations. Finally, if you want to avoid a certain pipeline, we allow you to specify a blacklist of algorithms that AutoML will ignore for this run.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
@@ -29,14 +44,14 @@
|
||||
"In addition this notebook showcases the following features\n",
|
||||
"- **Blacklisting** certain pipelines\n",
|
||||
"- Specifying **target metrics** to indicate stopping criteria\n",
|
||||
"- Handling **missing data** in the input\n"
|
||||
"- Handling **missing data** in the input"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -94,8 +109,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -113,7 +126,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Creating missing data"
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -153,14 +166,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment. This includes setting `experiment_exit_score`, which should cause the run to complete before the `iterations` count is reached.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
@@ -197,8 +210,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -212,11 +223,20 @@
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -324,7 +344,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Testing the best Fitted Model"
|
||||
"## Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -13,41 +13,39 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 14: Explain classification model and visualize the explanation\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Explain classification model and visualize the explanation**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the sklearn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) to showcase how you can use the AutoML Classifier for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you would see\n",
|
||||
"1. Creating an Experiment in an existing Workspace\n",
|
||||
"2. Instantiating AutoMLConfig\n",
|
||||
"3. Training the Model using local compute and explain the model\n",
|
||||
"4. Visualization model's feature importance in widget\n",
|
||||
"5. Explore best model's explanation\n"
|
||||
"5. Explore best model's explanation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Install AzureML Explainer SDK "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install azureml_sdk[explain]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
|
||||
]
|
||||
@@ -101,8 +99,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases"
|
||||
]
|
||||
},
|
||||
@@ -120,7 +116,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load Iris Data Set"
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -152,14 +148,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiate Auto ML Config\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Classification supports the following primary metrics <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**max_time_sec**|Time limit in minutes for each iterations|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
@@ -179,7 +175,7 @@
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" primary_metric = 'AUC_weighted',\n",
|
||||
" max_time_sec = 12000,\n",
|
||||
" iteration_timeout_minutes = 200,\n",
|
||||
" iterations = 10,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
@@ -194,8 +190,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Training the Model\n",
|
||||
"\n",
|
||||
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
|
||||
"You will see the currently running iterations printing to the console."
|
||||
]
|
||||
@@ -209,11 +203,20 @@
|
||||
"local_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exploring the results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -237,16 +240,6 @@
|
||||
"RunDetails(local_run).show() "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"child_run = next(local_run.get_children())\n",
|
||||
"RunDetails(child_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -13,25 +13,40 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 02: Regression with Local Compute\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Regression with Local Compute**_\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [diabetes dataset](http://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) to showcase how you can use AutoML for a simple regression problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model.\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [diabetes dataset](http://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) to showcase how you can use AutoML for a simple regression problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using local compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Test the best fitted model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -89,8 +104,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -108,7 +121,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Load Training Data\n",
|
||||
"## Data\n",
|
||||
"This uses scikit-learn's [load_diabetes](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html) method."
|
||||
]
|
||||
},
|
||||
@@ -120,8 +133,6 @@
|
||||
"source": [
|
||||
"# Load the diabetes dataset, a well-known built-in small dataset that comes with scikit-learn.\n",
|
||||
"from sklearn.datasets import load_diabetes\n",
|
||||
"from sklearn.linear_model import Ridge\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"X, y = load_diabetes(return_X_y = True)\n",
|
||||
@@ -135,7 +146,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
@@ -173,8 +184,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -201,7 +210,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -315,7 +324,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model"
|
||||
"## Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -13,11 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Auto ML 04: Remote Execution with Text Data from Azure Blob Storage\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Remote Execution using attach**_\n",
|
||||
"\n",
|
||||
"In this example we use the [Burning Man 2016 dataset](https://innovate.burningman.org/datasets-page/) to showcase how you can use AutoML to handle text data from Azure Blob Storage.\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML to handle text data with remote attach.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
@@ -33,14 +48,14 @@
|
||||
"- **Cancellation** of individual iterations or the entire run\n",
|
||||
"- Retrieving models for any iteration or logged metric\n",
|
||||
"- Specifying AutoML settings as `**kwargs`\n",
|
||||
"- Handling **text** data using the `preprocess` flag\n"
|
||||
"- Handling **text** data using the `preprocess` flag"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -77,8 +92,8 @@
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"experiment_name = 'automl-remote-dsvm-blobstore'\n",
|
||||
"project_folder = './sample_projects/automl-remote-dsvm-blobstore'\n",
|
||||
"experiment_name = 'automl-remote-attach'\n",
|
||||
"project_folder = './sample_projects/automl-remote-attach'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -98,8 +113,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -117,7 +130,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Attach a Remote Linux DSVM\n",
|
||||
"### Attach a Remote Linux DSVM\n",
|
||||
"To use a remote Docker compute target:\n",
|
||||
"1. Create a Linux DSVM in Azure, following these [quick instructions](https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/how-to-create-dsvm-hdi). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
|
||||
"2. Enter the IP address, user name and password below.\n",
|
||||
@@ -131,7 +144,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import RemoteCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"# Add your VM information below\n",
|
||||
@@ -147,7 +160,8 @@
|
||||
" print('Using existing compute.')\n",
|
||||
" dsvm_compute = ws.compute_targets[compute_name]\n",
|
||||
"else:\n",
|
||||
" RemoteCompute.attach(workspace=ws, name=compute_name, address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
|
||||
" attach_config = RemoteCompute.attach_configuration(address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
|
||||
" ComputeTarget.attach(workspace=ws, name=compute_name, attach_configuration=attach_config)\n",
|
||||
"\n",
|
||||
" while ws.compute_targets[compute_name].provisioning_state == 'Creating':\n",
|
||||
" time.sleep(1)\n",
|
||||
@@ -157,14 +171,33 @@
|
||||
" if dsvm_compute.provisioning_state == 'Failed':\n",
|
||||
" print('Attached failed.')\n",
|
||||
" print(dsvm_compute.provisioning_errors)\n",
|
||||
" dsvm_compute.delete()"
|
||||
" dsvm_compute.detach()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to the Linux DSVM\n",
|
||||
"conda_run_config.target = dsvm_compute\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Get Data File\n",
|
||||
"## Data\n",
|
||||
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
||||
"In this example, the `get_data()` function returns a [dictionary](README.md#getdata)."
|
||||
]
|
||||
@@ -187,22 +220,24 @@
|
||||
"source": [
|
||||
"%%writefile $project_folder/get_data.py\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import LabelEncoder\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"\n",
|
||||
"def get_data():\n",
|
||||
" # Load Burning Man 2016 data.\n",
|
||||
" df = pd.read_csv(\"https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv\",\n",
|
||||
" delimiter=\"\\t\", quotechar='\"')\n",
|
||||
" # Get integer labels.\n",
|
||||
" le = LabelEncoder()\n",
|
||||
" le.fit(df[\"Label\"].values)\n",
|
||||
" y = le.transform(df[\"Label\"].values)\n",
|
||||
" X = df.drop([\"Label\"], axis=1)\n",
|
||||
"\n",
|
||||
" X_train, _, y_train, _ = train_test_split(X, y, test_size = 0.1, random_state = 42)\n",
|
||||
"\n",
|
||||
" remove = ('headers', 'footers', 'quotes')\n",
|
||||
" categories = [\n",
|
||||
" 'alt.atheism',\n",
|
||||
" 'talk.religion.misc',\n",
|
||||
" 'comp.graphics',\n",
|
||||
" 'sci.space',\n",
|
||||
" ]\n",
|
||||
" data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
|
||||
" shuffle = True, random_state = 42,\n",
|
||||
" remove = remove)\n",
|
||||
" \n",
|
||||
" X_train = np.array(data_train.data).reshape((len(data_train.data),1))\n",
|
||||
" y_train = np.array(data_train.target)\n",
|
||||
" \n",
|
||||
" return { \"X\" : X_train, \"y\" : y_train }"
|
||||
]
|
||||
},
|
||||
@@ -210,31 +245,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### View data\n",
|
||||
"\n",
|
||||
"You can execute the `get_data()` function locally to view the training data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%run $project_folder/get_data.py\n",
|
||||
"data_dict = get_data()\n",
|
||||
"df = data_dict[\"X\"]\n",
|
||||
"y = data_dict[\"y\"]\n",
|
||||
"pd.set_option('display.max_colwidth', 15)\n",
|
||||
"df['Label'] = pd.Series(y, index=df.index)\n",
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML <a class=\"anchor\" id=\"Instatiate-AutoML-Remote-DSVM\"></a>\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
||||
"\n",
|
||||
@@ -242,12 +253,13 @@
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
|
||||
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
|
||||
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.\n",
|
||||
"|**max_cores_per_iteration**|Indicates how many cores on the compute target would be used to train a single pipeline.<br>Default is *1*; you can set it to *-1* to use all cores.|"
|
||||
]
|
||||
},
|
||||
@@ -268,7 +280,7 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" path = project_folder,\n",
|
||||
" compute_target = dsvm_compute,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" data_script = project_folder + \"/get_data.py\",\n",
|
||||
" **automl_settings\n",
|
||||
" )\n"
|
||||
@@ -278,8 +290,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models <a class=\"anchor\" id=\"Training-the-model-Remote-DSVM\"></a>\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run."
|
||||
]
|
||||
},
|
||||
@@ -292,11 +302,20 @@
|
||||
"remote_run = experiment.submit(automl_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exploring the Results <a class=\"anchor\" id=\"Exploring-the-Results-Remote-DSVM\"></a>\n",
|
||||
"## Results\n",
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
@@ -326,6 +345,23 @@
|
||||
"remote_run.wait_for_completion(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pre-process cache cleanup\n",
|
||||
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.clean_preprocessor_cache()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -356,7 +392,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Cancelling Runs\n",
|
||||
"### Cancelling Runs\n",
|
||||
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
|
||||
]
|
||||
},
|
||||
@@ -367,7 +403,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
|
||||
"remote_run.cancel()\n",
|
||||
"# remote_run.cancel()\n",
|
||||
"\n",
|
||||
"# Cancel iteration 1 and move onto iteration 2.\n",
|
||||
"# remote_run.cancel_iteration(1)"
|
||||
@@ -432,7 +468,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Testing the Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n"
|
||||
"## Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -441,33 +477,33 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sklearn\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import LabelEncoder\n",
|
||||
"# Load test data.\n",
|
||||
"from pandas_ml import ConfusionMatrix\n",
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(\"https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv\",\n",
|
||||
" delimiter=\"\\t\", quotechar='\"')\n",
|
||||
"remove = ('headers', 'footers', 'quotes')\n",
|
||||
"categories = [\n",
|
||||
" 'alt.atheism',\n",
|
||||
" 'talk.religion.misc',\n",
|
||||
" 'comp.graphics',\n",
|
||||
" 'sci.space',\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
"# get integer labels\n",
|
||||
"le = LabelEncoder()\n",
|
||||
"le.fit(df[\"Label\"].values)\n",
|
||||
"y = le.transform(df[\"Label\"].values)\n",
|
||||
"X = df.drop([\"Label\"], axis=1)\n",
|
||||
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
|
||||
" shuffle = True, random_state = 42,\n",
|
||||
" remove = remove)\n",
|
||||
"\n",
|
||||
"_, X_test, _, y_test = train_test_split(X, y, test_size=0.1, random_state=42)\n",
|
||||
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
|
||||
"y_test = data_test.target\n",
|
||||
"\n",
|
||||
"# Test our best pipeline.\n",
|
||||
"\n",
|
||||
"ypred = fitted_model.predict(X_test.values)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"ypred_strings = le.inverse_transform(ypred)\n",
|
||||
"ytest_strings = le.inverse_transform(y_test)\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(ytest_strings, ypred_strings)\n",
|
||||
"y_pred = fitted_model.predict(X_test)\n",
|
||||
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
|
||||
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
|
||||
"print(cm)\n",
|
||||
"\n",
|
||||
"cm.plot()"
|
||||
]
|
||||
}
|
||||
@@ -13,17 +13,32 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 03: Remote Execution using Batch AI\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Remote Execution using AmlCompute**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you would see\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Attach an existing Batch AI compute to a workspace.\n",
|
||||
"2. Create or Attach existing AmlCompute to a workspace.\n",
|
||||
"3. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"4. Train the model using Batch AI.\n",
|
||||
"4. Train the model using AmlCompute\n",
|
||||
"5. Explore the results.\n",
|
||||
"6. Test the best fitted model.\n",
|
||||
"\n",
|
||||
@@ -32,14 +47,14 @@
|
||||
"- **Asynchronous** tracking of progress\n",
|
||||
"- **Cancellation** of individual iterations or the entire run\n",
|
||||
"- Retrieving models for any iteration or logged metric\n",
|
||||
"- Specifying AutoML settings as `**kwargs`\n"
|
||||
"- Specifying AutoML settings as `**kwargs`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -76,8 +91,8 @@
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"experiment_name = 'automl-remote-batchai'\n",
|
||||
"project_folder = './sample_projects/automl-remote-batchai'\n",
|
||||
"experiment_name = 'automl-remote-amlcompute'\n",
|
||||
"project_folder = './sample_projects/automl-remote-amlcompute'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -97,8 +112,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -116,12 +129,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Batch AI Cluster\n",
|
||||
"The cluster is created as Machine Learning Compute and will appear under your workspace.\n",
|
||||
"### Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"**Note:** The creation of the Batch AI cluster can take over 10 minutes, please be patient.\n",
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. Batch AI cluster size) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -134,15 +147,15 @@
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"\n",
|
||||
"# Choose a name for your cluster.\n",
|
||||
"batchai_cluster_name = \"cpucluster\"\n",
|
||||
"amlcompute_cluster_name = \"automlcl\"\n",
|
||||
"\n",
|
||||
"found = False\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if batchai_cluster_name in cts and cts[batchai_cluster_name].type == 'BatchAI':\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[batchai_cluster_name]\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
" \n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
@@ -151,20 +164,41 @@
|
||||
" max_nodes = 6)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\n",
|
||||
" compute_target = ComputeTarget.create(ws, batchai_cluster_name, provisioning_config)\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
" \n",
|
||||
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
||||
" \n",
|
||||
" # For a more detailed view of current Batch AI cluster status, use the 'status' property."
|
||||
" # For a more detailed view of current AmlCompute status, use the 'status' property."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to AmlCompute\n",
|
||||
"conda_run_config.target = compute_target\n",
|
||||
"conda_run_config.environment.docker.enabled = True\n",
|
||||
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Get Data File\n",
|
||||
"## Data\n",
|
||||
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
||||
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
|
||||
]
|
||||
@@ -204,15 +238,15 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiate AutoML <a class=\"anchor\" id=\"Instatiate-AutoML-Remote-DSVM\"></a>\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
||||
"\n",
|
||||
"**Note:** When using Batch AI, you can't pass Numpy arrays directly to the fit method.\n",
|
||||
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
@@ -238,7 +272,7 @@
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" compute_target = compute_target,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" data_script = project_folder + \"/get_data.py\",\n",
|
||||
" **automl_settings\n",
|
||||
" )\n"
|
||||
@@ -248,8 +282,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
|
||||
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
|
||||
]
|
||||
@@ -263,11 +295,20 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results\n",
|
||||
"## Results\n",
|
||||
"\n",
|
||||
"#### Loading executed runs\n",
|
||||
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
|
||||
@@ -352,7 +393,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Cancelling Runs\n",
|
||||
"### Cancelling Runs\n",
|
||||
"\n",
|
||||
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
|
||||
]
|
||||
@@ -434,7 +475,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Testing the Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -13,26 +13,40 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 08: Remote Execution with DataStore\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Remote Execution with DataStore**_\n",
|
||||
"\n",
|
||||
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
|
||||
"1. DataStore secures the access details.\n",
|
||||
"2. DataStore supports read, write to blob and file store\n",
|
||||
"3. AutoML natively supports copying data from DataStore to DSVM\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you would see\n",
|
||||
"1. Storing data in DataStore.\n",
|
||||
"2. get_data returning data from DataStore.\n",
|
||||
"\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Experiment\n",
|
||||
"## Introduction\n",
|
||||
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
|
||||
"1. DataStore secures the access details.\n",
|
||||
"2. DataStore supports read, write to blob and file store\n",
|
||||
"3. AutoML natively supports copying data from DataStore to DSVM\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you would see\n",
|
||||
"1. Storing data in DataStore.\n",
|
||||
"2. get_data returning data from DataStore."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
|
||||
]
|
||||
@@ -73,7 +87,7 @@
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-remote-datastore-file'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-remote-dsvm-file'\n",
|
||||
"project_folder = './sample_projects/automl-remote-datastore-file'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -93,8 +107,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases"
|
||||
]
|
||||
},
|
||||
@@ -112,7 +124,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Remote Linux DSVM\n",
|
||||
"### Create a Remote Linux DSVM\n",
|
||||
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
|
||||
"\n",
|
||||
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://render.githubusercontent.com/documentation/sdk/ssh-issue.md) on this."
