Compare commits

...

107 Commits

Author SHA1 Message Date
mx-iao
37f37a46c1 Delete pytorch_mnist.py 2021-02-23 11:19:39 -08:00
mx-iao
0cd1412421 Delete distributed-pytorch-with-nccl-gloo.ipynb 2021-02-23 11:19:33 -08:00
mx-iao
c3ae9f00f6 Add files via upload 2021-02-23 11:19:02 -08:00
mx-iao
11b02c650c Rename how-to-use-azureml/ml-frameworks/pytorch/distributed-pytorch-with-distributeddataparallel.ipynb to how-to-use-azureml/ml-frameworks/pytorch/distributed-pytorch-with-distributeddataparallel/distributed-pytorch-with-distributeddataparallel.ipynb 2021-02-23 11:18:43 -08:00
mx-iao
606048c71f Add files via upload 2021-02-23 11:18:10 -08:00
Harneet Virk
cb1c354d44 Merge pull request #1353 from Azure/release_update/Release-88
update samples from Release-88 as a part of  SDK release 1.23.0
2021-02-22 11:49:02 -08:00
amlrelsa-ms
c868fff5a2 update samples from Release-88 as a part of SDK release 2021-02-22 19:23:04 +00:00
Harneet Virk
bc4e6611c4 Merge pull request #1342 from Azure/release_update/Release-87
update samples from Release-87 as a part of  SDK release
2021-02-16 18:43:49 -08:00
amlrelsa-ms
0a58881b70 update samples from Release-87 as a part of SDK release 2021-02-17 02:13:51 +00:00
Harneet Virk
2544e85c5f Merge pull request #1333 from Azure/release_update/Release-85
SDK release 1.22.0
2021-02-10 07:59:22 -08:00
amlrelsa-ms
7fe27501d1 update samples from Release-85 as a part of SDK release 2021-02-10 15:27:28 +00:00
Harneet Virk
624c46e7f9 Merge pull request #1321 from Azure/release_update/Release-84
update samples from Release-84 as a part of  SDK release
2021-02-05 19:10:29 -08:00
amlrelsa-ms
40fbadd85c update samples from Release-84 as a part of SDK release 2021-02-06 03:09:22 +00:00
Harneet Virk
0c1fc25542 Merge pull request #1317 from Azure/release_update/Release-83
update samples from Release-83 as a part of  SDK release
2021-02-03 14:31:31 -08:00
amlrelsa-ms
e8e1357229 update samples from Release-83 as a part of SDK release 2021-02-03 05:22:32 +00:00
Harneet Virk
ad44f8fa2b Merge pull request #1313 from zronaghi/contrib-rapids
Update RAPIDS README
2021-01-29 10:33:47 -08:00
Zahra Ronaghi
ee63e759f0 Update RAPIDS README 2021-01-28 22:19:27 -06:00
Harneet Virk
b81d97ebbf Merge pull request #1303 from Azure/release_update/Release-82
update samples from Release-82 as a part of  SDK release 1.21.0
2021-01-25 11:09:12 -08:00
amlrelsa-ms
249fb6bbb5 update samples from Release-82 as a part of SDK release 2021-01-25 19:03:14 +00:00
Harneet Virk
cda1f3e4cf Merge pull request #1289 from Azure/release_update/Release-81
update samples from Release-81 as a part of  SDK release
2021-01-11 12:52:48 -07:00
amlrelsa-ms
1d05efaac2 update samples from Release-81 as a part of SDK release 2021-01-11 19:35:54 +00:00
Harneet Virk
3adebd1127 Merge pull request #1262 from Azure/release_update/Release-80
update samples from Release-80 as a part of  SDK release
2020-12-11 16:49:33 -08:00
amlrelsa-ms
a6817063df update samples from Release-80 as a part of SDK release 2020-12-12 00:45:42 +00:00
Harneet Virk
a79f8c254a Merge pull request #1255 from Azure/release_update/Release-79
update samples from Release-79 as a part of  SDK release
2020-12-07 11:11:32 -08:00
amlrelsa-ms
fb4f287458 update samples from Release-79 as a part of SDK release 2020-12-07 19:09:59 +00:00
Harneet Virk
41366a4af0 Merge pull request #1238 from Azure/release_update/Release-78
update samples from Release-78 as a part of  SDK release
2020-11-11 13:00:22 -08:00
amlrelsa-ms
74deb14fac update samples from Release-78 as a part of SDK release 2020-11-11 19:32:32 +00:00
Harneet Virk
4ed1d445ae Merge pull request #1236 from Azure/release_update/Release-77
update samples from Release-77 as a part of  SDK release
2020-11-10 10:52:23 -08:00
amlrelsa-ms
b5c15db0b4 update samples from Release-77 as a part of SDK release 2020-11-10 18:46:23 +00:00
Harneet Virk
91d43bade6 Merge pull request #1235 from Azure/release_update_stablev2/Release-44
update samples from Release-44 as a part of 1.18.0 SDK stable release
2020-11-10 08:52:24 -08:00
amlrelsa-ms
bd750f5817 update samples from Release-44 as a part of 1.18.0 SDK stable release 2020-11-10 03:42:03 +00:00
mx-iao
637bcc5973 Merge pull request #1229 from Azure/lostmygithubaccount-patch-3
Update README.md
2020-11-03 15:18:37 -10:00
Cody
ba741fb18d Update README.md 2020-11-03 17:16:28 -08:00
Harneet Virk
ac0ad8d487 Merge pull request #1228 from Azure/release_update/Release-76
update samples from Release-76 as a part of  SDK release
2020-11-03 16:12:15 -08:00
amlrelsa-ms
5019ad6c5a update samples from Release-76 as a part of SDK release 2020-11-03 22:31:02 +00:00
Cody
41a2ebd2b3 Merge pull request #1226 from Azure/lostmygithubaccount-patch-3
Update README.md
2020-11-03 11:25:10 -08:00
Cody
53e3283d1d Update README.md 2020-11-03 11:17:41 -08:00
Harneet Virk
ba9c4c5465 Merge pull request #1225 from Azure/release_update/Release-75
update samples from Release-75 as a part of  SDK release
2020-11-03 11:11:11 -08:00
amlrelsa-ms
a6c65f00ec update samples from Release-75 as a part of SDK release 2020-11-03 19:07:12 +00:00
Cody
95072eabc2 Merge pull request #1221 from Azure/lostmygithubaccount-patch-2
Update README.md
2020-11-02 11:52:05 -08:00
Cody
12905ef254 Update README.md 2020-11-02 06:59:44 -08:00
Harneet Virk
4cf56eee91 Merge pull request #1217 from Azure/release_update/Release-74
update samples from Release-74 as a part of  SDK release
2020-10-30 17:27:02 -07:00
amlrelsa-ms
d345ff6c37 update samples from Release-74 as a part of SDK release 2020-10-30 22:20:10 +00:00
Harneet Virk
560dcac0a0 Merge pull request #1214 from Azure/release_update/Release-73
update samples from Release-73 as a part of  SDK release
2020-10-29 23:38:02 -07:00
amlrelsa-ms
322087a58c update samples from Release-73 as a part of SDK release 2020-10-30 06:37:05 +00:00
Harneet Virk
e255c000ab Merge pull request #1211 from Azure/release_update/Release-72
update samples from Release-72 as a part of  SDK release
2020-10-28 14:30:50 -07:00
amlrelsa-ms
7871e37ec0 update samples from Release-72 as a part of SDK release 2020-10-28 21:24:40 +00:00
Cody
58e584e7eb Update README.md (#1209) 2020-10-27 21:00:38 -04:00
Harneet Virk
1b0d75cb45 Merge pull request #1206 from Azure/release_update/Release-71
update samples from Release-71 as a part of  SDK 1.17.0 release
2020-10-26 22:29:48 -07:00
amlrelsa-ms
5c38272fb4 update samples from Release-71 as a part of SDK release 2020-10-27 04:11:39 +00:00
Harneet Virk
e026c56f19 Merge pull request #1200 from Azure/cody/add-new-repo-link
update readme
2020-10-22 10:50:03 -07:00
Cody
4aad830f1c update readme 2020-10-22 09:13:20 -07:00
Harneet Virk
c1b125025a Merge pull request #1198 from harneetvirk/master
Fixing/Removing broken links
2020-10-20 12:30:46 -07:00
Harneet Virk
9f364f7638 Update README.md 2020-10-20 12:30:03 -07:00
Harneet Virk
4beb749a76 Fixing/Removing the broken links 2020-10-20 12:28:45 -07:00
Harneet Virk
04fe8c4580 Merge pull request #1191 from savitamittal1/patch-4
Update README.md
2020-10-17 08:48:20 -07:00
Harneet Virk
498018451a Merge pull request #1193 from savitamittal1/patch-6
Update automl-databricks-local-with-deployment.ipynb
2020-10-17 08:47:54 -07:00
savitamittal1
04305e33f0 Update automl-databricks-local-with-deployment.ipynb 2020-10-16 23:58:12 -07:00
savitamittal1
d22e76d5e0 Update README.md 2020-10-16 23:53:41 -07:00
Harneet Virk
d71c482f75 Merge pull request #1184 from Azure/release_update/Release-70
update samples from Release-70 as a part of  SDK 1.16.0 release
2020-10-12 22:24:25 -07:00
amlrelsa-ms
5775f8a78f update samples from Release-70 as a part of SDK release 2020-10-13 05:19:49 +00:00
Cody
aae823ecd8 Merge pull request #1181 from samuel100/quickstart-notebook
quickstart nb added
2020-10-09 10:54:32 -07:00
Sam Kemp
f1126e07f9 quickstart nb added 2020-10-09 10:35:19 +01:00
Harneet Virk
0e4b27a233 Merge pull request #1171 from savitamittal1/patch-2
Update automl-databricks-local-01.ipynb
2020-10-02 09:41:14 -07:00
Harneet Virk
0a3d5f68a1 Merge pull request #1172 from savitamittal1/patch-3
Update automl-databricks-local-with-deployment.ipynb
2020-10-02 09:41:02 -07:00
savitamittal1
a6fe2affcb Update automl-databricks-local-with-deployment.ipynb
fixed link to readme
2020-10-01 19:38:11 -07:00
savitamittal1
ce469ddf6a Update automl-databricks-local-01.ipynb
fixed link for readme
2020-10-01 19:36:06 -07:00
mx-iao
9fe459be79 Merge pull request #1166 from Azure/minxia/patch
patch for resume training notebook
2020-09-29 17:30:24 -07:00
mx-iao
89c35c8ed6 Update train-tensorflow-resume-training.ipynb 2020-09-29 17:28:17 -07:00
mx-iao
33168c7f5d Update train-tensorflow-resume-training.ipynb 2020-09-29 17:27:23 -07:00
Cody
1d0766bd46 Merge pull request #1165 from samuel100/quickstart-add
quickstart added
2020-09-29 13:13:36 -07:00
Sam Kemp
9903e56882 quickstart added 2020-09-29 21:09:55 +01:00
Harneet Virk
a039166b90 Merge pull request #1162 from Azure/release_update/Release-69
update samples from Release-69 as a part of  SDK 1.15.0 release
2020-09-28 23:54:05 -07:00
amlrelsa-ms
4e4bf48013 update samples from Release-69 as a part of SDK release 2020-09-29 06:48:31 +00:00
Harneet Virk
0a2408300a Merge pull request #1158 from Azure/release_update/Release-68
update samples from Release-68 as a part of  SDK release
2020-09-25 09:23:59 -07:00
amlrelsa-ms
d99c3f5470 update samples from Release-68 as a part of SDK release 2020-09-25 16:10:59 +00:00
Harneet Virk
3f62fe7d47 Merge pull request #1157 from Azure/release_update/Release-67
update samples from Release-67 as a part of  SDK release
2020-09-23 15:51:20 -07:00
amlrelsa-ms
6059c1dc0c update samples from Release-67 as a part of SDK release 2020-09-23 22:48:56 +00:00
Harneet Virk
8e2032fcde Merge pull request #1153 from Azure/release_update/Release-66
update samples from Release-66 as a part of  SDK release
2020-09-21 16:04:23 -07:00
amlrelsa-ms
824d844cd7 update samples from Release-66 as a part of SDK release 2020-09-21 23:02:01 +00:00
Harneet Virk
bb1c7db690 Merge pull request #1148 from Azure/release_update/Release-65
update samples from Release-65 as a part of  SDK release
2020-09-16 18:23:12 -07:00
amlrelsa-ms
8dad09a42f update samples from Release-65 as a part of SDK release 2020-09-17 01:14:32 +00:00
Harneet Virk
db2bf8ae93 Merge pull request #1137 from Azure/release_update/Release-64
update samples from Release-64 as a part of  SDK release
2020-09-09 15:31:51 -07:00
amlrelsa-ms
820c09734f update samples from Release-64 as a part of SDK release 2020-09-09 22:30:45 +00:00
Cody
a2a33c70a6 Merge pull request #1123 from oliverw1/patch-2
docs: bring docs in line with code
2020-09-02 11:12:31 -07:00
Cody
2ff791968a Merge pull request #1122 from oliverw1/patch-1
docs: Move unintended side columns below the main rows
2020-09-02 11:11:58 -07:00
Harneet Virk
7186127804 Merge pull request #1128 from Azure/release_update/Release-63
update samples from Release-63 as a part of  SDK release
2020-08-31 13:23:08 -07:00
amlrelsa-ms
b01c52bfd6 update samples from Release-63 as a part of SDK release 2020-08-31 20:00:07 +00:00
Oliver W
28be7bcf58 docs: bring docs in line with code
A non-existant name was being referred to, which only serves confusion.
2020-08-28 10:24:24 +02:00
Oliver W
37a9350fde Properly format markdown table
Remove the unintended two columns that appeared on the right side
2020-08-28 09:29:46 +02:00
Harneet Virk
5080053a35 Merge pull request #1120 from Azure/release_update/Release-62
update samples from Release-62 as a part of  SDK release
2020-08-27 17:12:05 -07:00
amlrelsa-ms
3c02102691 update samples from Release-62 as a part of SDK release 2020-08-27 23:28:05 +00:00
Sheri Gilley
07e1676762 Merge pull request #1010 from GinSiuCheng/patch-1
Include additional details on user authentication
2020-08-25 11:45:58 -05:00
Sheri Gilley
919a3c078f fix code blocks 2020-08-25 11:13:24 -05:00
Sheri Gilley
9b53c924ed add code block for better formatting 2020-08-25 11:09:56 -05:00
Sheri Gilley
04ad58056f fix quotes 2020-08-25 11:06:18 -05:00
Sheri Gilley
576bf386b5 fix quotes 2020-08-25 11:05:25 -05:00
Cody
7e62d1cfd6 Merge pull request #891 from Fokko/patch-1
Don't print the access token
2020-08-22 18:28:33 -07:00
Cody
ec67a569af Merge pull request #804 from omartin2010/patch-3
typo
2020-08-17 14:35:55 -07:00
Cody
6d1e80bcef Merge pull request #1031 from hyoshioka0128/patch-1
Typo "Mircosoft"→"Microsoft"
2020-08-17 14:32:44 -07:00
mx-iao
db00d9ad3c Merge pull request #1100 from Azure/lostmygithubaccount-patch-1
fix minor typo in how-to-use-azureml/README.md
2020-08-17 14:30:18 -07:00
Harneet Virk
d33c75abc3 Merge pull request #1104 from Azure/release_update/Release-61
update samples from Release-61 as a part of  SDK release
2020-08-17 10:59:39 -07:00
Cody
982f8fcc1d Update README.md 2020-08-14 15:25:39 -07:00
Hiroshi Yoshioka
9c32ca9db5 Typo "Mircosoft"→"Microsoft"
https://docs.microsoft.com/en-us/samples/azure/machinelearningnotebooks/azure-machine-learning-service-example-notebooks/
2020-06-29 12:21:23 +09:00
Gin
745b4f0624 Include additional details on user authentication
Additional details should be included for user authentication esp. for enterprise users who may have more than one single aad tenant linked to a user.
2020-06-13 21:24:56 -04:00
Fokko Driesprong
119fd0a8f6 Don't print the access token
That's never a good idea, no exceptions :)
2020-03-31 08:14:05 +02:00
Olivier Martin
d4a486827d typo 2020-02-17 17:16:47 -05:00
349 changed files with 19181 additions and 12478 deletions

View File

@@ -28,7 +28,7 @@ git clone https://github.com/Azure/MachineLearningNotebooks.git
pip install azureml-sdk[notebooks,tensorboard]
# install model explainability component
pip install azureml-sdk[explain]
pip install azureml-sdk[interpret]
# install automated ml components
pip install azureml-sdk[automl]
@@ -86,7 +86,7 @@ If you need additional Azure ML SDK components, you can either modify the Docker
pip install azureml-sdk[automl]
# install the core SDK and model explainability component
pip install azureml-sdk[explain]
pip install azureml-sdk[interpret]
# install the core SDK and experimental components
pip install azureml-sdk[contrib]

View File

@@ -1,6 +1,8 @@
# Azure Machine Learning service example notebooks
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
> a community-driven repository of examples using mlflow for tracking can be found at https://github.com/Azure/azureml-examples
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
![Azure ML Workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/media/concept-azure-machine-learning-architecture/workflow.png)
@@ -18,10 +20,10 @@ This [index](./index.md) should assist in navigating the Azure Machine Learning
If you want to...
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/image-classification-mnist-data/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/image-classification-mnist-data/img-classification-part2-deploy.ipynb).
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
* ...learn about experimentation and tracking run history: [track and monitor experiments](./how-to-use-azureml/track-and-monitor-experiments).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/ml-frameworks/pytorch/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [deploying to Azure Container Instance](./how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.ipynb), then learn how to [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service: [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb) and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb).
## Tutorials
@@ -33,13 +35,12 @@ The [Tutorials](./tutorials) folder contains notebooks for the tutorials describ
The [How to use Azure ML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets
- [Training with Deep Learning](./how-to-use-azureml/training-with-deep-learning) - Examples demonstrating how to build deep learning models using estimators and parameter sweeps
- [Training with ML and DL frameworks](./how-to-use-azureml/ml-frameworks) - Examples demonstrating how to build and train machine learning models at scale on Azure ML and perform hyperparameter tuning.
- [Manage Azure ML Service](./how-to-use-azureml/manage-azureml-service) - Examples how to perform tasks, such as authenticate against Azure ML service in different ways.
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
---
@@ -58,14 +59,13 @@ Visit this [community repository](https://github.com/microsoft/MLOps/tree/master
## Projects using Azure Machine Learning
Visit following repos to see projects contributed by Azure ML users:
- [AMLSamples](https://github.com/Azure/AMLSamples) Number of end-to-end examples, including face recognition, predictive maintenance, customer churn and sentiment analysis.
- [Learn about Natural Language Processing best practices using Azure Machine Learning service](https://github.com/microsoft/nlp)
- [Pre-Train BERT models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
- [UMass Amherst Student Samples](https://github.com/katiehouse3/microsoft-azure-ml-notebooks) - A number of end-to-end machine learning notebooks, including machine translation, image classification, and customer churn, created by students in the 696DS course at UMass Amherst.
## Data/Telemetry
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
This repository collects usage data and sends it to Microsoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:

View File

@@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},

View File

@@ -38,7 +38,7 @@
"## Introduction\n",
"This notebook shows how to use [Fairlearn (an open source fairness assessment and unfairness mitigation package)](http://fairlearn.github.io) and Azure Machine Learning Studio for a binary classification problem. This example uses the well-known adult census dataset. For the purposes of this notebook, we shall treat this as a loan decision problem. We will pretend that the label indicates whether or not each individual repaid a loan in the past. We will use the data to train a predictor to predict whether previously unseen individuals will repay a loan or not. The assumption is that the model predictions are used to decide whether an individual should be offered a loan. Its purpose is purely illustrative of a workflow including a fairness dashboard - in particular, we do **not** include a full discussion of the detailed issues which arise when considering fairness in machine learning. For such discussions, please [refer to the Fairlearn website](http://fairlearn.github.io/).\n",
"\n",
"We will apply the [grid search algorithm](https://fairlearn.github.io/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
"We will apply the [grid search algorithm](https://fairlearn.github.io/master/api_reference/fairlearn.reductions.html#fairlearn.reductions.GridSearch) from the Fairlearn package using a specific notion of fairness called Demographic Parity. This produces a set of models, and we will view these in a dashboard both locally and in the Azure Machine Learning Studio.\n",
"\n",
"### Setup\n",
"\n",
@@ -46,7 +46,7 @@
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6`\n",
"* `fairlearn==0.4.6` (v0.5.0 will work with minor modifications)\n",
"* `joblib`\n",
"* `shap`\n",
"\n",
@@ -62,13 +62,20 @@
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
"We use the well-known `adult` census dataset, which we will fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
]
},
{
@@ -79,89 +86,141 @@
"source": [
"from fairlearn.reductions import GridSearch, DemographicParity, ErrorRate\n",
"from fairlearn.widget import FairlearnDashboard\n",
"from sklearn import svm\n",
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
"\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.datasets import fetch_openml\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n",
"import pandas as pd\n",
"import shap"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now load and inspect the data from the `shap` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_raw, Y = shap.datasets.adult()\n",
"X_raw[\"Race\"].value_counts().to_dict()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are going to treat the sex of each individual as a protected attribute (where 0 indicates female and 1 indicates male), and in this particular case we are going separate this attribute out and drop it from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). We also separate out the Race column, but we will not perform any mitigation based on it. Finally, we perform some standard data preprocessing steps to convert the data into a format suitable for the ML algorithms"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['Sex','Race']]\n",
"X = X_raw.drop(labels=['Sex', 'Race'],axis = 1)\n",
"X = pd.get_dummies(X)\n",
"\n",
"\n",
"le = LabelEncoder()\n",
"Y = le.fit_transform(Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With our data prepared, we can make the conventional split in to 'test' and 'train' subsets:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_raw, \n",
" Y, \n",
" A,\n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=Y)\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.compose import make_column_selector as selector\n",
"from sklearn.pipeline import Pipeline\n",
"\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now load and inspect the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fairness_nb_utils import fetch_openml_with_retries\n",
"\n",
"data = fetch_openml_with_retries(data_id=1590)\n",
" \n",
"# Extract the items we want\n",
"X_raw = data.data\n",
"y = (data.target == '>50K') * 1\n",
"\n",
"X_raw[\"race\"].value_counts().to_dict()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are going to treat the sex and race of each individual as protected attributes, and in this particular case we are going to remove these attributes from the main data (this is not always the best option - see the [Fairlearn website](http://fairlearn.github.io/) for further discussion). Protected attributes are often denoted by 'A' in the literature, and we follow that convention here:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['sex','race']]\n",
"X_raw = X_raw.drop(labels=['sex', 'race'],axis = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
")\n",
"\n",
"# Ensure indices are aligned between X, y and A,\n",
"# after all the slicing and splitting of DataFrames\n",
"# and Series\n",
"\n",
"# Work around indexing issue\n",
"X_train = X_train.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)\n",
"y_train = y_train.reset_index(drop=True)\n",
"y_test = y_test.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
"\n",
"# Improve labels\n",
"A_test.Sex.loc[(A_test['Sex'] == 0)] = 'female'\n",
"A_test.Sex.loc[(A_test['Sex'] == 1)] = 'male'\n",
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numeric_transformer = Pipeline(\n",
" steps=[\n",
" (\"impute\", SimpleImputer()),\n",
" (\"scaler\", StandardScaler()),\n",
" ]\n",
")\n",
"\n",
"categorical_transformer = Pipeline(\n",
" [\n",
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
" ]\n",
")\n",
"\n",
"A_test.Race.loc[(A_test['Race'] == 0)] = 'Amer-Indian-Eskimo'\n",
"A_test.Race.loc[(A_test['Race'] == 1)] = 'Asian-Pac-Islander'\n",
"A_test.Race.loc[(A_test['Race'] == 2)] = 'Black'\n",
"A_test.Race.loc[(A_test['Race'] == 3)] = 'Other'\n",
"A_test.Race.loc[(A_test['Race'] == 4)] = 'White'"
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = preprocessor.fit_transform(X_train)\n",
"X_test = preprocessor.transform(X_test)"
]
},
{
@@ -182,7 +241,7 @@
"source": [
"unmitigated_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"unmitigated_predictor.fit(X_train, Y_train)"
"unmitigated_predictor.fit(X_train, y_train)"
]
},
{
@@ -199,7 +258,7 @@
"outputs": [],
"source": [
"FairlearnDashboard(sensitive_features=A_test, sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test,\n",
" y_true=y_test,\n",
" y_pred={\"unmitigated\": unmitigated_predictor.predict(X_test)})"
]
},
@@ -250,9 +309,10 @@
"metadata": {},
"outputs": [],
"source": [
"sweep.fit(X_train, Y_train,\n",
" sensitive_features=A_train.Sex)\n",
"sweep.fit(X_train, y_train,\n",
" sensitive_features=A_train.sex)\n",
"\n",
"# For Fairlearn v0.5.0, need sweep.predictors_\n",
"predictors = sweep._predictors"
]
},
@@ -274,9 +334,9 @@
" classifier = lambda X: m.predict(X)\n",
" \n",
" error = ErrorRate()\n",
" error.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.Sex)\n",
" error.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
" disparity = DemographicParity()\n",
" disparity.load_data(X_train, pd.Series(Y_train), sensitive_features=A_train.Sex)\n",
" disparity.load_data(X_train, pd.Series(y_train), sensitive_features=A_train.sex)\n",
" \n",
" errors.append(error.gamma(classifier)[0])\n",
" disparities.append(disparity.gamma(classifier).max())\n",
@@ -330,7 +390,7 @@
"source": [
"FairlearnDashboard(sensitive_features=A_test, \n",
" sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test.tolist(),\n",
" y_true=y_test.tolist(),\n",
" y_pred=predictions_dominant)"
]
},
@@ -338,7 +398,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"When using sex as the sensitive feature, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
"When using sex as the sensitive feature and accuracy as the metric, we see a Pareto front forming - the set of predictors which represent optimal tradeoffs between accuracy and disparity in predictions. In the ideal case, we would have a predictor at (1,0) - perfectly accurate and without any unfairness under demographic parity (with respect to the protected attribute \"sex\"). The Pareto front represents the closest we can come to this ideal based on our data and choice of estimator. Note the range of the axes - the disparity axis covers more values than the accuracy, so we can reduce disparity substantially for a small loss in accuracy. Finally, we also see that the unmitigated model is towards the top right of the plot, with high accuracy, but worst disparity.\n",
"\n",
"By clicking on individual models on the plot, we can inspect their metrics for disparity and accuracy in greater detail. In a real example, we would then pick the model which represented the best trade-off between accuracy and disparity given the relevant business constraints."
]
@@ -440,12 +500,12 @@
"metadata": {},
"outputs": [],
"source": [
"sf = { 'sex': A_test.Sex, 'race': A_test.Race }\n",
"sf = { 'sex': A_test.sex, 'race': A_test.race }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
" predictions=predictions_dominant_ids,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"

