Compare commits

...

10 Commits

Author SHA1 Message Date
amlrelsa-ms
15a3ca649d update samples from Release-149 as a part of SDK release 2022-07-07 00:18:42 +00:00
Harneet Virk
3c4770cfe5 Merge pull request #1776 from Azure/release_update/Release-148
update samples from Release-148 as a part of  SDK release
2022-07-01 13:41:03 -07:00
amlrelsa-ms
8d7de05908 update samples from Release-148 as a part of SDK release 2022-07-01 20:40:11 +00:00
Harneet Virk
863faae57f Merge pull request #1772 from Azure/release_update/Release-147
Update samples from Release-147 as a part of SDK release 1.43
2022-06-27 10:32:58 -07:00
amlrelsa-ms
8d3f5adcdb update samples from Release-147 as a part of SDK release 2022-06-27 17:29:38 +00:00
Harneet Virk
cd3394e129 Merge pull request #1771 from Azure/release_update/Release-146
update samples from Release-146 as a part of  SDK release
2022-06-20 14:31:06 -07:00
amlrelsa-ms
ee5d0239a3 update samples from Release-146 as a part of SDK release 2022-06-20 20:45:50 +00:00
Harneet Virk
388111cedc Merge pull request #1763 from Azure/release_update/Release-144
update samples from Release-144 as a part of  SDK release
2022-06-03 11:04:13 -07:00
amlrelsa-ms
b86191ed7f update samples from Release-144 as a part of SDK release 2022-06-03 17:28:37 +00:00
Harneet Virk
22753486de Merge pull request #1762 from Azure/release_update/Release-143
update samples from Release-143 as a part of  SDK release
2022-06-01 11:29:19 -07:00
41 changed files with 360 additions and 127 deletions

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.42.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.43.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -6,6 +6,7 @@ dependencies:
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- protobuf==3.20.0

View File

@@ -6,6 +6,7 @@ dependencies:
- fairlearn>=0.6.2
- joblib
- liac-arff
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- protobuf==3.20.0

View File

@@ -13,18 +13,19 @@ dependencies:
- pytorch::pytorch=1.4.0
- conda-forge::fbprophet==0.7.1
- cudatoolkit=10.1.243
- scipy==1.5.2
- scipy==1.5.3
- notebook
- pywin32==227
- PySocks==1.7.1
- jsonschema==4.6.0
- conda-forge::pyqt==5.12.3
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.42.0
- azureml-widgets~=1.43.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.42.0/validated_win32_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.43.0/validated_win32_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -14,7 +14,7 @@ dependencies:
- numpy==1.19.5
- cython==0.29.14
- urllib3==1.26.7
- scipy>=1.4.1,<=1.5.2
- scipy>=1.4.1,<=1.5.3
- scikit-learn==0.22.1
- py-xgboost<=1.3.3
- holidays==0.10.3
@@ -24,10 +24,10 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.42.0
- azureml-widgets~=1.43.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.42.0/validated_linux_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.43.0/validated_linux_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -15,7 +15,7 @@ dependencies:
- numpy==1.19.5
- cython==0.29.14
- urllib3==1.26.7
- scipy>=1.4.1,<=1.5.2
- scipy>=1.4.1,<=1.5.3
- scikit-learn==0.22.1
- py-xgboost<=1.3.3
- holidays==0.10.3
@@ -25,10 +25,10 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.42.0
- azureml-widgets~=1.43.0
- pytorch-transformers==1.0.0
- spacy==2.2.4
- pystan==2.19.1.1
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.42.0/validated_darwin_requirements.txt [--no-deps]
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.43.0/validated_darwin_requirements.txt [--no-deps]
- arch==4.14

View File

@@ -9,9 +9,11 @@ dependencies:
- PyJWT < 2.0.0
- numpy==1.18.5
- pywin32==227
- cryptography<37.0.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azure-mgmt-core==1.3.0
- azure-core==1.21.1
- azure-identity==1.7.0
- azureml-defaults