|
||||
@@ -135,14 +147,18 @@
|
||||
"except:\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size=\"Standard_D2_v2\")\n",
|
||||
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
|
||||
" dsvm_compute.wait_for_completion(show_output=True)"
|
||||
" dsvm_compute.wait_for_completion(show_output=True)\n",
|
||||
" print(\"Waiting one minute for ssh to be accessible\")\n",
|
||||
" time.sleep(60) # Wait for ssh to be accessible"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Copy data file to local\n",
|
||||
"## Data\n",
|
||||
"\n",
|
||||
"### Copy data file to local\n",
|
||||
"\n",
|
||||
"Download the data file.\n"
|
||||
]
|
||||
@@ -162,16 +178,29 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.read_csv(\"https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv\",\n",
|
||||
" delimiter=\"\\t\", quotechar='\"')\n",
|
||||
"df.to_csv(\"data/data.tsv\", sep=\"\\t\", quotechar='\"', index=False)"
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"import csv\n",
|
||||
"\n",
|
||||
"remove = ('headers', 'footers', 'quotes')\n",
|
||||
"categories = [\n",
|
||||
" 'alt.atheism',\n",
|
||||
" 'talk.religion.misc',\n",
|
||||
" 'comp.graphics',\n",
|
||||
" 'sci.space',\n",
|
||||
" ]\n",
|
||||
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
|
||||
" shuffle = True, random_state = 42,\n",
|
||||
" remove = remove)\n",
|
||||
" \n",
|
||||
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
|
||||
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Upload data to the cloud"
|
||||
"### Upload data to the cloud"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -209,7 +238,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure & Run\n",
|
||||
"### Configure & Run\n",
|
||||
"\n",
|
||||
"First let's create a DataReferenceConfigruation object to inform the system what data folder to download to the compute target.\n",
|
||||
"The path_on_compute should be an absolute path to ensure that the data files are downloaded only once. The get_data method should use this same path to access the data files."
|
||||
@@ -254,7 +283,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Get Data File\n",
|
||||
"### Create Get Data File\n",
|
||||
"For remote executions you should author a get_data.py file containing a get_data() function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
||||
"\n",
|
||||
"The *get_data()* function returns a [dictionary](README.md#getdata).\n",
|
||||
@@ -281,30 +310,19 @@
|
||||
"%%writefile $project_folder/get_data.py\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import LabelEncoder\n",
|
||||
"import os\n",
|
||||
"from os.path import expanduser, join, dirname\n",
|
||||
"\n",
|
||||
"def get_data():\n",
|
||||
" # Burning man 2016 data\n",
|
||||
" df = pd.read_csv(\"/tmp/azureml_runs/data/data.tsv\", delimiter=\"\\t\", quotechar='\"')\n",
|
||||
" # get integer labels\n",
|
||||
" le = LabelEncoder()\n",
|
||||
" le.fit(df[\"Label\"].values)\n",
|
||||
" y = le.transform(df[\"Label\"].values)\n",
|
||||
" X = df.drop([\"Label\"], axis=1)\n",
|
||||
" X_train = pd.read_csv(\"/tmp/azureml_runs/data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
|
||||
" y_train = pd.read_csv(\"/tmp/azureml_runs/data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
|
||||
"\n",
|
||||
" X_train, _, y_train, _ = train_test_split(X, y, test_size=0.1, random_state=42)\n",
|
||||
"\n",
|
||||
" return { \"X\" : X_train.values, \"y\" : y_train }"
|
||||
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiate AutoML <a class=\"anchor\" id=\"Instatiate-AutoML-Remote-DSVM\"></a>\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
|
||||
"\n",
|
||||
@@ -312,12 +330,13 @@
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Classification supports the following primary metrics <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration Auto ML trains a specific pipeline with the data|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits|\n",
|
||||
"|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM\n",
|
||||
"|**preprocess**| *True/False* <br>Setting this to *True* enables Auto ML to perform preprocessing <br>on the input to handle *missing data*, and perform some common *feature extraction*|\n",
|
||||
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.|\n",
|
||||
"|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> Default is *1*, you can set it to *-1* to use all cores|"
|
||||
]
|
||||
},
|
||||
@@ -350,8 +369,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Training the Models <a class=\"anchor\" id=\"Training-the-model-Remote-DSVM\"></a>\n",
|
||||
"\n",
|
||||
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
|
||||
]
|
||||
},
|
||||
@@ -364,11 +381,20 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exploring the Results <a class=\"anchor\" id=\"Exploring-the-Results-Remote-DSVM\"></a>\n",
|
||||
"## Results\n",
|
||||
"#### Widget for monitoring runs\n",
|
||||
"\n",
|
||||
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
|
||||
@@ -428,7 +454,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Canceling Runs\n",
|
||||
"### Canceling Runs\n",
|
||||
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
|
||||
]
|
||||
},
|
||||
@@ -445,6 +471,23 @@
|
||||
"# remote_run.cancel_iteration(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pre-process cache cleanup\n",
|
||||
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.clean_preprocessor_cache()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -501,7 +544,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Testing the Best Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n"
|
||||
"## Test\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -510,31 +553,24 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sklearn\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import LabelEncoder\n",
|
||||
"# Load test data.\n",
|
||||
"from pandas_ml import ConfusionMatrix\n",
|
||||
"\n",
|
||||
"df = pd.read_csv(\"https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv\",\n",
|
||||
" delimiter=\"\\t\", quotechar='\"')\n",
|
||||
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
|
||||
" shuffle = True, random_state = 42,\n",
|
||||
" remove = remove)\n",
|
||||
"\n",
|
||||
"# get integer labels\n",
|
||||
"le = LabelEncoder()\n",
|
||||
"le.fit(df[\"Label\"].values)\n",
|
||||
"y = le.transform(df[\"Label\"].values)\n",
|
||||
"X = df.drop([\"Label\"], axis=1)\n",
|
||||
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
|
||||
"y_test = data_test.target\n",
|
||||
"\n",
|
||||
"_, X_test, _, y_test = train_test_split(X, y, test_size=0.1, random_state=42)\n",
|
||||
"# Test our best pipeline.\n",
|
||||
"\n",
|
||||
"ypred = fitted_model.predict(X_test.values)\n",
|
||||
"\n",
|
||||
"ypred_strings = le.inverse_transform(ypred)\n",
|
||||
"ytest_strings = le.inverse_transform(y_test)\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(ytest_strings, ypred_strings)\n",
|
||||
"y_pred = fitted_model.predict(X_test)\n",
|
||||
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
|
||||
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
|
||||
"print(cm)\n",
|
||||
"\n",
|
||||
"cm.plot()"
|
||||
]
|
||||
}
|
||||
@@ -13,11 +13,26 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 03: Remote Execution using DSVM (Ubuntu)\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Remote Execution using DSVM (Ubuntu)**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you wiil learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
@@ -32,14 +47,14 @@
|
||||
"- **Asynchronous** tracking of progress\n",
|
||||
"- **Cancellation** of individual iterations or the entire run\n",
|
||||
"- Retrieving models for any iteration or logged metric\n",
|
||||
"- Specifying AutoML settings as `**kwargs`\n"
|
||||
"- Specifying AutoML settings as `**kwargs`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -53,6 +68,7 @@
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
@@ -76,8 +92,8 @@
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"experiment_name = 'automl-remote-dsvm4'\n",
|
||||
"project_folder = './sample_projects/automl-remote-dsvm4'\n",
|
||||
"experiment_name = 'automl-remote-dsvm'\n",
|
||||
"project_folder = './sample_projects/automl-remote-dsvm'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -97,8 +113,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -116,7 +130,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Remote Linux DSVM\n",
|
||||
"### Create a Remote Linux DSVM\n",
|
||||
"**Note:** If creation fails with a message about Marketplace purchase eligibilty, start creation of a DSVM through the [Azure portal](https://portal.azure.com), and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled this setting, you can exit the portal without actually creating the DSVM, and creation of the DSVM through the notebook should work.\n"
|
||||
]
|
||||
},
|
||||
@@ -134,16 +148,37 @@
|
||||
" print('Found an existing DSVM.')\n",
|
||||
"except:\n",
|
||||
" print('Creating a new DSVM.')\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2s_v3\")\n",
|
||||
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
|
||||
" dsvm_compute.wait_for_completion(show_output = True)"
|
||||
" dsvm_compute.wait_for_completion(show_output = True)\n",
|
||||
" print(\"Waiting one minute for ssh to be accessible\")\n",
|
||||
" time.sleep(60) # Wait for ssh to be accessible"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to the Linux DSVM\n",
|
||||
"conda_run_config.target = dsvm_compute\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Get Data File\n",
|
||||
"## Data\n",
|
||||
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
|
||||
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
|
||||
]
|
||||
@@ -183,7 +218,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML <a class=\"anchor\" id=\"Instantiate-AutoML-Remote-DSVM\"></a>\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
||||
"\n",
|
||||
@@ -191,7 +226,7 @@
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
@@ -217,7 +252,7 @@
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder, \n",
|
||||
" compute_target = dsvm_compute,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" data_script = project_folder + \"/get_data.py\",\n",
|
||||
" **automl_settings\n",
|
||||
" )\n"
|
||||
@@ -234,8 +269,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
|
||||
"\n",
|
||||
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
|
||||
@@ -250,11 +283,20 @@
|
||||
"remote_run = experiment.submit(automl_config, show_output = False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results\n",
|
||||
"## Results\n",
|
||||
"\n",
|
||||
"#### Loading Executed Runs\n",
|
||||
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
|
||||
@@ -330,7 +372,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Cancelling Runs\n",
|
||||
"### Cancelling Runs\n",
|
||||
"\n",
|
||||
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
|
||||
]
|
||||
@@ -412,7 +454,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model <a class=\"anchor\" id=\"Testing-the-Fitted-Model-Remote-DSVM\"></a>\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -13,20 +13,33 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 11: Sample Weight\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Sample Weight**_\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use sample weight with AutoML. Sample weight is used where some sample values are more important than others.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to configure AutoML to use `sample_weight` and you will see the difference sample weight makes to the test results.\n"
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Test](#Test)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use sample weight with AutoML. Sample weight is used where some sample values are more important than others.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to configure AutoML to use `sample_weight` and you will see the difference sample weight makes to the test results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -87,8 +100,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -106,7 +117,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate two `AutoMLConfig` objects. One will be used with `sample_weight` and one without."
|
||||
]
|
||||
@@ -153,8 +164,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment objects and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -176,7 +185,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data"
|
||||
]
|
||||
@@ -13,11 +13,25 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML 06: Train Test Split and Handling Sparse Data\n",
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Train Test Split and Handling Sparse Data**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML for handling sparse data and how to specify custom cross validations splits.\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [00.configuration](00.configuration.ipynb) before running this notebook.\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
@@ -35,7 +49,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
@@ -94,8 +108,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
@@ -113,7 +125,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating Sparse Data"
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -155,14 +167,14 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.<br>**Note:** If input data is sparse, you cannot use *True*.|\n",
|
||||
@@ -197,8 +209,6 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
@@ -212,11 +222,20 @@
|
||||
"local_run = experiment.submit(automl_config, show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -324,7 +343,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Testing the Best Fitted Model"
|
||||
"## Test"
|
||||
]
|
||||
},
|
||||
{
|
||||
70
how-to-use-azureml/azure-databricks/README.md
Normal file
70
how-to-use-azureml/azure-databricks/README.md
Normal file
@@ -0,0 +1,70 @@
|
||||
Azure Databricks is a managed Spark offering on Azure and customers already use it for advanced analytics. It provides a collaborative Notebook based environment with CPU or GPU based compute cluster.
|
||||
|
||||
In this section, you will see sample notebooks on how to use Azure Machine Learning SDK with Azure Databricks. You can train a model using Spark MLlib and then deploy the model to ACI/AKS from within Azure Databricks. You can also use Automated ML capability (**public preview**) of Azure ML SDK with Azure Databricks.
|
||||
|
||||
- Customers who use Azure Databricks for advanced analytics can now use the same cluster to run experiments with or without automated machine learning.
|
||||
- You can keep the data within the same cluster.
|
||||
- You can leverage the local worker nodes with autoscale and auto termination capabilities.
|
||||
- You can use multiple cores of your Azure Databricks cluster to perform simultenous training.
|
||||
- You can further tune the model generated by automated machine learning if you chose to.
|
||||
- Every run (including the best run) is available as a pipeline.
|
||||
- The model trained using Azure Databricks can be registered in Azure ML SDK workspace and then deployed to Azure managed compute (ACI or AKS) using the Azure Machine learning SDK.
|
||||
|
||||
**Create Azure Databricks Cluster:**
|
||||
|
||||
Select New Cluster and fill in following detail:
|
||||
- Cluster name: _yourclustername_
|
||||
- Databricks Runtime: Any 4.x runtime.
|
||||
- Python version: **3**
|
||||
- Workers: 2 or higher.
|
||||
|
||||
These settings are only for using Automated Machine Learning on Databricks.
|
||||
- Max. number of **concurrent iterations** in Automated ML settings is **<=** to the number of **worker nodes** in your Databricks cluster.
|
||||
- Worker node VM types: **Memory optimized VM** preferred.
|
||||
- Uncheck _Enable Autoscaling_
|
||||
|
||||
|
||||
It will take few minutes to create the cluster. Please ensure that the cluster state is running before proceeding further.
|
||||
|
||||
**Install Azure ML SDK without Automated ML capability on your Azure Databricks cluster**
|
||||
|
||||
- Select Import library
|
||||
|
||||
- Source: Upload Python Egg or PyPI
|
||||
|
||||
- PyPi Name: **azureml-sdk[databricks]**
|
||||
|
||||
**Install Azure ML with Automated ML SDK on your Azure Databricks cluster**
|
||||
|
||||
- Select Import library
|
||||
|
||||
- Source: Upload Python Egg or PyPI
|
||||
|
||||
- PyPi Name: **azureml-sdk[automl_databricks]**
|
||||
|
||||
**For installation with or without Automated ML**
|
||||
|
||||
- Click Install Library
|
||||
|
||||
- Do not select _Attach automatically to all clusters_. In case you have selected earlier then you can go to your Home folder and deselect it.
|
||||
|
||||
- Select the check box _Attach_ next to your cluster name
|
||||
|
||||
(More details on how to attach and detach libs are here - [https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster](https://docs.databricks.com/user-guide/libraries.html#attach-a-library-to-a-cluster) )
|
||||
|
||||
- Ensure that there are no errors until Status changes to _Attached_. It may take a couple of minutes.
|
||||
|
||||
**Note** - If you have the old build the please deselect it from cluster’s installed libs > move to trash. Install the new build and restart the cluster. And if still there is an issue then detach and reattach your cluster.
|
||||
|
||||
iPython Notebooks 1-4 have to be run sequentially after making changes based on your subscription. The corresponding DBC archive contains all the notebooks and can be imported into your Databricks workspace. You can the run notebooks after importing [databricks_amlsdk](Databricks_AMLSDK_1-4_6.dbc) instead of downloading individually.
|
||||
|
||||
Notebooks 1-4 are related to Income prediction experiment based on this [dataset](https://archive.ics.uci.edu/ml/datasets/adult) and demonstrate how to data prep, train and operationalize a Spark ML model with Azure ML Python SDK from within Azure Databricks. Notebook 6 is an Automated ML sample notebook.
|
||||
|
||||
For details on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
|
||||
|
||||
Learn more about [how to use Azure Databricks as a development environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment#azure-databricks) for Azure Machine Learning service.
|
||||
|
||||
You can also use Azure Databricks as a compute target for [training models with an Azure Machine Learning pipeline](https://docs.microsoft.com/machine-learning/service/how-to-set-up-training-targets#databricks).