View File

@@ -0,0 +1,7 @@
name: fairlearn-azureml-mitigation
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-fairness
- fairlearn==0.4.6
- joblib

View File

@@ -0,0 +1,28 @@
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
"""Utilities for azureml-contrib-fairness notebooks."""
from sklearn.datasets import fetch_openml
import time
def fetch_openml_with_retries(data_id, max_retries=4, retry_delay=60):
"""Fetch a given dataset from OpenML with retries as specified."""
for i in range(max_retries):
try:
print("Download attempt {0} of {1}".format(i + 1, max_retries))
data = fetch_openml(data_id=data_id, as_frame=True)
break
except Exception as e:
print("Download attempt failed with exception:")
print(e)
if i + 1 != max_retries:
print("Will retry after {0} seconds".format(retry_delay))
time.sleep(retry_delay)
retry_delay = retry_delay * 2
else:
raise RuntimeError("Unable to download dataset from OpenML")
return data

View File

@@ -48,7 +48,7 @@
"Please see the [configuration notebook](../../configuration.ipynb) for information about creating one, if required.\n",
"This notebook also requires the following packages:\n",
"* `azureml-contrib-fairness`\n",
"* `fairlearn==0.4.6`\n",
"* `fairlearn==0.4.6` (should also work with v0.5.0)\n",
"* `joblib`\n",
"* `shap`\n",
"\n",
@@ -64,13 +64,20 @@
"# !pip install --upgrade scikit-learn>=0.22.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, please ensure that when you downloaded this notebook, you also downloaded the `fairness_nb_utils.py` file from the same location, and placed it in the same directory as this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"LoadingData\"></a>\n",
"## Loading the Data\n",
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"
"We use the well-known `adult` census dataset, which we fetch from the OpenML website. We start with a fairly unremarkable set of imports:"
]
},
{
@@ -80,10 +87,14 @@
"outputs": [],
"source": [
"from sklearn import svm\n",
"from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
"from sklearn.compose import ColumnTransformer\n",
"from sklearn.datasets import fetch_openml\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.linear_model import LogisticRegression\n",
"import pandas as pd\n",
"import shap"
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.compose import make_column_selector as selector\n",
"from sklearn.pipeline import Pipeline"
]
},
{
@@ -99,7 +110,13 @@
"metadata": {},
"outputs": [],
"source": [
"X_raw, Y = shap.datasets.adult()"
"from fairness_nb_utils import fetch_openml_with_retries\n",
"\n",
"data = fetch_openml_with_retries(data_id=1590)\n",
" \n",
"# Extract the items we want\n",
"X_raw = data.data\n",
"y = (data.target == '>50K') * 1"
]
},
{
@@ -115,7 +132,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(X_raw[\"Race\"].value_counts().to_dict())"
"print(X_raw[\"race\"].value_counts().to_dict())"
]
},
{
@@ -125,7 +142,7 @@
"<a id=\"ProcessingData\"></a>\n",
"## Processing the Data\n",
"\n",
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and put the rest of the feature data into `X`:"
"With the data loaded, we process it for our needs. First, we extract the sensitive features of interest into `A` (conventionally used in the literature) and leave the rest of the feature data in `X_raw`:"
]
},
{
@@ -134,16 +151,15 @@
"metadata": {},
"outputs": [],
"source": [
"A = X_raw[['Sex','Race']]\n",
"X = X_raw.drop(labels=['Sex', 'Race'],axis = 1)\n",
"X = pd.get_dummies(X)"
"A = X_raw[['sex','race']]\n",
"X_raw = X_raw.drop(labels=['sex', 'race'],axis = 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we apply a standard set of scalings:"
"We now preprocess our data. To avoid the problem of data leakage, we split our data into training and test sets before performing any other transformations. Subsequent transformations (such as scalings) will be fit to the training data set, and then applied to the test dataset."
]
},
{
@@ -152,51 +168,74 @@
"metadata": {},
"outputs": [],
"source": [
"sc = StandardScaler()\n",
"X_scaled = sc.fit_transform(X)\n",
"X_scaled = pd.DataFrame(X_scaled, columns=X.columns)\n",
"(X_train, X_test, y_train, y_test, A_train, A_test) = train_test_split(\n",
" X_raw, y, A, test_size=0.3, random_state=12345, stratify=y\n",
")\n",
"\n",
"le = LabelEncoder()\n",
"Y = le.fit_transform(Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can then split our data into training and test sets, and also make the labels on our test portion of `A` human-readable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, Y_train, Y_test, A_train, A_test = train_test_split(X_scaled, \n",
" Y, \n",
" A,\n",
" test_size = 0.2,\n",
" random_state=0,\n",
" stratify=Y)\n",
"# Ensure indices are aligned between X, y and A,\n",
"# after all the slicing and splitting of DataFrames\n",
"# and Series\n",
"\n",
"# Work around indexing issue\n",
"X_train = X_train.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"X_test = X_test.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)\n",
"y_train = y_train.reset_index(drop=True)\n",
"y_test = y_test.reset_index(drop=True)\n",
"A_train = A_train.reset_index(drop=True)\n",
"A_test = A_test.reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have two types of column in the dataset - categorical columns which will need to be one-hot encoded, and numeric ones which will need to be rescaled. We also need to take care of missing values. We use a simple approach here, but please bear in mind that this is another way that bias could be introduced (especially if one subgroup tends to have more missing values).\n",
"\n",
"# Improve labels\n",
"A_test.Sex.loc[(A_test['Sex'] == 0)] = 'female'\n",
"A_test.Sex.loc[(A_test['Sex'] == 1)] = 'male'\n",
"For this preprocessing, we make use of `Pipeline` objects from `sklearn`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numeric_transformer = Pipeline(\n",
" steps=[\n",
" (\"impute\", SimpleImputer()),\n",
" (\"scaler\", StandardScaler()),\n",
" ]\n",
")\n",
"\n",
"categorical_transformer = Pipeline(\n",
" [\n",
" (\"impute\", SimpleImputer(strategy=\"most_frequent\")),\n",
" (\"ohe\", OneHotEncoder(handle_unknown=\"ignore\", sparse=False)),\n",
" ]\n",
")\n",
"\n",
"A_test.Race.loc[(A_test['Race'] == 0)] = 'Amer-Indian-Eskimo'\n",
"A_test.Race.loc[(A_test['Race'] == 1)] = 'Asian-Pac-Islander'\n",
"A_test.Race.loc[(A_test['Race'] == 2)] = 'Black'\n",
"A_test.Race.loc[(A_test['Race'] == 3)] = 'Other'\n",
"A_test.Race.loc[(A_test['Race'] == 4)] = 'White'"
"preprocessor = ColumnTransformer(\n",
" transformers=[\n",
" (\"num\", numeric_transformer, selector(dtype_exclude=\"category\")),\n",
" (\"cat\", categorical_transformer, selector(dtype_include=\"category\")),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, the preprocessing pipeline is defined, we can run it on our training data, and apply the generated transform to our test data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = preprocessor.fit_transform(X_train)\n",
"X_test = preprocessor.transform(X_test)"
]
},
{
@@ -217,7 +256,7 @@
"source": [
"lr_predictor = LogisticRegression(solver='liblinear', fit_intercept=True)\n",
"\n",
"lr_predictor.fit(X_train, Y_train)"
"lr_predictor.fit(X_train, y_train)"
]
},
{
@@ -235,7 +274,7 @@
"source": [
"svm_predictor = svm.SVC()\n",
"\n",
"svm_predictor.fit(X_train, Y_train)"
"svm_predictor.fit(X_train, y_train)"
]
},
{
@@ -354,7 +393,7 @@
"\n",
"FairlearnDashboard(sensitive_features=A_test, \n",
" sensitive_feature_names=['Sex', 'Race'],\n",
" y_true=Y_test.tolist(),\n",
" y_true=y_test.tolist(),\n",
" y_pred=ys_pred)"
]
},
@@ -380,11 +419,11 @@
"metadata": {},
"outputs": [],
"source": [
"sf = { 'Race': A_test.Race, 'Sex': A_test.Sex }\n",
"sf = { 'Race': A_test.race, 'Sex': A_test.sex }\n",
"\n",
"from fairlearn.metrics._group_metric_set import _create_group_metric_set\n",
"\n",
"dash_dict = _create_group_metric_set(y_true=Y_test,\n",
"dash_dict = _create_group_metric_set(y_true=y_test,\n",
" predictions=ys_pred,\n",
" sensitive_features=sf,\n",
" prediction_type='binary_classification')"
@@ -499,7 +538,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.10"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,7 @@
name: upload-fairness-dashboard
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-fairness
- fairlearn==0.4.6
- joblib

View File

@@ -4,7 +4,7 @@ Learn how to use Azure Machine Learning services for experimentation and model m
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-within-notebook](./training/train-within-notebook): Train a model while tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-on-local](./training/train-on-local): Learn how to submit a run to local computer and use Azure ML managed run configuration.
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.

View File

@@ -97,68 +97,96 @@ jupyter notebook
<a name="databricks"></a>
## Setup using Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v6.0 (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: Please create your Azure Databricks cluster as v7.1 (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl]** as a PyPi library in Azure Databricks workspace.
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl).
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl) and import into the Azure databricks workspace.
- Attach the notebook to the cluster.
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [auto-ml-classification-credit-card-fraud.ipynb](classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- Simple example of using automated ML for classification to fraudulent credit card transactions
- Uses azure compute for training
## Classification
- **Classify Credit Card Fraud**
- Dataset: [Kaggle's credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- **[Jupyter Notebook (remote run)](classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)**
- run the experiment remotely on AML Compute cluster
- test the performance of the best model in the local environment
- **[Jupyter Notebook (local run)](local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb)**
- run experiment in the local environment
- use Mimic Explainer for computing feature importance
- deploy the best model along with the explainer to an Azure Kubernetes (AKS) cluster, which will compute the raw and engineered feature importances at inference time
- **Predict Term Deposit Subscriptions in a Bank**
- Dataset: [UCI's bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
- **[Jupyter Notebook](classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)**
- run experiment remotely on AML Compute cluster to generate ONNX compatible models
- view the featurization steps that were applied during training
- view feature importance for the best model
- download the best model in ONNX format and use it for inferencing using ONNXRuntime
- deploy the best model in PKL format to Azure Container Instance (ACI)
- **Predict Newsgroup based on Text from News Article**
- Dataset: [20 newsgroups text dataset](https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html)
- **[Jupyter Notebook](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)**
- AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data
- AutoML will use Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used
- Bidirectional Long-Short Term neural network (BiLSTM) will be utilized when a CPU compute is used, thereby optimizing the choice of DNN
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
## Regression
- **Predict Performance of Hardware Parts**
- Dataset: Hardware Performance Dataset
- Simple example of using automated ML for regression
- Uses azure compute for training
- **[Jupyter Notebook](regression/auto-ml-regression.ipynb)**
- run the experiment remotely on AML Compute cluster
- get best trained model for a different metric than the one the experiment was optimized for
- test the performance of the best model in the local environment
- **[Jupyter Notebook (advanced)](regression/auto-ml-regression.ipynb)**
- run the experiment remotely on AML Compute cluster
- customize featurization: override column purpose within the dataset, configure transformer parameters
- get best trained model for a different metric than the one the experiment was optimized for
- run a model explanation experiment on the remote cluster
- deploy the model along the explainer and run online inferencing
- [auto-ml-regression-explanation-featurization.ipynb](regression-explanation-featurization/auto-ml-regression-explanation-featurization.ipynb)
- Dataset: Hardware Performance Dataset
- Shows featurization and excplanation
- Uses azure compute for training
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
- Example of using automated ML for training a forecasting model
- [auto-ml-classification-credit-card-fraud-local.ipynb](local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb)
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- Simple example of using automated ML for classification to fraudulent credit card transactions
- Uses local compute for training
- [auto-ml-classification-bank-marketing-all-features.ipynb](classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)
- Dataset: UCI's [bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
- Simple example of using automated ML for classification to predict term deposit subscriptions for a bank
- Uses azure compute for training
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-bike-share.ipynb](forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb)
- Dataset: forecasting for a bike-sharing
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
- Example of training an automated ML forecasting model on multiple time-series
- Beer Production Forecasting
- [auto-ml-continuous-retraining.ipynb](continuous-retraining/auto-ml-continuous-retraining.ipynb)
- Continuous retraining using Pipelines and Time-Series TabularDataset
- [auto-ml-classification-text-dnn.ipynb](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)
- Classification with text data using deep learning in AutoML
- AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data.
- Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used.
- Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.
## Time Series Forecasting
- **Forecast Energy Demand**
- Dataset: [NYC energy demand data](http://mis.nyiso.com/public/P-58Blist.htm)
- **[Jupyter Notebook](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)**
- run experiment remotely on AML Compute cluster
- use lags and rolling window features
- view the featurization steps that were applied during training
- get the best model, use it to forecast on test data and compare the accuracy of predictions against real data
- **Forecast Orange Juice Sales (Multi-Series)**
- Dataset: [Dominick's grocery sales of orange juice](forecasting-orange-juice-sales/dominicks_OJ.csv)
- **[Jupyter Notebook](forecasting-orange-juice-sales/dominicks_OJ.csv)**
- run experiment remotely on AML Compute cluster
- customize time-series featurization, change column purpose and override transformer hyper parameters
- evaluate locally the performance of the generated best model
- deploy the best model as a webservice on Azure Container Instance (ACI)
- get online predictions from the deployed model
- **Forecast Demand of a Bike-Sharing Service**
- Dataset: [Bike demand data](forecasting-bike-share/bike-no.csv)
- **[Jupyter Notebook](forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb)**
- run experiment remotely on AML Compute cluster
- integrate holiday features
- run rolling forecast for test set that is longer than the forecast horizon
- compute metrics on the predictions from the remote forecast
- **The Forecast Function Interface**
- Dataset: Generated for sample purposes
- **[Jupyter Notebook](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)**
- train a forecaster using a remote AML Compute cluster
- capabilities of forecast function (e.g. forecast farther into the horizon)
- generate confidence intervals
- **Forecast Beverage Production**
- Dataset: [Monthly beer production data](forecasting-beer-remote/Beer_no_valid_split_train.csv)
- **[Jupyter Notebook](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)**
- train using a remote AML Compute cluster
- enable the DNN learning model
- forecast on a remote compute cluster and compare different model performance
- **Continuous Retraining with NOAA Weather Data**
- Dataset: [NOAA weather data from Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/)
- **[Jupyter Notebook](continuous-retraining/auto-ml-continuous-retraining.ipynb)**
- continuously retrain a model using Pipelines and AutoML
- create a Pipeline to upload a time series dataset to an Azure blob
- create a Pipeline to run an AutoML experiment and register the best resulting model in the Workspace
- publish the training pipeline created and schedule it to run daily
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
@@ -179,7 +207,7 @@ The main code of the file must be indented so that it is under this condition.
## automl_setup fails
1. On Windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
2. Check that you have conda 64-bit installed rather than 32-bit. You can check this with the command `conda info`. The `platform` should be `win-64` for Windows or `osx-64` for Mac.
3. Check that you have conda 4.4.10 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
3. Check that you have conda 4.7.8 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
4. On Linux, if the error is `gcc: error trying to exec 'cc1plus': execvp: No such file or directory`, install build essentials using the command `sudo apt-get install build-essential`.
5. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.

View File

@@ -2,16 +2,17 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- python>=3.5.2,<3.6.8
- pip==20.2.4
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
- numpy~=1.16.0
- numpy==1.18.5
- cython
- urllib3<1.24
- scipy==1.4.1
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<=0.23.4
- scipy>=1.4.1,<=1.5.2
- scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
@@ -20,12 +21,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
- azureml-train-automl
- azureml-train
- azureml-widgets
- azureml-pipeline
- azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_win32_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -0,0 +1,30 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip==20.2.4
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
- numpy==1.18.5
- cython
- urllib3<1.24
- scipy>=1.4.1,<=1.5.2
- scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
- pytorch::pytorch=1.4.0
- cudatoolkit=10.1.243
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_linux_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -2,17 +2,18 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- pip==20.2.4
- nomkl
- python>=3.5.2,<3.6.8
- python>=3.5.2,<3.8
- nb_conda
- boto3==1.15.18
- matplotlib==2.1.0
- numpy~=1.16.0
- numpy==1.18.5
- cython
- urllib3<1.24
- scipy==1.4.1
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<=0.23.4
- scipy>=1.4.1,<=1.5.2
- scikit-learn==0.22.1
- pandas==0.25.1
- py-xgboost<=0.90
- conda-forge::fbprophet==0.5
- holidays==0.9.11
@@ -21,11 +22,9 @@ dependencies:
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
- azureml-train-automl
- azureml-train
- azureml-widgets
- azureml-pipeline
- azureml-widgets~=1.23.0
- pytorch-transformers==1.0.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.23.0/validated_darwin_requirements.txt [--no-deps]
- PyJWT < 2.0.0

View File

@@ -6,11 +6,22 @@ set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
SET check_conda_version_script="check_conda_version.py"
IF NOT EXIST %automl_env_file% GOTO YmlMissing
IF "%CONDA_EXE%"=="" GOTO CondaMissing
IF NOT EXIST %check_conda_version_script% GOTO VersionCheckMissing
python "%check_conda_version_script%"
IF errorlevel 1 GOTO ErrorExit:
SET replace_version_script="replace_latest_version.ps1"
IF EXIST %replace_version_script% (
powershell -file %replace_version_script% %automl_env_file%
)
call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 (
@@ -54,6 +65,10 @@ echo If you are running an older version of Miniconda or Anaconda,
echo you can upgrade using the command: conda update conda
goto End
:VersionCheckMissing
echo File %check_conda_version_script% not found.
goto End
:YmlMissing
echo File %automl_env_file% not found.