View File

@@ -11,9 +11,11 @@ dependencies:
- urllib3==1.26.7
- PyJWT < 2.0.0
- numpy==1.19.5
- cryptography<37.0.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azure-mgmt-core==1.3.0
- azure-core==1.21.1
- azure-identity==1.7.0
- azureml-defaults

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.42.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.43.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -91,7 +91,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.42.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.43.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -149,12 +149,7 @@ def get_backtest_pipeline(
inputs=[forecasts.as_mount()],
outputs=[data_results],
source_directory=PROJECT_FOLDER,
arguments=[
"--forecasts",
forecasts,
"--output-dir",
data_results,
],
arguments=["--forecasts", forecasts, "--output-dir", data_results],
runconfig=run_config,
compute_target=compute_target,
allow_reuse=False,

View File

@@ -23,11 +23,7 @@ except ImportError:
def infer_forecasting_dataset_tcn(
X_test,
y_test,
model,
output_path,
output_dataset_name="results",
X_test, y_test, model, output_path, output_dataset_name="results"
):
y_pred, df_all = model.forecast(X_test, y_test)
@@ -71,10 +67,7 @@ def get_model(model_path, model_file_name):
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
dest="model_name",
help="Model to be loaded",
"--model_name", type=str, dest="model_name", help="Model to be loaded"
)
parser.add_argument(
@@ -108,12 +101,7 @@ def get_args():
return args
def get_data(
run,
fitted_model,
target_column_name,
test_dataset_name,
):
def get_data(run, fitted_model, target_column_name, test_dataset_name):
# get input dataset by name
test_dataset = Dataset.get_by_name(run.experiment.workspace, test_dataset_name)
@@ -159,10 +147,7 @@ if __name__ == "__main__":
fitted_model = get_model(model_path, model_file_name)
X_test_df, y_test = get_data(
run,
fitted_model,
target_column_name,
test_dataset_name,
run, fitted_model, target_column_name, test_dataset_name
)
infer_forecasting_dataset_tcn(

View File

@@ -513,17 +513,7 @@
"conda_run_config.environment.docker.enabled = True\n",
"\n",
"# specify CondaDependencies obj\n",
"conda_run_config.environment.python.conda_dependencies = (\n",
" automl_run.get_environment().python.conda_dependencies\n",
")\n",
"\n",
"conda_run_config.environment.python.conda_dependencies.add_pip_package(\n",
" \"dotnetcore2==2.1.23\"\n",
")\n",
"\n",
"conda_run_config.environment.python.conda_dependencies.add_pip_package(\n",
" \"protobuf==3.20.1\"\n",
")"
"conda_run_config.environment = automl_run.get_environment()"
]
},
{
@@ -652,28 +642,6 @@
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the conda dependencies for setting up the service\n",
"We need to create the conda dependencies comprising of the *azureml* packages using the training environment from the *automl_run*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"conda_dep = conda_run_config.environment.python.conda_dependencies\n",
"\n",
"with open(\"myenv.yml\", \"w\") as f:\n",
" f.write(conda_dep.serialize_to_string())\n",
"with open(\"myenv.yml\", \"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -696,7 +664,7 @@
"metadata": {},
"source": [
"### Deploy the service\n",
"In the cell below, we deploy the service using the conda file and the scoring file from the previous steps. "
"In the cell below, we deploy the service using the automl training environment and the scoring file from the previous steps. "
]
},
{
@@ -718,7 +686,7 @@
" description=\"Get local explanations for Machine test data\",\n",
")\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"myenv = automl_run.get_environment()\n",
"inference_config = InferenceConfig(entry_script=\"score_explain.py\", environment=myenv)\n",
"\n",
"# Use configs and models generated above\n",