|
||||
|
||||
|
||||
**Please let us know your feedback.**
|
||||
@@ -0,0 +1,396 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
|
||||
"\n",
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Model Building"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import pprint\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"from pyspark.ml import Pipeline, PipelineModel\n",
|
||||
"from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler\n",
|
||||
"from pyspark.ml.classification import LogisticRegression\n",
|
||||
"from pyspark.ml.evaluation import BinaryClassificationEvaluator\n",
|
||||
"from pyspark.ml.tuning import CrossValidator, ParamGridBuilder"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import auth creds from notebook parameters\n",
|
||||
"tenant = dbutils.widgets.get('tenant_id')\n",
|
||||
"username = dbutils.widgets.get('service_principal_id')\n",
|
||||
"password = dbutils.widgets.get('service_principal_password')\n",
|
||||
"\n",
|
||||
"auth = azureml.core.authentication.ServicePrincipalAuthentication(tenant, username, password)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import the Workspace class and check the azureml SDK version\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config(auth = auth)\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"## import the Workspace class and check the azureml SDK version\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#\n",
|
||||
"#ws = Workspace.from_config()\n",
|
||||
"#print('Workspace name: ' + ws.name, \n",
|
||||
"# 'Azure region: ' + ws.location, \n",
|
||||
"# 'Subscription id: ' + ws.subscription_id, \n",
|
||||
"# 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#get the train and test datasets\n",
|
||||
"train_data_path = \"AdultCensusIncomeTrain\"\n",
|
||||
"test_data_path = \"AdultCensusIncomeTest\"\n",
|
||||
"\n",
|
||||
"train = spark.read.parquet(train_data_path)\n",
|
||||
"test = spark.read.parquet(test_data_path)\n",
|
||||
"\n",
|
||||
"print(\"train: ({}, {})\".format(train.count(), len(train.columns)))\n",
|
||||
"print(\"test: ({}, {})\".format(test.count(), len(test.columns)))\n",
|
||||
"\n",
|
||||
"train.printSchema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Define Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"label = \"income\"\n",
|
||||
"dtypes = dict(train.dtypes)\n",
|
||||
"dtypes.pop(label)\n",
|
||||
"\n",
|
||||
"si_xvars = []\n",
|
||||
"ohe_xvars = []\n",
|
||||
"featureCols = []\n",
|
||||
"for idx,key in enumerate(dtypes):\n",
|
||||
" if dtypes[key] == \"string\":\n",
|
||||
" featureCol = \"-\".join([key, \"encoded\"])\n",
|
||||
" featureCols.append(featureCol)\n",
|
||||
" \n",
|
||||
" tmpCol = \"-\".join([key, \"tmp\"])\n",
|
||||
" # string-index and one-hot encode the string column\n",
|
||||
" #https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/ml/feature/StringIndexer.html\n",
|
||||
" #handleInvalid: Param for how to handle invalid data (unseen labels or NULL values). \n",
|
||||
" #Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), \n",
|
||||
" #or 'keep' (put invalid data in a special additional bucket, at index numLabels). Default: \"error\"\n",
|
||||
" si_xvars.append(StringIndexer(inputCol=key, outputCol=tmpCol, handleInvalid=\"skip\"))\n",
|
||||
" ohe_xvars.append(OneHotEncoder(inputCol=tmpCol, outputCol=featureCol))\n",
|
||||
" else:\n",
|
||||
" featureCols.append(key)\n",
|
||||
"\n",
|
||||
"# string-index the label column into a column named \"label\"\n",
|
||||
"si_label = StringIndexer(inputCol=label, outputCol='label')\n",
|
||||
"\n",
|
||||
"# assemble the encoded feature columns in to a column named \"features\"\n",
|
||||
"assembler = VectorAssembler(inputCols=featureCols, outputCol=\"features\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.run import Run\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"model_name = \"AdultCensus_runHistory.mml\"\n",
|
||||
"model_dbfs = os.path.join(\"/dbfs\", model_name)\n",
|
||||
"run_history_name = 'spark-ml-notebook'\n",
|
||||
"\n",
|
||||
"# start a training run by defining an experiment\n",
|
||||
"myexperiment = Experiment(ws, \"Ignite_AI_Talk\")\n",
|
||||
"root_run = myexperiment.start_logging()\n",
|
||||
"\n",
|
||||
"# Regularization Rates - \n",
|
||||
"regs = [0.0001, 0.001, 0.01, 0.1]\n",
|
||||
" \n",
|
||||
"# try a bunch of regularization rate in a Logistic Regression model\n",
|
||||
"for reg in regs:\n",
|
||||
" print(\"Regularization rate: {}\".format(reg))\n",
|
||||
" # create a bunch of child runs\n",
|
||||
" with root_run.child_run(\"reg-\" + str(reg)) as run:\n",
|
||||
" # create a new Logistic Regression model.\n",
|
||||
" lr = LogisticRegression(regParam=reg)\n",
|
||||
" \n",
|
||||
" # put together the pipeline\n",
|
||||
" pipe = Pipeline(stages=[*si_xvars, *ohe_xvars, si_label, assembler, lr])\n",
|
||||
"\n",
|
||||
" # train the model\n",
|
||||
" model_p = pipe.fit(train)\n",
|
||||
" \n",
|
||||
" # make prediction\n",
|
||||
" pred = model_p.transform(test)\n",
|
||||
" \n",
|
||||
" # evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
|
||||
" bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
|
||||
" au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
|
||||
" au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
|
||||
"\n",
|
||||
" print(\"Area under ROC: {}\".format(au_roc))\n",
|
||||
" print(\"Area Under PR: {}\".format(au_prc))\n",
|
||||
" \n",
|
||||
" # log reg, au_roc, au_prc and feature names in run history\n",
|
||||
" run.log(\"reg\", reg)\n",
|
||||
" run.log(\"au_roc\", au_roc)\n",
|
||||
" run.log(\"au_prc\", au_prc)\n",
|
||||
" run.log_list(\"columns\", train.columns)\n",
|
||||
"\n",
|
||||
" # save model\n",
|
||||
" model_p.write().overwrite().save(model_name)\n",
|
||||
" \n",
|
||||
" # upload the serialized model into run history record\n",
|
||||
" mdl, ext = model_name.split(\".\")\n",
|
||||
" model_zip = mdl + \".zip\"\n",
|
||||
" shutil.make_archive(mdl, 'zip', model_dbfs)\n",
|
||||
" run.upload_file(\"outputs/\" + model_name, model_zip) \n",
|
||||
" #run.upload_file(\"outputs/\" + model_name, path_or_stream = model_dbfs) #cannot deal with folders\n",
|
||||
"\n",
|
||||
" # now delete the serialized model from local folder since it is already uploaded to run history \n",
|
||||
" shutil.rmtree(model_dbfs)\n",
|
||||
" os.remove(model_zip)\n",
|
||||
" \n",
|
||||
"# Declare run completed\n",
|
||||
"root_run.complete()\n",
|
||||
"root_run_id = root_run.id\n",
|
||||
"print (\"run id:\", root_run.id)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"metrics = root_run.get_metrics(recursive=True)\n",
|
||||
"best_run_id = max(metrics, key = lambda k: metrics[k]['au_roc'])\n",
|
||||
"print(best_run_id, metrics[best_run_id]['au_roc'], metrics[best_run_id]['reg'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Get the best run\n",
|
||||
"child_runs = {}\n",
|
||||
"\n",
|
||||
"for r in root_run.get_children():\n",
|
||||
" child_runs[r.id] = r\n",
|
||||
" \n",
|
||||
"best_run = child_runs[best_run_id]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Download the model from the best run to a local folder\n",
|
||||
"best_model_file_name = \"best_model.zip\"\n",
|
||||
"best_run.download_file(name = 'outputs/' + model_name, output_file_path = best_model_file_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Model Evaluation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##unzip the model to dbfs (as load() seems to require that) and load it.\n",
|
||||
"if os.path.isfile(model_dbfs) or os.path.isdir(model_dbfs):\n",
|
||||
" shutil.rmtree(model_dbfs)\n",
|
||||
"shutil.unpack_archive(best_model_file_name, model_dbfs)\n",
|
||||
"\n",
|
||||
"model_p_best = PipelineModel.load(model_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# make prediction\n",
|
||||
"pred = model_p_best.transform(test)\n",
|
||||
"output = pred[['hours_per_week','age','workclass','marital_status','income','prediction']]\n",
|
||||
"display(output.limit(5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
|
||||
"bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
|
||||
"au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
|
||||
"au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
|
||||
"\n",
|
||||
"print(\"Area under ROC: {}\".format(au_roc))\n",
|
||||
"print(\"Area Under PR: {}\".format(au_prc))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Model Persistence"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##NOTE: by default the model is saved to and loaded from /dbfs/ instead of cwd!\n",
|
||||
"model_p_best.write().overwrite().save(model_name)\n",
|
||||
"print(\"saved model to {}\".format(model_dbfs))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%sh\n",
|
||||
"\n",
|
||||
"ls -la /dbfs/AdultCensus_runHistory.mml/*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dbutils.notebook.exit(\"success\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "pasha"
|
||||
},
|
||||
{
|
||||
"name": "wamartin"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
},
|
||||
"name": "03.Build_model_runHistory",
|
||||
"notebookId": 3836944406456339
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
@@ -0,0 +1,354 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
|
||||
"\n",
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Please ensure you have run all previous notebooks in sequence before running this.\n",
|
||||
"\n",
|
||||
"Please Register Azure Container Instance(ACI) using Azure Portal: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services#portal in your subscription before using the SDK to deploy your ML model to ACI."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"# Check core SDK version number\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import auth creds from notebook parameters\n",
|
||||
"tenant = dbutils.widgets.get('tenant_id')\n",
|
||||
"username = dbutils.widgets.get('service_principal_id')\n",
|
||||
"password = dbutils.widgets.get('service_principal_password')\n",
|
||||
"\n",
|
||||
"auth = azureml.core.authentication.ServicePrincipalAuthentication(tenant, username, password)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"#'''\n",
|
||||
"ws = Workspace.from_config(auth = auth)\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
|
||||
"#'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#import azureml.core\n",
|
||||
"#\n",
|
||||
"## Check core SDK version number\n",
|
||||
"#print(\"SDK version:\", azureml.core.VERSION)\n",
|
||||
"#\n",
|
||||
"##'''\n",
|
||||
"#ws = Workspace.from_config()\n",
|
||||
"#print('Workspace name: ' + ws.name, \n",
|
||||
"# 'Azure region: ' + ws.location, \n",
|
||||
"# 'Subscription id: ' + ws.subscription_id, \n",
|
||||
"# 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
|
||||
"##'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##NOTE: service deployment always gets the model from the current working dir.\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"model_name = \"AdultCensus_runHistory.mml\" # \n",
|
||||
"model_name_dbfs = os.path.join(\"/dbfs\", model_name)\n",
|
||||
"\n",
|
||||
"print(\"copy model from dbfs to local\")\n",
|
||||
"model_local = \"file:\" + os.getcwd() + \"/\" + model_name\n",
|
||||
"dbutils.fs.cp(model_name, model_local, True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Register the model\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"mymodel = Model.register(model_path = model_name, # this points to a local file\n",
|
||||
" model_name = model_name, # this is the name the model is registered as, am using same name for both path and name. \n",
|
||||
" description = \"ADB trained model by Parashar\",\n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"print(mymodel.name, mymodel.description, mymodel.version)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#%%writefile score_sparkml.py\n",
|
||||
"score_sparkml = \"\"\"\n",
|
||||
" \n",
|
||||
"import json\n",
|
||||
" \n",
|
||||
"def init():\n",
|
||||
" # One-time initialization of PySpark and predictive model\n",
|
||||
" import pyspark\n",
|
||||
" from azureml.core.model import Model\n",
|
||||
" from pyspark.ml import PipelineModel\n",
|
||||
" \n",
|
||||
" global trainedModel\n",
|
||||
" global spark\n",
|
||||
" \n",
|
||||
" spark = pyspark.sql.SparkSession.builder.appName(\"ADB and AML notebook by Parashar\").getOrCreate()\n",
|
||||
" model_name = \"{model_name}\" #interpolated\n",
|
||||
" model_path = Model.get_model_path(model_name)\n",
|
||||
" trainedModel = PipelineModel.load(model_path)\n",
|
||||
" \n",
|
||||
"def run(input_json):\n",
|
||||
" if isinstance(trainedModel, Exception):\n",
|
||||
" return json.dumps({{\"trainedModel\":str(trainedModel)}})\n",
|
||||
" \n",
|
||||
" try:\n",
|
||||
" sc = spark.sparkContext\n",
|
||||
" input_list = json.loads(input_json)\n",
|
||||
" input_rdd = sc.parallelize(input_list)\n",
|
||||
" input_df = spark.read.json(input_rdd)\n",
|
||||
" \n",
|
||||
" # Compute prediction\n",
|
||||
" prediction = trainedModel.transform(input_df)\n",
|
||||
" #result = prediction.first().prediction\n",
|
||||
" predictions = prediction.collect()\n",
|
||||
" \n",
|
||||
" #Get each scored result\n",
|
||||
" preds = [str(x['prediction']) for x in predictions]\n",
|
||||
" result = \",\".join(preds)\n",
|
||||
" # you can return any data type as long as it is JSON-serializable\n",
|
||||
" return result.tolist()\n",
|
||||
" except Exception as e:\n",
|
||||
" result = str(e)\n",
|
||||
" return result\n",
|
||||
" \n",
|
||||
"\"\"\".format(model_name=model_name)\n",
|
||||
" \n",
|
||||
"exec(score_sparkml)\n",
|
||||
" \n",
|
||||
"with open(\"score_sparkml.py\", \"w\") as file:\n",
|
||||
" file.write(score_sparkml)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) #showing how to add libs as an eg. - not needed for this model.\n",
|
||||
"\n",
|
||||
"with open(\"mydeployenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myacienv.serialize_to_string())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#deploy to ACI\n",
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"\n",
|
||||
"myaci_config = AciWebservice.deploy_configuration(\n",
|
||||
" cpu_cores = 2, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'name':'Databricks Azure ML ACI'}, \n",
|
||||
" description = 'This is for ADB and AML example. Azure Databricks & Azure ML SDK demo with ACI by Parashar.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# this will take 10-15 minutes to finish\n",
|
||||
"\n",
|
||||
"service_name = \"aciws\"\n",
|
||||
"runtime = \"spark-py\" \n",
|
||||
"driver_file = \"score_sparkml.py\"\n",
|
||||
"my_conda_file = \"mydeployenv.yml\"\n",
|
||||
"\n",
|
||||
"# image creation\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
|
||||
" runtime = runtime, \n",
|
||||
" conda_file = my_conda_file)\n",
|
||||
"\n",
|
||||
"# Webservice creation\n",
|
||||
"myservice = Webservice.deploy_from_model(\n",
|
||||
" workspace=ws, \n",
|
||||
" name=service_name,\n",
|
||||
" deployment_config = myaci_config,\n",
|
||||
" models = [mymodel],\n",
|
||||
" image_config = myimage_config\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"myservice.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"help(Webservice)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# List images by ws\n",
|
||||
"\n",
|
||||
"for i in ContainerImage.list(workspace = ws):\n",
|
||||
" print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#for using the Web HTTP API \n",
|
||||
"print(myservice.scoring_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"#get the some sample data\n",
|
||||
"test_data_path = \"AdultCensusIncomeTest\"\n",
|
||||
"test = spark.read.parquet(test_data_path).limit(5)\n",
|
||||
"\n",
|
||||
"test_json = json.dumps(test.toJSON().collect())\n",
|
||||
"\n",
|
||||
"print(test_json)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#using data defined above predict if income is >50K (1) or <=50K (0)\n",
|
||||
"myservice.run(input_data=test_json)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#comment to not delete the web service\n",
|
||||
"#myservice.delete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "pasha"
|
||||
},
|
||||
{
|
||||
"name": "wamartin"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
},
|
||||
"name": "04.DeploytoACI",
|
||||
"notebookId": 3836944406456376
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
182
how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb
Normal file
182
how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.ipynb
Normal file
@@ -0,0 +1,182 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
|
||||
"\n",
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Data Ingestion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import urllib"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Download AdultCensusIncome.csv from Azure CDN. This file has 32,561 rows.\n",
|
||||
"basedataurl = \"https://amldockerdatasets.azureedge.net\"\n",
|
||||
"datafile = \"AdultCensusIncome.csv\"\n",
|
||||
"datafile_dbfs = os.path.join(\"/dbfs\", datafile)\n",
|
||||
"\n",
|
||||
"if os.path.isfile(datafile_dbfs):\n",
|
||||
" print(\"found {} at {}\".format(datafile, datafile_dbfs))\n",
|
||||
"else:\n",
|
||||
" print(\"downloading {} to {}\".format(datafile, datafile_dbfs))\n",
|
||||
" urllib.request.urlretrieve(os.path.join(basedataurl, datafile), datafile_dbfs)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a Spark dataframe out of the csv file.\n",
|
||||
"data_all = sqlContext.read.format('csv').options(header='true', inferSchema='true', ignoreLeadingWhiteSpace='true', ignoreTrailingWhiteSpace='true').load(datafile)\n",
|
||||
"print(\"({}, {})\".format(data_all.count(), len(data_all.columns)))\n",
|
||||
"data_all.printSchema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#renaming columns\n",
|
||||
"columns_new = [col.replace(\"-\", \"_\") for col in data_all.columns]\n",
|
||||
"data_all = data_all.toDF(*columns_new)\n",
|
||||
"data_all.printSchema()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"display(data_all.limit(5))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Data Preparation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose feature columns and the label column.\n",
|
||||
"label = \"income\"\n",
|
||||
"xvars = set(data_all.columns) - {label}\n",
|
||||
"\n",
|
||||
"print(\"label = {}\".format(label))\n",
|
||||
"print(\"features = {}\".format(xvars))\n",
|
||||
"\n",
|
||||
"data = data_all.select([*xvars, label])\n",
|
||||
"\n",
|
||||
"# Split data into train and test.\n",
|
||||
"train, test = data.randomSplit([0.75, 0.25], seed=123)\n",
|
||||
"\n",
|
||||
"print(\"train ({}, {})\".format(train.count(), len(train.columns)))\n",
|
||||
"print(\"test ({}, {})\".format(test.count(), len(test.columns)))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#Data Persistence"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Write the train and test data sets to intermediate storage\n",
|
||||
"train_data_path = \"AdultCensusIncomeTrain\"\n",
|
||||
"test_data_path = \"AdultCensusIncomeTest\"\n",
|
||||
"\n",
|
||||
"train_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTrain\")\n",
|
||||
"test_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTest\")\n",
|
||||
"\n",
|
||||
"train.write.mode('overwrite').parquet(train_data_path)\n",
|
||||
"test.write.mode('overwrite').parquet(test_data_path)\n",
|
||||
"print(\"train and test datasets saved to {} and {}\".format(train_data_path_dbfs, test_data_path_dbfs))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "pasha"
|
||||
},
|
||||
{
|
||||
"name": "wamartin"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
},
|
||||
"name": "02.Ingest_data",
|
||||
"notebookId": 3836944406456362
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
@@ -0,0 +1,264 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
|
||||
"\n",
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
|
||||
"\n",
|
||||
"**install azureml-sdk**\n",
|
||||
"* Source: Upload Python Egg or PyPi\n",
|
||||
"* PyPi Name: `azureml-sdk[databricks]`\n",
|
||||
"* Select Install Library"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"# Check core SDK version number - based on build number of preview/master.\n",
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Please specify the Azure subscription Id, resource group name, workspace name, and the region in which you want to create the Azure Machine Learning Workspace.\n",
|
||||
"\n",
|
||||
"You can get the value of your Azure subscription ID from the Azure Portal, and then selecting Subscriptions from the menu on the left.\n",
|
||||
"\n",
|
||||
"For the resource_group, use the name of the resource group that contains your Azure Databricks Workspace.\n",
|
||||
"\n",
|
||||
"NOTE: If you provide a resource group name that does not exist, the resource group will be automatically created. This may or may not succeed in your environment, depending on the permissions you have on your Azure Subscription."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# subscription_id = \"<your-subscription-id>\"\n",
|
||||
"# resource_group = \"<your-existing-resource-group>\"\n",
|
||||
"# workspace_name = \"<a-new-or-existing-workspace; it is unrelated to Databricks workspace>\"\n",
|
||||
"# workspace_region = \"<your-resource group-region>\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import auth creds from notebook parameters\n",
|
||||
"tenant = dbutils.widgets.get('tenant_id')\n",
|
||||
"username = dbutils.widgets.get('service_principal_id')\n",
|
||||
"password = dbutils.widgets.get('service_principal_password')\n",
|
||||
"\n",
|
||||
"auth = azureml.core.authentication.ServicePrincipalAuthentication(tenant, username, password)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"subscription_id = dbutils.widgets.get('subscription_id')\n",
|
||||
"resource_group = dbutils.widgets.get('resource_group')\n",
|
||||
"workspace_name = dbutils.widgets.get('workspace_name')\n",
|
||||
"workspace_region = dbutils.widgets.get('workspace_region')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import the Workspace class and check the azureml SDK version\n",
|
||||
"# exist_ok checks if workspace exists or not.\n",
|
||||
"\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region,\n",
|
||||
" auth = auth,\n",
|
||||
" exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"## import the Workspace class and check the azureml SDK version\n",
|
||||
"## exist_ok checks if workspace exists or not.\n",
|
||||
"#\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#\n",
|
||||
"#ws = Workspace.create(name = workspace_name,\n",
|
||||
"# subscription_id = subscription_id,\n",
|
||||
"# resource_group = resource_group, \n",
|
||||
"# location = workspace_region,\n",
|
||||
"# exist_ok=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#get workspace details\n",
|
||||
"ws.get_details()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"ws = Workspace(workspace_name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group,\n",