View File

@@ -4,6 +4,7 @@ CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
CHECK_CONDA_VERSION_SCRIPT="check_conda_version.py"
if [ "$CONDA_ENV_NAME" == "" ]
then
@@ -12,7 +13,7 @@ fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
AUTOML_ENV_FILE="automl_env_linux.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
@@ -20,6 +21,18 @@ if [ ! -f $AUTOML_ENV_FILE ]; then
exit 1
fi
if [ ! -f $CHECK_CONDA_VERSION_SCRIPT ]; then
echo "File $CHECK_CONDA_VERSION_SCRIPT not found"
exit 1
fi
python "$CHECK_CONDA_VERSION_SCRIPT"
if [ $? -ne 0 ]; then
exit 1
fi
sed -i 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading existing conda environment" $CONDA_ENV_NAME

View File

@@ -4,6 +4,7 @@ CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
CHECK_CONDA_VERSION_SCRIPT="check_conda_version.py"
if [ "$CONDA_ENV_NAME" == "" ]
then
@@ -20,6 +21,18 @@ if [ ! -f $AUTOML_ENV_FILE ]; then
exit 1
fi
if [ ! -f $CHECK_CONDA_VERSION_SCRIPT ]; then
echo "File $CHECK_CONDA_VERSION_SCRIPT not found"
exit 1
fi
python "$CHECK_CONDA_VERSION_SCRIPT"
if [ $? -ne 0 ]; then
exit 1
fi
sed -i '' 's/AZUREML-SDK-VERSION/latest/' $AUTOML_ENV_FILE
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading existing conda environment" $CONDA_ENV_NAME

View File

@@ -0,0 +1,26 @@
from distutils.version import LooseVersion
import platform
try:
import conda
except:
print('Failed to import conda.')
print('This setup is usually run from the base conda environment.')
print('You can activate the base environment using the command "conda activate base"')
exit(1)
architecture = platform.architecture()[0]
if architecture != "64bit":
print('This setup requires 64bit Anaconda or Miniconda. Found: ' + architecture)
exit(1)
minimumVersion = "4.7.8"
versionInvalid = (LooseVersion(conda.__version__) < LooseVersion(minimumVersion))
if versionInvalid:
print('Setup requires conda version ' + minimumVersion + ' or higher.')
print('You can use the command "conda update conda" to upgrade conda.')
exit(versionInvalid)

View File

@@ -89,7 +89,7 @@
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.interpret._internal.explanation_client import ExplanationClient"
"from azureml.interpret import ExplanationClient"
]
},
{
@@ -105,7 +105,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -167,7 +167,7 @@
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -500,11 +500,10 @@
"source": [
"# Wait for the best model explanation run to complete\n",
"from azureml.core.run import Run\n",
"model_explainability_run_id = remote_run.get_properties().get('ModelExplainRunId')\n",
"model_explainability_run_id = remote_run.id + \"_\" + \"ModelExplain\"\n",
"print(model_explainability_run_id)\n",
"if model_explainability_run_id is not None:\n",
" model_explainability_run = Run(experiment=experiment, run_id=model_explainability_run_id)\n",
" model_explainability_run.wait_for_completion()\n",
"model_explainability_run = Run(experiment=experiment, run_id=model_explainability_run_id)\n",
"model_explainability_run.wait_for_completion()\n",
"\n",
"# Get the best run object\n",
"best_run, fitted_model = remote_run.get_output()"
@@ -900,7 +899,7 @@
"metadata": {
"authors": [
{
"name": "anumamah"
"name": "ratanase"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk

View File

@@ -93,7 +93,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -424,22 +424,33 @@
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u00a9 Libre de Bruxelles) on big data mining and fraud detection.\n",
"More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
"Please cite the following works:\n",
"\n",
"Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\n",
"Dal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\n",
"Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"\n",
"Dal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\n",
"Carcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\n",
"Carcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing\n",
"\n",
"Bertrand Lebichot, Yann-A\u00c3\u00abl Le Borgne, Liyun He, Frederic Obl\u00c3\u00a9, Gianluca Bontempi Deep-Learning Domain Adaptation Techniques for Credit Cards Fraud Detection, INNSBDDL 2019: Recent Advances in Big Data and Deep Learning, pp 78-88, 2019\n",
"\n",
"Fabrizio Carcillo, Yann-A\u00c3\u00abl Le Borgne, Olivier Caelen, Frederic Obl\u00c3\u00a9, Gianluca Bontempi Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection Information Sciences, 2019"
]
}
],
"metadata": {
"authors": [
{
"name": "tzvikei"
"name": "ratanase"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk

View File

@@ -42,9 +42,8 @@
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade).\n",
"\n",
"Notebook synopsis:\n",
"\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
"3. Registering the best model for future use\n",
@@ -97,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -151,6 +150,8 @@
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"num_nodes = 2\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"dnntext-cluster\"\n",
"\n",
@@ -163,7 +164,7 @@
" # To use BERT (this is recommended for best performance), select a GPU such as \"STANDARD_NC6\" \n",
" # or similar GPU option\n",
" # available in your workspace\n",
" max_nodes = 1)\n",
" max_nodes = num_nodes)\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
@@ -270,7 +271,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
"This notebook uses the blocked_models parameter to exclude some models that can take a longer time to train on some text datasets. You can choose to remove models from the blocked_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
@@ -282,7 +283,7 @@
"automl_settings = {\n",
" \"experiment_timeout_minutes\": 20,\n",
" \"primary_metric\": 'accuracy',\n",
" \"max_concurrent_iterations\": 4, \n",
" \"max_concurrent_iterations\": num_nodes, \n",
" \"max_cores_per_iteration\": -1,\n",
" \"enable_dnn\": True,\n",
" \"enable_early_stopping\": True,\n",
@@ -297,6 +298,7 @@
" compute_target=compute_target,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" blocked_models = ['LightGBM', 'XGBoostClassifier'],\n",
" **automl_settings\n",
" )"
]

View File

@@ -1,4 +0,0 @@
name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,6 +1,5 @@
import pandas as pd
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
@@ -8,13 +7,7 @@ from azureml.core.run import Run
def run_inference(test_experiment, compute_target, script_folder, train_run,
train_dataset, test_dataset, target_column_name, model_name):
train_run.download_file('outputs/conda_env_v_1_0_0.yml',
'inference/condafile.yml')
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path='inference/condafile.yml')
inference_env = train_run.get_environment()
est = Estimator(source_directory=script_folder,
entry_script='infer.py',

View File

@@ -32,13 +32,6 @@
"8. [Test Retraining](#Test-Retraining)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -88,7 +81,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -150,7 +143,7 @@
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -190,7 +183,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import CondaDependencies, DEFAULT_CPU_IMAGE, RunConfiguration\n",
"from azureml.core.runconfig import CondaDependencies, RunConfiguration\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
@@ -199,7 +192,6 @@
"conda_run_config.target = compute_target\n",
"\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets', 'azureml-defaults'], \n",
" conda_packages=['numpy==1.16.2'], \n",

View File

@@ -1,4 +0,0 @@
name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk

View File

@@ -0,0 +1,92 @@
# Experimental Notebooks for Automated ML
Notebooks listed in this folder are leveraging experimental features. Namespaces or function signitures may change in future SDK releases. The notebooks published here will reflect the latest supported APIs. All of these notebooks can run on a client-only installation of the Automated ML SDK.
The client only installation doesn't contain any of the machine learning libraries, such as scikit-learn, xgboost, or tensorflow, making it much faster to install and is less likely to conflict with any packages in an existing environment. However, since the ML libraries are not available locally, models cannot be downloaded and loaded directly in the client. To replace the functionality of having models locally, these notebooks also demonstrate the ModelProxy feature which will allow you to submit a predict/forecast to the training environment.
<a name="localconda"></a>
## Setup using a Local Conda environment
To run these notebook on your own notebook server, use these installation instructions.
The instructions below will install everything you need and then start a Jupyter notebook.
If you would like to use a lighter-weight version of the client that does not install all of the machine learning libraries locally, you can leverage the [experimental notebooks.](experimental/README.md)
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.7 or higher.
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
There's no need to install mini-conda specifically.
### 2. Downloading the sample notebooks
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The automated ML sample notebooks are in the "automated-machine-learning" folder.
### 3. Setup a new conda environment
The **automl_setup_thin_client** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook. It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl_experimental. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
Packages installed by the **automl_setup** script:
<ul><li>python</li><li>nb_conda</li><li>matplotlib</li><li>numpy</li><li>cython</li><li>urllib3</li><li>pandas</li><li>azureml-sdk</li><li>azureml-widgets</li><li>pandas-ml</li></ul>
For more details refer to the [automl_env_thin_client.yml](./automl_env_thin_client.yml)
## Windows
Start an **Anaconda Prompt** window, cd to the **how-to-use-azureml/automated-machine-learning/experimental** folder where the sample notebooks were extracted and then run:
```
automl_setup_thin_client
```
## Mac
Install "Command line developer tools" if it is not already installed (you can use the command: `xcode-select --install`).
Start a Terminal windows, cd to the **how-to-use-azureml/automated-machine-learning/experimental** folder where the sample notebooks were extracted and then run:
```
bash automl_setup_thin_client_mac.sh
```
## Linux
cd to the **how-to-use-azureml/automated-machine-learning/experimental** folder where the sample notebooks were extracted and then run:
```
bash automl_setup_thin_client_linux.sh
```
### 4. Running configuration.ipynb
- Before running any samples you next need to run the configuration notebook. Click on [configuration](../../configuration.ipynb) notebook
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
### 5. Running Samples
- Please make sure you use the Python [conda env:azure_automl_experimental] kernel when trying the sample Notebooks.
- Follow the instructions in the individual notebooks to explore various features in automated ML.
### 6. Starting jupyter notebook manually
To start your Jupyter notebook manually, use:
```
conda activate azure_automl
jupyter notebook
```
or on Mac or Linux:
```
source activate azure_automl
jupyter notebook
```
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [auto-ml-regression-model-proxy.ipynb](regression-model-proxy/auto-ml-regression-model-proxy.ipynb)
- Dataset: Hardware Performance Dataset
- Simple example of using automated ML for regression
- Uses azure compute for training
- Uses ModelProxy for submitting prediction to training environment on azure compute
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
<a name="pythoncommand"></a>
# Running using python command
Jupyter notebook provides a File / Download as / Python (.py) option for saving the notebook as a Python file.
You can then run this file using the python command.
However, on Windows the file needs to be modified before it can be run.
The following condition must be added to the main code in the file:
if __name__ == "__main__":
The main code of the file must be indented so that it is under this condition.

View File

@@ -0,0 +1,63 @@
@echo off
set conda_env_name=%1
set automl_env_file=%2
set options=%3
set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl_experimental"
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing
IF "%CONDA_EXE%"=="" GOTO CondaMissing
call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 (
echo Upgrading existing conda environment %conda_env_name%
call pip uninstall azureml-train-automl -y -q
call conda env update --name %conda_env_name% --file %automl_env_file%
if errorlevel 1 goto ErrorExit
) else (
call conda env create -f %automl_env_file% -n %conda_env_name%
)
call conda activate %conda_env_name% 2>nul:
if errorlevel 1 goto ErrorExit
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
REM azureml.widgets is now installed as part of the pip install under the conda env.
REM Removing the old user install so that the notebooks will use the latest widget.
call jupyter nbextension uninstall --user --py azureml.widgets
echo.
echo.
echo ***************************************
echo * AutoML setup completed successfully *
echo ***************************************
IF NOT "%options%"=="nolaunch" (
echo.
echo Starting jupyter notebook - please run the configuration notebook
echo.
jupyter notebook --log-level=50 --notebook-dir='..\..'
)
goto End
:CondaMissing
echo Please run this script from an Anaconda Prompt window.
echo You can start an Anaconda Prompt window by
echo typing Anaconda Prompt on the Start menu.
echo If you don't see the Anaconda Prompt app, install Miniconda.
echo If you are running an older version of Miniconda or Anaconda,
echo you can upgrade using the command: conda update conda
goto End
:YmlMissing
echo File %automl_env_file% not found.
:ErrorExit
echo Install failed
:End

View File

@@ -0,0 +1,53 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl_experimental"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading existing conda environment" $CONDA_ENV_NAME
pip uninstall azureml-train-automl -y -q
conda env update --name $CONDA_ENV_NAME --file $AUTOML_ENV_FILE &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -0,0 +1,55 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl_experimental"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading existing conda environment" $CONDA_ENV_NAME
pip uninstall azureml-train-automl -y -q
conda env update --name $CONDA_ENV_NAME --file $AUTOML_ENV_FILE &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
conda install lightgbm -c conda-forge -y &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -0,0 +1,17 @@
name: azure_automl_experimental
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- python>=3.5.2,<3.8
- nb_conda
- cython
- urllib3<1.24
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
- azureml-sdk
- azureml-widgets
- pandas
- PyJWT < 2.0.0

View File

@@ -0,0 +1,18 @@
name: azure_automl_experimental
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- nomkl
- python>=3.5.2,<3.8
- nb_conda
- cython
- urllib3<1.24
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
- azureml-sdk
- azureml-widgets
- pandas
- PyJWT < 2.0.0

View File

@@ -0,0 +1,435 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/experimental/regression-model-proxy/auto-ml-regression-model-proxy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Aml Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use an experimental feature, Model Proxy, to do a predict on the best generated model without downloading the model locally. The prediction will happen on same compute and environment that was used to train the model. This feature is currently in the experimental state, which means that the API is prone to changing, please make sure to run on the latest version of this notebook if you face any issues.\n",
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using remote compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import json\n",
"\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample notebook may use features that are not available in previous versions of the Azure ML SDK."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-regression-model-proxy'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n",
"output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"# Try to ensure that the cluster name is unique across the notebooks\n",
"cpu_cluster_name = \"reg-model-proxy\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=4)\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"Load the hardware dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/machineData.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"\n",
"# Split the dataset into train and test datasets\n",
"train_data, test_data = dataset.random_split(percentage=0.8, seed=223)\n",
"\n",
"label = \"ERP\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification, regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**scenario**|We need to set this parameter to 'Latest' to enable some experimental features. This parameter should not be set outside of this experimental notebook.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"automlconfig-remarks-sample"
]
},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n",
" \"enable_early_stopping\": True, \n",
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" compute_target = compute_target,\n",
" training_data = train_data,\n",
" label_column_name = label,\n",
" scenario='Latest',\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of remote runs is asynchronous. Depending on the data and the number of iterations this can run for a while. Validation errors and current status will be shown when setting `show_output=True` and the execution will be synchronous."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"#from azureml.train.automl.run import AutoMLRun\n",
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Child Run\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_best_child` method returns the best run. Overloads on `get_best_child` allow you to retrieve the best run for *any* logged metric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run = remote_run.get_best_child()\n",
"print(best_run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Show hyperparameters\n",
"Show the model pipeline used for the best run with its hyperparameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_properties = json.loads(best_run.get_details()['properties']['pipeline_script'])\n",
"print(json.dumps(run_properties, indent = 1)) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Child Run Based on Any Other Metric\n",
"Show the run and the model that has the smallest `root_mean_squared_error` value (which turned out to be the same as the one with largest `spearman_correlation` value):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"root_mean_squared_error\"\n",
"best_run = remote_run.get_best_child(metric = lookup_metric)\n",
"print(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_test = test_data.keep_columns('ERP')\n",
"test_data = test_data.drop_columns('ERP')\n",
"\n",
"\n",
"y_train = train_data.keep_columns('ERP')\n",
"train_data = train_data.drop_columns('ERP')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Creating ModelProxy for submitting prediction runs to the training environment.\n",
"We will create a ModelProxy for the best child run, which will allow us to submit a run that does the prediction in the training environment. Unlike the local client, which can have different versions of some libraries, the training environment will have all the compatible libraries for the model already."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.model_proxy import ModelProxy\n",
"best_model_proxy = ModelProxy(best_run)\n",
"y_pred_train = best_model_proxy.predict(train_data)\n",
"y_pred_test = best_model_proxy.predict(test_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Exploring results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = y_pred_train.to_pandas_dataframe().values.flatten()\n",
"y_train = y_train.to_pandas_dataframe().values.flatten()\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = y_pred_test.to_pandas_dataframe().values.flatten()\n",
"y_test = y_test.to_pandas_dataframe().values.flatten()\n",
"y_residual_test = y_test - y_pred_test\n",
"print(y_residual_train)\n",
"print(y_residual_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "sekrupa"
}
],
"categories": [
"how-to-use-azureml",
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -54,9 +54,8 @@
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)\n",
"\n",
"Notebook synopsis:\n",
"\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a time-series model exploring Regression learners, Arima, Prophet and DNNs\n",
"4. Evaluating the fitted model using a rolling test "
@@ -114,7 +113,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -219,6 +218,8 @@
"\n",
"**Time series identifier columns** are identified by values of the columns listed `time_series_id_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"**Forecast frequency (freq)** This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
},
@@ -350,9 +351,7 @@
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**enable_dnn**|Enable Forecasting DNNs|\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
"|**enable_dnn**|Enable Forecasting DNNs|\n"
]
},
{
@@ -650,7 +649,7 @@
"metadata": {
"authors": [
{
"name": "omkarm"
"name": "jialiu"
}
],
"hide_code_all_hidden": false,

View File

@@ -1,4 +0,0 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- pip:
- azureml-sdk

View File

@@ -3,11 +3,11 @@ from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
from azureml.automl.core.shared import constants
def split_fraction_by_grain(df, fraction, time_column_name,
grain_column_names=None):
if not grain_column_names:
df['tmp_grain_column'] = 'grain'
grain_column_names = ['tmp_grain_column']
@@ -17,10 +17,10 @@ def split_fraction_by_grain(df, fraction, time_column_name,
.groupby(grain_column_names, group_keys=False))
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-int(len(dfg) *
fraction)] if fraction > 0 else dfg)
fraction)] if fraction > 0 else dfg)
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-int(len(dfg) *
fraction):] if fraction > 0 else dfg[:0])
fraction):] if fraction > 0 else dfg[:0])
if 'tmp_grain_column' in grain_column_names:
for df2 in (df, df_head, df_tail):
@@ -59,11 +59,13 @@ def get_result_df(remote_run):
'primary_metric', 'Score'])
goal_minimize = False
for run in children:
if('run_algorithm' in run.properties and 'score' in run.properties):
if run.get_status().lower() == constants.RunState.COMPLETE_RUN \
and 'run_algorithm' in run.properties and 'score' in run.properties:
# We only count in the completed child runs.
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
run.properties['primary_metric'],
float(run.properties['score'])]
if('goal' in run.properties):
if ('goal' in run.properties):
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
summary_df = summary_df.T.sort_values(
@@ -118,7 +120,6 @@ def run_multiple_inferences(summary_df, train_experiment, test_experiment,
compute_target, script_folder, test_dataset,
lookback_dataset, max_horizon, target_column_name,
time_column_name, freq):
for run_name, run_summary in summary_df.iterrows():
print(run_name)
print(run_summary)

View File

@@ -1,4 +1,5 @@
import argparse
import os
import numpy as np
import pandas as pd
@@ -10,6 +11,13 @@ from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.automl.runtime.shared.score import scoring, constants
from azureml.core import Run
try:
import torch
_torch_present = True
except ImportError:
_torch_present = False
def align_outputs(y_predicted, X_trans, X_test, y_test,
predicted_column_name='predicted',
@@ -48,7 +56,7 @@ def align_outputs(y_predicted, X_trans, X_test, y_test,
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
return (clean)
def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
@@ -83,8 +91,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
if origin_time != X[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
# Print some debug info
@@ -115,8 +122,7 @@ def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
# Align forecast with test set for dates within
# the current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
df_list.append(align_outputs(
y_fcst[trans_roll_wind], X_trans[trans_roll_wind],
@@ -155,8 +161,7 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
context_expand_wind = (X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
@@ -186,10 +191,8 @@ def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
trans_roll_wind = (trans_tindex >= origin_time) & (trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
@@ -221,6 +224,10 @@ def MAPE(actual, pred):
return np.mean(APE(actual_safe, pred_safe))
def map_location_cuda(storage, loc):
return storage.cuda()
parser = argparse.ArgumentParser()
parser.add_argument(
'--max_horizon', type=int, dest='max_horizon',
@@ -238,7 +245,6 @@ parser.add_argument(
'--model_path', type=str, dest='model_path',
default='model.pkl', help='Filename of model to be loaded')
args = parser.parse_args()
max_horizon = args.max_horizon
target_column_name = args.target_column_name
@@ -246,7 +252,6 @@ time_column_name = args.time_column_name
freq = args.freq
model_path = args.model_path
print('args passed are: ')
print(max_horizon)
print(target_column_name)
@@ -274,8 +279,19 @@ X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
y_lookback_df = lookback_dataset.with_timestamp_columns(
None).keep_columns(columns=[target_column_name])
fitted_model = joblib.load(model_path)
_, ext = os.path.splitext(model_path)
if ext == '.pt':
# Load the fc-tcn torch model.
assert _torch_present
if torch.cuda.is_available():
map_location = map_location_cuda
else:
map_location = 'cpu'
with open(model_path, 'rb') as fh:
fitted_model = torch.load(fh, map_location=map_location)
else:
# Load the sklearn pipeline.
fitted_model = joblib.load(model_path)
if hasattr(fitted_model, 'get_lookback'):
lookback = fitted_model.get_lookback()

View File

@@ -87,7 +87,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -131,7 +131,7 @@
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -205,6 +205,10 @@
"outputs": [],
"source": [
"dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'dataset/bike-no.csv')]).with_timestamp_columns(fine_grain_timestamp=time_column_name) \n",
"\n",
"# Drop the columns 'casual' and 'registered' as these columns are a breakdown of the total and therefore a leak.\n",
"dataset = dataset.drop_columns(columns=['casual', 'registered'])\n",
"\n",
"dataset.take(5).to_pandas_dataframe().reset_index(drop=True)"
]
},
@@ -251,7 +255,7 @@
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**country_or_region_for_holidays**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|"
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
]
},
{
@@ -314,8 +318,7 @@
" time_column_name=time_column_name,\n",
" forecast_horizon=forecast_horizon,\n",
" country_or_region_for_holidays='US', # set country_or_region will trigger holiday featurizer\n",
" target_lags='auto', # use heuristic based lag setting \n",
" drop_column_names=['casual', 'registered'] # these columns are a breakdown of the total and therefore a leak\n",
" target_lags='auto' # use heuristic based lag setting \n",
")\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
@@ -548,6 +551,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"For more details on what metrics are included and how they are calculated, please refer to [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics). You could also calculate residuals, like described [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
"\n",
"\n",
"Since we did a rolling evaluation on the test set, we can analyze the predictions by their forecast horizon relative to the rolling origin. The model was initially trained at a forecast horizon of 14, so each prediction from the model is associated with a horizon value from 1 to 14. The horizon values are in a column named, \"horizon_origin,\" in the prediction set. For example, we can calculate some of the error metrics grouped by the horizon:"
]
},
@@ -594,7 +600,7 @@
"metadata": {
"authors": [
{
"name": "erwright"
"name": "jialiu"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-forecasting-bike-share
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,22 +1,24 @@
import argparse
import azureml.train.automl
from azureml.core import Run
from azureml.core import Dataset, Run
from sklearn.externals import joblib
parser = argparse.ArgumentParser()
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--test_dataset', type=str, dest='test_dataset',
help='Test Dataset')
args = parser.parse_args()
target_column_name = args.target_column_name
test_dataset_id = args.test_dataset
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
ws = run.experiment.workspace
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
# get the input dataset by id
test_dataset = Dataset.get_by_id(ws, id=test_dataset_id)
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()

View File

@@ -1,37 +1,32 @@
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
from azureml.core import ScriptRunConfig
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
target_column_name, inference_folder='./forecast'):
condafile = inference_folder + '/condafile.yml'
def run_rolling_forecast(test_experiment, compute_target, train_run,
test_dataset, target_column_name,
inference_folder='./forecast'):
train_run.download_file('outputs/model.pkl',
inference_folder + '/model.pkl')
train_run.download_file('outputs/conda_env_v_1_0_0.yml', condafile)
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path=condafile)
inference_env = train_run.get_environment()
est = Estimator(source_directory=inference_folder,
entry_script='forecasting_script.py',
script_params={
'--target_column_name': target_column_name
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,
environment_definition=inference_env)
config = ScriptRunConfig(source_directory=inference_folder,
script='forecasting_script.py',
arguments=['--target_column_name',
target_column_name,
'--test_dataset',
test_dataset.as_named_input(test_dataset.name)],
compute_target=compute_target,
environment=inference_env)
run = test_experiment.submit(est,
tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run = test_experiment.submit(config,
tags={'training_run_id':
train_run.id,
'run_algorithm':
train_run.properties['run_algorithm'],
'valid_score':
train_run.properties['score'],
'primary_metric':
train_run.properties['primary_metric']})
run.log("run_algorithm", run.tags['run_algorithm'])
return run

View File

@@ -97,7 +97,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -301,7 +301,8 @@
"|Property|Description|\n",
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|"
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
]
},
{
@@ -497,7 +498,7 @@
"metadata": {},
"source": [
"### Evaluate\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE).\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). For more metrics that can be used for evaluation after training, please see [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics), and [how to calculate residuals](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
@@ -703,7 +704,7 @@
"metadata": {
"authors": [
{
"name": "erwright"
"name": "jialiu"
}
],
"categories": [

View File

@@ -1,4 +0,0 @@
name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk

View File

@@ -24,7 +24,7 @@
"metadata": {},
"source": [
"## Introduction\n",
"This notebook demonstrates the full interface to the `forecast()` function. \n",
"This notebook demonstrates the full interface of the `forecast()` function. \n",
"\n",
"The best known and most frequent usage of `forecast` enables forecasting on test sets that immediately follows training data. \n",
"\n",
@@ -94,7 +94,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -302,7 +302,8 @@
"* Set early termination to True, so the iterations through the models will stop when no improvements in accuracy score will be made.\n",
"* Set limitations on the length of experiment run to 15 minutes.\n",
"* Finally, we set the task to be forecasting.\n",
"* We apply the lag lead operator to the target value i.e. we use the previous values as a predictor for the future ones."
"* We apply the lag lead operator to the target value i.e. we use the previous values as a predictor for the future ones.\n",
"* [Optional] Forecast frequency parameter (freq) represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
]
},
{
@@ -809,7 +810,7 @@
"metadata": {
"authors": [
{
"name": "erwright"
"name": "jialiu"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-forecasting-function
dependencies:
- pip:
- azureml-sdk