View File

@@ -69,17 +69,19 @@
"# ONNX Model Zoo and save it in the same folder as this tutorial\n",
"\n",
"import urllib.request\n",
"import os\n",
"\n",
"onnx_model_url = \"https://github.com/onnx/models/blob/main/vision/body_analysis/emotion_ferplus/model/emotion-ferplus-7.tar.gz?raw=true\"\n",
"\n",
"urllib.request.urlretrieve(onnx_model_url, filename=\"emotion-ferplus-7.tar.gz\")\n",
"os.mkdir(\"emotion_ferplus\")\n",
"\n",
"# the ! magic command tells our jupyter notebook kernel to run the following line of \n",
"# code from the command line instead of the notebook kernel\n",
"\n",
"# We use tar and xvcf to unzip the files we just retrieved from the ONNX model zoo\n",
"\n",
"!tar xvzf emotion-ferplus-7.tar.gz"
"!tar xvzf emotion-ferplus-7.tar.gz -C emotion_ferplus"
]
},
{
@@ -130,7 +132,7 @@
"metadata": {},
"outputs": [],
"source": [
"model_dir = \"emotion_ferplus\" # replace this with the location of your model files\n",
"model_dir = \"emotion_ferplus/model\" # replace this with the location of your model files\n",
"\n",
"# leave as is if it's in the same folder as this notebook"
]
@@ -496,13 +498,12 @@
"\n",
"# to use parsers to read in our model/data\n",
"import json\n",
"import os\n",
"\n",
"test_inputs = []\n",
"test_outputs = []\n",
"\n",
"# read in 3 testing images from .pb files\n",
"test_data_size = 3\n",
"# read in 1 testing images from .pb files\n",
"test_data_size = 1\n",
"\n",
"for num in np.arange(test_data_size):\n",
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(num), 'input_0.pb')\n",
@@ -533,7 +534,7 @@
},
"source": [
"### Show some sample images\n",
"We use `matplotlib` to plot 3 test images from the dataset."
"We use `matplotlib` to plot 1 test images from the dataset."
]
},
{
@@ -547,7 +548,7 @@
"outputs": [],
"source": [
"plt.figure(figsize = (20, 20))\n",
"for test_image in np.arange(3):\n",
"for test_image in np.arange(test_data_size):\n",
" test_inputs[test_image].reshape(1, 64, 64)\n",
" plt.subplot(1, 8, test_image+1)\n",
" plt.axhline('')\n",

View File

@@ -69,10 +69,12 @@
"# ONNX Model Zoo and save it in the same folder as this tutorial\n",
"\n",
"import urllib.request\n",
"import os\n",
"\n",
"onnx_model_url = \"https://github.com/onnx/models/blob/main/vision/classification/mnist/model/mnist-7.tar.gz?raw=true\"\n",
"\n",
"urllib.request.urlretrieve(onnx_model_url, filename=\"mnist-7.tar.gz\")"
"urllib.request.urlretrieve(onnx_model_url, filename=\"mnist-7.tar.gz\")\n",
"os.mkdir(\"mnist\")"
]
},
{
@@ -86,7 +88,7 @@
"\n",
"# We use tar and xvcf to unzip the files we just retrieved from the ONNX model zoo\n",
"\n",
"!tar xvzf mnist-7.tar.gz"
"!tar xvzf mnist-7.tar.gz -C mnist"
]
},
{
@@ -137,7 +139,7 @@
"metadata": {},
"outputs": [],
"source": [
"model_dir = \"mnist\" # replace this with the location of your model files\n",
"model_dir = \"mnist/model\" # replace this with the location of your model files\n",
"\n",
"# leave as is if it's in the same folder as this notebook"
]
@@ -447,13 +449,12 @@
"\n",
"# to use parsers to read in our model/data\n",
"import json\n",
"import os\n",
"\n",
"test_inputs = []\n",
"test_outputs = []\n",
"\n",
"# read in 3 testing images from .pb files\n",
"test_data_size = 3\n",
"# read in 1 testing images from .pb files\n",
"test_data_size = 1\n",
"\n",
"for i in np.arange(test_data_size):\n",
" input_test_data = os.path.join(model_dir, 'test_data_set_{0}'.format(i), 'input_0.pb')\n",
@@ -486,7 +487,7 @@
},
"source": [
"### Show some sample images\n",
"We use `matplotlib` to plot 3 test images from the dataset."
"We use `matplotlib` to plot 1 test images from the dataset."
]
},
{
@@ -500,7 +501,7 @@
"outputs": [],
"source": [
"plt.figure(figsize = (16, 6))\n",
"for test_image in np.arange(3):\n",
"for test_image in np.arange(test_data_size):\n",
" plt.subplot(1, 15, test_image+1)\n",
" plt.axhline('')\n",
" plt.axvline('')\n",