|
||||
" auth = auth)\n",
|
||||
"\n",
|
||||
"# persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#ws = Workspace(workspace_name = workspace_name,\n",
|
||||
"# subscription_id = subscription_id,\n",
|
||||
"# resource_group = resource_group)\n",
|
||||
"#\n",
|
||||
"## persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"#ws.write_config()\n",
|
||||
"###if you need to give a different path/filename please use this\n",
|
||||
"###write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"help(Workspace)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import the Workspace class and check the azureml SDK version\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.from_config(auth = auth)\n",
|
||||
"#ws = Workspace.from_config(<full path>)\n",
|
||||
"print('Workspace name: ' + ws.name, \n",
|
||||
" 'Azure region: ' + ws.location, \n",
|
||||
" 'Subscription id: ' + ws.subscription_id, \n",
|
||||
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"## import the Workspace class and check the azureml SDK version\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#\n",
|
||||
"#ws = Workspace.from_config()\n",
|
||||
"##ws = Workspace.from_config(<full path>)\n",
|
||||
"#print('Workspace name: ' + ws.name, \n",
|
||||
"# 'Azure region: ' + ws.location, \n",
|
||||
"# 'Subscription id: ' + ws.subscription_id, \n",
|
||||
"# 'Resource group: ' + ws.resource_group, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "pasha"
|
||||
},
|
||||
{
|
||||
"name": "wamartin"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
},
|
||||
"name": "01.Installation_and_Configuration",
|
||||
"notebookId": 3836944406456490
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
@@ -0,0 +1,653 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
|
||||
"\n",
|
||||
"**install azureml-sdk with Automated ML**\n",
|
||||
"* Source: Upload Python Egg or PyPi\n",
|
||||
"* PyPi Name: `azureml-sdk[automl_databricks]`\n",
|
||||
"* Select Install Library"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# AutoML : Classification with Local Compute on Azure DataBricks\n",
|
||||
"\n",
|
||||
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
|
||||
"2. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"3. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"4. Train the model using AzureDataBricks.\n",
|
||||
"5. Explore the results.\n",
|
||||
"6. Test the best fitted model.\n",
|
||||
"\n",
|
||||
"Prerequisites:\n",
|
||||
"Before running this notebook, please follow the readme for installing necessary libraries to your cluster."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register Machine Learning Services Resource Provider\n",
|
||||
"Microsoft.MachineLearningServices only needs to be registed once in the subscription. To register it:\n",
|
||||
"Start the Azure portal.\n",
|
||||
"Select your All services and then Subscription.\n",
|
||||
"Select the subscription that you want to use.\n",
|
||||
"Click on Resource providers\n",
|
||||
"Click the Register link next to Microsoft.MachineLearningServices"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Check the Azure ML Core SDK Version to Validate Your Installation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"SDK Version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Initialize an Azure ML Workspace\n",
|
||||
"### What is an Azure ML Workspace and Why Do I Need One?\n",
|
||||
"\n",
|
||||
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"### What do I Need?\n",
|
||||
"\n",
|
||||
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
|
||||
"* A name for your workspace. You can choose one.\n",
|
||||
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
|
||||
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
|
||||
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#subscription_id = \"<Your SubscriptionId>\"\n",
|
||||
"#resource_group = \"<Resource group - new or existing>\"\n",
|
||||
"#workspace_name = \"<workspace to be created>\"\n",
|
||||
"#workspace_region = \"<azureregion>\" #eg. eastus2, westcentralus, westeurope"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Creating a Workspace\n",
|
||||
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
|
||||
"\n",
|
||||
"This will fail when:\n",
|
||||
"1. The workspace already exists.\n",
|
||||
"2. You do not have permission to create a workspace in the resource group.\n",
|
||||
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
|
||||
"\n",
|
||||
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
|
||||
"\n",
|
||||
"**Note:** Creation of a new workspace can take several minutes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"# import auth creds from notebook parameters\n",
|
||||
"tenant = dbutils.widgets.get('tenant_id')\n",
|
||||
"username = dbutils.widgets.get('service_principal_id')\n",
|
||||
"password = dbutils.widgets.get('service_principal_password')\n",
|
||||
"\n",
|
||||
"auth = azureml.core.authentication.ServicePrincipalAuthentication(tenant, username, password)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"subscription_id = dbutils.widgets.get('subscription_id')\n",
|
||||
"resource_group = dbutils.widgets.get('resource_group')\n",
|
||||
"workspace_name = dbutils.widgets.get('workspace_name')\n",
|
||||
"workspace_region = dbutils.widgets.get('workspace_region')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import the Workspace class and check the Azure ML SDK version.\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace.create(name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group, \n",
|
||||
" location = workspace_region,\n",
|
||||
" auth = auth,\n",
|
||||
" exist_ok=True)\n",
|
||||
"ws.get_details()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#import azureml.core\n",
|
||||
"#\n",
|
||||
"## Check core SDK version number\n",
|
||||
"#print(\"SDK version:\", azureml.core.VERSION)\n",
|
||||
"#\n",
|
||||
"##'''\n",
|
||||
"#ws = Workspace.from_config()\n",
|
||||
"#print('Workspace name: ' + ws.name, \n",
|
||||
"# 'Azure region: ' + ws.location, \n",
|
||||
"# 'Subscription id: ' + ws.subscription_id, \n",
|
||||
"# 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
|
||||
"##'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configuring Your Local Environment\n",
|
||||
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"from azureml.core import Workspace\n",
|
||||
"\n",
|
||||
"ws = Workspace(workspace_name = workspace_name,\n",
|
||||
" subscription_id = subscription_id,\n",
|
||||
" resource_group = resource_group,\n",
|
||||
" auth = auth)\n",
|
||||
"\n",
|
||||
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#from azureml.core import Workspace\n",
|
||||
"#\n",
|
||||
"#ws = Workspace(workspace_name = workspace_name,\n",
|
||||
"# subscription_id = subscription_id,\n",
|
||||
"# resource_group = resource_group)\n",
|
||||
"#\n",
|
||||
"## Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
|
||||
"#ws.write_config()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a Folder to Host Sample Projects\n",
|
||||
"Finally, create a folder where all the sample projects will be hosted."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"sample_projects_folder = './sample_projects'\n",
|
||||
"\n",
|
||||
"if not os.path.isdir(sample_projects_folder):\n",
|
||||
" os.mkdir(sample_projects_folder)\n",
|
||||
" \n",
|
||||
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create an Experiment\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import os\n",
|
||||
"import random\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"from matplotlib.pyplot import imshow\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.train.automl.run import AutoMLRun"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##TESTONLY\n",
|
||||
"ws = Workspace.from_config(auth = auth)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##PUBLISHONLY\n",
|
||||
"#ws = Workspace.from_config(auth = auth)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"experiment_name = 'automl-local-classification'\n",
|
||||
"project_folder = './sample_projects/automl-local-classification'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data = output, index = ['']).T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Diagnostics\n",
|
||||
"\n",
|
||||
"Opt-in diagnostics for better experience, quality, and security of future releases."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Load Training Data Using DataPrep"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import azureml.dataprep as dprep\n",
|
||||
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
|
||||
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
|
||||
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
|
||||
"X_train = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
|
||||
"\n",
|
||||
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
|
||||
"# and convert column types manually.\n",
|
||||
"# Here we read a comma delimited file and convert all columns to integers.\n",
|
||||
"y_train = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Review the Data Preparation Result\n",
|
||||
"You can peek the result of a Dataflow at any range using skip(i) and head(j). Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_train.skip(1).head(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure AutoML\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**spark_context**|Spark Context object. for Databricks, use spark_context=sc|\n",
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure Databricks cluster.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
|
||||
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" primary_metric = 'AUC_weighted',\n",
|
||||
" iteration_timeout_minutes = 10,\n",
|
||||
" iterations = 30,\n",
|
||||
" n_cross_validations = 10,\n",
|
||||
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" spark_context=sc, #databricks/spark related\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" enable_cache=False,\n",
|
||||
" path = project_folder)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train the Models\n",
|
||||
"\n",
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output = True) # for higher runs please use show_output=False and use the below"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explore the Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Portal URL for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The following will provide a link to the web interface to explore individual run details and status. In the future we might support output displayed in the notebook."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(local_run.get_portal_url())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The following will show the child runs and waits for the parent run to complete."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
"\n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model after the above run is complete \n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = local_run.get_output()\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
|
||||
"Show the run and the model that has the smallest `log_loss` value:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lookup_metric = \"log_loss\"\n",
|
||||
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test the Best Fitted Model\n",
|
||||
"\n",
|
||||
"#### Load Test Data - you can split the dataset beforehand & pass Train dataset to AutoML and use Test dataset to evaluate the best model."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn import datasets\n",
|
||||
"digits = datasets.load_digits()\n",
|
||||
"X_test = digits.data[:10, :]\n",
|
||||
"y_test = digits.target[:10]\n",
|
||||
"images = digits.images[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Testing Our Best Fitted Model\n",
|
||||
"We will try to predict digits and see how our model works. This is just an example to show you."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Randomly select digits and test.\n",
|
||||
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
|
||||
" print(index)\n",
|
||||
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
|
||||
" label = y_test[index]\n",
|
||||
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
|
||||
" fig = plt.figure(1, figsize = (3,3))\n",
|
||||
" ax1 = fig.add_axes((0,0,.8,.8))\n",
|
||||
" ax1.set_title(title)\n",
|
||||
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
|
||||
" display(fig)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"When deploying an automated ML trained model, please specify _pip_packages=['azureml-sdk[automl]']_ in your CondaDependencies."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
},
|
||||
{
|
||||
"name": "wamartin"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.0"
|
||||
},
|
||||
"name": "auto-ml-classification-local-adb",
|
||||
"notebookId": 3836944406456411
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
@@ -52,8 +52,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Set up your configuration and create a workspace\n",
|
||||
"Follow Notebook 00 instructions to do this.\n"
|
||||
"## 2. Set up your configuration and create a workspace\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -103,8 +102,7 @@
|
||||
"\n",
|
||||
"### b. In your run function add:\n",
|
||||
"```python\n",
|
||||
"print (\"saving input data\" + time.strftime(\"%H:%M:%S\"))\n",
|
||||
"print (\"saving prediction data\" + time.strftime(\"%H:%M:%S\"))```"
|
||||
"print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -120,7 +118,6 @@
|
||||
"from sklearn.externals import joblib\n",
|
||||
"from sklearn.linear_model import Ridge\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.monitoring import ModelDataCollector\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"def init():\n",
|
||||
@@ -135,33 +132,15 @@
|
||||
" # deserialize the model file back into a sklearn model\n",
|
||||
" model = joblib.load(model_path)\n",
|
||||
" \n",
|
||||
" global inputs_dc, prediction_dc\n",
|
||||
" \n",
|
||||
" # this setup will help us save our inputs under the \"inputs\" path in our Azure Blob\n",
|
||||
" inputs_dc = ModelDataCollector(model_name=\"sklearn_regression_model\", identifier=\"inputs\", feature_names=[\"feat1\", \"feat2\"]) \n",
|
||||
" \n",
|
||||
" # this setup will help us save our ipredictions under the \"predictions\" path in our Azure Blob\n",
|
||||
" prediction_dc = ModelDataCollector(\"sklearn_regression_model\", identifier=\"predictions\", feature_names=[\"prediction1\", \"prediction2\"]) \n",
|
||||
" \n",
|
||||
"\n",
|
||||
"# note you can pass in multiple rows for scoring\n",
|
||||
"def run(raw_data):\n",
|
||||
" global inputs_dc, prediction_dc\n",
|
||||
" try:\n",
|
||||
" data = json.loads(raw_data)['data']\n",
|
||||
" data = numpy.array(data)\n",
|
||||
" result = model.predict(data)\n",
|
||||
" \n",
|
||||
" #Print statement for appinsights custom traces:\n",
|
||||
" print (\"saving input data\" + time.strftime(\"%H:%M:%S\"))\n",
|
||||
" \n",
|
||||
" #this call is saving our input data into our blob\n",
|
||||
" inputs_dc.collect(data) \n",
|
||||
" #this call is saving our prediction data into our blob\n",
|
||||
" prediction_dc.collect(result)\n",
|
||||
" \n",
|
||||
" #Print statement for appinsights custom traces:\n",
|
||||
" print (\"saving prediction data\" + time.strftime(\"%H:%M:%S\"))\n",
|
||||
" # you can return any data type as long as it is JSON-serializable\n",
|
||||
" print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))\n",
|
||||
" # you can return any datatype as long as it is JSON-serializable\n",
|
||||
" return result.tolist()\n",
|
||||
" except Exception as e:\n",
|
||||
" error = str(e)\n",
|
||||
@@ -221,6 +200,75 @@
|
||||
"image.wait_for_creation(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy to ACI (Optional)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"diabetes\", 'type': \"regression\"}, \n",
|
||||
" description = 'Predict diabetes using regression model',\n",
|
||||
" enable_app_insights = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"\n",
|
||||
"aci_service_name = 'my-aci-service-4'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
" [1,28,13,45,54,6,57,8,8,10], \n",
|
||||
" [101,9,8,37,6,45,4,3,2,41]\n",
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding='utf8')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if aci_service.state == \"Healthy\":\n",
|
||||
" prediction = aci_service.run(input_data=test_sample)\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -232,7 +280,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AKS compute if you haven't done so (Notebook 11)"
|
||||
"### Create AKS compute if you haven't done so."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -244,7 +292,7 @@
|
||||
"# Use the default configuration (can also provide parameters to customize)\n",
|
||||
"prov_config = AksCompute.provisioning_configuration()\n",
|
||||
"\n",
|
||||
"aks_name = 'my-aks-test1' \n",
|
||||
"aks_name = 'my-aks-test3' \n",
|
||||
"# Create the cluster\n",
|
||||
"aks_target = ComputeTarget.create(workspace = ws, \n",
|
||||
" name = aks_name, \n",
|
||||
@@ -258,7 +306,15 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_target.wait_for_completion(show_output = True)\n",
|
||||
"aks_target.wait_for_completion(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(aks_target.provisioning_state)\n",
|
||||
"print(aks_target.provisioning_errors)"
|
||||
]
|
||||
@@ -278,9 +334,10 @@
|
||||
"%%time\n",
|
||||
"resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
|
||||
"create_name= 'myaks4'\n",
|
||||
"aks_target = AksCompute.attach(workspace = ws, \n",
|
||||
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
|
||||
"aks_target = ComputeTarget.attach(workspace = ws, \n",
|
||||
" name = create_name, \n",
|
||||
" #esource_id=resource_id)\n",
|
||||
" attach_configuration=attach_config)\n",
|
||||
"## Wait for the operation to complete\n",
|
||||
"aks_target.wait_for_provisioning(True)```"
|
||||
]
|
||||
@@ -316,17 +373,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_service_name ='aks-w-dc3'\n",
|
||||
"\n",
|
||||
"aks_service = Webservice.deploy_from_image(workspace = ws, \n",
|
||||
"if aks_target.provisioning_state== \"Succeeded\": \n",
|
||||
" aks_service_name ='aks-w-dc5'\n",
|
||||
" aks_service = Webservice.deploy_from_image(workspace = ws, \n",
|
||||
" name = aks_service_name,\n",
|
||||
" image = image,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" deployment_target = aks_target\n",
|
||||
" )\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)\n",
|
||||
"print(aks_service.state)"
|
||||
" aks_service.wait_for_deployment(show_output = True)\n",
|
||||
" print(aks_service.state)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"AKS provisioning failed.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -351,8 +409,11 @@
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding='utf8')\n",
|
||||
"\n",
|
||||
"prediction = aks_service.run(input_data=test_sample)\n",
|
||||
"print(prediction)"
|
||||
"if aks_service.state == \"Healthy\":\n",
|
||||
" prediction = aks_service.run(input_data=test_sample)\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -383,6 +444,26 @@
|
||||
"source": [
|
||||
"aks_service.update(enable_app_insights=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clean up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_service.delete()\n",
|
||||
"aci_service.delete()\n",
|
||||
"image.delete()\n",
|
||||
"model.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -392,9 +473,9 @@
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"display_name": "Python [default]",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -406,7 +487,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
@@ -237,7 +237,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create AKS compute if you haven't done so (Notebook 11)"
|
||||
"### Create AKS compute if you haven't done so."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -285,9 +285,10 @@
|
||||
" %%time\n",
|
||||
" resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
|
||||
" create_name= 'myaks4'\n",
|
||||
" aks_target = AksCompute.attach(workspace = ws, \n",
|
||||
" attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
|
||||
" aks_target = ComputeTarget.attach(workspace = ws, \n",
|
||||
" name = create_name, \n",
|
||||
" resource_id=resource_id)\n",
|
||||
" attach_configuration=attach_config)\n",
|
||||
" ## Wait for the operation to complete\n",
|
||||
" aks_target.wait_for_provisioning(True)```"
|
||||
]
|
||||
@@ -323,17 +324,18 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_service_name ='aks-w-dc2'\n",
|
||||
"\n",
|
||||
"aks_service = Webservice.deploy_from_image(workspace = ws, \n",
|
||||
"if aks_target.provisioning_state== \"Succeeded\": \n",
|
||||
" aks_service_name ='aks-w-dc0'\n",
|
||||
" aks_service = Webservice.deploy_from_image(workspace = ws, \n",
|
||||
" name = aks_service_name,\n",
|
||||
" image = image,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" deployment_target = aks_target\n",
|
||||
" )\n",
|
||||
"aks_service.wait_for_deployment(show_output = True)\n",
|
||||
"print(aks_service.state)"
|
||||
" aks_service.wait_for_deployment(show_output = True)\n",
|
||||
" print(aks_service.state)\n",
|
||||
"else: \n",
|
||||
" raise ValueError(\"aks provisioning failed, can't deploy service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -362,8 +364,11 @@
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
|
||||
"\n",
|
||||
"prediction = aks_service.run(input_data = test_sample)\n",
|
||||
"print(prediction)"
|
||||
"if aks_service.state == \"Healthy\":\n",
|
||||
" prediction = aks_service.run(input_data=test_sample)\n",
|
||||
" print(prediction)\n",
|
||||
"else:\n",
|
||||
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -422,6 +427,25 @@
|
||||
"source": [
|
||||
"aks_service.update(collect_model_data=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Clean up"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"aks_service.delete()\n",
|
||||
"image.delete()\n",
|
||||
"model.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -431,9 +455,9 @@
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"display_name": "Python [default]",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -445,7 +469,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
33
how-to-use-azureml/deployment/onnx/README.md
Normal file
33
how-to-use-azureml/deployment/onnx/README.md
Normal file
@@ -0,0 +1,33 @@
|
||||
# ONNX on Azure Machine Learning
|
||||
|
||||
These tutorials show how to create and deploy Open Neural Network eXchange ([ONNX](http://onnx.ai)) models in Azure Machine Learning environments using [ONNX Runtime](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-build-deploy-onnx) for inference. Once deployed as a web service, you can ping the model with your own set of images to be analyzed!