View File

@@ -82,7 +82,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -126,7 +126,7 @@
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -169,6 +169,10 @@
"source": [
"time_column_name = 'WeekStarting'\n",
"data = pd.read_csv(\"dominicks_OJ.csv\", parse_dates=[time_column_name])\n",
"\n",
"# Drop the columns 'logQuantity' as it is a leaky feature.\n",
"data.drop('logQuantity', axis=1, inplace=True)\n",
"\n",
"data.head()"
]
},
@@ -325,12 +329,11 @@
"source": [
"## Customization\n",
"\n",
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include,\n",
"1. Column purposes update: Override feature type for the specified column. Currently supports DateTime, Categorical and Numeric. This customization can be used in the scenario that the type of the column cannot correctly reflect its purpose. Some numerical columns, for instance, can be treated as Categorical columns which need to be converted to categorical while some can be treated as epoch timestamp which need to be converted to datetime. To tell our SDK to correctly preprocess these columns, a configuration need to be add with the columns and their desired types.\n",
"2. Transformer parameters update: Currently supports parameter change for Imputer only. User can customize imputation methods, the supported methods are constant for target data and mean, median, most frequent and constant for training data. This customization can be used for the scenario that our customers know which imputation methods fit best to the input data. For instance, some datasets use NaN to represent 0 which the correct behavior should impute all the missing value with 0. To achieve this behavior, these columns need to be configured as constant imputation with `fill_value` 0.\n",
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data.\n",
"The featurization customization in forecasting is an advanced feature in AutoML which allows our customers to change the default forecasting featurization behaviors and column types through `FeaturizationConfig`. The supported scenarios include:\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
"1. Column purposes update: Override feature type for the specified column. Currently supports DateTime, Categorical and Numeric. This customization can be used in the scenario that the type of the column cannot correctly reflect its purpose. Some numerical columns, for instance, can be treated as Categorical columns which need to be converted to categorical while some can be treated as epoch timestamp which need to be converted to datetime. To tell our SDK to correctly preprocess these columns, a configuration need to be add with the columns and their desired types.\n",
"2. Transformer parameters update: Currently supports parameter change for Imputer only. User can customize imputation methods. The supported imputing methods for target column are constant and ffill (forward fill). The supported imputing methods for feature columns are mean, median, most frequent, constant and ffill (forward fill). This customization can be used for the scenario that our customers know which imputation methods fit best to the input data. For instance, some datasets use NaN to represent 0 which the correct behavior should impute all the missing value with 0. To achieve this behavior, these columns need to be configured as constant imputation with `fill_value` 0.\n",
"3. Drop columns: Columns to drop from being featurized. These usually are the columns which are leaky or the columns contain no useful data."
]
},
{
@@ -344,13 +347,14 @@
"outputs": [],
"source": [
"featurization_config = FeaturizationConfig()\n",
"featurization_config.drop_columns = ['logQuantity'] # 'logQuantity' is a leaky feature, so we remove it.\n",
"# Force the CPWVOL5 feature to be numeric type.\n",
"featurization_config.add_column_purpose('CPWVOL5', 'Numeric')\n",
"# Fill missing values in the target column, Quantity, with zeros.\n",
"featurization_config.add_transformer_params('Imputer', ['Quantity'], {\"strategy\": \"constant\", \"fill_value\": 0})\n",
"# Fill missing values in the INCOME column with median value.\n",
"featurization_config.add_transformer_params('Imputer', ['INCOME'], {\"strategy\": \"median\"})"
"featurization_config.add_transformer_params('Imputer', ['INCOME'], {\"strategy\": \"median\"})\n",
"# Fill missing values in the Price column with forward fill (last value carried forward).\n",
"featurization_config.add_transformer_params('Imputer', ['Price'], {\"strategy\": \"ffill\"})"
]
},
{
@@ -365,7 +369,8 @@
"|-|-|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**forecast_horizon**|The forecast horizon is how many periods forward you would like to forecast. This integer horizon is in units of the timeseries frequency (e.g. daily, weekly).|\n",
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|"
"|**time_series_id_column_names**|The column names used to uniquely identify the time series in data that has multiple rows with the same timestamp. If the time series identifiers are not defined, the data set is assumed to be one time series.|\n",
"|**freq**|Forecast frequency. This optional parameter represents the period with which the forecast is desired, for example, daily, weekly, yearly, etc. Use this parameter for the correction of time series containing irregular data points or for padding of short time series. The frequency needs to be a pandas offset alias. Please refer to [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects) for more information."
]
},
{
@@ -381,7 +386,7 @@
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the forecast horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning application that estimates the next month of sales should set the horizon according to suitable planning time-scales. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
"\n",
"We note here that AutoML can sweep over two types of time-series models:\n",
"* Models that are trained for each series such as ARIMA and Facebook's Prophet. Note that these models are only available for [Enterprise Edition Workspaces](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace#upgrade).\n",
"* Models that are trained for each series such as ARIMA and Facebook's Prophet.\n",
"* Models trained across multiple time-series using a regression approach.\n",
"\n",
"In the first case, AutoML loops over all time-series in your dataset and trains one model (e.g. AutoArima or Prophet, as the case may be) for each series. This can result in long runtimes to train these models if there are a lot of series in the data. One way to mitigate this problem is to fit models for different series in parallel if you have multiple compute cores available. To enable this behavior, set the `max_cores_per_iteration` parameter in your AutoMLConfig as shown in the example in the next cell. \n",
@@ -570,7 +575,7 @@
"source": [
"# Evaluate\n",
"\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). \n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). For more metrics that can be used for evaluation after training, please see [supported metrics](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#regressionforecasting-metrics), and [how to calculate residuals](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml#residuals).\n",
"\n",
"We'll add predictions and actuals into a single dataframe for convenience in calculating the metrics."
]
@@ -762,7 +767,7 @@
"metadata": {
"authors": [
{
"name": "erwright"
"name": "jialiu"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- pip:
- azureml-sdk

View File

@@ -80,7 +80,7 @@
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.interpret._internal.explanation_client import ExplanationClient"
"from azureml.interpret import ExplanationClient"
]
},
{
@@ -96,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -359,7 +359,7 @@
"Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance based on your test data.\n",
"\n",
"### Run the explanation\n",
"#### Download engineered feature importance from artifact store\n",
"#### Download the engineered feature importance from artifact store\n",
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
]
},
@@ -375,6 +375,25 @@
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download the raw feature importance from artifact store\n",
"You can use ExplanationClient to download the raw feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the raw features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_explanations = client.download_model_explanation(raw=True)\n",
"print(raw_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the raw explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -474,6 +493,29 @@
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the original features in your data. You can also use azure portal url to view the dash board visualization of the feature importance values of the original/raw features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute the raw explanations\n",
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True,\n",
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
" eval_dataset=automl_explainer_setup_obj.X_test_transform,\n",
" raw_eval_dataset=automl_explainer_setup_obj.X_test_raw)\n",
"print(raw_explanations.get_feature_importance_dict())\n",
"print(\"You can visualize the raw explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -562,16 +604,10 @@
"outputs": [],
"source": [
"%%writefile score.py\n",
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import pickle\n",
"import azureml.train.automl\n",
"import azureml.interpret\n",
"from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \\\n",
" automl_setup_model_explanations\n",
"import joblib\n",
"import pandas as pd\n",
"from azureml.core.model import Model\n",
"from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations\n",
"\n",
"\n",
"def init():\n",
@@ -595,10 +631,13 @@
" automl_explainer_setup_obj = automl_setup_model_explanations(automl_model,\n",
" X_test=data, task='classification')\n",
" # Retrieve model explanations for engineered explanations\n",
" engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform) \n",
" engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform)\n",
" # Retrieve model explanations for raw explanations\n",
" raw_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform, get_raw=True)\n",
" # You can return any data type as long as it is JSON-serializable\n",
" return {'predictions': predictions.tolist(),\n",
" 'engineered_local_importance_values': engineered_local_importance_values}\n"
" 'engineered_local_importance_values': engineered_local_importance_values,\n",
" 'raw_local_importance_values': raw_local_importance_values}\n"
]
},
{
@@ -731,7 +770,9 @@
"# Print the predicted value\n",
"print('predictions:\\n{}\\n'.format(output['predictions']))\n",
"# Print the engineered feature importances for the predicted value\n",
"print('engineered_local_importance_values:\\n{}\\n'.format(output['engineered_local_importance_values']))"
"print('engineered_local_importance_values:\\n{}\\n'.format(output['engineered_local_importance_values']))\n",
"# Print the raw feature importances for the predicted value\n",
"print('raw_local_importance_values:\\n{}\\n'.format(output['raw_local_importance_values']))\n"
]
},
{
@@ -779,7 +820,7 @@
"metadata": {
"authors": [
{
"name": "anumamah"
"name": "ratanase"
}
],
"category": "tutorial",

View File

@@ -1,4 +0,0 @@
name: auto-ml-classification-credit-card-fraud-local
dependencies:
- pip:
- azureml-sdk

View File

@@ -42,8 +42,6 @@
"\n",
"If you are using an Azure Machine Learning Compute Instance, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Instantiating AutoMLConfig with FeaturizationConfig for customization\n",
@@ -98,7 +96,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -223,9 +221,8 @@
"source": [
"## Customization\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
"\n",
"Supported customization includes:\n",
"\n",
"1. Column purpose update: Override feature type for the specified column.\n",
"2. Transformer parameter update: Update parameters for the specified transformer. Currently supports Imputer and HashOneHotEncoder.\n",
"3. Drop columns: Columns to drop from being featurized.\n",
@@ -447,7 +444,6 @@
"metadata": {},
"source": [
"## Explanations\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
"This section will walk you through the workflow to compute model explanations for an AutoML model on your remote compute.\n",
"\n",
"### Retrieve any AutoML Model for explanations\n",
@@ -625,7 +621,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.interpret._internal.explanation_client import ExplanationClient\n",
"from azureml.interpret import ExplanationClient\n",
"client = ExplanationClient.from_run(automl_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False, comment='engineered explanations')\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
@@ -655,7 +651,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operationailze\n",
"## Operationalize\n",
"In this section we will show how you can operationalize an AutoML model and the explainer which was used to compute the explanations in the previous section.\n",
"\n",
"### Register the AutoML model and the scoring explainer\n",
@@ -905,7 +901,7 @@
"metadata": {
"authors": [
{
"name": "anumamah"
"name": "anshirga"
}
],
"categories": [

View File

@@ -1,4 +0,0 @@
name: auto-ml-regression-explanation-featurization
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,14 +1,7 @@
import json
import numpy as np
import pandas as pd
import os
import pickle
import azureml.train.automl
import azureml.interpret
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations
import joblib
from azureml.core.model import Model
from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations
def init():

View File

@@ -1,17 +1,17 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import os
import joblib
from azureml.core.run import Run
from interpret.ext.glassbox import LGBMExplainableModel
from azureml.automl.core.shared.constants import MODEL_PATH
from azureml.core.experiment import Experiment
from azureml.core.dataset import Dataset
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations, automl_check_model_if_explainable
from interpret.ext.glassbox import LGBMExplainableModel
from azureml.core.run import Run
from azureml.interpret.mimic_wrapper import MimicWrapper
from automl.client.core.common.constants import MODEL_PATH
from azureml.interpret.scoring.scoring_explainer import TreeScoringExplainer
import joblib
from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations, \
automl_check_model_if_explainable
OUTPUT_DIR = './outputs/'
@@ -66,7 +66,8 @@ engineered_explanations = explainer.explain(['local', 'global'], tag='engineered
# Compute the raw explanations
raw_explanations = explainer.explain(['local', 'global'], get_raw=True, tag='raw explanations',
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
eval_dataset=automl_explainer_setup_obj.X_test_transform)
eval_dataset=automl_explainer_setup_obj.X_test_transform,
raw_eval_dataset=automl_explainer_setup_obj.X_test_raw)
print("Engineered and raw explanations computed successfully")

View File

@@ -92,7 +92,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"This notebook was created using version 1.12.0 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.23.0 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -375,18 +375,12 @@
"metadata": {},
"outputs": [],
"source": [
"# preview the first 3 rows of the dataset\n",
"\n",
"test_data = test_data.to_pandas_dataframe()\n",
"y_test = test_data['ERP'].fillna(0)\n",
"test_data = test_data.drop('ERP', 1)\n",
"test_data = test_data.fillna(0)\n",
"y_test = test_data.keep_columns('ERP').to_pandas_dataframe()\n",
"test_data = test_data.drop_columns('ERP').to_pandas_dataframe()\n",
"\n",
"\n",
"train_data = train_data.to_pandas_dataframe()\n",
"y_train = train_data['ERP'].fillna(0)\n",
"train_data = train_data.drop('ERP', 1)\n",
"train_data = train_data.fillna(0)\n"
"y_train = train_data.keep_columns('ERP').to_pandas_dataframe()\n",
"train_data = train_data.drop_columns('ERP').to_pandas_dataframe()\n"
]
},
{
@@ -396,10 +390,10 @@
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(train_data)\n",
"y_residual_train = y_train - y_pred_train\n",
"y_residual_train = y_train.values - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(test_data)\n",
"y_residual_test = y_test - y_pred_test"
"y_residual_test = y_test.values - y_pred_test"
]
},
{
@@ -462,7 +456,7 @@
"metadata": {
"authors": [
{
"name": "rakellam"
"name": "ratanase"
}
],
"categories": [

View File

@@ -1,4 +0,0 @@
name: auto-ml-regression
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,33 +0,0 @@
Azure Databricks is a managed Spark offering on Azure and customers already use it for advanced analytics. It provides a collaborative Notebook based environment with CPU or GPU based compute cluster.
In this section, you will find sample notebooks on how to use Azure Machine Learning SDK with Azure Databricks. You can train a model using Spark MLlib and then deploy the model to ACI/AKS from within Azure Databricks. You can also use Automated ML capability (**public preview**) of Azure ML SDK with Azure Databricks.
- Customers who use Azure Databricks for advanced analytics can now use the same cluster to run experiments with or without automated machine learning.
- You can keep the data within the same cluster.
- You can leverage the local worker nodes with autoscale and auto termination capabilities.
- You can use multiple cores of your Azure Databricks cluster to perform simultenous training.
- You can further tune the model generated by automated machine learning if you chose to.
- Every run (including the best run) is available as a pipeline, which you can tune further if needed.
- The model trained using Azure Databricks can be registered in Azure ML SDK workspace and then deployed to Azure managed compute (ACI or AKS) using the Azure Machine learning SDK.
Please follow our [Azure doc](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#azure-databricks) to install the sdk in your Azure Databricks cluster before trying any of the sample notebooks.
**Single file** -
The following archive contains all the sample notebooks. You can the run notebooks after importing [DBC](Databricks_AMLSDK_1-4_6.dbc) in your Databricks workspace instead of downloading individually.
Notebooks 1-4 have to be run sequentially & are related to Income prediction experiment based on this [dataset](https://archive.ics.uci.edu/ml/datasets/adult) and demonstrate how to data prep, train and operationalize a Spark ML model with Azure ML Python SDK from within Azure Databricks.
Notebook 6 is an Automated ML sample notebook for Classification.
Learn more about [how to use Azure Databricks as a development environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment#azure-databricks) for Azure Machine Learning service.
**Databricks as a Compute Target from AML Pipelines**
You can use Azure Databricks as a compute target from [Azure Machine Learning Pipelines](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines). Take a look at this notebook for details: [aml-pipelines-use-databricks-as-compute-target.ipynb](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.ipynb).
For more on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
**Please let us know your feedback.**
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/README.png)