View File

@@ -2,6 +2,8 @@
# Licensed under the MIT license.
from azureml.core.run import Run
from azureml.interpret import ExplanationClient
from interpret_community.adapter import ExplanationAdapter
import joblib
import os
import shap
@@ -11,9 +13,11 @@ OUTPUT_DIR = './outputs/'
os.makedirs(OUTPUT_DIR, exist_ok=True)
run = Run.get_context()
client = ExplanationClient.from_run(run)
# get a dataset on income prediction
X, y = shap.datasets.adult()
features = X.columns.values
# train an XGBoost model (but any other tree model type should work)
model = xgboost.XGBClassifier()
@@ -26,6 +30,12 @@ shap_values = explainer(X_shap)
print("computed shap values:")
print(shap_values)
# Use the explanation adapter to convert the importances into an interpret-community
# style explanation which can be uploaded to AzureML or visualized in the
# ExplanationDashboard widget
adapter = ExplanationAdapter(features, classification=True)
global_explanation = adapter.create_global(shap_values.values, X_shap, expected_values=shap_values.base_values)
# write X_shap out as a pickle file for later visualization
x_shap_pkl = 'x_shap.pkl'
with open(x_shap_pkl, 'wb') as file:
@@ -42,3 +52,8 @@ with open(model_file_name, 'wb') as file:
run.upload_file('xgboost_model.pkl', os.path.join('./outputs/', model_file_name))
original_model = run.register_model(model_name='xgboost_with_gpu_tree_explainer',
model_path='xgboost_model.pkl')
# Uploading model explanation data for storage or visualization in webUX
# The explanation can then be downloaded on any compute
comment = 'Global explanation on classification model trained on adult census income dataset'
client.upload_model_explanation(global_explanation, comment=comment, model_id=original_model.id)