|
||||
|
||||
## Tutorials
|
||||
|
||||
0. [Configure your Azure Machine Learning Workspace](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb)
|
||||
|
||||
#### Obtain models from the [ONNX Model Zoo](https://github.com/onnx/models) and deploy with ONNX Runtime Inference
|
||||
1. [Handwritten Digit Classification (MNIST)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb)
|
||||
2. [Facial Expression Recognition (Emotion FER+)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb)
|
||||
|
||||
#### Demo Notebooks from Microsoft Ignite 2018
|
||||
Note that the following notebooks do not have evaluation sections for the models since they were deployed as part of a live demo. You can find the respective pre-processing and post-processing code linked from the ONNX Model Zoo Github pages ([ResNet](https://github.com/onnx/models/tree/master/models/image_classification/resnet), [TinyYoloV2](https://github.com/onnx/models/tree/master/tiny_yolov2)), or experiment with the ONNX models by [running them in the browser](https://microsoft.github.io/onnxjs-demo/#/).
|
||||
|
||||
3. [Image Recognition (ResNet50)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb)
|
||||
4. [Convert Core ML Model to ONNX and deploy - Real Time Object Detection (TinyYOLO)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb)
|
||||
|
||||
## Documentation
|
||||
- [ONNX Runtime Python API Documentation](http://aka.ms/onnxruntime-python)
|
||||
- [Azure Machine Learning API Documentation](http://aka.ms/aml-docs)
|
||||
|
||||
## Related Articles
|
||||
- [Building and Deploying ONNX Runtime Models](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-build-deploy-onnx)
|
||||
- [Azure AI – Making AI Real for Business](https://aka.ms/aml-blog-overview)
|
||||
- [What’s new in Azure Machine Learning](https://aka.ms/aml-blog-whats-new)
|
||||
|
||||
## License
|
||||
Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
Licensed under the MIT License.
|
||||
|
||||
## Acknowledgements
|
||||
These tutorials were developed by Vinitra Swamy and Prasanth Pulavarthi of the Microsoft AI Frameworks team and adapted for presentation at Microsoft Ignite 2018.
|
||||
@@ -255,25 +255,36 @@
|
||||
" input_name = session.get_inputs()[0].name\n",
|
||||
" output_name = session.get_outputs()[0].name \n",
|
||||
" \n",
|
||||
"\n",
|
||||
"def preprocess(input_data_json):\n",
|
||||
" # convert the JSON data into the tensor input\n",
|
||||
" return np.array(json.loads(input_data_json)['data']).astype('float32')\n",
|
||||
"\n",
|
||||
"def postprocess(result):\n",
|
||||
" # We use argmax to pick the highest confidence label\n",
|
||||
" return int(np.argmax(np.array(result).squeeze(), axis=0))\n",
|
||||
" \n",
|
||||
"def run(input_data):\n",
|
||||
" '''Purpose: evaluate test input in Azure Cloud using onnxruntime.\n",
|
||||
" We will call the run function later from our Jupyter Notebook \n",
|
||||
" so our azure service can evaluate our model input in the cloud. '''\n",
|
||||
"\n",
|
||||
" try:\n",
|
||||
" # load in our data, convert to readable format\n",
|
||||
" data = np.array(json.loads(input_data)['data']).astype('float32')\n",
|
||||
"\n",
|
||||
" data = preprocess(input_data)\n",
|
||||
" \n",
|
||||
" # start timer\n",
|
||||
" start = time.time()\n",
|
||||
" r = session.run([output_name], {input_name: data})[0]\n",
|
||||
" \n",
|
||||
" r = session.run([output_name], {input_name: data})\n",
|
||||
" \n",
|
||||
" #end timer\n",
|
||||
" end = time.time()\n",
|
||||
" result = choose_class(r[0])\n",
|
||||
" result_dict = {\"result\": [result],\n",
|
||||
" \"time_in_sec\": [end - start]}\n",
|
||||
" \n",
|
||||
" result = postprocess(r)\n",
|
||||
" result_dict = {\"result\": result,\n",
|
||||
" \"time_in_sec\": end - start}\n",
|
||||
" except Exception as e:\n",
|
||||
" result_dict = {\"error\": str(e)}\n",
|
||||
" \n",
|
||||
" return json.dumps(result_dict)\n",
|
||||
" return result_dict\n",
|
||||
"\n",
|
||||
"def choose_class(result_prob):\n",
|
||||
" \"\"\"We use argmax to determine the right label to choose from our output\"\"\"\n",
|
||||
@@ -423,7 +434,16 @@
|
||||
"\n",
|
||||
"If you've made it this far, you've deployed a working VM with a handwritten digit classifier running in the cloud using Azure ML. Congratulations!\n",
|
||||
"\n",
|
||||
"Let's see how well our model deals with our test images."
|
||||
"You can get the URL for the webservice with the code below. Let's now see how well our model deals with our test images."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(aci_service.scoring_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -544,14 +564,14 @@
|
||||
" input_data = json.dumps({'data': test_inputs[i].tolist()})\n",
|
||||
" \n",
|
||||
" # predict using the deployed model\n",
|
||||
" r = json.loads(aci_service.run(input_data))\n",
|
||||
" r = aci_service.run(input_data)\n",
|
||||
" \n",
|
||||
" if \"error\" in r:\n",
|
||||
" print(r['error'])\n",
|
||||
" break\n",
|
||||
" \n",
|
||||
" result = r['result'][0]\n",
|
||||
" time_ms = np.round(r['time_in_sec'][0] * 1000, 2)\n",
|
||||
" result = r['result']\n",
|
||||
" time_ms = np.round(r['time_in_sec'] * 1000, 2)\n",
|
||||
" \n",
|
||||
" ground_truth = int(np.argmax(test_outputs[i]))\n",
|
||||
" \n",
|
||||
@@ -658,9 +678,9 @@
|
||||
" input_data = json.dumps({'data': img.tolist()})\n",
|
||||
"\n",
|
||||
" try:\n",
|
||||
" r = json.loads(aci_service.run(input_data))\n",
|
||||
" result = r['result'][0]\n",
|
||||
" time_ms = np.round(r['time_in_sec'][0] * 1000, 2)\n",
|
||||
" r = aci_service.run(input_data)\n",
|
||||
" result = r['result']\n",
|
||||
" time_ms = np.round(r['time_in_sec'] * 1000, 2)\n",
|
||||
" except Exception as e:\n",
|
||||
" print(str(e))\n",
|
||||
"\n",
|
||||
@@ -783,7 +803,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.5"
|
||||
},
|
||||
"msauthor": "vinitra.swamy"
|
||||
},
|
||||
@@ -224,7 +224,8 @@
|
||||
"\n",
|
||||
"create_name='my-existing-aks' \n",
|
||||
"# Create the cluster\n",
|
||||
"aks_target = AksCompute.attach(workspace=ws, name=create_name, resource_id=resource_id)\n",
|
||||
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
|
||||
"aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n",
|
||||
"# Wait for the operation to complete\n",
|
||||
"aks_target.wait_for_completion(True)\n",
|
||||
"'''"
|
||||
Binary file not shown.
@@ -8,6 +8,8 @@ The Python-based Azure Machine Learning Pipeline SDK provides interfaces to work
|
||||
|
||||
Data management and reuse across pipelines and pipeline runs is simplified using named and strictly versioned data sources and named inputs and outputs for processing tasks. Pipelines enable collaboration across teams of data scientists by recording all intermediate tasks and data.
|
||||
|
||||
Learn more about how to [create your first machine learning pipeline](https://docs.microsoft.com/azure/machine-learning/service/how-to-create-your-first-pipeline).
|
||||
|
||||
### Why build pipelines?
|
||||
|
||||
With pipelines, you can optimize your workflow with simplicity, speed, portability, and reuse. When building pipelines with Azure Machine Learning, you can focus on what you know best — machine learning — rather than infrastructure.
|
||||
@@ -34,15 +36,16 @@ Azure Machine Learning Pipelines optimize for simplicity, speed, and efficiency.
|
||||
|
||||
In this directory, there are two types of notebooks:
|
||||
|
||||
* The first type of notebooks will introduce you to core Azure Machine Learning Pipelines features. The notebooks below belong in this category, and are designed to go in sequence:
|
||||
* The first type of notebooks will introduce you to core Azure Machine Learning Pipelines features. These notebooks below belong in this category, and are designed to go in sequence; they're all located in the "intro-to-pipelines" folder:
|
||||
|
||||
1. [aml-pipelines-getting-started.ipynb](aml-pipelines-getting-started.ipynb)
|
||||
2. [aml-pipelines-with-data-dependency-steps.ipynb](aml-pipelines-with-data-dependency-steps.ipynb)
|
||||
3. [aml-pipelines-publish-and-run-using-rest-endpoint.ipynb](aml-pipelines-publish-and-run-using-rest-endpoint.ipynb)
|
||||
4. [aml-pipelines-data-transfer.ipynb](aml-pipelines-data-transfer.ipynb)
|
||||
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](aml-pipelines-use-databricks-as-compute-target.ipynb)
|
||||
6. [aml-pipelines-use-adla-as-compute-target.ipynb](aml-pipelines-use-adla-as-compute-target.ipynb)
|
||||
1. [aml-pipelines-getting-started.ipynb](https://aka.ms/pl-get-started)
|
||||
2. [aml-pipelines-with-data-dependency-steps.ipynb](https://aka.ms/pl-data-dep)
|
||||
3. [aml-pipelines-publish-and-run-using-rest-endpoint.ipynb](https://aka.ms/pl-pub-rep)
|
||||
4. [aml-pipelines-data-transfer.ipynb](https://aka.ms/pl-data-trans)
|
||||
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](https://aka.ms/pl-databricks)
|
||||
6. [aml-pipelines-use-adla-as-compute-target.ipynb](https://aka.ms/pl-adla)
|
||||
|
||||
* The second type of notebooks illustrate more sophisticated scenarios, and are independent of each other. These notebooks include:
|
||||
- [pipeline-batch-scoring.ipynb](pipeline-batch-scoring.ipynb)
|
||||
- [pipeline-style-transfer.ipynb](pipeline-style-transfer.ipynb)
|
||||
|
||||
1. [pipeline-batch-scoring.ipynb](https://aka.ms/pl-batch-score)
|
||||
2. [pipeline-style-transfer.ipynb](https://aka.ms/pl-style-trans)
|
||||
@@ -98,18 +98,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# un-comment the following and replace the strings with the \n",
|
||||
"# correct values for your ADLS datastore\n",
|
||||
"\n",
|
||||
"# workspace = \"<my-workspace-name>\"\n",
|
||||
"# datastore_name = \"<my-datastore-name>\" # ADLS datastore name\n",
|
||||
"# subscription_id = \"<my-subscription-id>\" # subscription id of ADLS account\n",
|
||||
"# resource_group = \"<my-resource-group>\" # resource group of ADLS account\n",
|
||||
"# store_name = \"<my-storename>\" # ADLS account name\n",
|
||||
"# tenant_id = \"<my-tenant-id>\" # tenant id of service principal\n",
|
||||
"# client_id = \"<my-client-id>\" # client id of service principal\n",
|
||||
"# client_secret = \"<my-client-secret>\" # the secret of service principal\n",
|
||||
"\n",
|
||||
"workspace = ws.name\n",
|
||||
"datastore_name='MyAdlsDatastore'\n",
|
||||
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
|
||||
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
|
||||
"store_name=os.getenv(\"ADL_STORENAME_62\", \"<my-datastore-name>\") # ADLS account name\n",
|
||||
"tenant_id=os.getenv(\"ADL_TENANT_62\", \"<my-tenant-id>\") # tenant id of service principal\n",
|
||||
"client_id=os.getenv(\"ADL_CLIENTID_62\", \"<my-client-id>\") # client id of service principal\n",
|
||||
"client_secret=os.getenv(\"ADL_CLIENT_SECRET_62\", \"<my-client-secret>\") # the secret of service principal\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" adls_datastore = Datastore.get(ws, datastore_name)\n",
|
||||
@@ -126,13 +123,12 @@
|
||||
" client_secret=client_secret) # the secret of service principal\n",
|
||||
" print(\"registered datastore with name: %s\" % datastore_name)\n",
|
||||
"\n",
|
||||
"# un-comment the following and replace the strings with the\n",
|
||||
"# correct values for your blob datastore\n",
|
||||
"\n",
|
||||
"# blob_datastore_name = \"<my-blob-datastore-name>\"\n",
|
||||
"# account_name = \"<my-blob-account-name>\"\n",
|
||||
"# container_name = \"<my-blob-container-name>\"\n",
|
||||
"# account_key = \"<my-blob-account-key>\"\n",
|
||||
"\n",
|
||||
"blob_datastore_name='MyBlobDatastore'\n",
|
||||
"account_name=os.getenv(\"BLOB_ACCOUNTNAME_62\", \"<my-account-name>\") # Storage account name\n",
|
||||
"container_name=os.getenv(\"BLOB_CONTAINER_62\", \"<my-container-name>\") # Name of Azure blob container\n",
|
||||
"account_key=os.getenv(\"BLOB_ACCOUNT_KEY_62\", \"<my-account-key>\") # Storage account key\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" blob_datastore = Datastore.get(ws, blob_datastore_name)\n",
|
||||
@@ -205,7 +201,7 @@
|
||||
" print('Data factory not found, creating...')\n",
|
||||
" provisioning_config = DataFactoryCompute.provisioning_configuration()\n",
|
||||
" data_factory = ComputeTarget.create(workspace, factory_name, provisioning_config)\n",
|
||||
" data_factory.wait_for_provisioning()\n",
|
||||
" data_factory.wait_for_completion()\n",
|
||||
" return data_factory\n",
|
||||
" else:\n",
|
||||
" raise e\n",
|
||||
@@ -16,7 +16,7 @@
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"Read [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines) overview, or the [readme article](./README.md) on Azure Machine Learning Pipelines to get more information.\n",
|
||||
"Read [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines) overview, or the [readme article](../README.md) on Azure Machine Learning Pipelines to get more information.\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"This Notebook shows basic construction of a **pipeline** that runs jobs unattended in different compute clusters. "
|
||||
@@ -34,45 +34,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Installing Packages\n",
|
||||
"These packages are used at later stages."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install pandas\n",
|
||||
"!pip install requests"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Enabling Widgets\n",
|
||||
"### Azure Machine Learning Imports\n",
|
||||
"\n",
|
||||
"Install the following jupyter extensions to support Azure Machine Learning widgets."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install azureml.widgets\n",
|
||||
"!jupyter nbextension install --py --user azureml.widgets\n",
|
||||
"!jupyter nbextension enable --py --user azureml.widgets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Azure Machine Learning Imports"
|
||||
"In this first code cell, we import key Azure Machine Learning modules that we will use below. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -96,7 +60,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pipeline SDK-specific imports"
|
||||
"### Pipeline-specific SDK imports\n",
|
||||
"\n",
|
||||
"Here, we import key pipeline modules, whose use will be illustrated in the examples below."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -285,9 +251,18 @@
|
||||
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
|
||||
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
|
||||
" \n",
|
||||
"print(\"Azure Machine Learning Compute attached\")\n",
|
||||
"# For a more detailed view of current Azure Machine Learning Compute status, use the 'status' property \n",
|
||||
"print(aml_compute.status.serialize())"
|
||||
"print(\"Azure Machine Learning Compute attached\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# For a more detailed view of current Azure Machine Learning Compute status, use the 'status' property\n",
|
||||
"# example: un-comment the following line.\n",
|
||||
"# print(aml_compute.status.serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -91,9 +91,18 @@
|
||||
" min_nodes = 1, \n",
|
||||
" max_nodes = 4) \n",
|
||||
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
|
||||
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
|
||||
" \n",
|
||||
"print(aml_compute.status.serialize())\n"
|
||||
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# For a more detailed view of current Azure Machine Learning Compute status, use the 'status' property\n",
|
||||
"# example: un-comment the following line.\n",
|
||||
"# print(aml_compute.status.serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -218,7 +227,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We will use this later in publishing pipeline\n",
|
||||
"pipeline_param = PipelineParameter(name=\"pipeline_arg\", default_value=10)"
|
||||
"pipeline_param = PipelineParameter(name=\"pipeline_arg\", default_value=10)\n",
|
||||
"print(\"pipeline parameter created\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -91,18 +91,15 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# un-comment the following and replace the strings with the \n",
|
||||
"# correct values for your ADLS datastore\n",
|
||||
"\n",
|
||||
"# workspace=\"<my-workspace-name\"\n",
|
||||
"# datastore_name= \"<my-adls-datastore-name>\"\n",
|
||||
"# subscription_id = \"<my-subscription-id>\"\n",
|
||||
"# resource_group = \"<my-rg>\"\n",
|
||||
"# store_name = \"<my-sotrename>\"\n",
|
||||
"# tenant_id = \"<my-tenant>\"\n",
|
||||
"# client_id = \"<my-client-id>\"\n",
|
||||
"# client_secret = \"<my-client-secret>\"\n",
|
||||
"\n",
|
||||
"workspace = ws.name\n",
|
||||
"datastore_name='MyAdlsDatastore'\n",
|
||||
"subscription_id=os.getenv(\"ADL_SUBSCRIPTION_62\", \"<my-subscription-id>\") # subscription id of ADLS account\n",
|
||||
"resource_group=os.getenv(\"ADL_RESOURCE_GROUP_62\", \"<my-resource-group>\") # resource group of ADLS account\n",
|
||||
"store_name=os.getenv(\"ADL_STORENAME_62\", \"<my-datastore-name>\") # ADLS account name\n",
|
||||
"tenant_id=os.getenv(\"ADL_TENANT_62\", \"<my-tenant-id>\") # tenant id of service principal\n",
|
||||
"client_id=os.getenv(\"ADL_CLIENTID_62\", \"<my-client-id>\") # client id of service principal\n",
|
||||
"client_secret=os.getenv(\"ADL_CLIENT_62_SECRET\", \"<my-client-secret>\") # the secret of service principal\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" adls_datastore = Datastore.get(ws, datastore_name)\n",
|
||||
@@ -135,7 +132,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"datastorename = \"TestAdlsDatastore\"\n",
|
||||
"datastorename = \"MyAdlsDatastore\"\n",
|
||||
"\n",
|
||||
"adls_datastore = Datastore(workspace=ws, name=datastorename)\n",
|
||||
"script_input = DataReference(\n",
|
||||
@@ -228,7 +225,30 @@
|
||||
"- **priority:** the priority value to use for the current job *(optional)*\n",
|
||||
"- **runtime_version:** the runtime version of the Data Lake Analytics engine *(optional)*\n",
|
||||
"- **root_folder:** folder that contains the script, assemblies etc. *(optional)*\n",
|
||||
"- **hash_paths:** list of paths to hash to detect a change (script file is always hashed) *(optional)*"
|
||||
"- **hash_paths:** list of paths to hash to detect a change (script file is always hashed) *(optional)*\n",
|
||||
"\n",
|
||||
"### Remarks\n",
|
||||
"\n",
|
||||