View File

@@ -1,373 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Building"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pprint\n",
"import numpy as np\n",
"\n",
"from pyspark.ml import Pipeline, PipelineModel\n",
"from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler\n",
"from pyspark.ml.classification import LogisticRegression\n",
"from pyspark.ml.evaluation import BinaryClassificationEvaluator\n",
"from pyspark.ml.tuning import CrossValidator, ParamGridBuilder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#get the train and test datasets\n",
"train_data_path = \"AdultCensusIncomeTrain\"\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"\n",
"train = spark.read.parquet(train_data_path)\n",
"test = spark.read.parquet(test_data_path)\n",
"\n",
"print(\"train: ({}, {})\".format(train.count(), len(train.columns)))\n",
"print(\"test: ({}, {})\".format(test.count(), len(test.columns)))\n",
"\n",
"train.printSchema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Define Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label = \"income\"\n",
"dtypes = dict(train.dtypes)\n",
"dtypes.pop(label)\n",
"\n",
"si_xvars = []\n",
"ohe_xvars = []\n",
"featureCols = []\n",
"for idx,key in enumerate(dtypes):\n",
" if dtypes[key] == \"string\":\n",
" featureCol = \"-\".join([key, \"encoded\"])\n",
" featureCols.append(featureCol)\n",
" \n",
" tmpCol = \"-\".join([key, \"tmp\"])\n",
" # string-index and one-hot encode the string column\n",
" #https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/ml/feature/StringIndexer.html\n",
" #handleInvalid: Param for how to handle invalid data (unseen labels or NULL values). \n",
" #Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), \n",
" #or 'keep' (put invalid data in a special additional bucket, at index numLabels). Default: \"error\"\n",
" si_xvars.append(StringIndexer(inputCol=key, outputCol=tmpCol, handleInvalid=\"skip\"))\n",
" ohe_xvars.append(OneHotEncoder(inputCol=tmpCol, outputCol=featureCol))\n",
" else:\n",
" featureCols.append(key)\n",
"\n",
"# string-index the label column into a column named \"label\"\n",
"si_label = StringIndexer(inputCol=label, outputCol='label')\n",
"\n",
"# assemble the encoded feature columns in to a column named \"features\"\n",
"assembler = VectorAssembler(inputCols=featureCols, outputCol=\"features\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.run import Run\n",
"from azureml.core.experiment import Experiment\n",
"import numpy as np\n",
"import os\n",
"import shutil\n",
"\n",
"model_name = \"AdultCensus_runHistory.mml\"\n",
"model_dbfs = os.path.join(\"/dbfs\", model_name)\n",
"run_history_name = 'spark-ml-notebook'\n",
"\n",
"# start a training run by defining an experiment\n",
"myexperiment = Experiment(ws, \"Ignite_AI_Talk\")\n",
"root_run = myexperiment.start_logging()\n",
"\n",
"# Regularization Rates - \n",
"regs = [0.0001, 0.001, 0.01, 0.1]\n",
" \n",
"# try a bunch of regularization rate in a Logistic Regression model\n",
"for reg in regs:\n",
" print(\"Regularization rate: {}\".format(reg))\n",
" # create a bunch of child runs\n",
" with root_run.child_run(\"reg-\" + str(reg)) as run:\n",
" # create a new Logistic Regression model.\n",
" lr = LogisticRegression(regParam=reg)\n",
" \n",
" # put together the pipeline\n",
" pipe = Pipeline(stages=[*si_xvars, *ohe_xvars, si_label, assembler, lr])\n",
"\n",
" # train the model\n",
" model_p = pipe.fit(train)\n",
" \n",
" # make prediction\n",
" pred = model_p.transform(test)\n",
" \n",
" # evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
" bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
" au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
" au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
"\n",
" print(\"Area under ROC: {}\".format(au_roc))\n",
" print(\"Area Under PR: {}\".format(au_prc))\n",
" \n",
" # log reg, au_roc, au_prc and feature names in run history\n",
" run.log(\"reg\", reg)\n",
" run.log(\"au_roc\", au_roc)\n",
" run.log(\"au_prc\", au_prc)\n",
" run.log_list(\"columns\", train.columns)\n",
"\n",
" # save model\n",
" model_p.write().overwrite().save(model_name)\n",
" \n",
" # upload the serialized model into run history record\n",
" mdl, ext = model_name.split(\".\")\n",
" model_zip = mdl + \".zip\"\n",
" shutil.make_archive(mdl, 'zip', model_dbfs)\n",
" run.upload_file(\"outputs/\" + model_name, model_zip) \n",
" #run.upload_file(\"outputs/\" + model_name, path_or_stream = model_dbfs) #cannot deal with folders\n",
"\n",
" # now delete the serialized model from local folder since it is already uploaded to run history \n",
" shutil.rmtree(model_dbfs)\n",
" os.remove(model_zip)\n",
" \n",
"# Declare run completed\n",
"root_run.complete()\n",
"root_run_id = root_run.id\n",
"print (\"run id:\", root_run.id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metrics = root_run.get_metrics(recursive=True)\n",
"best_run_id = max(metrics, key = lambda k: metrics[k]['au_roc'])\n",
"print(best_run_id, metrics[best_run_id]['au_roc'], metrics[best_run_id]['reg'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Get the best run\n",
"child_runs = {}\n",
"\n",
"for r in root_run.get_children():\n",
" child_runs[r.id] = r\n",
" \n",
"best_run = child_runs[best_run_id]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Download the model from the best run to a local folder\n",
"best_model_file_name = \"best_model.zip\"\n",
"best_run.download_file(name = 'outputs/' + model_name, output_file_path = best_model_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Evaluation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##unzip the model to dbfs (as load() seems to require that) and load it.\n",
"if os.path.isfile(model_dbfs) or os.path.isdir(model_dbfs):\n",
" shutil.rmtree(model_dbfs)\n",
"shutil.unpack_archive(best_model_file_name, model_dbfs)\n",
"\n",
"model_p_best = PipelineModel.load(model_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make prediction\n",
"pred = model_p_best.transform(test)\n",
"output = pred[['hours_per_week','age','workclass','marital_status','income','prediction']]\n",
"display(output.limit(5))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
"bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
"au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
"au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
"\n",
"print(\"Area under ROC: {}\".format(au_roc))\n",
"print(\"Area Under PR: {}\".format(au_prc))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Persistence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##NOTE: by default the model is saved to and loaded from /dbfs/ instead of cwd!\n",
"model_p_best.write().overwrite().save(model_name)\n",
"print(\"saved model to {}\".format(model_dbfs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%sh\n",
"\n",
"ls -la /dbfs/AdultCensus_runHistory.mml/*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dbutils.notebook.exit(\"success\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.png)"
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"name": "build-model-run-history-03",
"notebookId": 3836944406456339
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,320 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register Azure Databricks trained model and deploy it to ACI\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please ensure you have run all previous notebooks in sequence before running this.\n",
"\n",
"Please Register Azure Container Instance(ACI) using Azure Portal: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services#portal in your subscription before using the SDK to deploy your ML model to ACI."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##NOTE: service deployment always gets the model from the current working dir.\n",
"import os\n",
"\n",
"model_name = \"AdultCensus_runHistory.mml\" # \n",
"model_name_dbfs = os.path.join(\"/dbfs\", model_name)\n",
"\n",
"print(\"copy model from dbfs to local\")\n",
"model_local = \"file:\" + os.getcwd() + \"/\" + model_name\n",
"dbutils.fs.cp(model_name, model_local, True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"mymodel = Model.register(model_path = model_name, # this points to a local file\n",
" model_name = model_name, # this is the name the model is registered as, am using same name for both path and name. \n",
" description = \"ADB trained model by Parashar\",\n",
" workspace = ws)\n",
"\n",
"print(mymodel.name, mymodel.description, mymodel.version)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#%%writefile score_sparkml.py\n",
"score_sparkml = \"\"\"\n",
" \n",
"import json\n",
" \n",
"def init():\n",
" # One-time initialization of PySpark and predictive model\n",
" import pyspark\n",
" import os\n",
" from azureml.core.model import Model\n",
" from pyspark.ml import PipelineModel\n",
" \n",
" global trainedModel\n",
" global spark\n",
" \n",
" spark = pyspark.sql.SparkSession.builder.appName(\"ADB and AML notebook by Parashar\").getOrCreate()\n",
" model_name = \"{model_name}\" #interpolated\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), model_name)\n",
" trainedModel = PipelineModel.load(model_path)\n",
" \n",
"def run(input_json):\n",
" if isinstance(trainedModel, Exception):\n",
" return json.dumps({{\"trainedModel\":str(trainedModel)}})\n",
" \n",
" try:\n",
" sc = spark.sparkContext\n",
" input_list = json.loads(input_json)\n",
" input_rdd = sc.parallelize(input_list)\n",
" input_df = spark.read.json(input_rdd)\n",
" \n",
" # Compute prediction\n",
" prediction = trainedModel.transform(input_df)\n",
" #result = prediction.first().prediction\n",
" predictions = prediction.collect()\n",
" \n",
" #Get each scored result\n",
" preds = [str(x['prediction']) for x in predictions]\n",
" result = \",\".join(preds)\n",
" # you can return any data type as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" result = str(e)\n",
" return result\n",
" \n",
"\"\"\".format(model_name=model_name)\n",
" \n",
"exec(score_sparkml)\n",
" \n",
"with open(\"score_sparkml.py\", \"w\") as file:\n",
" file.write(score_sparkml)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) # showing how to add libs as an eg. - not needed for this model.\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myacienv.serialize_to_string())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#deploy to ACI\n",
"from azureml.core.webservice import AciWebservice, Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.environment import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"\n",
"myaci_config = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
" memory_gb = 2, \n",
" tags = {'name':'Databricks Azure ML ACI'}, \n",
" description = 'This is for ADB and AML example.')\n",
"\n",
"service_name = 'aciws'\n",
"\n",
"# Remove any existing service under the same name.\n",
"try:\n",
" Webservice(ws, service_name).delete()\n",
"except WebserviceException:\n",
" pass\n",
"\n",
"myenv = Environment.get(ws, name='AzureML-PySpark-MmlSpark-0.15')\n",
"# we need to add extra packages to procured environment\n",
"# in order to deploy amended environment we need to rename it\n",
"myenv.name = 'myenv'\n",
"model_dependencies = CondaDependencies('myenv.yml')\n",
"for pip_dep in model_dependencies.pip_packages:\n",
" myenv.python.conda_dependencies.add_pip_package(pip_dep)\n",
"for conda_dep in model_dependencies.conda_packages:\n",
" myenv.python.conda_dependencies.add_conda_package(conda_dep)\n",
"inference_config = InferenceConfig(entry_script='score_sparkml.py', environment=myenv)\n",
"\n",
"myservice = Model.deploy(ws, service_name, [mymodel], inference_config, myaci_config)\n",
"myservice.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(Webservice)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#for using the Web HTTP API \n",
"print(myservice.scoring_uri)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"#get the some sample data\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"test = spark.read.parquet(test_data_path).limit(5)\n",
"\n",
"test_json = json.dumps(test.toJSON().collect())\n",
"\n",
"print(test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#using data defined above predict if income is >50K (1) or <=50K (0)\n",
"myservice.run(input_data=test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#comment to not delete the web service\n",
"myservice.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploying to other types of computes\n",
"\n",
"In order to learn how to deploy to other types of compute targets, such as AKS, please take a look at the set of notebooks in the [deployment](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment) folder."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.png)"
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"name": "deploy-to-aci-04",
"notebookId": 3836944406456376
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,179 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Ingestion"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download AdultCensusIncome.csv from Azure CDN. This file has 32,561 rows.\n",
"dataurl = \"https://amldockerdatasets.azureedge.net/AdultCensusIncome.csv\"\n",
"datafile = \"AdultCensusIncome.csv\"\n",
"datafile_dbfs = os.path.join(\"/dbfs\", datafile)\n",
"\n",
"if os.path.isfile(datafile_dbfs):\n",
" print(\"found {} at {}\".format(datafile, datafile_dbfs))\n",
"else:\n",
" print(\"downloading {} to {}\".format(datafile, datafile_dbfs))\n",
" urllib.request.urlretrieve(dataurl, datafile_dbfs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a Spark dataframe out of the csv file.\n",
"data_all = sqlContext.read.format('csv').options(header='true', inferSchema='true', ignoreLeadingWhiteSpace='true', ignoreTrailingWhiteSpace='true').load(datafile)\n",
"print(\"({}, {})\".format(data_all.count(), len(data_all.columns)))\n",
"data_all.printSchema()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#renaming columns\n",
"columns_new = [col.replace(\"-\", \"_\") for col in data_all.columns]\n",
"data_all = data_all.toDF(*columns_new)\n",
"data_all.printSchema()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(data_all.limit(5))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Preparation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose feature columns and the label column.\n",
"label = \"income\"\n",
"xvars = set(data_all.columns) - {label}\n",
"\n",
"print(\"label = {}\".format(label))\n",
"print(\"features = {}\".format(xvars))\n",
"\n",
"data = data_all.select([*xvars, label])\n",
"\n",
"# Split data into train and test.\n",
"train, test = data.randomSplit([0.75, 0.25], seed=123)\n",
"\n",
"print(\"train ({}, {})\".format(train.count(), len(train.columns)))\n",
"print(\"test ({}, {})\".format(test.count(), len(test.columns)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Persistence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Write the train and test data sets to intermediate storage\n",
"train_data_path = \"AdultCensusIncomeTrain\"\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"\n",
"train_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTrain\")\n",
"test_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTest\")\n",
"\n",
"train.write.mode('overwrite').parquet(train_data_path)\n",
"test.write.mode('overwrite').parquet(test_data_path)\n",
"print(\"train and test datasets saved to {} and {}\".format(train_data_path_dbfs, test_data_path_dbfs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.png)"
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"name": "ingest-data-02",
"notebookId": 3836944406456362
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,183 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"\n",
"**install azureml-sdk**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[databricks]`\n",
"* Select Install Library"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number - based on build number of preview/master.\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please specify the Azure subscription Id, resource group name, workspace name, and the region in which you want to create the Azure Machine Learning Workspace.\n",
"\n",
"You can get the value of your Azure subscription ID from the Azure Portal, and then selecting Subscriptions from the menu on the left.\n",
"\n",
"For the resource_group, use the name of the resource group that contains your Azure Databricks Workspace.\n",
"\n",
"NOTE: If you provide a resource group name that does not exist, the resource group will be automatically created. This may or may not succeed in your environment, depending on the permissions you have on your Azure Subscription."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# subscription_id = \"<your-subscription-id>\"\n",
"# resource_group = \"<your-existing-resource-group>\"\n",
"# workspace_name = \"<a-new-or-existing-workspace; it is unrelated to Databricks workspace>\"\n",
"# workspace_region = \"<your-resource group-region>\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set auth to be used by workspace related APIs.\n",
"# For automation or CI/CD ServicePrincipalAuthentication can be used.\n",
"# https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py\n",
"auth = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"# exist_ok checks if workspace exists or not.\n",
"\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" auth = auth,\n",
" exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#get workspace details\n",
"ws.get_details()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group,\n",
" auth = auth)\n",
"\n",
"# persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()\n",
"#if you need to give a different path/filename please use this\n",
"#write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(Workspace)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"#ws = Workspace.from_config(<full path>)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.png)"
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"name": "installation-and-configuration-01",
"notebookId": 3688394266452835
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -0,0 +1,70 @@
# Automated ML introduction
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
If you are new to Data Science, automated ML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are an experienced data scientist, automated ML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. Automated ML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
# Install Instructions using Azure Databricks :
#### For Databricks non ML runtime 7.1(scala 2.21, spark 3.0.0) and up, Install Automated Machine Learning sdk by adding and running the following command as the first cell of your notebook. This will install AutoML dependencies specific for your notebook.
%pip install --upgrade --force-reinstall -r https://aka.ms/automl_linux_requirements.txt
#### For Databricks non ML runtime 7.0 and lower, Install Automated Machine Learning sdk using init script as shown below before running the notebook.**
**Create the Azure Databricks cluster-scoped init script 'azureml-cluster-init.sh' as below
1. Create the base directory you want to store the init script in if it does not exist.
```
dbutils.fs.mkdirs("dbfs:/databricks/init/")
```
2. Create the script azureml-cluster-init.sh
```
dbutils.fs.put("/databricks/init/azureml-cluster-init.sh","""
#!/bin/bash
set -ex
/databricks/python/bin/pip install --upgrade --force-reinstall -r https://aka.ms/automl_linux_requirements.txt
""", True)
```
3. Check that the script exists.
```
display(dbutils.fs.ls("dbfs:/databricks/init/azureml-cluster-init.sh"))
```
**Install libraries to cluster using init script 'azureml-cluster-init.sh' created in previous step
1. Configure the cluster to run the script.
* Using the cluster configuration page
1. On the cluster configuration page, click the Advanced Options toggle.
1. At the bottom of the page, click the Init Scripts tab.
1. In the Destination drop-down, select a destination type. Example: 'DBFS'
1. Specify a path to the init script.
```
dbfs:/databricks/init/azureml-cluster-init.sh
```
1. Click Add
* Using the API.
```
curl -n -X POST -H 'Content-Type: application/json' -d '{
"cluster_id": "<cluster_id>",
"num_workers": <num_workers>,
"spark_version": "<spark_version>",
"node_type_id": "<node_type_id>",
"cluster_log_conf": {
"dbfs" : {
"destination": "dbfs:/cluster-logs"
}
},
"init_scripts": [ {
"dbfs": {
"destination": "dbfs:/databricks/init/azureml-cluster-init.sh"
}
} ]
}' https://<databricks-instance>/api/2.0/clusters/edit
```

View File

@@ -13,12 +13,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"## AutoML Installation\n",
"\n",
"**install azureml-sdk with Automated ML**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl]`\n",
"* Select Install Library"
"**For Databricks non ML runtime 7.1(scala 2.21, spark 3.0.0) and up, Install AML sdk by running the following command in the first cell of the notebook.**\n",
"\n",
"%pip install --upgrade --force-reinstall -r https://aka.ms/automl_linux_requirements.txt\n",
"\n",
"**For Databricks non ML runtime 7.0 and lower, Install AML sdk using init script as shown in [readme](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/automl/README.md) before running this notebook.**\n"
]
},
{

View File

@@ -13,12 +13,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"## AutoML Installation\n",
"\n",
"**install azureml-sdk with Automated ML**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl]`\n",
"* Select Install Library"
"**For Databricks non ML runtime 7.1(scala 2.21, spark 3.0.0) and up, Install AML sdk by running the following command in the first cell of the notebook.**\n",
"\n",
"%pip install --upgrade --force-reinstall -r https://aka.ms/automl_linux_requirements.txt\n",
"\n",
"**For Databricks non ML runtime 7.0 and lower, Install AML sdk using init script as shown in [readme](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/automl/README.md) before running this notebook.**"
]
},
{

View File

@@ -1,719 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Using Databricks as a Compute Target from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from [Azure Machine Learning Pipeline](https://aka.ms/pl-concept), a [DatabricksStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py) is used. This notebook demonstrates the use of DatabricksStep in Azure Machine Learning Pipeline.\n",
"\n",
"The notebook will show:\n",
"1. Running an arbitrary Databricks notebook that the customer has in Databricks workspace\n",
"2. Running an arbitrary Python script that the customer has in DBFS\n",
"3. Running an arbitrary Python script that is available on local computer (will upload to DBFS, and then run in Databricks) \n",
"4. Running a JAR job that the customer has in DBFS.\n",
"\n",
"## Before you begin:\n",
"\n",
"1. **Create an Azure Databricks workspace** in the same subscription where you have your Azure Machine Learning workspace. You will need details of this workspace later on to define DatabricksStep. [Click here](https://ms.portal.azure.com/#blade/HubsExtension/Resources/resourceType/Microsoft.Databricks%2Fworkspaces) for more information.\n",
"2. **Create PAT (access token)**: Manually create a Databricks access token at the Azure Databricks portal. See [this](https://docs.databricks.com/api/latest/authentication.html#generate-a-token) for more information.\n",
"3. **Add demo notebook to ADB**: This notebook has a sample you can use as is. Launch Azure Databricks attached to your Azure Machine Learning workspace and add a new notebook. \n",
"4. **Create/attach a Blob storage** for use from ADB"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add demo notebook to ADB Workspace\n",
"Copy and paste the below code to create a new notebook in your ADB workspace."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# direct access\n",
"dbutils.widgets.get(\"myparam\")\n",
"p = getArgument(\"myparam\")\n",
"print (\"Param -\\'myparam':\")\n",
"print (p)\n",
"\n",
"dbutils.widgets.get(\"input\")\n",
"i = getArgument(\"input\")\n",
"print (\"Param -\\'input':\")\n",
"print (i)\n",
"\n",
"dbutils.widgets.get(\"output\")\n",
"o = getArgument(\"output\")\n",
"print (\"Param -\\'output':\")\n",
"print (o)\n",
"\n",
"n = i + \"/testdata.txt\"\n",
"df = spark.read.csv(n)\n",
"\n",
"display (df)\n",
"\n",
"data = [('value1', 'value2')]\n",
"df2 = spark.createDataFrame(data)\n",
"\n",
"z = o + \"/output.txt\"\n",
"df2.write.csv(z)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"from azureml.core.runconfig import JarLibrary\n",
"from azureml.core.compute import ComputeTarget, DatabricksCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.pipeline.steps import DatabricksStep\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Attach Databricks compute target\n",
"Next, you need to add your Databricks workspace to Azure Machine Learning as a compute target and give it a name. You will use this name to refer to your Databricks workspace compute target inside Azure Machine Learning.\n",
"\n",
"- **Resource Group** - The resource group name of your Azure Machine Learning workspace\n",
"- **Databricks Workspace Name** - The workspace name of your Azure Databricks workspace\n",
"- **Databricks Access Token** - The access token you created in ADB\n",
"\n",
"**The Databricks workspace need to be present in the same subscription as your AML workspace**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Replace with your account info before running.\n",
" \n",
"db_compute_name=os.getenv(\"DATABRICKS_COMPUTE_NAME\", \"<my-databricks-compute-name>\") # Databricks compute name\n",
"db_resource_group=os.getenv(\"DATABRICKS_RESOURCE_GROUP\", \"<my-db-resource-group>\") # Databricks resource group\n",
"db_workspace_name=os.getenv(\"DATABRICKS_WORKSPACE_NAME\", \"<my-db-workspace-name>\") # Databricks workspace name\n",
"db_access_token=os.getenv(\"DATABRICKS_ACCESS_TOKEN\", \"<my-access-token>\") # Databricks access token\n",
" \n",
"try:\n",
" databricks_compute = DatabricksCompute(workspace=ws, name=db_compute_name)\n",
" print('Compute target {} already exists'.format(db_compute_name))\n",
"except ComputeTargetException:\n",
" print('Compute not found, will use below parameters to attach new one')\n",
" print('db_compute_name {}'.format(db_compute_name))\n",
" print('db_resource_group {}'.format(db_resource_group))\n",
" print('db_workspace_name {}'.format(db_workspace_name))\n",
" print('db_access_token {}'.format(db_access_token))\n",
" \n",
" config = DatabricksCompute.attach_configuration(\n",
" resource_group = db_resource_group,\n",
" workspace_name = db_workspace_name,\n",
" access_token= db_access_token)\n",
" databricks_compute=ComputeTarget.attach(ws, db_compute_name, config)\n",
" databricks_compute.wait_for_completion(True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Connections with Inputs and Outputs\n",
"The DatabricksStep supports Azure Bloband ADLS for inputs and outputs. You also will need to define a [Secrets](https://docs.azuredatabricks.net/user-guide/secrets/index.html) scope to enable authentication to external data sources such as Blob and ADLS from Databricks.\n",
"\n",
"- Databricks documentation on [Azure Blob](https://docs.azuredatabricks.net/spark/latest/data-sources/azure/azure-storage.html)\n",
"- Databricks documentation on [ADLS](https://docs.databricks.com/spark/latest/data-sources/azure/azure-datalake.html)\n",
"\n",
"### Type of Data Access\n",
"Databricks allows to interact with Azure Blob and ADLS in two ways.\n",
"- **Direct Access**: Databricks allows you to interact with Azure Blob or ADLS URIs directly. The input or output URIs will be mapped to a Databricks widget param in the Databricks notebook.\n",
"- **Mounting**: You will be supplied with additional parameters and secrets that will enable you to mount your ADLS or Azure Blob input or output location in your Databricks notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Direct Access: Python sample code\n",
"If you have a data reference named \"input\" it will represent the URI of the input and you can access it directly in the Databricks python notebook like so:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"dbutils.widgets.get(\"input\")\n",
"y = getArgument(\"input\")\n",
"df = spark.read.csv(y)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for Azure Blob\n",
"Given an Azure Blob data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\")\n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# How to get the input datastore name inside ADB notebook\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contians an access key or sas for the Azure Blob input (this name is obtained by appending \n",
"# the name of the input with \"_blob_secretname\". \n",
"dbutils.widgets.get(\"input_blob_secretname\") \n",
"myinput_blob_secretname = getArgument(\"input_blob_secretname\")\n",
"\n",
"# This contains the required configuration for mounting\n",
"dbutils.widgets.get(\"input_blob_config\")\n",
"myinput_blob_config = getArgument(\"input_blob_config\")\n",
"\n",
"# Usage\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/input\",\n",
" extra_configs = {myinput_blob_config:dbutils.secrets.get(scope = \"amlscope\", key = myinput_blob_secretname)})\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mounting: Python sample code for ADLS\n",
"Given an ADLS data reference named \"input\" the following widget params will be made available in the Databricks notebook:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"# This contains the input URI\n",
"dbutils.widgets.get(\"input\") \n",
"myinput_uri = getArgument(\"input\")\n",
"\n",
"# This contains the client id for the service principal \n",
"# that has access to the adls input\n",
"dbutils.widgets.get(\"input_adls_clientid\") \n",
"myinput_adls_clientid = getArgument(\"input_adls_clientid\")\n",
"\n",
"# This contains the name of a Databricks secret (in the predefined \"amlscope\" secret scope) \n",
"# that contains the secret for the above mentioned service principal\n",
"dbutils.widgets.get(\"input_adls_secretname\") \n",
"myinput_adls_secretname = getArgument(\"input_adls_secretname\")\n",
"\n",
"# This contains the refresh url for the mounting configs\n",
"dbutils.widgets.get(\"input_adls_refresh_url\") \n",
"myinput_adls_refresh_url = getArgument(\"input_adls_refresh_url\")\n",
"\n",
"# Usage \n",
"configs = {\"dfs.adls.oauth2.access.token.provider.type\": \"ClientCredential\",\n",
" \"dfs.adls.oauth2.client.id\": myinput_adls_clientid,\n",
" \"dfs.adls.oauth2.credential\": dbutils.secrets.get(scope = \"amlscope\", key =myinput_adls_secretname),\n",
" \"dfs.adls.oauth2.refresh.url\": myinput_adls_refresh_url}\n",
"\n",
"dbutils.fs.mount(\n",
" source = myinput_uri,\n",
" mount_point = \"/mnt/output\",\n",
" extra_configs = configs)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use Databricks from Azure Machine Learning Pipeline\n",
"To use Databricks as a compute target from Azure Machine Learning Pipeline, a DatabricksStep is used. Let's define a datasource (via DataReference) and intermediate data (via PipelineData) to be used in DatabricksStep."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default blob storage\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print('Datastore {} will be used'.format(def_blob_store.name))\n",
"\n",
"# We are uploading a sample file in the local directory to be used as a datasource\n",
"def_blob_store.upload_files(files=[\"./testdata.txt\"], target_path=\"dbtest\", overwrite=False)\n",
"\n",
"step_1_input = DataReference(datastore=def_blob_store, path_on_datastore=\"dbtest\",\n",
" data_reference_name=\"input\")\n",
"\n",
"step_1_output = PipelineData(\"output\", datastore=def_blob_store)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Add a DatabricksStep\n",
"Adds a Databricks notebook as a step in a Pipeline.\n",
"- ***name:** Name of the Module\n",
"- **inputs:** List of input connections for data consumed by this step. Fetch this inside the notebook using dbutils.widgets.get(\"input\")\n",
"- **outputs:** List of output port definitions for outputs produced by this step. Fetch this inside the notebook using dbutils.widgets.get(\"output\")\n",
"- **existing_cluster_id:** Cluster ID of an existing Interactive cluster on the Databricks workspace. If you are providing this, do not provide any of the parameters below that are used to create a new cluster such as spark_version, node_type, etc.\n",
"- **spark_version:** Version of spark for the databricks run cluster. default value: 4.0.x-scala2.11\n",
"- **node_type:** Azure vm node types for the databricks run cluster. default value: Standard_D3_v2\n",
"- **num_workers:** Specifies a static number of workers for the databricks run cluster\n",
"- **min_workers:** Specifies a min number of workers to use for auto-scaling the databricks run cluster\n",
"- **max_workers:** Specifies a max number of workers to use for auto-scaling the databricks run cluster\n",
"- **spark_env_variables:** Spark environment variables for the databricks run cluster (dictionary of {str:str}). default value: {'PYSPARK_PYTHON': '/databricks/python3/bin/python3'}\n",
"- **notebook_path:** Path to the notebook in the databricks instance. If you are providing this, do not provide python script related paramaters or JAR related parameters.\n",
"- **notebook_params:** Parameters for the databricks notebook (dictionary of {str:str}). Fetch this inside the notebook using dbutils.widgets.get(\"myparam\")\n",
"- **python_script_path:** The path to the python script in the DBFS or S3. If you are providing this, do not provide python_script_name which is used for uploading script from local machine.\n",
"- **python_script_params:** Parameters for the python script (list of str)\n",
"- **main_class_name:** The name of the entry point in a JAR module. If you are providing this, do not provide any python script or notebook related parameters.\n",
"- **jar_params:** Parameters for the JAR module (list of str)\n",
"- **python_script_name:** name of a python script on your local machine (relative to source_directory). If you are providing this do not provide python_script_path which is used to execute a remote python script; or any of the JAR or notebook related parameters.\n",
"- **source_directory:** folder that contains the script and other files\n",
"- **hash_paths:** list of paths to hash to detect a change in source_directory (script file is always hashed)\n",
"- **run_name:** Name in databricks for this run\n",
"- **timeout_seconds:** Timeout for the databricks run\n",
"- **runconfig:** Runconfig to use. Either pass runconfig or each library type as a separate parameter but do not mix the two\n",
"- **maven_libraries:** maven libraries for the databricks run\n",
"- **pypi_libraries:** pypi libraries for the databricks run\n",
"- **egg_libraries:** egg libraries for the databricks run\n",
"- **jar_libraries:** jar libraries for the databricks run\n",
"- **rcran_libraries:** rcran libraries for the databricks run\n",
"- **compute_target:** Azure Databricks compute\n",
"- **allow_reuse:** Whether the step should reuse previous results when run with the same settings/inputs\n",
"- **version:** Optional version tag to denote a change in functionality for the step\n",
"\n",
"\\* *denotes required fields* \n",
"*You must provide exactly one of num_workers or min_workers and max_workers paramaters* \n",
"*You must provide exactly one of databricks_compute or databricks_compute_name parameters*\n",
"\n",
"## Use runconfig to specify library dependencies\n",
"You can use a runconfig to specify the library dependencies for your cluster in Databricks. The runconfig will contain a databricks section as follows:\n",
"\n",
"```yaml\n",
"environment:\n",
"# Databricks details\n",
" databricks:\n",
"# List of maven libraries.\n",
" mavenLibraries:\n",
" - coordinates: org.jsoup:jsoup:1.7.1\n",
" repo: ''\n",
" exclusions:\n",
" - slf4j:slf4j\n",
" - '*:hadoop-client'\n",
"# List of PyPi libraries\n",
" pypiLibraries:\n",
" - package: beautifulsoup4\n",
" repo: ''\n",
"# List of RCran libraries\n",
" rcranLibraries:\n",
" -\n",
"# Coordinates.\n",
" package: ada\n",
"# Repo\n",
" repo: http://cran.us.r-project.org\n",
"# List of JAR libraries\n",
" jarLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.jar\n",
"# List of Egg libraries\n",
" eggLibraries:\n",
" -\n",
"# Coordinates.\n",
" library: dbfs:/mnt/libraries/library.egg\n",
"```\n",
"\n",
"You can then create a RunConfiguration object using this file and pass it as the runconfig parameter to DatabricksStep.\n",
"```python\n",
"from azureml.core.runconfig import RunConfiguration\n",
"\n",
"runconfig = RunConfiguration()\n",
"runconfig.load(path='<directory_where_runconfig_is_stored>', name='<runconfig_file_name>')\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Running the demo notebook already added to the Databricks workspace\n",
"Create a notebook in the Azure Databricks workspace, and provide the path to that notebook as the value associated with the environment variable \"DATABRICKS_NOTEBOOK_PATH\". This will then set the variable\u00c2\u00a0notebook_path\u00c2\u00a0when you run the code cell below:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"databricksstep-remarks-sample"
]
},
"outputs": [],
"source": [
"notebook_path=os.getenv(\"DATABRICKS_NOTEBOOK_PATH\", \"<my-databricks-notebook-path>\") # Databricks notebook path\n",
"\n",
"dbNbStep = DatabricksStep(\n",
" name=\"DBNotebookInWS\",\n",
" inputs=[step_1_input],\n",
" outputs=[step_1_output],\n",
" num_workers=1,\n",
" notebook_path=notebook_path,\n",
" notebook_params={'myparam': 'testparam'},\n",
" run_name='DB_Notebook_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbNbStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Notebook_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Running a Python script from DBFS\n",
"This shows how to run a Python script in DBFS. \n",
"\n",
"To complete this, you will need to first upload the Python script in your local machine to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html). The CLI command is given below:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.py dbfs:/train-db-dbfs.py\n",
"```\n",
"\n",
"The code in the below cell assumes that you have completed the previous step of uploading the script `train-db-dbfs.py` to the root folder in DBFS."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_path = os.getenv(\"DATABRICKS_PYTHON_SCRIPT_PATH\", \"<my-databricks-python-script-path>\") # Databricks python script path\n",
"\n",
"dbPythonInDbfsStep = DatabricksStep(\n",
" name=\"DBPythonInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_path=python_script_path,\n",
" python_script_params={'--input_data'},\n",
" run_name='DB_Python_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbPythonInDbfsStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Python_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Running a Python script in Databricks that currenlty is in local computer\n",
"To run a Python script that is currently in your local computer, follow the instructions below. \n",
"\n",
"The commented out code below code assumes that you have `train-db-local.py` in the `scripts` subdirectory under the current working directory.\n",
"\n",
"In this case, the Python script will be uploaded first to DBFS, and then the script will be run in Databricks."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"python_script_name = \"train-db-local.py\"\n",
"source_directory = \".\"\n",
"\n",
"dbPythonInLocalMachineStep = DatabricksStep(\n",
" name=\"DBPythonInLocalMachine\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" python_script_name=python_script_name,\n",
" source_directory=source_directory,\n",
" run_name='DB_Python_Local_demo',\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbPythonInLocalMachineStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_Python_Local_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Running a JAR job that is alreay added in DBFS\n",
"To run a JAR job that is already uploaded to DBFS, follow the instructions below. You will first upload the JAR file to DBFS using the [CLI](https://docs.azuredatabricks.net/user-guide/dbfs-databricks-file-system.html).\n",
"\n",
"The commented out code in the below cell assumes that you have uploaded `train-db-dbfs.jar` to the root folder in DBFS. You can upload `train-db-dbfs.jar` to the root folder in DBFS using this commandline so you can use `jar_library_dbfs_path = \"dbfs:/train-db-dbfs.jar\"`:\n",
"\n",
"```\n",
"dbfs cp ./train-db-dbfs.jar dbfs:/train-db-dbfs.jar\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"main_jar_class_name = \"com.microsoft.aeva.Main\"\n",
"jar_library_dbfs_path = os.getenv(\"DATABRICKS_JAR_LIB_PATH\", \"<my-databricks-jar-lib-path>\") # Databricks jar library path\n",
"\n",
"dbJarInDbfsStep = DatabricksStep(\n",
" name=\"DBJarInDBFS\",\n",
" inputs=[step_1_input],\n",
" num_workers=1,\n",
" main_class_name=main_jar_class_name,\n",
" jar_params={'arg1', 'arg2'},\n",
" run_name='DB_JAR_demo',\n",
" jar_libraries=[JarLibrary(jar_library_dbfs_path)],\n",
" compute_target=databricks_compute,\n",
" allow_reuse=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Build and submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"steps = [dbJarInDbfsStep]\n",
"pipeline = Pipeline(workspace=ws, steps=steps)\n",
"pipeline_run = Experiment(ws, 'DB_JAR_demo').submit(pipeline)\n",
"pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](https://aka.ms/pl-adla) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.png)"
]
}
],
"metadata": {
"authors": [
{
"name": "diray"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,5 +0,0 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
print("In train.py")
print("As a data scientist, this is where I use my training code.")