View File

@@ -106,7 +106,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.42.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.43.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -225,36 +225,73 @@
"\n",
"from azureml.core import Environment\n",
"\n",
"environment_name = \"shap-gpu-tree\"\n",
"\n",
"environment_name = \"shapgpu\"\n",
"env = Environment(environment_name)\n",
"\n",
"env.docker.enabled = True\n",
"env.docker.base_image = None\n",
"env.docker.base_dockerfile = \"\"\"\n",
"FROM rapidsai/rapidsai:cuda10.0-devel-ubuntu18.04\n",
"\n",
"\n",
"# Note: this is to pin the pandas and xgboost versions to be same as notebook.\n",
"# In production scenario user would choose their dependencies\n",
"import pkg_resources\n",
"available_packages = pkg_resources.working_set\n",
"xgboost_ver = None\n",
"pandas_ver = None\n",
"for dist in list(available_packages):\n",
" if dist.key == 'xgboost':\n",
" xgboost_ver = dist.version\n",
" elif dist.key == 'pandas':\n",
" pandas_ver = dist.version\n",
"xgboost_dep = 'xgboost'\n",
"pandas_dep = 'pandas'\n",
"if pandas_ver:\n",
" pandas_dep = 'pandas=={}'.format(pandas_ver)\n",
"if xgboost_dep:\n",
" xgboost_dep = 'xgboost=={}'.format(xgboost_ver)\n",
"\n",
"# Note: we build shap at commit 690245 for Tesla K80 GPUs\n",
"env.docker.base_dockerfile = f\"\"\"\n",
"FROM nvidia/cuda:10.2-devel-ubuntu18.04\n",
"ENV PATH=\"/root/miniconda3/bin:${{PATH}}\"\n",
"ARG PATH=\"/root/miniconda3/bin:${{PATH}}\"\n",
"RUN apt-get update && \\\n",
"apt-get install -y fuse && \\\n",
"apt-get install -y build-essential && \\\n",
"apt-get install -y python3-dev && \\\n",
"source activate rapids && \\\n",
"apt-get install -y wget && \\\n",
"apt-get install -y git && \\\n",
"rm -rf /var/lib/apt/lists/* && \\\n",
"wget \\\n",
"https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \\\n",
"mkdir /root/.conda && \\\n",
"bash Miniconda3-latest-Linux-x86_64.sh -b && \\\n",
"rm -f Miniconda3-latest-Linux-x86_64.sh && \\\n",
"conda init bash && \\\n",
". ~/.bashrc && \\\n",
"conda create -n shapgpu python=3.7 && \\\n",
"conda activate shapgpu && \\\n",
"apt-get install -y g++ && \\\n",
"printenv && \\\n",
"echo \"which nvcc: \" && \\\n",
"which nvcc && \\\n",
"pip install numpy==1.20.3 && \\\n",
"pip install azureml-defaults && \\\n",
"pip install azureml-telemetry && \\\n",
"pip install azureml-interpret && \\\n",
"pip install {pandas_dep} && \\\n",
"cd /usr/local/src && \\\n",
"git clone https://github.com/slundberg/shap && \\\n",
"git clone https://github.com/slundberg/shap.git --single-branch && \\\n",
"cd shap && \\\n",
"git reset --hard 690245c6ab043edf40cfce3d8438a62e29ab599f && \\\n",
"mkdir build && \\\n",
"python setup.py install --user && \\\n",
"pip uninstall -y xgboost && \\\n",
"rm /conda/envs/rapids/lib/libxgboost.so && \\\n",
"pip install xgboost==1.4.2\n",
"pip install {xgboost_dep} \\\n",
"\"\"\"\n",
"\n",
"env.python.user_managed_dependencies = True\n",
"env.python.interpreter_path = '/root/miniconda3/envs/shapgpu/bin/python'\n",
"\n",
"from azureml.core import Run\n",
"from azureml.core import ScriptRunConfig\n",
@@ -266,6 +303,176 @@
"run = experiment.submit(config=src)\n",
"run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# Shows output of the run on stdout.\n",
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.get_metrics()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download \n",
"1. Download model explanation data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.interpret import ExplanationClient\n",
"\n",
"# Get model explanation data\n",
"client = ExplanationClient.from_run(run)\n",
"global_explanation = client.download_model_explanation()\n",
"local_importance_values = global_explanation.local_importance_values\n",
"expected_values = global_explanation.expected_values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the top k (e.g., 4) most important features with their importance values\n",
"global_explanation_topk = client.download_model_explanation(top_k=4)\n",
"global_importance_values = global_explanation_topk.get_ranked_global_values()\n",
"global_importance_names = global_explanation_topk.get_ranked_global_names()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('global importance values: {}'.format(global_importance_values))\n",
"print('global importance names: {}'.format(global_importance_names))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Download model file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Retrieve model for visualization and deployment\n",
"from azureml.core.model import Model\n",
"import joblib\n",
"original_model = Model(ws, 'xgboost_with_gpu_tree_explainer')\n",
"model_path = original_model.download(exist_ok=True)\n",
"original_model = joblib.load(model_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"3. Download test dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Retrieve x_test for visualization\n",
"x_test_path = './x_shap_adult_census.pkl'\n",
"run.download_file('x_shap_adult_census.pkl', output_file_path=x_test_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_test = joblib.load('x_shap_adult_census.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize\n",
"Load the visualization dashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from raiwidgets import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from interpret_community.common.model_wrapper import wrap_model\n",
"from interpret_community.dataset.dataset_wrapper import DatasetWrapper\n",
"# note we need to wrap the XGBoost model to output predictions and probabilities in the scikit-learn format\n",
"class WrappedXGBoostModel(object):\n",
" \"\"\"A class for wrapping an XGBoost model to output integer predicted classes.\"\"\"\n",
"\n",
" def __init__(self, model):\n",
" self.model = model\n",
"\n",
" def predict(self, dataset):\n",
" return self.model.predict(dataset).astype(int)\n",
"\n",
" def predict_proba(self, dataset):\n",
" return self.model.predict_proba(dataset)\n",
"\n",
"wrapped_model = WrappedXGBoostModel(wrap_model(original_model, DatasetWrapper(x_test), model_task='classification'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, wrapped_model, dataset=x_test)"
]
}
],
"metadata": {