"You can use `@@name@@` syntax in your script to refer to inputs, outputs, and params.\n",
|
||||
"\n",
|
||||
"* if `name` is the name of an input or output port binding, any occurences of `@@name@@` in the script\n",
|
||||
"are replaced with actual data path of corresponding port binding.\n",
|
||||
"* if `name` matches any key in `params` dict, any occurences of `@@name@@` will be replaced with\n",
|
||||
"corresponding value in dict.\n",
|
||||
"\n",
|
||||
"#### Sample script\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"@resourcereader =\n",
|
||||
" EXTRACT query string\n",
|
||||
" FROM \"@@script_input@@\"\n",
|
||||
" USING Extractors.Csv();\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"OUTPUT @resourcereader\n",
|
||||
"TO \"@@script_output@@\"\n",
|
||||
"USING Outputters.Csv();\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -326,7 +346,7 @@
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python [default]",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -340,7 +360,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
@@ -127,7 +127,9 @@
|
||||
"\n",
|
||||
"- **Resource Group** - The resource group name of your Azure Machine Learning workspace\n",
|
||||
"- **Databricks Workspace Name** - The workspace name of your Azure Databricks workspace\n",
|
||||
"- **Databricks Access Token** - The access token you created in ADB"
|
||||
"- **Databricks Access Token** - The access token you created in ADB\n",
|
||||
"\n",
|
||||
"**The Databricks workspace need to be present in the same subscription as your AML workspace**"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -137,24 +139,28 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Replace with your account info before running.\n",
|
||||
"\n",
|
||||
"# db_compute_name = \"<my-databricks_compute_name>\"\n",
|
||||
"# aml_resource_group = \"<my-aml-resource-group>\"\n",
|
||||
"# db_workspace_name = \"<my-databricks_workspace_name>\"\n",
|
||||
"# access_token = \"<my-databricks_access_token>\"\n",
|
||||
"\n",
|
||||
" \n",
|
||||
"db_compute_name=os.getenv(\"DATABRICKS_COMPUTE_NAME\", \"<my-databricks-compute-name>\") # Databricks compute name\n",
|
||||
"db_resource_group=os.getenv(\"DATABRICKS_RESOURCE_GROUP\", \"<my-db-resource-group>\") # Databricks resource group\n",
|
||||
"db_workspace_name=os.getenv(\"DATABRICKS_WORKSPACE_NAME\", \"<my-db-workspace-name>\") # Databricks workspace name\n",
|
||||
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
|
||||
" \n",
|
||||
"try:\n",
|
||||
" databricks_compute = ComputeTarget(workspace=ws, name=db_compute_name)\n",
|
||||
" print('Compute target {} already exists'.format(db_compute_name))\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('compute not found')\n",
|
||||
" print('databricks_compute_name {}'.format(db_compute_name))\n",
|
||||
" print('databricks_resource_id {}'.format(db_workspace_name))\n",
|
||||
" print('databricks_access_token {}'.format(access_token))\n",
|
||||
"\n",
|
||||
" config = DatabricksCompute.attach_configuration(aml_resource_group, db_workspace_name, access_token)\n",
|
||||
" ComputeTarget.attach(ws, db_compute_name, config)\n",
|
||||
" databricks_compute.wait_for_completion(True)"
|
||||
" print('Compute not found, will use below parameters to attach new one')\n",
|
||||
" print('db_compute_name {}'.format(db_compute_name))\n",
|
||||
" print('db_resource_group {}'.format(db_resource_group))\n",
|
||||
" print('db_workspace_name {}'.format(db_workspace_name))\n",
|
||||
" print('db_access_token {}'.format(db_access_token))\n",
|
||||
" \n",
|
||||
" config = DatabricksCompute.attach_configuration(\n",
|
||||
" resource_group = db_resource_group,\n",
|
||||
" workspace_name = db_workspace_name,\n",
|
||||
" access_token= db_access_token)\n",
|
||||
" databricks_compute=ComputeTarget.attach(ws, db_compute_name, config)\n",
|
||||
" databricks_compute.wait_for_completion(True)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -308,33 +314,73 @@
|
||||
"- ***name:** Name of the Module\n",
|
||||
"- **inputs:** List of input connections for data consumed by this step. Fetch this inside the notebook using dbutils.widgets.get(\"input\")\n",
|
||||
"- **outputs:** List of output port definitions for outputs produced by this step. Fetch this inside the notebook using dbutils.widgets.get(\"output\")\n",
|
||||
"- **existing_cluster_id:** Cluster ID of an existing Interactive cluster on the Databricks workspace. If you are providing this, do not provide any of the parameters below that are used to create a new cluster such as spark_version, node_type, etc.\n",
|
||||
"- **spark_version:** Version of spark for the databricks run cluster. default value: 4.0.x-scala2.11\n",
|
||||
"- **node_type:** Azure vm node types for the databricks run cluster. default value: Standard_D3_v2\n",
|
||||
"- **num_workers:** Number of workers for the databricks run cluster\n",
|
||||
"- **autoscale:** The autoscale configuration for the databricks run cluster\n",
|
||||
"- **spark_env_variables:** Spark environment variables for the databricks run cluster (dictionary of {str:str}). default value: {'PYSPARK_PYTHON': '/databricks/python3/bin/python3'}\n",
|
||||
"- ***notebook_path:** Path to the notebook in the databricks instance.\n",
|
||||
"- **notebook_path:** Path to the notebook in the databricks instance. If you are providing this, do not provide python script related paramaters or JAR related parameters.\n",
|
||||
"- **notebook_params:** Parameters for the databricks notebook (dictionary of {str:str}). Fetch this inside the notebook using dbutils.widgets.get(\"myparam\")\n",
|
||||
"- **python_script_path:** The path to the python script in the DBFS or S3. If you are providing this, do not provide python_script_name which is used for uploading script from local machine.\n",
|
||||
"- **python_script_params:** Parameters for the python script (list of str)\n",
|
||||
"- **main_class_name:** The name of the entry point in a JAR module. If you are providing this, do not provide any python script or notebook related parameters.\n",
|
||||
"- **jar_params:** Parameters for the JAR module (list of str)\n",
|
||||
"- **python_script_name:** name of a python script on your local machine (relative to source_directory). If you are providing this do not provide python_script_path which is used to execute a remote python script; or any of the JAR or notebook related parameters.\n",
|
||||
"- **source_directory:** folder that contains the script and other files\n",
|
||||
"- **hash_paths:** list of paths to hash to detect a change in source_directory (script file is always hashed)\n",
|
||||
"- **run_name:** Name in databricks for this run\n",
|
||||
"- **timeout_seconds:** Timeout for the databricks run\n",
|
||||
"- **runconfig:** Runconfig to use. Either pass runconfig or each library type as a separate parameter but do not mix the two\n",
|
||||
"- **maven_libraries:** maven libraries for the databricks run\n",
|
||||
"- **pypi_libraries:** pypi libraries for the databricks run\n",
|
||||
"- **egg_libraries:** egg libraries for the databricks run\n",
|
||||
"- **jar_libraries:** jar libraries for the databricks run\n",
|
||||
"- **rcran_libraries:** rcran libraries for the databricks run\n",
|
||||
"- **databricks_compute:** Azure Databricks compute\n",
|
||||
"- **databricks_compute_name:** Name of Azure Databricks compute\n",
|
||||
"- **compute_target:** Azure Databricks compute\n",
|
||||
"- **allow_reuse:** Whether the step should reuse previous results when run with the same settings/inputs\n",
|
||||
"- **version:** Optional version tag to denote a change in functionality for the step\n",
|
||||
"\n",
|
||||
"\\* *denotes required fields* \n",
|
||||
"*You must provide exactly one of num_workers or autoscale paramaters* \n",
|
||||
"*You must provide exactly one of databricks_compute or databricks_compute_name parameters*"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a id='notebook_howto'></a>"
|
||||
"*You must provide exactly one of databricks_compute or databricks_compute_name parameters*\n",
|
||||
"\n",
|
||||
"## Use runconfig to specify library dependencies\n",
|
||||
"You can use a runconfig to specify the library dependencies for your cluster in Databricks. The runconfig will contain a databricks section as follows:\n",
|
||||
"```yaml\n",
|
||||
"environment:\n",
|
||||
"# Databricks details\n",
|
||||
" databricks:\n",
|
||||
"# List of maven libraries.\n",
|
||||
" mavenLibraries:\n",
|
||||
" - coordinates: org.jsoup:jsoup:1.7.1\n",
|
||||
" repo: ''\n",
|
||||
" exclusions:\n",
|
||||
" - slf4j:slf4j\n",
|
||||
" - '*:hadoop-client'\n",
|
||||
"# List of PyPi libraries\n",
|
||||
" pypiLibraries:\n",
|
||||
" - package: beautifulsoup4\n",
|
||||
" repo: ''\n",
|
||||
"# List of RCran libraries\n",
|
||||
" rcranLibraries:\n",
|
||||
" - package: ada\n",
|
||||
" repo: http://cran.us.r-project.org\n",
|
||||
"# List of JAR libraries\n",
|
||||
" jarLibraries:\n",
|
||||
" - library: dbfs:/mnt/libraries/library.jar\n",
|
||||
"# List of Egg libraries\n",
|
||||
" eggLibraries:\n",
|
||||
" - library: dbfs:/mnt/libraries/library.egg\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"You can then create a RunConfiguration object using this file and pass it as the runconfig parameter to DatabricksStep.\n",
|
||||
"```python\n",
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"\n",
|
||||
"runconfig = RunConfiguration()\n",
|
||||
"runconfig.load(path='<directory_where_runconfig_is_stored>', name='<runconfig_file_name>')\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -342,7 +388,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 1. Running the demo notebook already added to the Databricks workspace\n",
|
||||
"The commented out code in the below cell assumes that you have created a notebook called `demo_notebook` in Azure Databricks under your user folder so you can use `notebook_path = \"/Users/you@company.com/demo_notebook\"`:"
|
||||
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable notebook_path when you run the code cell below:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -351,7 +397,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# notebook_path = \"/Users/you@company.com/demo_notebook\"\n",
|
||||
"notebook_path=os.getenv(\"DATABRICKS_NOTEBOOK_PATH\", \"<my-databricks-notebook-path>\") # Databricks notebook path\n",
|
||||
"\n",
|
||||
"dbNbStep = DatabricksStep(\n",
|
||||
" name=\"DBNotebookInWS\",\n",
|
||||
@@ -379,10 +425,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = [dbNbStep]\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"pipeline_run = Experiment(ws, 'DB_Notebook_demo').submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#steps = [dbNbStep]\n",
|
||||
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"#pipeline_run = Experiment(ws, 'DB_Notebook_demo').submit(pipeline)\n",
|
||||
"#pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -398,8 +445,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(pipeline_run).show()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#from azureml.widgets import RunDetails\n",
|
||||
"#RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -449,10 +497,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = [dbPythonInDbfsStep]\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"pipeline_run = Experiment(ws, 'DB_Python_demo').submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#steps = [dbPythonInDbfsStep]\n",
|
||||
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"#pipeline_run = Experiment(ws, 'DB_Python_demo').submit(pipeline)\n",
|
||||
"#pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -468,8 +517,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(pipeline_run).show()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#from azureml.widgets import RunDetails\n",
|
||||
"#RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -590,10 +640,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"steps = [dbJarInDbfsStep]\n",
|
||||
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"pipeline_run = Experiment(ws, 'DB_JAR_demo').submit(pipeline)\n",
|
||||
"pipeline_run.wait_for_completion()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#steps = [dbJarInDbfsStep]\n",
|
||||
"#pipeline = Pipeline(workspace=ws, steps=steps)\n",
|
||||
"#pipeline_run = Experiment(ws, 'DB_JAR_demo').submit(pipeline)\n",
|
||||
"#pipeline_run.wait_for_completion()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -609,8 +660,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(pipeline_run).show()"
|
||||
"#PUBLISHONLY\n",
|
||||
"#from azureml.widgets import RunDetails\n",
|
||||
"#RunDetails(pipeline_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -643,7 +695,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
"version": "3.6.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
@@ -149,9 +149,18 @@
|
||||
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
|
||||
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
|
||||
" \n",
|
||||
"print(\"Aml Compute attached\")\n",
|
||||
"# For a more detailed view of current AmlCompute status, use the 'status' property \n",
|
||||
"print(aml_compute.status.serialize())"
|
||||
"print(\"Aml Compute attached\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# For a more detailed view of current Azure Machine Learning Compute status, use the 'status' property\n",
|
||||
"# example: un-comment the following line.\n",
|
||||
"# print(aml_compute.status.serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -241,7 +250,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pipelines steps using datasources and intermediate data\n",
|
||||
"Machine learning pipelines have many steps and these steps could use or reuse datasources and intermediate data. Here's how we construct such a pipeline:"
|
||||
"Machine learning pipelines can have many steps and these steps could use or reuse datasources and intermediate data. Here's how we construct such a pipeline:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -10,12 +10,14 @@ parser = argparse.ArgumentParser("compare")
|
||||
parser.add_argument("--compare_data1", type=str, help="compare_data1 data")
|
||||
parser.add_argument("--compare_data2", type=str, help="compare_data2 data")
|
||||
parser.add_argument("--output_compare", type=str, help="output_compare directory")
|
||||
parser.add_argument("--pipeline_param", type=int, help="pipeline parameter")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Argument 1: %s" % args.compare_data1)
|
||||
print("Argument 2: %s" % args.compare_data2)
|
||||
print("Argument 3: %s" % args.output_compare)
|
||||
print("Argument 4: %s" % args.pipeline_param)
|
||||
|
||||
if not (args.output_compare is None):
|
||||
os.makedirs(args.output_compare, exist_ok=True)
|
||||
@@ -0,0 +1,187 @@
|
||||
# Copyright (c) Microsoft. All rights reserved.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Original source: https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/neural_style.py
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
def load_image(filename, size=None, scale=None):
|
||||
img = Image.open(filename)
|
||||
if size is not None:
|
||||
img = img.resize((size, size), Image.ANTIALIAS)
|
||||
elif scale is not None:
|
||||
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
|
||||
return img
|
||||
|
||||
|
||||
def save_image(filename, data):
|
||||
img = data.clone().clamp(0, 255).numpy()
|
||||
img = img.transpose(1, 2, 0).astype("uint8")
|
||||
img = Image.fromarray(img)
|
||||
img.save(filename)
|
||||
|
||||
|
||||
class TransformerNet(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(TransformerNet, self).__init__()
|
||||
# Initial convolution layers
|
||||
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
|
||||
self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
|
||||
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
|
||||
self.in2 = torch.nn.InstanceNorm2d(64, affine=True)
|
||||
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
|
||||
self.in3 = torch.nn.InstanceNorm2d(128, affine=True)
|
||||
# Residual layers
|
||||
self.res1 = ResidualBlock(128)
|
||||
self.res2 = ResidualBlock(128)
|
||||
self.res3 = ResidualBlock(128)
|
||||
self.res4 = ResidualBlock(128)
|
||||
self.res5 = ResidualBlock(128)
|
||||
# Upsampling Layers
|
||||
self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
|
||||
self.in4 = torch.nn.InstanceNorm2d(64, affine=True)
|
||||
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
|
||||
self.in5 = torch.nn.InstanceNorm2d(32, affine=True)
|
||||
self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
|
||||
# Non-linearities
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, X):
|
||||
y = self.relu(self.in1(self.conv1(X)))
|
||||
y = self.relu(self.in2(self.conv2(y)))
|
||||
y = self.relu(self.in3(self.conv3(y)))
|
||||
y = self.res1(y)
|
||||
y = self.res2(y)
|
||||
y = self.res3(y)
|
||||
y = self.res4(y)
|
||||
y = self.res5(y)
|
||||
y = self.relu(self.in4(self.deconv1(y)))
|
||||
y = self.relu(self.in5(self.deconv2(y)))
|
||||
y = self.deconv3(y)
|
||||
return y
|
||||
|
||||
|
||||
class ConvLayer(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
||||
super(ConvLayer, self).__init__()
|
||||
reflection_padding = kernel_size // 2
|
||||
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
||||
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.reflection_pad(x)
|
||||
out = self.conv2d(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResidualBlock(torch.nn.Module):
|
||||
"""ResidualBlock
|
||||
introduced in: https://arxiv.org/abs/1512.03385
|
||||
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
|
||||
"""
|
||||
|
||||
def __init__(self, channels):
|
||||
super(ResidualBlock, self).__init__()
|
||||
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
||||
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
|
||||
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
||||
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
out = self.relu(self.in1(self.conv1(x)))
|
||||
out = self.in2(self.conv2(out))
|
||||
out = out + residual
|
||||
return out
|
||||
|
||||
|
||||
class UpsampleConvLayer(torch.nn.Module):
|
||||
"""UpsampleConvLayer
|
||||
Upsamples the input and then does a convolution. This method gives better results
|
||||
compared to ConvTranspose2d.