View File

@@ -1,5 +0,0 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
print("In train.py")
print("As a data scientist, this is where I use my training code.")

View File

@@ -1,36 +0,0 @@
## Examples to get started with Azure Machine Learning SDK for R
Learn how to use Azure Machine Learning SDK for R for experimentation and model management.
As a pre-requisite, go through the [Installation](vignettes/installation.Rmd) and [Configuration](vignettes/configuration.Rmd) vignettes to first install the package and set up your Azure Machine Learning Workspace unless you are running these examples on an Azure Machine Learning compute instance. Azure Machine Learning compute instances have the Azure Machine Learning SDK pre-installed and your workspace details pre-configured.
Samples
* Deployment
* [deploy-to-aci](./samples/deployment/deploy-to-aci): Deploy a model as a web service to Azure Container Instances (ACI).
* [deploy-to-local](./samples/deployment/deploy-to-local): Deploy a model as a web service locally.
* Training
* [train-on-amlcompute](./samples/training/train-on-amlcompute): Train a model on a remote AmlCompute cluster.
* [train-on-local](./samples/training/train-on-local): Train a model locally with Docker.
Vignettes
* [deploy-to-aks](./vignettes/deploy-to-aks): Production deploy a model as a web service to Azure Kubernetes Service (AKS).
* [hyperparameter-tune-with-keras](./vignettes/hyperparameter-tune-with-keras): Hyperparameter tune a Keras model using HyperDrive, Azure ML's hyperparameter tuning functionality.
* [train-and-deploy-to-aci](./vignettes/train-and-deploy-to-aci): Train a caret model and deploy as a web service to Azure Container Instances (ACI).
* [train-with-tensorflow](./vignettes/train-with-tensorflow): Train a deep learning TensorFlow model with Azure ML.
Find more information on the [official documentation site for Azure Machine Learning SDK for R](https://azure.github.io/azureml-sdk-for-r/).
### Troubleshooting
- If the following error occurs when submitting an experiment using RStudio:
```R
Error in py_call_impl(callable, dots$args, dots$keywords) :
PermissionError: [Errno 13] Permission denied
```
Move the files for your project into a subdirectory and reset the working directory to that directory before re-submitting.
In order to submit an experiment, the Azure ML SDK must create a .zip file of the project directory to send to the service. However,
the SDK does not have permission to write into the .Rproj.user subdirectory that is automatically created during an RStudio
session. For this reason, the recommended best practice is to isolate project files into their own directory.

View File

@@ -1,11 +0,0 @@
## Azure Machine Learning samples
These samples are short code examples for using Azure Machine Learning SDK for R. If you are new to the R SDK, we recommend that you first take a look at the more detailed end-to-end [vignettes](../vignettes).
Before running a sample in RStudio, set the working directory to the folder that contains the sample script in RStudio using `setwd(dirname)` or Session -> Set Working Directory -> To Source File Location. Each vignette assumes that the data and scripts are in the current working directory.
1. [train-on-amlcompute](training/train-on-amlcompute): Train a model on a remote AmlCompute cluster.
2. [train-on-local](training/train-on-local): Train a model locally with Docker.
2. [deploy-to-aci](deployment/deploy-to-aci): Deploy a model as a web service to Azure Container Instances (ACI).
3. [deploy-to-local](deployment/deploy-to-local): Deploy a model as a web service locally.
> Before you run these samples, make sure you have an Azure Machine Learning workspace. You can follow the [configuration vignette](../vignettes/configuration.Rmd) to set up a workspace. (You do not need to do this if you are running these examples on an Azure Machine Learning compute instance).

View File

@@ -1,59 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
library(azuremlsdk)
library(jsonlite)
ws <- load_workspace_from_config()
# Register the model
model <- register_model(ws, model_path = "project_files/model.rds",
model_name = "model.rds")
# Create environment
r_env <- r_environment(name = "r_env")
# Create inference config
inference_config <- inference_config(
entry_script = "score.R",
source_directory = "project_files",
environment = r_env)
# Create ACI deployment config
deployment_config <- aci_webservice_deployment_config(cpu_cores = 1,
memory_gb = 1)
# Deploy the web service
service <- deploy_model(ws,
'rservice',
list(model),
inference_config,
deployment_config)
wait_for_deployment(service, show_output = TRUE)
# If you encounter any issue in deploying the webservice, please visit
# https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment
# Inferencing
# versicolor
plant <- data.frame(Sepal.Length = 6.4,
Sepal.Width = 2.8,
Petal.Length = 4.6,
Petal.Width = 1.8)
# setosa
plant <- data.frame(Sepal.Length = 5.1,
Sepal.Width = 3.5,
Petal.Length = 1.4,
Petal.Width = 0.2)
# virginica
plant <- data.frame(Sepal.Length = 6.7,
Sepal.Width = 3.3,
Petal.Length = 5.2,
Petal.Width = 2.3)
# Test the web service
predicted_val <- invoke_webservice(service, toJSON(plant))
predicted_val
# Delete the web service
delete_webservice(service)

View File

@@ -1,17 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
library(jsonlite)
init <- function() {
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("model is loaded")
function(data) {
plant <- as.data.frame(fromJSON(data))
prediction <- predict(model, plant)
result <- as.character(prediction)
toJSON(result)
}
}

View File

@@ -1,112 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
# Register model and deploy locally
# This example shows how to deploy a web service in step-by-step fashion:
#
# 1) Register model
# 2) Deploy the model as a web service in a local Docker container.
# 3) Invoke web service with SDK or call web service with raw HTTP call.
# 4) Quickly test changes to your entry script by reloading the local service.
# 5) Optionally, you can also make changes to model and update the local service.
library(azuremlsdk)
library(jsonlite)
ws <- load_workspace_from_config()
# Register the model
model <- register_model(ws, model_path = "project_files/model.rds",
model_name = "model.rds")
# Create environment
r_env <- r_environment(name = "r_env")
# Create inference config
inference_config <- inference_config(
entry_script = "score.R",
source_directory = "project_files",
environment = r_env)
# Create local deployment config
local_deployment_config <- local_webservice_deployment_config()
# Deploy the web service
# NOTE:
# The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:
# # PowerShell command to switch to Linux engine
# & 'C:\Program Files\Docker\Docker\DockerCli.exe' -SwitchLinuxEngine
service <- deploy_model(ws,
'rservice-local',
list(model),
inference_config,
local_deployment_config)
# Wait for deployment
wait_for_deployment(service, show_output = TRUE)
# Show the port of local service
message(service$port)
# If you encounter any issue in deploying the webservice, please visit
# https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment
# Inferencing
# versicolor
# plant <- data.frame(Sepal.Length = 6.4,
# Sepal.Width = 2.8,
# Petal.Length = 4.6,
# Petal.Width = 1.8)
# setosa
plant <- data.frame(Sepal.Length = 5.1,
Sepal.Width = 3.5,
Petal.Length = 1.4,
Petal.Width = 0.2)
# # virginica
# plant <- data.frame(Sepal.Length = 6.7,
# Sepal.Width = 3.3,
# Petal.Length = 5.2,
# Petal.Width = 2.3)
#Test the web service
invoke_webservice(service, toJSON(plant))
## The last few lines of the logs should have the correct prediction and should display -> R[write to console]: "setosa"
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
## Test the web service with a HTTP Raw request
#
# NOTE:
# To test the service locally use the https://localhost:<local_service$port> URL
# Import the request library
library(httr)
# Get the service scoring URL from the service object, its URL is for testing locally
local_service_url <- service$scoring_uri #Same as https://localhost:<local_service$port>
#POST request to web service
resp <- POST(local_service_url, body = plant, encode = "json", verbose())
## The last few lines of the logs should have the correct prediction and should display -> R[write to console]: "setosa"
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
# Optional, use a new scoring script
inference_config <- inference_config(
entry_script = "score_new.R",
source_directory = "project_files",
environment = r_env)
## Then reload the service to see the changes made
reload_local_webservice_assets(service)
## Check reloaded service, you will see the last line will say "this is a new scoring script! I was reloaded"
invoke_webservice(service, toJSON(plant))
cat(gsub(pattern = "\n", replacement = " \n", x = get_webservice_logs(service)))
# Update service
# If you want to change your model(s), environment, or deployment configuration, call update() to rebuild the Docker image.
# update_local_webservice(service, models = [NewModelObject], deployment_config = deployment_config, wait = FALSE, inference_config = inference_config)
# Delete service
delete_local_webservice(service)

View File

@@ -1,18 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
library(jsonlite)
init <- function() {
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("model is loaded")
function(data) {
plant <- as.data.frame(fromJSON(data))
prediction <- predict(model, plant)
result <- as.character(prediction)
message(result)
toJSON(result)
}
}

View File

@@ -1,19 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
library(jsonlite)
init <- function() {
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("model is loaded")
function(data) {
plant <- as.data.frame(fromJSON(data))
prediction <- predict(model, plant)
result <- as.character(prediction)
message(result)
message("this is a new scoring script! I was reloaded")
toJSON(result)
}
}

View File

@@ -1,34 +0,0 @@
# This script loads a dataset of which the last column is supposed to be the
# class and logs the accuracy
library(azuremlsdk)
library(caret)
library(optparse)
library(datasets)
iris_data <- data(iris)
summary(iris_data)
in_train <- createDataPartition(y = iris_data$Species, p = .8, list = FALSE)
train_data <- iris_data[in_train,]
test_data <- iris_data[-in_train,]
# Run algorithms using 10-fold cross validation
control <- trainControl(method = "cv", number = 10)
metric <- "Accuracy"
set.seed(7)
model <- train(Species ~ .,
data = train_data,
method = "lda",
metric = metric,
trControl = control)
predictions <- predict(model, test_data)
conf_matrix <- confusionMatrix(predictions, test_data$Species)
message(conf_matrix)
log_metric_to_run(metric, conf_matrix$overall["Accuracy"])
saveRDS(model, file = "./outputs/model.rds")
message("Model saved")

View File

@@ -1,41 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
# Reminder: set working directory to current file location prior to running this script
library(azuremlsdk)
ws <- load_workspace_from_config()
# Create AmlCompute cluster
cluster_name <- "r-cluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target)) {
vm_size <- "STANDARD_D2_V2"
compute_target <- create_aml_compute(workspace = ws,
cluster_name = cluster_name,
vm_size = vm_size,
max_nodes = 1)
wait_for_provisioning_completion(compute_target, show_output = TRUE)
}
# Define estimator
est <- estimator(source_directory = "scripts",
entry_script = "train.R",
compute_target = compute_target)
experiment_name <- "train-r-script-on-amlcompute"
exp <- experiment(ws, experiment_name)
# Submit job and display the run details
run <- submit_experiment(exp, est)
view_run_details(run)
wait_for_run_completion(run, show_output = TRUE)
# Get the run metrics
metrics <- get_run_metrics(run)
metrics
# Delete cluster
delete_compute(compute_target)

View File

@@ -1,28 +0,0 @@
# This script loads a dataset of which the last column is supposed to be the
# class and logs the accuracy
library(azuremlsdk)
library(caret)
library(datasets)
iris_data <- data(iris)
summary(iris_data)
in_train <- createDataPartition(y = iris_data$Species, p = .8, list = FALSE)
train_data <- iris_data[in_train,]
test_data <- iris_data[-in_train,]
# Run algorithms using 10-fold cross validation
control <- trainControl(method = "cv", number = 10)
metric <- "Accuracy"
set.seed(7)
model <- train(Species ~ .,
data = train_data,
method = "lda",
metric = metric,
trControl = control)
predictions <- predict(model, test_data)
conf_matrix <- confusionMatrix(predictions, test_data$Species)
message(conf_matrix)
log_metric_to_run(metric, conf_matrix$overall["Accuracy"])

View File

@@ -1,26 +0,0 @@
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
# Reminder: set working directory to current file location prior to running this script
library(azuremlsdk)
ws <- load_workspace_from_config()
# Define estimator
est <- estimator(source_directory = "scripts",
entry_script = "train.R",
compute_target = "local")
# Initialize experiment
experiment_name <- "train-r-script-on-local"
exp <- experiment(ws, experiment_name)
# Submit job and display the run details
run <- submit_experiment(exp, est)
view_run_details(run)
wait_for_run_completion(run, show_output = TRUE)
# Get the run metrics
metrics <- get_run_metrics(run)
metrics

View File

@@ -1,17 +0,0 @@
## Azure Machine Learning vignettes
These vignettes are end-to-end tutorials for using Azure Machine Learning SDK for R.
Before running a vignette in RStudio, set the working directory to the folder that contains the vignette file (.Rmd file) in RStudio using `setwd(dirname)` or Session -> Set Working Directory -> To Source File Location. Each vignette assumes that the data and scripts are in the current working directory.
The following vignettes are included:
1. [installation](installation.Rmd): Install the Azure ML SDK for R.
2. [configuration](configuration.Rmd): Set up an Azure ML workspace.
3. [train-and-deploy-to-aci](train-and-deploy-to-aci): Train a caret model and deploy as a web service to Azure Container Instances (ACI).
4. [train-with-tensorflow](train-with-tensorflow/): Train a deep learning TensorFlow model with Azure ML.
5. [hyperparameter-tune-with-keras](hyperparameter-tune-with-keras/): Hyperparameter tune a Keras model using HyperDrive, Azure ML's hyperparameter tuning functionality.
6. [deploy-to-aks](deploy-to-aks/): Production deploy a model as a web service to Azure Kubernetes Service (AKS).
> Before you run these samples, make sure you have an Azure Machine Learning workspace. You can follow the [configuration vignette](../vignettes/configuration.Rmd) to set up a workspace. (You do not need to do this if you are running these examples on an Azure Machine Learning compute instance).
For additional examples on using the R SDK, see the [samples](../samples) folder.

View File

@@ -1,108 +0,0 @@
---
title: "Set up an Azure ML workspace"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Set up an Azure ML workspace}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
This tutorial gets you started with the Azure Machine Learning service by walking through the requirements and instructions for setting up a workspace, the top-level resource for Azure ML.
You do not need run this if you are working on an Azure Machine Learning Compute Instance, as the compute instance is already associated with an existing workspace.
## What is an Azure ML workspace?
The workspace is the top-level resource for Azure ML, providing a centralized place to work with all the artifacts you create when you use Azure ML. The workspace keeps a history of all training runs, including logs, metrics, output, and a snapshot of your scripts.
When you create a new workspace, it automatically creates several Azure resources that are used by the workspace:
* Azure Container Registry: Registers docker containers that you use during training and when you deploy a model. To minimize costs, ACR is lazy-loaded until deployment images are created.
* Azure Storage account: Used as the default datastore for the workspace.
* Azure Application Insights: Stores monitoring information about your models.
* Azure Key Vault: Stores secrets that are used by compute targets and other sensitive information that's needed by the workspace.
## Setup
This section describes the steps required before you can access any Azure ML service functionality.
### Azure subscription
In order to create an Azure ML workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com/). Later in this tutorial you will need information such as your subscription ID in order to create and access workspaces.
### Azure ML SDK installation
Follow the [installation guide](https://azure.github.io/azureml-sdk-for-r/articles/installation.html) to install **azuremlsdk** on your machine.
## Configure your workspace
### Workspace parameters
To use an Azure ML workspace, you will need to supply the following information:
* Your subscription ID
* A resource group name
* (Optional) The region that will host your workspace
* A name for your workspace
You can get your subscription ID from the [Azure portal](https://portal.azure.com/).
You will also need access to a [resource group](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the Azure portal. If you don't have a resource group, the `create_workspace()` method will create one for you using the name you provide.
The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.
The name for your workspace is unique within the subscription and should be descriptive enough to discern among other workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.
The following code chunk allows you to specify your workspace parameters. It uses `Sys.getenv` to read values from environment variables, which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. Replace the default values in the code below with your default parameter values.
``` {r configure_parameters, eval=FALSE}
subscription_id <- Sys.getenv("SUBSCRIPTION_ID", unset = "<my-subscription-id>")
resource_group <- Sys.getenv("RESOURCE_GROUP", default="<my-resource-group>")
workspace_name <- Sys.getenv("WORKSPACE_NAME", default="<my-workspace-name>")
workspace_region <- Sys.getenv("WORKSPACE_REGION", default="eastus2")
```
### Create a new workspace
If you don't have an existing workspace and are the owner of the subscription or resource group, you can create a new workspace. If you don't have a resource group, `create_workspace()` will create one for you using the name you provide. If you don't want it to do so, set the `create_resource_group = FALSE` parameter.
Note: As with other Azure services, there are limits on certain resources (e.g. AmlCompute quota) associated with the Azure ML service. Please read this [article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota.
This cell will create an Azure ML workspace for you in a subscription, provided you have the correct permissions.
This will fail if:
* You do not have permission to create a workspace in the resource group.
* You do not have permission to create a resource group if it does not exist.
* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.
If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources.
There are additional parameters that are not shown below that can be configured when creating a workspace. Please see [`create_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/create_workspace.html) for more details.
``` {r create_workspace, eval=FALSE}
library(azuremlsdk)
ws <- create_workspace(name = workspace_name,
subscription_id = subscription_id,
resource_group = resource_group,
location = workspace_region,
exist_ok = TRUE)
```
You can out write out the workspace ARM properties to a config file with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html). The method provides a simple way of reusing the same workspace across multiple files or projects. Users can save the workspace details with `write_workspace_config()`, and use [`load_workspace_from_config()`](https://azure.github.io/azureml-sdk-for-r/reference/load_workspace_from_config.html) to load the same workspace in different files or projects without retyping the workspace ARM properties. The method defaults to writing out the config file to the current working directory with "config.json" as the file name. To specify a different path or file name, set the `path` and `file_name` parameters.
``` {r write_config, eval=FALSE}
write_workspace_config(ws)
```
### Access an existing workspace
You can access an existing workspace in a couple of ways. If your workspace properties were previously saved to a config file, you can load the workspace as follows:
``` {r load_config, eval=FALSE}
ws <- load_workspace_from_config()
```
If Azure ML cannot find the config file, specify the path to the config file with the `path` parameter. The method defaults to starting the search in the current directory.
You can also initialize a workspace using the [`get_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html) method.
``` {r get_workspace, eval=FALSE}
ws <- get_workspace(name = workspace_name,
subscription_id = subscription_id,
resource_group = resource_group)
```