View File

@@ -1,5 +1,18 @@
name: train-explain-model-gpu-tree-explainer
dependencies:
- py-xgboost==1.3.3
- pip:
- azureml-sdk
- azureml-interpret
- flask
- flask-cors
- gevent>=1.3.6
- jinja2
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.19.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3
- protobuf==3.20.0

View File

@@ -11,6 +11,8 @@ dependencies:
- matplotlib
- azureml-dataset-runtime
- ipywidgets
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3
- protobuf==3.20.0

View File

@@ -10,7 +10,9 @@ dependencies:
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- packaging>=20.9
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3
- protobuf==3.20.0

View File

@@ -18,7 +18,9 @@ def init():
original_model_path = Model.get_model_path('local_deploy_model')
scoring_explainer_path = Model.get_model_path('IBM_attrition_explainer')
# Load the original model into the environment
original_model = joblib.load(original_model_path)
# Load the scoring explainer into the environment
scoring_explainer = joblib.load(scoring_explainer_path)
@@ -29,5 +31,15 @@ def run(raw_data):
predictions = original_model.predict(data)
# Retrieve model explanations
local_importance_values = scoring_explainer.explain(data)
# Retrieve the feature names, which we may want to return to the user.
# Note: you can also get the raw_features and engineered_features
# by calling scoring_explainer.raw_features and
# scoring_explainer.engineered_features but you may need to pass
# the raw or engineered feature names in the ScoringExplainer
# constructor, depending on if you are using feature maps or
# transformations on the original explainer.
features = scoring_explainer.features
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(), 'local_importance_values': local_importance_values}
return {'predictions': predictions.tolist(),
'local_importance_values': local_importance_values,
'features': features}

View File

@@ -10,7 +10,9 @@ dependencies:
- ipython
- matplotlib
- ipywidgets
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- packaging>=20.9
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3
- protobuf==3.20.0

View File

@@ -12,6 +12,8 @@ dependencies:
- azureml-dataset-runtime
- azureml-core
- ipywidgets
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- itsdangerous==2.0.1
- markupsafe<2.1.0
- scipy>=1.5.3
- protobuf==3.20.0

View File

@@ -3,3 +3,4 @@ dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- protobuf==3.20.0

View File

@@ -361,7 +361,7 @@
"\n",
"batch_conda_deps = CondaDependencies.create(python_version=\"3.7\",\n",
" conda_packages=['pip==20.2.4'],\n",
" pip_packages=[\"tensorflow==1.15.2\", \"pillow\", \n",
" pip_packages=[\"tensorflow==1.15.2\", \"pillow\", \"protobuf==3.20.1\",\n",
" \"azureml-core\", \"azureml-dataset-runtime[fuse]\"])\n",
"batch_env = Environment(name=\"batch_environment\")\n",
"batch_env.python.conda_dependencies = batch_conda_deps\n",