|
||||
ref: http://distill.pub/2016/deconv-checkerboard/
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
|
||||
super(UpsampleConvLayer, self).__init__()
|
||||
self.upsample = upsample
|
||||
if upsample:
|
||||
self.upsample_layer = torch.nn.Upsample(mode='nearest', scale_factor=upsample)
|
||||
reflection_padding = kernel_size // 2
|
||||
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
||||
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
||||
|
||||
def forward(self, x):
|
||||
x_in = x
|
||||
if self.upsample:
|
||||
x_in = self.upsample_layer(x_in)
|
||||
out = self.reflection_pad(x_in)
|
||||
out = self.conv2d(out)
|
||||
return out
|
||||
|
||||
|
||||
def stylize(args):
|
||||
device = torch.device("cuda" if args.cuda else "cpu")
|
||||
with torch.no_grad():
|
||||
style_model = TransformerNet()
|
||||
state_dict = torch.load(os.path.join(args.model_dir, args.style+".pth"))
|
||||
# remove saved deprecated running_* keys in InstanceNorm from the checkpoint
|
||||
for k in list(state_dict.keys()):
|
||||
if re.search(r'in\d+\.running_(mean|var)$', k):
|
||||
del state_dict[k]
|
||||
style_model.load_state_dict(state_dict)
|
||||
style_model.to(device)
|
||||
|
||||
filenames = os.listdir(args.content_dir)
|
||||
|
||||
for filename in filenames:
|
||||
print("Processing {}".format(filename))
|
||||
full_path = os.path.join(args.content_dir, filename)
|
||||
content_image = load_image(full_path, scale=args.content_scale)
|
||||
content_transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: x.mul(255))
|
||||
])
|
||||
content_image = content_transform(content_image)
|
||||
content_image = content_image.unsqueeze(0).to(device)
|
||||
|
||||
output = style_model(content_image).cpu()
|
||||
|
||||
output_path = os.path.join(args.output_dir, filename)
|
||||
save_image(output_path, output[0])
|
||||
|
||||
def main():
|
||||
arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style")
|
||||
|
||||
arg_parser.add_argument("--content-scale", type=float, default=None,
|
||||
help="factor for scaling down the content image")
|
||||
arg_parser.add_argument("--model-dir", type=str, required=True,
|
||||
help="saved model to be used for stylizing the image.")
|
||||
arg_parser.add_argument("--cuda", type=int, required=True,
|
||||
help="set it to 1 for running on GPU, 0 for CPU")
|
||||
arg_parser.add_argument("--style", type=str,
|
||||
help="style name")
|
||||
|
||||
arg_parser.add_argument("--content-dir", type=str, required=True,
|
||||
help="directory holding the images")
|
||||
arg_parser.add_argument("--output-dir", type=str, required=True,
|
||||
help="directory holding the output images")
|
||||
args = arg_parser.parse_args()
|
||||
|
||||
if args.cuda and not torch.cuda.is_available():
|
||||
print("ERROR: cuda is not available, try running on CPU")
|
||||
sys.exit(1)
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
stylize(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,207 @@
|
||||
# Original source: https://github.com/pytorch/examples/blob/master/fast_neural_style/neural_style/neural_style.py
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
|
||||
from mpi4py import MPI
|
||||
|
||||
|
||||
def load_image(filename, size=None, scale=None):
|
||||
img = Image.open(filename)
|
||||
if size is not None:
|
||||
img = img.resize((size, size), Image.ANTIALIAS)
|
||||
elif scale is not None:
|
||||
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
|
||||
return img
|
||||
|
||||
|
||||
def save_image(filename, data):
|
||||
img = data.clone().clamp(0, 255).numpy()
|
||||
img = img.transpose(1, 2, 0).astype("uint8")
|
||||
img = Image.fromarray(img)
|
||||
img.save(filename)
|
||||
|
||||
|
||||
class TransformerNet(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(TransformerNet, self).__init__()
|
||||
# Initial convolution layers
|
||||
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
|
||||
self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
|
||||
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
|
||||
self.in2 = torch.nn.InstanceNorm2d(64, affine=True)
|
||||
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
|
||||
self.in3 = torch.nn.InstanceNorm2d(128, affine=True)
|
||||
# Residual layers
|
||||
self.res1 = ResidualBlock(128)
|
||||
self.res2 = ResidualBlock(128)
|
||||
self.res3 = ResidualBlock(128)
|
||||
self.res4 = ResidualBlock(128)
|
||||
self.res5 = ResidualBlock(128)
|
||||
# Upsampling Layers
|
||||
self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
|
||||
self.in4 = torch.nn.InstanceNorm2d(64, affine=True)
|
||||
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
|
||||
self.in5 = torch.nn.InstanceNorm2d(32, affine=True)
|
||||
self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
|
||||
# Non-linearities
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, X):
|
||||
y = self.relu(self.in1(self.conv1(X)))
|
||||
y = self.relu(self.in2(self.conv2(y)))
|
||||
y = self.relu(self.in3(self.conv3(y)))
|
||||
y = self.res1(y)
|
||||
y = self.res2(y)
|
||||
y = self.res3(y)
|
||||
y = self.res4(y)
|
||||
y = self.res5(y)
|
||||
y = self.relu(self.in4(self.deconv1(y)))
|
||||
y = self.relu(self.in5(self.deconv2(y)))
|
||||
y = self.deconv3(y)
|
||||
return y
|
||||
|
||||
|
||||
class ConvLayer(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride):
|
||||
super(ConvLayer, self).__init__()
|
||||
reflection_padding = kernel_size // 2
|
||||
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
||||
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.reflection_pad(x)
|
||||
out = self.conv2d(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResidualBlock(torch.nn.Module):
|
||||
"""ResidualBlock
|
||||
introduced in: https://arxiv.org/abs/1512.03385
|
||||
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
|
||||
"""
|
||||
|
||||
def __init__(self, channels):
|
||||
super(ResidualBlock, self).__init__()
|
||||
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
||||
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
|
||||
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
|
||||
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
|
||||
self.relu = torch.nn.ReLU()
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
out = self.relu(self.in1(self.conv1(x)))
|
||||
out = self.in2(self.conv2(out))
|
||||
out = out + residual
|
||||
return out
|
||||
|
||||
|
||||
class UpsampleConvLayer(torch.nn.Module):
|
||||
"""UpsampleConvLayer
|
||||
Upsamples the input and then does a convolution. This method gives better results
|
||||
compared to ConvTranspose2d.
|
||||
ref: http://distill.pub/2016/deconv-checkerboard/
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
|
||||
super(UpsampleConvLayer, self).__init__()
|
||||
self.upsample = upsample
|
||||
if upsample:
|
||||
self.upsample_layer = torch.nn.Upsample(mode='nearest', scale_factor=upsample)
|
||||
reflection_padding = kernel_size // 2
|
||||
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
|
||||
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
|
||||
|
||||
def forward(self, x):
|
||||
x_in = x
|
||||
if self.upsample:
|
||||
x_in = self.upsample_layer(x_in)
|
||||
out = self.reflection_pad(x_in)
|
||||
out = self.conv2d(out)
|
||||
return out
|
||||
|
||||
|
||||
def stylize(args, comm):
|
||||
|
||||
rank = comm.Get_rank()
|
||||
size = comm.Get_size()
|
||||
|
||||
device = torch.device("cuda" if args.cuda else "cpu")
|
||||
with torch.no_grad():
|
||||
style_model = TransformerNet()
|
||||
state_dict = torch.load(os.path.join(args.model_dir, args.style + ".pth"))
|
||||
# remove saved deprecated running_* keys in InstanceNorm from the checkpoint
|
||||
for k in list(state_dict.keys()):
|
||||
if re.search(r'in\d+\.running_(mean|var)$', k):
|
||||
del state_dict[k]
|
||||
style_model.load_state_dict(state_dict)
|
||||
style_model.to(device)
|
||||
|
||||
filenames = os.listdir(args.content_dir)
|
||||
filenames = sorted(filenames)
|
||||
partition_size = len(filenames) // size
|
||||
partitioned_filenames = filenames[rank * partition_size: (rank + 1) * partition_size]
|
||||
print("RANK {} - is processing {} images out of the total {}".format(rank, len(partitioned_filenames),
|
||||
len(filenames)))
|
||||
|
||||
output_paths = []
|
||||
for filename in partitioned_filenames:
|
||||
# print("Processing {}".format(filename))
|
||||
full_path = os.path.join(args.content_dir, filename)
|
||||
content_image = load_image(full_path, scale=args.content_scale)
|
||||
content_transform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Lambda(lambda x: x.mul(255))
|
||||
])
|
||||
content_image = content_transform(content_image)
|
||||
content_image = content_image.unsqueeze(0).to(device)
|
||||
|
||||
output = style_model(content_image).cpu()
|
||||
|
||||
output_path = os.path.join(args.output_dir, filename)
|
||||
save_image(output_path, output[0])
|
||||
|
||||
output_paths.append(output_path)
|
||||
|
||||
print("RANK {} - number of pre-aggregated output files {}".format(rank, len(output_paths)))
|
||||
|
||||
output_paths_list = comm.gather(output_paths, root=0)
|
||||
|
||||
if rank == 0:
|
||||
print("RANK {} - number of aggregated output files {}".format(rank, len(output_paths_list)))
|
||||
print("RANK {} - end".format(rank))
|
||||
|
||||
|
||||
def main():
|
||||
arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style")
|
||||
|
||||
arg_parser.add_argument("--content-scale", type=float, default=None,
|
||||
help="factor for scaling down the content image")
|
||||
arg_parser.add_argument("--model-dir", type=str, required=True,
|
||||
help="saved model to be used for stylizing the image.")
|
||||
arg_parser.add_argument("--cuda", type=int, required=True,
|
||||
help="set it to 1 for running on GPU, 0 for CPU")
|
||||
arg_parser.add_argument("--style", type=str, help="style name")
|
||||
arg_parser.add_argument("--content-dir", type=str, required=True,
|
||||
help="directory holding the images")
|
||||
arg_parser.add_argument("--output-dir", type=str, required=True,
|
||||
help="directory holding the output images")
|
||||
args = arg_parser.parse_args()
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
|
||||
if args.cuda and not torch.cuda.is_available():
|
||||
print("ERROR: cuda is not available, try running on CPU")
|
||||
sys.exit(1)
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
stylize(args, comm)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
8
how-to-use-azureml/training-with-deep-learning/README.md
Normal file
8
how-to-use-azureml/training-with-deep-learning/README.md
Normal file
@@ -0,0 +1,8 @@
|
||||
## Azure Machine Learning service training examples
|
||||
|
||||
These examples show you:
|
||||
* Distributed training of models on Machine Learning Compute cluster
|
||||
* Hyperparameter tuning at scale
|
||||
* Using Tensorboard with Azure ML Python SDK.
|
||||
|
||||
Learn more about how to use `Estimator` class to [train deep neural networks with Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-ml-models).
|
||||
@@ -13,7 +13,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 06. Distributed CNTK using custom docker images\n",
|
||||
"# Distributed CNTK using custom docker images\n",
|
||||
"In this tutorial, you will train a CNTK model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using a custom docker image and distributed training."
|
||||
]
|
||||
},
|
||||
@@ -59,7 +59,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -90,10 +91,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a remote compute target\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) to execute your training script on. In this tutorial, you create an [Azure Batch AI](https://docs.microsoft.com/azure/batch-ai/overview) cluster as your training compute resource. This code creates a cluster for you if it does not already exist in your workspace.\n",
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"**Creation of the cluster takes approximately 5 minutes.** If the cluster is already in your workspace this code will skip the cluster creation process."
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -113,15 +116,15 @@
|
||||
" print('Found existing compute target.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=6)\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True)\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# Use the 'status' property to get a detailed status for the current cluster. \n",
|
||||
"# Use the 'status' property to get a detailed status for the current AmlCompute. \n",
|
||||
"print(compute_target.status.serialize())"
|
||||
]
|
||||
},
|
||||
@@ -241,6 +244,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"shutil.copy('cntk_distr_mnist.py', project_folder)"
|
||||
]
|
||||
},
|
||||
@@ -322,7 +326,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run = experiment.submit(estimator)\n",
|
||||
"print(run.get_details())"
|
||||
"print(run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -340,6 +344,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
@@ -13,8 +13,8 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 02. Distributed PyTorch with Horovod\n",
|
||||
"In this tutorial, you will train a PyTorch model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using distributed training via [Horovod](https://github.com/uber/horovod)."
|
||||
"# Distributed PyTorch with Horovod\n",
|
||||
"In this tutorial, you will train a PyTorch model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using distributed training via [Horovod](https://github.com/uber/horovod) across a GPU cluster."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -22,11 +22,8 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning (AML)\n",
|
||||
"* Go through the [00.configuration.ipynb](https://github.com/Azure/MachineLearningNotebooks/blob/master/00.configuration.ipynb) notebook to:\n",
|
||||
" * install the AML SDK\n",
|
||||
" * create a workspace and its configuration file (`config.json`)\n",
|
||||
"* Review the [tutorial](https://aka.ms/aml-notebook-pytorch) on single-node PyTorch training using the SDK"
|
||||
"* Go through the [Configuration](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML `Workspace`\n",
|
||||
"* Review the [tutorial](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) on single-node PyTorch training using Azure Machine Learning"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -60,6 +57,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
@@ -91,10 +89,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a remote compute target\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) to execute your training script on. In this tutorial, you create an [Azure Batch AI](https://docs.microsoft.com/azure/batch-ai/overview) cluster as your training compute resource. This code creates a cluster for you if it does not already exist in your workspace.\n",
|
||||
"## Create or attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, we use Azure ML managed compute ([AmlCompute](https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute)) for our remote training compute resource. Specifically, the below code creates an `STANDARD_NC6` GPU cluster that autoscales from `0` to `4` nodes.\n",
|
||||
"\n",
|
||||
"**Creation of the cluster takes approximately 5 minutes.** If the cluster is already in your workspace this code will skip the cluster creation process."