View File

@@ -1,188 +0,0 @@
---
title: "Deploy a web service to Azure Kubernetes Service"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Deploy a web service to Azure Kubernetes Service}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
This tutorial demonstrates how to deploy a model as a web service on [Azure Kubernetes Service](https://azure.microsoft.com/en-us/services/kubernetes-service/) (AKS). AKS is good for high-scale production deployments; use it if you need one or more of the following capabilities:
* Fast response time
* Autoscaling of the deployed service
* Hardware acceleration options such as GPU
You will learn to:
* Set up your testing environment
* Register a model
* Provision an AKS cluster
* Deploy the model to AKS
* Test the deployed service
## Prerequisites
If you don<6F>t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
## Set up your testing environment
Start by setting up your environment. This includes importing the **azuremlsdk** package and connecting to your workspace.
### Import package
```{r import_package, eval=FALSE}
library(azuremlsdk)
```
### Load your workspace
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with `write_workspace_config()`.
```{r load_workspace, eval=FALSE}
ws <- load_workspace_from_config()
```
Or, you can retrieve a workspace by directly specifying your workspace details:
```{r get_workspace, eval=FALSE}
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
```
## Register the model
In this tutorial we will deploy a model that was trained in one of the [samples](https://github.com/Azure/azureml-sdk-for-r/blob/master/samples/training/train-on-amlcompute/train-on-amlcompute.R). The model was trained with the Iris dataset and can be used to determine if a flower is one of three Iris flower species (setosa, versicolor, virginica). We have provided the model file (`model.rds`) for the tutorial; it is located in the "project_files" directory of this vignette.
First, register the model to your workspace with [`register_model()`](https://azure.github.io/azureml-sdk-for-r/reference/register_model.html). A registered model can be any collection of files, but in this case the R model file is sufficient. Azure ML will use the registered model for deployment.
```{r register_model, eval=FALSE}
model <- register_model(ws,
model_path = "project_files/model.rds",
model_name = "iris_model",
description = "Predict an Iris flower type")
```
## Provision an AKS cluster
When deploying a web service to AKS, you deploy to an AKS cluster that is connected to your workspace. There are two ways to connect an AKS cluster to your workspace:
* Create the AKS cluster. The process automatically connects the cluster to the workspace.
* Attach an existing AKS cluster to your workspace. You can attach a cluster with the [`attach_aks_compute()`](https://azure.github.io/azureml-sdk-for-r/reference/attach_aks_compute.html) method.
Creating or attaching an AKS cluster is a one-time process for your workspace. You can reuse this cluster for multiple deployments. If you delete the cluster or the resource group that contains it, you must create a new cluster the next time you need to deploy.
In this tutorial, we will go with the first method of provisioning a new cluster. See the [`create_aks_compute()`](https://azure.github.io/azureml-sdk-for-r/reference/create_aks_compute.html) reference for the full set of configurable parameters. If you pick custom values for the `agent_count` and `vm_size` parameters, you need to make sure `agent_count` multiplied by `vm_size` is greater than or equal to `12` virtual CPUs.
``` {r provision_cluster, eval=FALSE}
aks_target <- create_aks_compute(ws, cluster_name = 'myakscluster')
wait_for_provisioning_completion(aks_target, show_output = TRUE)
```
The Azure ML SDK does not provide support for scaling an AKS cluster. To scale the nodes in the cluster, use the UI for your AKS cluster in the Azure portal. You can only change the node count, not the VM size of the cluster.
## Deploy as a web service
### Define the inference dependencies
To deploy a model, you need an **inference configuration**, which describes the environment needed to host the model and web service. To create an inference config, you will first need a scoring script and an Azure ML environment.
The scoring script (`entry_script`) is an R script that will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use the provided scoring file `score.R`. The scoring script must contain an `init()` method that loads your model and returns a function that uses the model to make a prediction based on the input data. See the [documentation](https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details) for more details.
Next, define an Azure ML **environment** for your script<70>s package dependencies. With an environment, you specify R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of environment variables that your script can reference to modify its behavior.
By default Azure ML will build a default Docker image that includes R, the Azure ML SDK, and additional required dependencies for deployment. See the documentation here for the full list of dependencies that will be installed in the default container. You can also specify additional packages to be installed at runtime, or even a custom Docker image to be used instead of the base image that will be built, using the other available parameters to [`r_environment()`](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
```{r create_env, eval=FALSE}
r_env <- r_environment(name = "deploy_env")
```
Now you have everything you need to create an inference config for encapsulating your scoring script and environment dependencies.
``` {r create_inference_config, eval=FALSE}
inference_config <- inference_config(
entry_script = "score.R",
source_directory = "project_files",
environment = r_env)
```
### Deploy to AKS
Now, define the deployment configuration that describes the compute resources needed, for example, the number of cores and memory. See the [`aks_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aks_webservice_deployment_config.html) for the full set of configurable parameters.
``` {r deploy_config, eval=FALSE}
aks_config <- aks_webservice_deployment_config(cpu_cores = 1, memory_gb = 1)
```
Now, deploy your model as a web service to the AKS cluster you created earlier.
```{r deploy_service, eval=FALSE}
aks_service <- deploy_model(ws,
'my-new-aksservice',
models = list(model),
inference_config = inference_config,
deployment_config = aks_config,
deployment_target = aks_target)
wait_for_deployment(aks_service, show_output = TRUE)
```
To inspect the logs from the deployment:
```{r get_logs, eval=FALSE}
get_webservice_logs(aks_service)
```
If you encounter any issue in deploying the web service, please visit the [troubleshooting guide](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment).
## Test the deployed service
Now that your model is deployed as a service, you can test the service from R using [`invoke_webservice()`](https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html). Provide a new set of data to predict from, convert it to JSON, and send it to the service.
``` {r test_service, eval=FALSE}
library(jsonlite)
# versicolor
plant <- data.frame(Sepal.Length = 6.4,
Sepal.Width = 2.8,
Petal.Length = 4.6,
Petal.Width = 1.8)
# setosa
# plant <- data.frame(Sepal.Length = 5.1,
# Sepal.Width = 3.5,
# Petal.Length = 1.4,
# Petal.Width = 0.2)
# virginica
# plant <- data.frame(Sepal.Length = 6.7,
# Sepal.Width = 3.3,
# Petal.Length = 5.2,
# Petal.Width = 2.3)
predicted_val <- invoke_webservice(aks_service, toJSON(plant))
message(predicted_val)
```
You can also get the web service<63>s HTTP endpoint, which accepts REST client calls. You can share this endpoint with anyone who wants to test the web service or integrate it into an application.
``` {r eval=FALSE}
aks_service$scoring_uri
```
## Web service authentication
When deploying to AKS, key-based authentication is enabled by default. You can also enable token-based authentication. Token-based authentication requires clients to use an Azure Active Directory account to request an authentication token, which is used to make requests to the deployed service.
To disable key-based auth, set the `auth_enabled = FALSE` parameter when creating the deployment configuration with [`aks_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aks_webservice_deployment_config.html).
To enable token-based auth, set `token_auth_enabled = TRUE` when creating the deployment config.
### Key-based authentication
If key authentication is enabled, you can use the [`get_webservice_keys()`](https://azure.github.io/azureml-sdk-for-r/reference/get_webservice_keys.html) method to retrieve a primary and secondary authentication key. To generate a new key, use [`generate_new_webservice_key()`](https://azure.github.io/azureml-sdk-for-r/reference/generate_new_webservice_key.html).
### Token-based authentication
If token authentication is enabled, you can use the [`get_webservice_token()`](https://azure.github.io/azureml-sdk-for-r/reference/get_webservice_token.html) method to retrieve a JWT token and that token's expiration time. Make sure to request a new token after the token's expiration time.
## Clean up resources
Delete the resources once you no longer need them. Do not delete any resource you plan on still using.
Delete the web service:
```{r delete_service, eval=FALSE}
delete_webservice(aks_service)
```
Delete the registered model:
```{r delete_model, eval=FALSE}
delete_model(model)
```
Delete the AKS cluster:
```{r delete_cluster, eval=FALSE}
delete_compute(aks_target)
```

View File

@@ -1,17 +0,0 @@
#' Copyright(c) Microsoft Corporation.
#' Licensed under the MIT license.
library(jsonlite)
init <- function() {
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("model is loaded")
function(data) {
plant <- as.data.frame(fromJSON(data))
prediction <- predict(model, plant)
result <- as.character(prediction)
toJSON(result)
}
}

View File

@@ -1,242 +0,0 @@
---
title: "Hyperparameter tune a Keras model"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Hyperparameter tune a Keras model}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
This tutorial demonstrates how you can efficiently tune hyperparameters for a model using HyperDrive, Azure ML's hyperparameter tuning functionality. You will train a Keras model on the CIFAR10 dataset, automate hyperparameter exploration, launch parallel jobs, log your results, and find the best run.
### What are hyperparameters?
Hyperparameters are variable parameters chosen to train a model. Learning rate, number of epochs, and batch size are all examples of hyperparameters.
Using brute-force methods to find the optimal values for parameters can be time-consuming, and poor-performing runs can result in wasted money. To avoid this, HyperDrive automates hyperparameter exploration in a time-saving and cost-effective manner by launching several parallel runs with different configurations and finding the configuration that results in best performance on your primary metric.
Let's get started with the example to see how it works!
## Prerequisites
If you don<6F>t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
## Set up development environment
The setup for your development work in this tutorial includes the following actions:
* Import required packages
* Connect to a workspace
* Create an experiment to track your runs
* Create a remote compute target to use for training
### Import **azuremlsdk** package
```{r eval=FALSE}
library(azuremlsdk)
```
### Load your workspace
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html).
```{r load_workpace, eval=FALSE}
ws <- load_workspace_from_config()
```
Or, you can retrieve a workspace by directly specifying your workspace details:
```{r get_workpace, eval=FALSE}
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
```
### Create an experiment
An Azure ML **experiment** tracks a grouping of runs, typically from the same training script. Create an experiment to track hyperparameter tuning runs for the Keras model.
```{r create_experiment, eval=FALSE}
exp <- experiment(workspace = ws, name = 'hyperdrive-cifar10')
```
If you would like to track your runs in an existing experiment, simply specify that experiment's name to the `name` parameter of `experiment()`.
### Create a compute target
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. In this tutorial, you create a GPU-enabled cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
```{r create_cluster, eval=FALSE}
cluster_name <- "gpucluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target))
{
vm_size <- "STANDARD_NC6"
compute_target <- create_aml_compute(workspace = ws,
cluster_name = cluster_name,
vm_size = vm_size,
max_nodes = 4)
wait_for_provisioning_completion(compute_target, show_output = TRUE)
}
```
## Prepare the training script
A training script called `cifar10_cnn.R` has been provided for you in the "project_files" directory of this tutorial.
In order to leverage HyperDrive, the training script for your model must log the relevant metrics during model training. When you configure the hyperparameter tuning run, you specify the primary metric to use for evaluating run performance. You must log this metric so it is available to the hyperparameter tuning process.
In order to log the required metrics, you need to do the following **inside the training script**:
* Import the **azuremlsdk** package
```
library(azuremlsdk)
```
* Take the hyperparameters as command-line arguments to the script. This is necessary so that when HyperDrive carries out the hyperparameter sweep, it can run the training script with different values to the hyperparameters as defined by the search space.
* Use the [`log_metric_to_run()`](https://azure.github.io/azureml-sdk-for-r/reference/log_metric_to_run.html) function to log the hyperparameters and the primary metric.
```
log_metric_to_run("batch_size", batch_size)
...
log_metric_to_run("epochs", epochs)
...
log_metric_to_run("lr", lr)
...
log_metric_to_run("decay", decay)
...
log_metric_to_run("Loss", results[[1]])
```
## Create an estimator
An Azure ML **estimator** encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html). The estimator is used to define the configuration for each of the child runs that the parent HyperDrive run will kick off.
To create the estimator, define the following:
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
* The training script that will be executed (`entry_script`).
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
* Any environment dependencies required for training. Since the training script requires the Keras package, which is not included in the image by default, pass the package name to the `cran_packages` parameter to have it installed in the Docker container where the job will run. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
* Set the `use_gpu = TRUE` flag so the default base GPU Docker image will be built, since the job will be run on a GPU cluster.
```{r create_estimator, eval=FALSE}
est <- estimator(source_directory = "project_files",
entry_script = "cifar10_cnn.R",
compute_target = compute_target,
cran_packages = c("keras"),
use_gpu = TRUE)
```
## Configure the HyperDrive run
To kick off hyperparameter tuning in Azure ML, you will need to configure a HyperDrive run, which will in turn launch individual children runs of the training scripts with the corresponding hyperparameter values.
### Define search space
In this experiment, we will use four hyperparameters: batch size, number of epochs, learning rate, and decay. In order to begin tuning, we must define the range of values we would like to explore from and how they will be distributed. This is called a parameter space definition and can be created with discrete or continuous ranges.
__Discrete hyperparameters__ are specified as a choice among discrete values represented as a list.
Advanced discrete hyperparameters can also be specified using a distribution. The following distributions are supported:
* `quniform(low, high, q)`
* `qloguniform(low, high, q)`
* `qnormal(mu, sigma, q)`
* `qlognormal(mu, sigma, q)`
__Continuous hyperparameters__ are specified as a distribution over a continuous range of values. The following distributions are supported:
* `uniform(low, high)`
* `loguniform(low, high)`
* `normal(mu, sigma)`
* `lognormal(mu, sigma)`
Here, we will use the [`random_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/random_parameter_sampling.html) function to define the search space for each hyperparameter. `batch_size` and `epochs` will be chosen from discrete sets while `lr` and `decay` will be drawn from continuous distributions.
Other available sampling function options are:
* [`grid_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/grid_parameter_sampling.html)
* [`bayesian_parameter_sampling()`](https://azure.github.io/azureml-sdk-for-r/reference/bayesian_parameter_sampling.html)
```{r search_space, eval=FALSE}
sampling <- random_parameter_sampling(list(batch_size = choice(c(16, 32, 64)),
epochs = choice(c(200, 350, 500)),
lr = normal(0.0001, 0.005),
decay = uniform(1e-6, 3e-6)))
```
### Define termination policy
To prevent resource waste, Azure ML can detect and terminate poorly performing runs. HyperDrive will do this automatically if you specify an early termination policy.
Here, you will use the [`bandit_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/bandit_policy.html), which terminates any runs where the primary metric is not within the specified slack factor with respect to the best performing training run.
```{r termination_policy, eval=FALSE}
policy <- bandit_policy(slack_factor = 0.15)
```
Other termination policy options are:
* [`median_stopping_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/median_stopping_policy.html)
* [`truncation_selection_policy()`](https://azure.github.io/azureml-sdk-for-r/reference/truncation_selection_policy.html)
If no policy is provided, all runs will continue to completion regardless of performance.
### Finalize configuration
Now, you can create a `HyperDriveConfig` object to define your HyperDrive run. Along with the sampling and policy definitions, you need to specify the name of the primary metric that you want to track and whether we want to maximize it or minimize it. The `primary_metric_name` must correspond with the name of the primary metric you logged in your training script. `max_total_runs` specifies the total number of child runs to launch. See the [hyperdrive_config()](https://azure.github.io/azureml-sdk-for-r/reference/hyperdrive_config.html) reference for the full set of configurable parameters.
```{r create_config, eval=FALSE}
hyperdrive_config <- hyperdrive_config(hyperparameter_sampling = sampling,
primary_metric_goal("MINIMIZE"),
primary_metric_name = "Loss",
max_total_runs = 4,
policy = policy,
estimator = est)
```
## Submit the HyperDrive run
Finally submit the experiment to run on your cluster. The parent HyperDrive run will launch the individual child runs. `submit_experiment()` will return a `HyperDriveRun` object that you will use to interface with the run. In this tutorial, since the cluster we created scales to a max of `4` nodes, all 4 child runs will be launched in parallel.
```{r submit_run, eval=FALSE}
hyperdrive_run <- submit_experiment(exp, hyperdrive_config)
```
You can view the HyperDrive run<75>s details as a table. Clicking the <20>Web View<65> link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
```{r eval=FALSE}
view_run_details(hyperdrive_run)
```
Wait until hyperparameter tuning is complete before you run more code.
```{r eval=FALSE}
wait_for_run_completion(hyperdrive_run, show_output = TRUE)
```
## Analyse runs by performance
Finally, you can view and compare the metrics collected during all of the child runs!
```{r analyse_runs, eval=FALSE}
# Get the metrics of all the child runs
child_run_metrics <- get_child_run_metrics(hyperdrive_run)
child_run_metrics
# Get the child run objects sorted in descending order by the best primary metric
child_runs <- get_child_runs_sorted_by_primary_metric(hyperdrive_run)
child_runs
# Directly get the run object of the best performing run
best_run <- get_best_run_by_primary_metric(hyperdrive_run)
# Get the metrics of the best performing run
metrics <- get_run_metrics(best_run)
metrics
```
The `metrics` variable will include the values of the hyperparameters that resulted in the best performing run.
## Clean up resources
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
Delete the compute cluster:
```{r delete_compute, eval=FALSE}
delete_compute(compute_target)
```

View File

@@ -1,124 +0,0 @@
#' Modified from: "https://github.com/rstudio/keras/blob/master/vignettes/
#' examples/cifar10_cnn.R"
#'
#' Train a simple deep CNN on the CIFAR10 small images dataset.
#'
#' It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50
#' epochs, though it is still underfitting at that point.
library(keras)
install_keras()
library(azuremlsdk)
# Parameters --------------------------------------------------------------
args <- commandArgs(trailingOnly = TRUE)
batch_size <- as.numeric(args[2])
log_metric_to_run("batch_size", batch_size)
epochs <- as.numeric(args[4])
log_metric_to_run("epochs", epochs)
lr <- as.numeric(args[6])
log_metric_to_run("lr", lr)
decay <- as.numeric(args[8])
log_metric_to_run("decay", decay)
data_augmentation <- TRUE
# Data Preparation --------------------------------------------------------
# See ?dataset_cifar10 for more info
cifar10 <- dataset_cifar10()
# Feature scale RGB values in test and train inputs
x_train <- cifar10$train$x / 255
x_test <- cifar10$test$x / 255
y_train <- to_categorical(cifar10$train$y, num_classes = 10)
y_test <- to_categorical(cifar10$test$y, num_classes = 10)
# Defining Model ----------------------------------------------------------
# Initialize sequential model
model <- keras_model_sequential()
model %>%
# Start with hidden 2D convolutional layer being fed 32x32 pixel images
layer_conv_2d(
filter = 32, kernel_size = c(3, 3), padding = "same",
input_shape = c(32, 32, 3)
) %>%
layer_activation("relu") %>%
# Second hidden layer
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
layer_activation("relu") %>%
# Use max pooling
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(0.25) %>%
# 2 additional hidden 2D convolutional layers
layer_conv_2d(filter = 32, kernel_size = c(3, 3), padding = "same") %>%
layer_activation("relu") %>%
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
layer_activation("relu") %>%
# Use max pooling once more
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(0.25) %>%
# Flatten max filtered output into feature vector
# and feed into dense layer
layer_flatten() %>%
layer_dense(512) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%
# Outputs from dense layer are projected onto 10 unit output layer
layer_dense(10) %>%
layer_activation("softmax")
opt <- optimizer_rmsprop(lr, decay)
model %>%
compile(loss = "categorical_crossentropy",
optimizer = opt,
metrics = "accuracy"
)
# Training ----------------------------------------------------------------
if (!data_augmentation) {
model %>%
fit(x_train,
y_train,
batch_size = batch_size,
epochs = epochs,
validation_data = list(x_test, y_test),
shuffle = TRUE
)
} else {
datagen <- image_data_generator(rotation_range = 20,
width_shift_range = 0.2,
height_shift_range = 0.2,
horizontal_flip = TRUE
)
datagen %>% fit_image_data_generator(x_train)
results <- evaluate(model, x_train, y_train, batch_size)
log_metric_to_run("Loss", results[[1]])
cat("Loss: ", results[[1]], "\n")
cat("Accuracy: ", results[[2]], "\n")
}

View File

@@ -1,100 +0,0 @@
---
title: "Install the Azure ML SDK for R"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Install the Azure ML SDK for R}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
This article covers the step-by-step instructions for installing the Azure ML SDK for R.
You do not need run this if you are working on an Azure Machine Learning Compute Instance, as the compute instance already has the Azure ML SDK preinstalled.
## Install Conda
If you do not have Conda already installed on your machine, you will first need to install it, since the Azure ML R SDK uses **reticulate** to bind to the Python SDK. We recommend installing [Miniconda](https://docs.conda.io/en/latest/miniconda.html), which is a smaller, lightweight version of Anaconda. Choose the 64-bit binary for Python 3.5 or later.
## Install the **azuremlsdk** R package
You will need **remotes** to install **azuremlsdk** from the GitHub repo.
``` {r install_remotes, eval=FALSE}
install.packages('remotes')
```
Then, you can use the `install_github` function to install the package.
``` {r install_azuremlsdk, eval=FALSE}
remotes::install_cran('azuremlsdk', repos = 'https://cloud.r-project.org/')
```
If you are using R installed from CRAN, which comes with 32-bit and 64-bit binaries, you may need to specify the parameter `INSTALL_opts=c("--no-multiarch")` to only build for the current 64-bit architecture.
``` {r eval=FALSE}
remotes::install_cran('azuremlsdk', repos = 'https://cloud.r-project.org/', INSTALL_opts=c("--no-multiarch"))
```
## Install the Azure ML Python SDK
Lastly, use the **azuremlsdk** R library to install the Python SDK. By default, `azuremlsdk::install_azureml()` will install the [latest version of the Python SDK](https://pypi.org/project/azureml-sdk/) in a conda environment called `r-azureml` if reticulate < 1.14 or `r-reticulate` if reticulate ≥ 1.14.
``` {r install_pythonsdk, eval=FALSE}
azuremlsdk::install_azureml()
```
If you would like to override the default version, environment name, or Python version, you can pass in those arguments. If you would like to restart the R session after installation or delete the conda environment if it already exists and create a new environment, you can also do so:
``` {r eval=FALSE}
azuremlsdk::install_azureml(version = NULL,
custom_envname = "<your conda environment name>",
conda_python_version = "<desired python version>",
restart_session = TRUE,
remove_existing_env = TRUE)
```
## Test installation
You can confirm your installation worked by loading the library and successfully retrieving a run.
``` {r test_installation, eval=FALSE}
library(azuremlsdk)
get_current_run()
```
## Troubleshooting
- In step 3 of the installation, if you get ssl errors on windows, it is due to an
outdated openssl binary. Install the latest openssl binaries from
[here](https://wiki.openssl.org/index.php/Binaries).
- If installation fails due to this error:
```R
Error in strptime(xx, f, tz = tz) :
(converted from warning) unable to identify current timezone 'C':
please set environment variable 'TZ'
In R CMD INSTALL
Error in i.p(...) :
(converted from warning) installation of package C:/.../azureml_0.4.0.tar.gz had non-zero exit
status
```
You will need to set your time zone environment variable to GMT and restart the installation process.
```R
Sys.setenv(TZ='GMT')
```
- If the following permission error occurs while installing in RStudio,
change your RStudio session to administrator mode, and re-run the installation command.
```R
Downloading GitHub repo Azure/azureml-sdk-for-r@master
Skipping 2 packages ahead of CRAN: reticulate, rlang
Running `R CMD build`...
Error: (converted from warning) invalid package
'C:/.../file2b441bf23631'
In R CMD INSTALL
Error in i.p(...) :
(converted from warning) installation of package
C:/.../file2b441bf23631 had non-zero exit status
In addition: Warning messages:
1: In file(con, "r") :
cannot open file 'C:...\file2b44144a540f': Permission denied
2: In file(con, "r") :
cannot open file 'C:...\file2b4463c21577': Permission denied
```

View File

@@ -1,16 +0,0 @@
#' Copyright(c) Microsoft Corporation.
#' Licensed under the MIT license.
library(jsonlite)
init <- function() {
model_path <- Sys.getenv("AZUREML_MODEL_DIR")
model <- readRDS(file.path(model_path, "model.rds"))
message("logistic regression model loaded")
function(data) {
vars <- as.data.frame(fromJSON(data))
prediction <- as.numeric(predict(model, vars, type = "response") * 100)
toJSON(prediction)
}
}