View File

@@ -437,7 +437,8 @@
" - azureml-defaults\n",
" - tensorflow-gpu==2.0.0\n",
" - keras<=2.3.1\n",
" - matplotlib"
" - matplotlib\n",
" - protobuf==3.20.1"
]
},
{
@@ -989,6 +990,7 @@
"cd.add_conda_package('h5py<=2.10.0')\n",
"cd.add_conda_package('keras<=2.3.1')\n",
"cd.add_pip_package(\"azureml-defaults\")\n",
"cd.add_pip_package(\"protobuf==3.20.1\")\n",
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"\n",
"print(cd.serialize_to_string())"

View File

@@ -943,6 +943,7 @@
"cd.add_conda_package('numpy')\n",
"cd.add_pip_package('tensorflow==2.2.0')\n",
"cd.add_pip_package(\"azureml-defaults\")\n",
"cd.add_pip_package(\"protobuf==3.20.1\")\n",
"cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"\n",
"print(cd.serialize_to_string())"

View File

@@ -11,6 +11,8 @@ RUN pip install azureml-core
RUN pip install ray==0.8.7
RUN pip install ray[rllib,tune,serve]==0.8.7
RUN pip install tensorflow==1.14.0
RUN pip install 'msrest<0.7.0'
RUN pip install protobuf==3.20.0
RUN apt-get update
RUN apt-get install -y jq

View File

@@ -69,6 +69,9 @@ RUN pip install --no-cache-dir \
# This is required for ray 0.8.7
RUN pip install -U aiohttp==3.7.4
RUN pip install 'msrest<0.7.0'
RUN pip install protobuf==3.20.0
# This is needed for mpi to locate libpython
ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH

View File

@@ -93,11 +93,11 @@
"source": [
"%matplotlib inline\n",
"\n",
"# Azure Machine Learning Core imports\n",
"# Azure Machine Learning core imports\n",
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"Azure Machine Learning SDK Version: \", azureml.core.VERSION)"
"print(\"Azure Machine Learning SDK version: \", azureml.core.VERSION)"
]
},
{

View File

@@ -90,7 +90,7 @@
"outputs": [],
"source": [
"import azureml.core\n",
"print(\"Azure Machine Learning SDK Version:\", azureml.core.VERSION)"
"print(\"Azure Machine Learning SDK version:\", azureml.core.VERSION)"
]
},
{

View File

@@ -12,6 +12,7 @@ RUN pip install azureml-dataset-runtime
RUN pip install ray==0.8.7
RUN pip install ray[rllib,tune,serve]==0.8.7
RUN pip install tensorflow==1.14.0
RUN pip install 'msrest<0.7.0'
RUN apt-get update
RUN apt-get install -y jq

View File

@@ -91,7 +91,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"Azure Machine Learning SDK Version:\", azureml.core.VERSION)"
"print(\"Azure Machine Learning SDK version:\", azureml.core.VERSION)"
]
},
{

View File

@@ -8,8 +8,8 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
rm -rf /var/lib/apt/lists/* && \
rm -rf /usr/share/man/*
RUN conda install -y conda=4.12.0 python=3.7 && conda clean -ay
RUN pip install ray-on-aml==0.1.6 & \
RUN conda install -y conda=4.13.0 python=3.7 && conda clean -ay
RUN pip install ray-on-aml==0.2.1 & \
pip install --no-cache-dir \
azureml-defaults \
azureml-dataset-runtime[fuse,pandas] \
@@ -33,4 +33,6 @@ RUN pip install ray-on-aml==0.1.6 & \
RUN pip install protobuf==3.20.0
RUN pip install --upgrade ray==0.8.3 \
ray[rllib,dashboard,tune]==0.8.3
ray[rllib,dashboard,tune]==0.8.3
RUN pip install 'msrest<0.7.0'

View File

@@ -33,4 +33,6 @@ RUN pip install protobuf==3.20.0
RUN pip3 install --upgrade \
ray==0.8.7 \
ray[rllib]==0.8.7 \
ray[tune]==0.8.7
ray[tune]==0.8.7
RUN pip install 'msrest<0.7.0'