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace, this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,15 +114,15 @@
|
||||
" print('Found existing compute target.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=6)\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',\n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True)\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# Use the 'status' property to get a detailed status for the current cluster. \n",
|
||||
"# Use the 'status' property to get a detailed status for the current AmlCompute. \n",
|
||||
"print(compute_target.status.serialize())"
|
||||
]
|
||||
},
|
||||
@@ -130,7 +130,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The above code creates a GPU cluster. If you instead want to create a CPU cluster, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
|
||||
"The above code creates GPU compute. If you instead want to create CPU compute, provide a different VM size to the `vm_size` parameter, such as `STANDARD_D2_V2`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -138,7 +138,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train model on the remote compute\n",
|
||||
"Now that we have the cluster ready to go, let's run our distributed training job."
|
||||
"Now that we have the AmlCompute ready to go, let's run our distributed training job."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -165,7 +165,27 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copy the training script `pytorch_horovod_mnist.py` into this project directory."
|
||||
"### Prepare training script\n",
|
||||
"Now you will need to create your training script. In this tutorial, the script for distributed training of MNIST is already provided for you at `pytorch_horovod_mnist.py`. In practice, you should be able to take any custom PyTorch training script as is and run it with Azure ML without having to modify your code.\n",
|
||||
"\n",
|
||||
"However, if you would like to use Azure ML's [metric logging](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#logging) capabilities, you will have to add a small amount of Azure ML logic inside your training script. In this example, at each logging interval, we will log the loss for that minibatch to our Azure ML run.\n",
|
||||
"\n",
|
||||
"To do so, in `pytorch_horovod_mnist.py`, we will first access the Azure ML `Run` object within the script:\n",
|
||||
"```Python\n",
|
||||
"from azureml.core.run import Run\n",
|
||||
"run = Run.get_context()\n",
|
||||
"```\n",
|
||||
"Later within the script, we log the loss metric to our run:\n",
|
||||
"```Python\n",
|
||||
"run.log('loss', loss.item())\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Once your script is ready, copy the training script `pytorch_horovod_mnist.py` into the project directory."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -175,6 +195,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"shutil.copy('pytorch_horovod_mnist.py', project_folder)"
|
||||
]
|
||||
},
|
||||
@@ -203,7 +224,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a PyTorch estimator\n",
|
||||
"The AML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch)."
|
||||
"The Azure ML SDK's PyTorch estimator enables you to easily submit PyTorch training jobs for both single-node and distributed runs. For more information on the PyTorch estimator, refer [here](https://docs.microsoft.com/azure/machine-learning/service/how-to-train-pytorch)."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -245,7 +266,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"run = experiment.submit(estimator)\n",
|
||||
"print(run.get_details())"
|
||||
"print(run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -253,7 +274,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Monitor your run\n",
|
||||
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes."
|
||||
"You can monitor the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15 seconds until the job completes. You can see that the widget automatically plots and visualizes the loss metric that we logged to the Azure ML run."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -263,6 +284,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
@@ -1,6 +1,7 @@
|
||||
# Copyright 2017 Uber Technologies, Inc.
|
||||
# Licensed under the Apache License, Version 2.0
|
||||
# Script from horovod/examples: https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py
|
||||
# Copyright (c) 2017, PyTorch contributors
|
||||
# Modifications copyright (C) Microsoft Corporation
|
||||
# Licensed under the BSD license
|
||||
# Adapted from https://github.com/uber/horovod/blob/master/examples/pytorch_mnist.py
|
||||
|
||||
from __future__ import print_function
|
||||
import argparse
|
||||
@@ -8,10 +9,15 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from torchvision import datasets, transforms
|
||||
from torch.autograd import Variable
|
||||
import torch.utils.data.distributed
|
||||
import horovod.torch as hvd
|
||||
|
||||
from azureml.core.run import Run
|
||||
# get the Azure ML run object
|
||||
run = Run.get_context()
|
||||
|
||||
print("Torch version:", torch.__version__)
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
|
||||
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
|
||||
@@ -30,6 +36,8 @@ parser.add_argument('--seed', type=int, default=42, metavar='S',
|
||||
help='random seed (default: 42)')
|
||||
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
|
||||
help='how many batches to wait before logging training status')
|
||||
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
|
||||
help='use fp16 compression during allreduce')
|
||||
args = parser.parse_args()
|
||||
args.cuda = not args.no_cuda and torch.cuda.is_available()
|
||||
|
||||
@@ -97,9 +105,13 @@ hvd.broadcast_parameters(model.state_dict(), root_rank=0)
|
||||
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
|
||||
momentum=args.momentum)
|
||||
|
||||
# Horovod: (optional) compression algorithm.
|
||||
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
|
||||
|
||||
# Horovod: wrap optimizer with DistributedOptimizer.
|
||||
optimizer = hvd.DistributedOptimizer(
|
||||
optimizer, named_parameters=model.named_parameters())
|
||||
optimizer = hvd.DistributedOptimizer(optimizer,
|
||||
named_parameters=model.named_parameters(),
|
||||
compression=compression)
|
||||
|
||||
|
||||
def train(epoch):
|
||||
@@ -108,7 +120,6 @@ def train(epoch):
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
if args.cuda:
|
||||
data, target = data.cuda(), target.cuda()
|
||||
data, target = Variable(data), Variable(target)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
@@ -117,13 +128,16 @@ def train(epoch):
|
||||
if batch_idx % args.log_interval == 0:
|
||||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
|
||||
epoch, batch_idx * len(data), len(train_sampler),
|
||||
100. * batch_idx / len(train_loader), loss.data[0]))
|
||||
100. * batch_idx / len(train_loader), loss.item()))
|
||||
|
||||
# log the loss to the Azure ML run
|
||||
run.log('loss', loss.item())
|
||||
|
||||
|
||||
def metric_average(val, name):
|
||||
tensor = torch.FloatTensor([val])
|
||||
tensor = torch.tensor(val)
|
||||
avg_tensor = hvd.allreduce(tensor, name=name)
|
||||
return avg_tensor[0]
|
||||
return avg_tensor.item()
|
||||
|
||||
|
||||
def test():
|
||||
@@ -133,10 +147,9 @@ def test():
|
||||
for data, target in test_loader:
|
||||
if args.cuda:
|
||||
data, target = data.cuda(), target.cuda()
|
||||
data, target = Variable(data, volatile=True), Variable(target)
|
||||
output = model(data)
|
||||
# sum up batch loss
|
||||
test_loss += F.nll_loss(output, target, size_average=False).data[0]
|
||||
test_loss += F.nll_loss(output, target, size_average=False).item()
|
||||
# get the index of the max log-probability
|
||||
pred = output.data.max(1, keepdim=True)[1]
|
||||
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
|
||||
@@ -13,7 +13,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 04. Distributed Tensorflow with Horovod\n",
|
||||
"# Distributed Tensorflow with Horovod\n",
|
||||
"In this tutorial, you will train a word2vec model in TensorFlow using distributed training via [Horovod](https://github.com/uber/horovod)."
|
||||
]
|
||||
},
|
||||
@@ -60,6 +60,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
@@ -90,10 +91,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a remote compute target\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) to execute your training script on. In this tutorial, you create an [Azure Batch AI](https://docs.microsoft.com/azure/batch-ai/overview) cluster as your training compute resource. This code creates a cluster for you if it does not already exist in your workspace.\n",
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"**Creation of the cluster takes approximately 5 minutes.** If the cluster is already in your workspace this code will skip the cluster creation process."
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,12 +117,12 @@
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=6)\n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True)\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# Use the 'status' property to get a detailed status for the current cluster. \n",
|
||||
"print(compute_target.status.serialize())"
|
||||
@@ -255,6 +258,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"shutil.copy('tf_horovod_word2vec.py', project_folder)"
|
||||
]
|
||||
},
|
||||
@@ -13,7 +13,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 05. Distributed TensorFlow with parameter server\n",
|
||||
"# Distributed TensorFlow with parameter server\n",
|
||||
"In this tutorial, you will train a TensorFlow model on the [MNIST](http://yann.lecun.com/exdb/mnist/) dataset using native [distributed TensorFlow](https://www.tensorflow.org/deploy/distributed)."
|
||||
]
|
||||
},
|
||||
@@ -60,6 +60,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
@@ -90,10 +91,12 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create a remote compute target\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) to execute your training script on. In this tutorial, you create an [Azure Batch AI](https://docs.microsoft.com/azure/batch-ai/overview) cluster as your training compute resource. This code creates a cluster for you if it does not already exist in your workspace.\n",
|
||||
"## Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
|
||||
"\n",
|
||||
"**Creation of the cluster takes approximately 5 minutes.** If the cluster is already in your workspace this code will skip the cluster creation process."
|
||||
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -114,12 +117,12 @@
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6', \n",
|
||||
" max_nodes=6)\n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True)\n",
|
||||
" compute_target.wait_for_completion(show_output=True)\n",
|
||||
"\n",
|
||||
"# Use the 'status' property to get a detailed status for the current cluster. \n",
|
||||
"print(compute_target.status.serialize())"
|
||||
@@ -167,6 +170,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"shutil.copy('tf_mnist_replica.py', project_folder)"
|
||||
]
|
||||
},
|
||||
@@ -262,6 +266,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"\n",
|
||||
"RunDetails(run).show()"
|
||||
]
|
||||
},
|
||||
@@ -13,7 +13,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 41. Export Run History as Tensorboard logs\n",
|
||||
"# Export Run History as Tensorboard logs\n",
|
||||
"\n",
|
||||
"1. Run some training and log some metrics into Run History\n",
|
||||
"2. Export the run history to some directory as Tensorboard logs\n",
|
||||
@@ -25,7 +25,10 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"Make sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't."
|
||||
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
|
||||
"* Go through the [00.configuration.ipynb](https://github.com/Azure/MachineLearningNotebooks/blob/master/00.configuration.ipynb) notebook to:\n",
|
||||
" * install the AML SDK\n",
|
||||
" * create a workspace and its configuration file (`config.json`)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -40,6 +43,22 @@
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the Azure ML TensorBoard integration package if you haven't already."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install azureml-contrib-tensorboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -13,11 +13,11 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# 40. Tensorboard Integration with Run History\n",
|
||||
"# Tensorboard Integration with Run History\n",
|
||||
"\n",
|
||||
"1. Run a Tensorflow job locally and view its TB output live.\n",
|
||||
"2. The same, for a DSVM.\n",
|
||||
"3. And once more, with Batch AI.\n",
|
||||
"3. And once more, with an AmlCompute cluster.\n",
|
||||
"4. Finally, we'll collect all of these historical runs together into a single Tensorboard graph."
|
||||
]
|
||||
},
|
||||
@@ -26,7 +26,10 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prerequisites\n",
|
||||
"Make sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't."
|
||||
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
|
||||
"* Go through the [00.configuration.ipynb](https://github.com/Azure/MachineLearningNotebooks/blob/master/00.configuration.ipynb) notebook to:\n",
|
||||
" * install the AML SDK\n",
|
||||
" * create a workspace and its configuration file (`config.json`)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -41,6 +44,22 @@
|
||||
"print(\"SDK version:\", azureml.core.VERSION)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Install the Azure ML TensorBoard package."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install azureml-contrib-tensorboard"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -60,7 +79,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.telemetry import set_diagnostics_collection\n",
|
||||
"set_diagnostics_collection(send_diagnostics = True)"
|
||||
"\n",
|
||||
"set_diagnostics_collection(send_diagnostics=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -256,7 +276,16 @@
|
||||
"Tensorboard uploading works with all compute targets. Here we demonstrate it from a DSVM.\n",
|
||||
"Note that the Tensorboard instance itself will be run by the notebook kernel. Again, this means this notebook's kernel must have access to the Tensorboard module.\n",
|
||||
"\n",
|
||||
"If you are unfamiliar with DSVM configuration, check [04. Train in a remote VM (Ubuntu DSVM)](04.train-on-remote-vm.ipynb) for a more detailed breakdown."
|
||||
"If you are unfamiliar with DSVM configuration, check [04. Train in a remote VM](04.train-on-remote-vm.ipynb) for a more detailed breakdown.\n",
|
||||
"\n",
|
||||
"**Note**: To streamline the compute that Azure Machine Learning creates, we are making updates to support creating only single to multi-node `AmlCompute`. The `DSVMCompute` class will be deprecated in a later release, but the DSVM can be created using the below single line command and then attached(like any VM) using the sample code below. Also note, that we only support Linux VMs for remote execution from AML and the commands below will spin a Linux VM only.\n",
|
||||
"\n",
|
||||
"```shell\n",
|
||||
"# create a DSVM in your resource group\n",
|
||||
"# note you need to be at least a contributor to the resource group in order to execute this command successfully.\n",
|
||||
"(myenv) $ az vm create --resource-group <resource_group_name> --name <some_vm_name> --image microsoft-dsvm:linux-data-science-vm-ubuntu:linuxdsvmubuntu:latest --admin-username <username> --admin-password <password> --generate-ssh-keys --authentication-type password\n",
|
||||
"```\n",
|
||||
"You can also use [this url](https://portal.azure.com/#create/microsoft-dsvm.linux-data-science-vm-ubuntulinuxdsvmubuntu) to create the VM using the Azure Portal."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -265,19 +294,27 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import DsvmCompute\n",
|
||||
"from azureml.core.compute import RemoteCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"compute_target_name = 'cpu-dsvm'\n",
|
||||
"username = os.getenv('AZUREML_DSVM_USERNAME', default='<my_username>')\n",
|
||||
"address = os.getenv('AZUREML_DSVM_ADDRESS', default='<ip_address_or_fqdn>')\n",
|
||||
"\n",
|
||||
"compute_target_name = 'cpudsvm'\n",
|
||||
"# if you want to connect using SSH key instead of username/password you can provide parameters private_key_file and private_key_passphrase \n",
|
||||
"try:\n",
|
||||
" compute_target = DsvmCompute(workspace = ws, name = compute_target_name)\n",
|
||||
" print('found existing:', compute_target.name)\n",
|
||||
" attached_dsvm_compute = RemoteCompute(workspace=ws, name=compute_target_name)\n",
|
||||
" print('found existing:', attached_dsvm_compute.name)\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('creating new.')\n",
|
||||
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
|
||||
" compute_target = DsvmCompute.create(ws, name = compute_target_name, provisioning_configuration = dsvm_config)\n",
|
||||
"compute_target.wait_for_completion(show_output = True)"
|
||||
" attached_dsvm_compute = RemoteCompute.attach(workspace=ws,\n",
|
||||
" name=compute_target_name,\n",
|
||||
" username=username,\n",
|
||||
" address=address,\n",
|
||||
" ssh_port=22,\n",
|
||||
" private_key_file='./.ssh/id_rsa')\n",
|
||||
" \n",
|
||||
" attached_dsvm_compute.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -303,7 +340,7 @@
|
||||
"# script_params[\"--max_steps\"] = \"5000\"\n",
|
||||
"\n",
|
||||
"tf_estimator = TensorFlow(source_directory=exp_dir,\n",
|
||||
" compute_target=compute_target,\n",
|
||||
" compute_target=attached_dsvm_compute,\n",
|
||||
" entry_script='mnist_with_summaries.py',\n",
|
||||
" script_params=script_params)\n",
|
||||
"\n",
|
||||
@@ -356,9 +393,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Once more, with a Batch AI cluster\n",
|
||||
"## Once more, with an AmlCompute cluster\n",
|
||||
"\n",
|
||||
"Just to prove we can, let's create a Batch AI cluster using MLC, and run our demo there, as well."
|
||||
"Just to prove we can, let's create an AmlCompute CPU cluster, and run our demo there, as well."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -367,25 +404,27 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
|
||||
"from azureml.core.compute_target import ComputeTargetException\n",
|
||||
"\n",
|
||||
"clust_name = \"cpucluster\"\n",
|
||||
"# choose a name for your cluster\n",
|
||||
"cluster_name = \"cpucluster\"\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" # If you already have a cluster named this, we don't need to make a new one.\n",
|
||||
" cts = ws.compute_targets \n",
|
||||
" compute_target = cts[clust_name]\n",
|
||||
" assert compute_target.type == 'BatchAI'\n",
|
||||
"except:\n",
|
||||
" # Let's make a new one here.\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(max_nodes=6, \n",
|
||||
" vm_size='STANDARD_D2_V2')\n",
|
||||
" \n",
|
||||
" compute_target = AmlCompute.create(ws, clust_name, provisioning_config)\n",
|
||||
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
"except ComputeTargetException:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2', \n",
|
||||
" max_nodes=4)\n",
|
||||
"\n",
|
||||
" # create the cluster\n",
|
||||
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
|
||||
"\n",
|
||||
"compute_target.wait_for_completion(show_output=True, min_node_count=1, timeout_in_minutes=20)\n",
|
||||
"print(compute_target.name)\n",
|
||||
"# For a more detailed view of current BatchAI cluster status, use the 'status' property \n",
|
||||
"# print(compute_target.status.serialize())"
|
||||
"\n",
|
||||
"# Use the 'status' property to get a detailed status for the current cluster. \n",
|
||||
"print(compute_target.status.serialize())"
|
||||
]
|
||||
},
|
||||
{
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user