View File

@@ -1,33 +0,0 @@
#' Copyright(c) Microsoft Corporation.
#' Licensed under the MIT license.
library(azuremlsdk)
library(optparse)
library(caret)
options <- list(
make_option(c("-d", "--data_folder"))
)
opt_parser <- OptionParser(option_list = options)
opt <- parse_args(opt_parser)
paste(opt$data_folder)
accidents <- readRDS(file.path(opt$data_folder, "accidents.Rd"))
summary(accidents)
mod <- glm(dead ~ dvcat + seatbelt + frontal + sex + ageOFocc + yearVeh + airbag + occRole, family = binomial, data = accidents)
summary(mod)
predictions <- factor(ifelse(predict(mod) > 0.1, "dead", "alive"))
conf_matrix <- confusionMatrix(predictions, accidents$dead)
message(conf_matrix)
log_metric_to_run("Accuracy", conf_matrix$overall["Accuracy"])
output_dir = "outputs"
if (!dir.exists(output_dir)) {
dir.create(output_dir)
}
saveRDS(mod, file = "./outputs/model.rds")
message("Model saved")

View File

@@ -1,326 +0,0 @@
---
title: "Train and deploy your first model with Azure ML"
author: "David Smith"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Train and deploy your first model with Azure ML}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
In this tutorial, you learn the foundational design patterns in Azure Machine Learning. You'll train and deploy a **caret** model to predict the likelihood of a fatality in an automobile accident. After completing this tutorial, you'll have the practical knowledge of the R SDK to scale up to developing more-complex experiments and workflows.
In this tutorial, you learn the following tasks:
* Connect your workspace
* Load data and prepare for training
* Upload data to the datastore so it is available for remote training
* Create a compute resource
* Train a caret model to predict probability of fatality
* Deploy a prediction endpoint
* Test the model from R
## Prerequisites
If you don't have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
## Set up your development environment
The setup for your development work in this tutorial includes the following actions:
* Install required packages
* Connect to a workspace, so that your local computer can communicate with remote resources
* Create an experiment to track your runs
* Create a remote compute target to use for training
### Install required packages
This tutorial assumes you already have the Azure ML SDK installed. Go ahead and import the **azuremlsdk** package.
```{r eval=FALSE}
library(azuremlsdk)
```
The tutorial uses data from the [**DAAG** package](https://cran.r-project.org/package=DAAG). Install the package if you don't have it.
```{r eval=FALSE}
install.packages("DAAG")
```
The training and scoring scripts (`accidents.R` and `accident_predict.R`) have some additional dependencies. If you plan on running those scripts locally, make sure you have those required packages as well.
### Load your workspace
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from the **config.json** file. You can also retrieve a workspace using [`get_workspace()`](https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html).
```{r load_workpace, eval=FALSE}
ws <- load_workspace_from_config()
```
### Create an experiment
An Azure ML experiment tracks a grouping of runs, typically from the same training script. Create an experiment to track the runs for training the caret model on the accidents data.
```{r create_experiment, eval=FALSE}
experiment_name <- "accident-logreg"
exp <- experiment(ws, experiment_name)
```
### Create a compute target
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you create a single-node AmlCompute cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
```{r create_cluster, eval=FALSE}
cluster_name <- "rcluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target)) {
vm_size <- "STANDARD_D2_V2"
compute_target <- create_aml_compute(workspace = ws,
cluster_name = cluster_name,
vm_size = vm_size,
max_nodes = 1)
wait_for_provisioning_completion(compute_target, show_output = TRUE)
}
```
## Prepare data for training
This tutorial uses data from the **DAAG** package. This dataset includes data from over 25,000 car crashes in the US, with variables you can use to predict the likelihood of a fatality. First, import the data into R and transform it into a new dataframe `accidents` for analysis, and export it to an `Rdata` file.
```{r load_data, eval=FALSE}
library(DAAG)
data(nassCDS)
accidents <- na.omit(nassCDS[,c("dead","dvcat","seatbelt","frontal","sex","ageOFocc","yearVeh","airbag","occRole")])
accidents$frontal <- factor(accidents$frontal, labels=c("notfrontal","frontal"))
accidents$occRole <- factor(accidents$occRole)
saveRDS(accidents, file="accidents.Rd")
```
### Upload data to the datastore
Upload data to the cloud so that it can be access by your remote training environment. Each Azure ML workspace comes with a default datastore that stores the connection information to the Azure blob container that is provisioned in the storage account attached to the workspace. The following code will upload the accidents data you created above to that datastore.
```{r upload_data, eval=FALSE}
ds <- get_default_datastore(ws)
target_path <- "accidentdata"
upload_files_to_datastore(ds,
list("./project_files/accidents.Rd"),
target_path = target_path,
overwrite = TRUE)
```
## Train a model
For this tutorial, fit a logistic regression model on your uploaded data using your remote compute cluster. To submit a job, you need to:
* Prepare the training script
* Create an estimator
* Submit the job
### Prepare the training script
A training script called `accidents.R` has been provided for you in the "project_files" directory of this tutorial. Notice the following details **inside the training script** that have been done to leverage the Azure ML service for training:
* The training script takes an argument `-d` to find the directory that contains the training data. When you define and submit your job later, you point to the datastore for this argument. Azure ML will mount the storage folder to the remote cluster for the training job.
* The training script logs the final accuracy as a metric to the run record in Azure ML using `log_metric_to_run()`. The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These metrics are recorded and persisted in the experiment run record. The metrics can then be accessed at any time or viewed in the run details page in [Azure Machine Learning studio](http://ml.azure.com). See the [reference](https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation) for the full set of logging methods `log_*()`.
* The training script saves your model into a directory named **outputs**. The `./outputs` folder receives special treatment by Azure ML. During training, files written to `./outputs` are automatically uploaded to your run record by Azure ML and persisted as artifacts. By saving the trained model to `./outputs`, you'll be able to access and retrieve your model file even after the run is over and you no longer have access to your remote training environment.
### Create an estimator
An Azure ML estimator encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
To create the estimator, define:
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
* The training script that will be executed (`entry_script`).
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
* The parameters required from the training script (`script_params`). Azure ML will run your training script as a command-line script with `Rscript`. In this tutorial you specify one argument to the script, the data directory mounting point, which you can access with `ds$path(target_path)`.
* Any environment dependencies required for training. The default Docker image built for training already contains the three packages (`caret`, `e1071`, and `optparse`) needed in the training script. So you don't need to specify additional information. If you are using R packages that are not included by default, use the estimator's `cran_packages` parameter to add additional CRAN packages. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
```{r create_estimator, eval=FALSE}
est <- estimator(source_directory = "project_files",
entry_script = "accidents.R",
script_params = list("--data_folder" = ds$path(target_path)),
compute_target = compute_target
)
```
### Submit the job on the remote cluster
Finally submit the job to run on your cluster. `submit_experiment()` returns a Run object that you then use to interface with the run. In total, the first run takes **about 10 minutes**. But for later runs, the same Docker image is reused as long as the script dependencies don't change. In this case, the image is cached and the container startup time is much faster.
```{r submit_job, eval=FALSE}
run <- submit_experiment(exp, est)
```
You can view a table of the run's details. Clicking the "Web View" link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
```{r view_run, eval=FALSE}
view_run_details(run)
```
Model training happens in the background. Wait until the model has finished training before you run more code.
```{r wait_run, eval=FALSE}
wait_for_run_completion(run, show_output = TRUE)
```
You -- and colleagues with access to the workspace -- can submit multiple experiments in parallel, and Azure ML will take of scheduling the tasks on the compute cluster. You can even configure the cluster to automatically scale up to multiple nodes, and scale back when there are no more compute tasks in the queue. This configuration is a cost-effective way for teams to share compute resources.
## Retrieve training results
Once your model has finished training, you can access the artifacts of your job that were persisted to the run record, including any metrics logged and the final trained model.
### Get the logged metrics
In the training script `accidents.R`, you logged a metric from your model: the accuracy of the predictions in the training data. You can see metrics in the [studio](https://ml.azure.com), or extract them to the local session as an R list as follows:
```{r metrics, eval=FALSE}
metrics <- get_run_metrics(run)
metrics
```
If you've run multiple experiments (say, using differing variables, algorithms, or hyperparamers), you can use the metrics from each run to compare and choose the model you'll use in production.
### Get the trained model
You can retrieve the trained model and look at the results in your local R session. The following code will download the contents of the `./outputs` directory, which includes the model file.
```{r retrieve_model, eval=FALSE}
download_files_from_run(run, prefix="outputs/")
accident_model <- readRDS("project_files/outputs/model.rds")
summary(accident_model)
```
You see some factors that contribute to an increase in the estimated probability of death:
* higher impact speed
* male driver
* older occupant
* passenger
You see lower probabilities of death with:
* presence of airbags
* presence seatbelts
* frontal collision
The vehicle year of manufacture does not have a significant effect.
You can use this model to make new predictions:
```{r manual_predict, eval=FALSE}
newdata <- data.frame( # valid values shown below
dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
seatbelt="none", # "none" "belted"
frontal="frontal", # "notfrontal" "frontal"
sex="f", # "f" "m"
ageOFocc=16, # age in years, 16-97
yearVeh=2002, # year of vehicle, 1955-2003
airbag="none", # "none" "airbag"
occRole="pass" # "driver" "pass"
)
## predicted probability of death for these variables, as a percentage
as.numeric(predict(accident_model,newdata, type="response")*100)
```
## Deploy as a web service
With your model, you can predict the danger of death from a collision. Use Azure ML to deploy your model as a prediction service. In this tutorial, you will deploy the web service in [Azure Container Instances](https://docs.microsoft.com/en-us/azure/container-instances/) (ACI).
### Register the model
First, register the model you downloaded to your workspace with [`register_model()`](https://azure.github.io/azureml-sdk-for-r/reference/register_model.html). A registered model can be any collection of files, but in this case the R model object is sufficient. Azure ML will use the registered model for deployment.
```{r register_model, eval=FALSE}
model <- register_model(ws,
model_path = "project_files/outputs/model.rds",
model_name = "accidents_model",
description = "Predict probablity of auto accident")
```
### Define the inference dependencies
To create a web service for your model, you first need to create a scoring script (`entry_script`), an R script that will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use the provided scoring file `accident_predict.R`. The scoring script must contain an `init()` method that loads your model and returns a function that uses the model to make a prediction based on the input data. See the [documentation](https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details) for more details.
Next, define an Azure ML **environment** for your script's package dependencies. With an environment, you specify R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of environment variables that your script can reference to modify its behavior. By default, Azure ML will build the same default Docker image used with the estimator for training. Since the tutorial has no special requirements, create an environment with no special attributes.
```{r create_environment, eval=FALSE}
r_env <- r_environment(name = "basic_env")
```
If you want to use your own Docker image for deployment instead, specify the `custom_docker_image` parameter. See the [`r_environment()`](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html) reference for the full set of configurable options for defining an environment.
Now you have everything you need to create an **inference config** for encapsulating your scoring script and environment dependencies.
``` {r create_inference_config, eval=FALSE}
inference_config <- inference_config(
entry_script = "accident_predict.R",
source_directory = "project_files",
environment = r_env)
```
### Deploy to ACI
In this tutorial, you will deploy your service to ACI. This code provisions a single container to respond to inbound requests, which is suitable for testing and light loads. See [`aci_webservice_deployment_config()`](https://azure.github.io/azureml-sdk-for-r/reference/aci_webservice_deployment_config.html) for additional configurable options. (For production-scale deployments, you can also [deploy to Azure Kubernetes Service](https://azure.github.io/azureml-sdk-for-r/articles/deploy-to-aks/deploy-to-aks.html).)
``` {r create_aci_config, eval=FALSE}
aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)
```
Now you deploy your model as a web service. Deployment **can take several minutes**.
```{r deploy_service, eval=FALSE}
aci_service <- deploy_model(ws,
'accident-pred',
list(model),
inference_config,
aci_config)
wait_for_deployment(aci_service, show_output = TRUE)
```
If you encounter any issue in deploying the web service, please visit the [troubleshooting guide](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-troubleshoot-deployment).
## Test the deployed service
Now that your model is deployed as a service, you can test the service from R using [`invoke_webservice()`](https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html). Provide a new set of data to predict from, convert it to JSON, and send it to the service.
```{r test_deployment, eval=FALSE}
library(jsonlite)
newdata <- data.frame( # valid values shown below
dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
seatbelt="none", # "none" "belted"
frontal="frontal", # "notfrontal" "frontal"
sex="f", # "f" "m"
ageOFocc=22, # age in years, 16-97
yearVeh=2002, # year of vehicle, 1955-2003
airbag="none", # "none" "airbag"
occRole="pass" # "driver" "pass"
)
prob <- invoke_webservice(aci_service, toJSON(newdata))
prob
```
You can also get the web service's HTTP endpoint, which accepts REST client calls. You can share this endpoint with anyone who wants to test the web service or integrate it into an application.
```{r get_endpoint, eval=FALSE}
aci_service$scoring_uri
```
## Clean up resources
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
Delete the web service:
```{r delete_service, eval=FALSE}
delete_webservice(aci_service)
```
Delete the registered model:
```{r delete_model, eval=FALSE}
delete_model(model)
```
Delete the compute cluster:
```{r delete_compute, eval=FALSE}
delete_compute(compute_target)
```

View File

@@ -1,62 +0,0 @@
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
# Copyright 2016 RStudio, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
library(tensorflow)
install_tensorflow(version = "1.13.2-gpu")
library(azuremlsdk)
# Create the model
x <- tf$placeholder(tf$float32, shape(NULL, 784L))
W <- tf$Variable(tf$zeros(shape(784L, 10L)))
b <- tf$Variable(tf$zeros(shape(10L)))
y <- tf$nn$softmax(tf$matmul(x, W) + b)
# Define loss and optimizer
y_ <- tf$placeholder(tf$float32, shape(NULL, 10L))
cross_entropy <- tf$reduce_mean(-tf$reduce_sum(y_ * log(y),
reduction_indices = 1L))
train_step <- tf$train$GradientDescentOptimizer(0.5)$minimize(cross_entropy)
# Create session and initialize variables
sess <- tf$Session()
sess$run(tf$global_variables_initializer())
# Load mnist data )
datasets <- tf$contrib$learn$datasets
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)
# Train
for (i in 1:1000) {
batches <- mnist$train$next_batch(100L)
batch_xs <- batches[[1]]
batch_ys <- batches[[2]]
sess$run(train_step,
feed_dict = dict(x = batch_xs, y_ = batch_ys))
}
# Test trained model
correct_prediction <- tf$equal(tf$argmax(y, 1L), tf$argmax(y_, 1L))
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))
cat("Accuracy: ", sess$run(accuracy,
feed_dict = dict(x = mnist$test$images,
y_ = mnist$test$labels)))
log_metric_to_run("accuracy",
sess$run(accuracy, feed_dict = dict(x = mnist$test$images,
y_ = mnist$test$labels)))

View File

@@ -1,143 +0,0 @@
---
title: "Train a TensorFlow model"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Train a TensorFlow model}
%\VignetteEngine{knitr::rmarkdown}
\use_package{UTF-8}
---
This tutorial demonstrates how run a TensorFlow job at scale using Azure ML. You will train a TensorFlow model to classify handwritten digits (MNIST) using a deep neural network (DNN) and log your results to the Azure ML service.
## Prerequisites
If you don<6F>t have access to an Azure ML workspace, follow the [setup tutorial](https://azure.github.io/azureml-sdk-for-r/articles/configuration.html) to configure and create a workspace.
## Set up development environment
The setup for your development work in this tutorial includes the following actions:
* Import required packages
* Connect to a workspace
* Create an experiment to track your runs
* Create a remote compute target to use for training
### Import **azuremlsdk** package
```{r eval=FALSE}
library(azuremlsdk)
```
### Load your workspace
Instantiate a workspace object from your existing workspace. The following code will load the workspace details from a **config.json** file if you previously wrote one out with [`write_workspace_config()`](https://azure.github.io/azureml-sdk-for-r/reference/write_workspace_config.html).
```{r load_workpace, eval=FALSE}
ws <- load_workspace_from_config()
```
Or, you can retrieve a workspace by directly specifying your workspace details:
```{r get_workpace, eval=FALSE}
ws <- get_workspace("<your workspace name>", "<your subscription ID>", "<your resource group>")
```
### Create an experiment
An Azure ML **experiment** tracks a grouping of runs, typically from the same training script. Create an experiment to track the runs for training the TensorFlow model on the MNIST data.
```{r create_experiment, eval=FALSE}
exp <- experiment(workspace = ws, name = "tf-mnist")
```
If you would like to track your runs in an existing experiment, simply specify that experiment's name to the `name` parameter of `experiment()`.
### Create a compute target
By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine learning models on clusters of Azure virtual machines. In this tutorial, you create a GPU-enabled cluster as your training environment. The code below creates the compute cluster for you if it doesn't already exist in your workspace.
You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.
```{r create_cluster, eval=FALSE}
cluster_name <- "gpucluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target))
{
vm_size <- "STANDARD_NC6"
compute_target <- create_aml_compute(workspace = ws,
cluster_name = cluster_name,
vm_size = vm_size,
max_nodes = 4)
wait_for_provisioning_completion(compute_target, show_output = TRUE)
}
```
## Prepare the training script
A training script called `tf_mnist.R` has been provided for you in the "project_files" directory of this tutorial. The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These metrics are recorded and persisted in the experiment run record, and can be be accessed at any time or viewed in the run details page in [Azure Machine Learning studio](http://ml.azure.com/).
In order to collect and upload run metrics, you need to do the following **inside the training script**:
* Import the **azuremlsdk** package
```
library(azuremlsdk)
```
* Add the [`log_metric_to_run()`](https://azure.github.io/azureml-sdk-for-r/reference/log_metric_to_run.html) function to track our primary metric, "accuracy", for this experiment. If you have your own training script with several important metrics, simply create a logging call for each one within the script.
```
log_metric_to_run("accuracy",
sess$run(accuracy,
feed_dict = dict(x = mnist$test$images, y_ = mnist$test$labels)))
```
See the [reference](https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation) for the full set of logging methods `log_*()` available from the R SDK.
## Create an estimator
An Azure ML **estimator** encapsulates the run configuration information needed for executing a training script on the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages. See the full list of default packages included [here](https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html).
To create the estimator, define the following:
* The directory that contains your scripts needed for training (`source_directory`). All the files in this directory are uploaded to the cluster node(s) for execution. The directory must contain your training script and any additional scripts required.
* The training script that will be executed (`entry_script`).
* The compute target (`compute_target`), in this case the AmlCompute cluster you created earlier.
* Any environment dependencies required for training. Since the training script requires the TensorFlow package, which is not included in the image by default, pass the package name to the `cran_packages` parameter to have it installed in the Docker container where the job will run. See the [`estimator()`](https://azure.github.io/azureml-sdk-for-r/reference/estimator.html) reference for the full set of configurable options.
* Set the `use_gpu = TRUE` flag so the default base GPU Docker image will be built, since the job will be run on a GPU cluster.
```{r create_estimator, eval=FALSE}
est <- estimator(source_directory = "project_files",
entry_script = "tf_mnist.R",
compute_target = compute_target,
cran_packages = c("tensorflow"),
use_gpu = TRUE)
```
## Submit the job
Finally submit the job to run on your cluster. [`submit_experiment()`](https://azure.github.io/azureml-sdk-for-r/reference/submit_experiment.html) returns a `Run` object that you can then use to interface with the run.
```{r submit_job, eval=FALSE}
run <- submit_experiment(exp, est)
```
You can view the run<75>s details as a table. Clicking the <20>Web View<65> link provided will bring you to Azure Machine Learning studio, where you can monitor the run in the UI.
```{r eval=FALSE}
view_run_details(run)
```
Model training happens in the background. Wait until the model has finished training before you run more code.
```{r eval=FALSE}
wait_for_run_completion(run, show_output = TRUE)
```
## View run metrics
Once your job has finished, you can view the metrics collected during your TensorFlow run.
```{r get_metrics, eval=FALSE}
metrics <- get_run_metrics(run)
metrics
```
## Clean up resources
Delete the resources once you no longer need them. Don't delete any resource you plan to still use.
Delete the compute cluster:
```{r delete_compute, eval=FALSE}
delete_compute(compute_target)
```

View File

@@ -1,6 +0,0 @@
name: multi-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -1,6 +0,0 @@
name: model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -77,7 +77,7 @@
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset). "
]
},
{
@@ -382,13 +382,111 @@
"source": [
"## Update Service\n",
"\n",
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
"\n",
"```python\n",
"local_service.update(models=[SomeOtherModelObject],\n",
"If you want to change your model(s), Conda dependencies or deployment configuration, call `update()` to rebuild the Docker image.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.update(models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=local_config)\n",
"```"
" deployment_config=deployment_config)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model to AKS cluster based on the LocalWebservice's configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This is a one time setup for AKS Cluster. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your AKS cluster\n",
"aks_name = 'my-aks-9' \n",
"\n",
"# Verify the cluster does not exist already\n",
"try:\n",
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" # Use the default configuration (can also provide parameters to customize)\n",
" prov_config = AksCompute.provisioning_configuration()\n",
"\n",
" # Create the cluster\n",
" aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)\n",
"\n",
"if aks_target.get_status() != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AksWebservice\n",
"# Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"# # Enable token auth and disable (key) auth on the webservice\n",
"# aks_config = AksWebservice.deploy_configuration(token_auth_enabled=True, auth_enabled=False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='aks-service-1'\n",
"\n",
"aks_service = local_service.deploy_to_cloud(name=aks_service_name,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test aks service\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"aks_service.run(sample_input)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Delete the service if not needed.\n",
"aks_service.delete()"
]
},
{

View File

@@ -1,4 +0,0 @@
name: deploy-aks-with-controlled-rollout
dependencies:
- pip:
- azureml-sdk

View File

@@ -276,21 +276,24 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aks_name = \"my-aks\"\n",
"aks_name = \"my-aks-insights\"\n",
"\n",
"creating_compute = False\n",
"try:\n",
" aks_target = ComputeTarget(ws, aks_name)\n",
" print(\"Using existing AKS cluster {}.\".format(aks_name))\n",
" print(\"Using existing AKS compute target {}.\".format(aks_name))\n",
"except ComputeTargetException:\n",
" print(\"Creating a new AKS cluster {}.\".format(aks_name))\n",
" print(\"Creating a new AKS compute target {}.\".format(aks_name))\n",
"\n",
" # Use the default configuration (can also provide parameters to customize).\n",
" prov_config = AksCompute.provisioning_configuration()\n",
" aks_target = ComputeTarget.create(workspace=ws,\n",
" name=aks_name,\n",
" provisioning_configuration=prov_config)"
" provisioning_configuration=prov_config)\n",
" creating_compute = True"
]
},
{
@@ -300,7 +303,7 @@
"outputs": [],
"source": [
"%%time\n",
"if aks_target.provisioning_state != \"Succeeded\":\n",
"if creating_compute and aks_target.provisioning_state != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
@@ -380,7 +383,7 @@
" aks_service.wait_for_deployment(show_output=True)\n",
" print(aks_service.state)\n",
"else:\n",
" raise ValueError(\"AKS provisioning failed. Error: \", aks_service.error)"
" raise ValueError(\"AKS cluster provisioning failed. Error: \", aks_target.provisioning_errors)"
]
},
{
@@ -458,7 +461,9 @@
"%%time\n",
"aks_service.delete()\n",
"aci_service.delete()\n",
"model.delete()"
"model.delete()\n",
"if creating_compute:\n",
" aks_target.delete()"
]
}
],

View File

@@ -1,4 +0,0 @@
name: enable-app-insights-in-production-service
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,8 +0,0 @@
name: onnx-convert-aml-deploy-tinyyolo
dependencies:
- pip:
- azureml-sdk
- numpy
- git+https://github.com/apple/coremltools@v2.1
- onnx<1.7.0
- onnxmltools

Some files were not shown because too many files have changed in this diff Show More