View File

@@ -85,7 +85,7 @@
"outputs": [],
"source": [
"import azureml.core\n",
"print('Azure Machine Learning SDK Version: ', azureml.core.VERSION)"
"print('Azure Machine Learning SDK version: ', azureml.core.VERSION)"
]
},
{

View File

@@ -8,8 +8,9 @@ dependencies:
- matplotlib
- azureml-dataset-runtime
- ipywidgets
- raiwidgets~=0.18.1
- raiwidgets~=0.19.0
- liac-arff
- packaging>=20.9
- itsdangerous==2.0.1
- markupsafe<2.1.0
- protobuf==3.20.0

View File

@@ -43,6 +43,7 @@
" 1. Logging numeric metrics\n",
" 1. Logging vectors\n",
" 1. Logging tables\n",
" 1. Logging when additional Metric Names are required\n",
" 1. Uploading files\n",
"1. [Analyzing results](#Analyzing-results)\n",
" 1. Tagging a run\n",
@@ -100,7 +101,7 @@
"\n",
"# Check core SDK version number\n",
"\n",
"print(\"This notebook was created using SDK version 1.42.0, you are currently running version\", azureml.core.VERSION)"
"print(\"This notebook was created using SDK version 1.43.0, you are currently running version\", azureml.core.VERSION)"
]
},
{
@@ -367,7 +368,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Logging for when more Metric Names are required\n",
"### Logging when additional Metric Names are required\n",
"\n",
"Limits on logging are internally enforced to ensure a smooth experience, however these can sometimes be limiting, particularly in terms of the limit on metric names.\n",
"\n",

View File

@@ -102,7 +102,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.42.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.43.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -5,17 +5,19 @@ import os
import argparse
import datetime
import time
import tensorflow as tf
import tensorflow.compat.v1 as tf
from math import ceil
import numpy as np
import sys
import shutil
from tensorflow.contrib.slim.python.slim.nets import inception_v3
import subprocess
import tf_slim
from azureml.core import Run
from azureml.core.model import Model
from azureml.core.dataset import Dataset
slim = tf.contrib.slim
slim = tf_slim
image_size = 299
num_channel = 3
@@ -32,16 +34,18 @@ def get_class_label_dict(labels_dir):
def init():
global g_tf_sess, probabilities, label_dict, input_images
subprocess.run(["git", "clone", "https://github.com/tensorflow/models/"])
sys.path.append("./models/research/slim")
parser = argparse.ArgumentParser(description="Start a tensorflow model serving")
parser.add_argument('--model_name', dest="model_name", required=True)
parser.add_argument('--labels_dir', dest="labels_dir", required=True)
args, _ = parser.parse_known_args()
from nets import inception_v3, inception_utils
label_dict = get_class_label_dict(args.labels_dir)
classes_num = len(label_dict)
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
tf.disable_v2_behavior()
with slim.arg_scope(inception_utils.inception_arg_scope()):
input_images = tf.placeholder(tf.float32, [1, image_size, image_size, num_channel])
logits, _ = inception_v3.inception_v3(input_images,
num_classes=classes_num,

View File

@@ -247,7 +247,7 @@
" config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" vm_priority=\"lowpriority\", \n",
" min_nodes=0, \n",
" max_nodes=1)\n",
" max_nodes=2)\n",
"\n",
" compute_target = ComputeTarget.create(workspace=ws, name=compute_name, provisioning_configuration=config)\n",
" compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)"
@@ -305,9 +305,10 @@
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.runconfig import DEFAULT_GPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(python_version=\"3.7\",\n",
"cd = CondaDependencies.create(python_version=\"3.8\",\n",
" conda_packages=['pip==20.2.4'],\n",
" pip_packages=[\"tensorflow-gpu==1.15.2\",\n",
" pip_packages=[\"tensorflow-gpu==2.3.0\",\n",
" \"tf_slim==1.1.0\", \"protobuf==3.20.1\",\n",
" \"azureml-core\", \"azureml-dataset-runtime[fuse]\"])\n",
"\n",
"env = Environment(name=\"parallelenv\")\n",