Compare commits
167 Commits
sdgilley/u
...
release_up
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b8deacf2a2 | ||
|
|
735db9ebe7 | ||
|
|
573030b990 | ||
|
|
392a059000 | ||
|
|
3580e54fbb | ||
|
|
2017bcd716 | ||
|
|
4a3f8e7025 | ||
|
|
45880114db | ||
|
|
314bad72a4 | ||
|
|
f252308005 | ||
|
|
6622a6c5f2 | ||
|
|
6b19e2f263 | ||
|
|
42fd4598cb | ||
|
|
476d945439 | ||
|
|
e96bb9bef2 | ||
|
|
2be4a5e54d | ||
|
|
247a25f280 | ||
|
|
5d9d8eade6 | ||
|
|
dba978e42a | ||
|
|
7f4101c33e | ||
|
|
62b0d5df69 | ||
|
|
f10b55a1bc | ||
|
|
da9e86635e | ||
|
|
9ca6388996 | ||
|
|
3ce779063b | ||
|
|
ce635ce4fe | ||
|
|
f08e68c8e9 | ||
|
|
93a1d232db | ||
|
|
923483528c | ||
|
|
cbeacb2ab2 | ||
|
|
c928c50707 | ||
|
|
efb42bacf9 | ||
|
|
d8f349a1ae | ||
|
|
96a61fdc78 | ||
|
|
ff8128f023 | ||
|
|
8260302a68 | ||
|
|
fbd7f4a55b | ||
|
|
d4e4206179 | ||
|
|
a98b918feb | ||
|
|
890490ec70 | ||
|
|
c068c9b979 | ||
|
|
f334a3516f | ||
|
|
96248d8dff | ||
|
|
c42e865700 | ||
|
|
9233ce089a | ||
|
|
6bb1e2a3e3 | ||
|
|
e1724c8a89 | ||
|
|
446e0768cc | ||
|
|
8a2f114a16 | ||
|
|
80c0d4d30f | ||
|
|
e8f4708a5a | ||
|
|
fbaeb84204 | ||
|
|
da1fab0a77 | ||
|
|
94d2890bb5 | ||
|
|
4d1ec4f7d4 | ||
|
|
ace3153831 | ||
|
|
58bbfe57b2 | ||
|
|
11ea00b1d9 | ||
|
|
b81efca3e5 | ||
|
|
d7ceb9bca2 | ||
|
|
17730dc69a | ||
|
|
3a029d48a2 | ||
|
|
06d43956f3 | ||
|
|
a1cb9b33a5 | ||
|
|
fdc3fe2a53 | ||
|
|
628b35912c | ||
|
|
3f4cc22e94 | ||
|
|
18d7afb707 | ||
|
|
cd35ca30d4 | ||
|
|
30eae0b46c | ||
|
|
f16951387f | ||
|
|
0d8de29147 | ||
|
|
836354640c | ||
|
|
6162e80972 | ||
|
|
fe9fe3392d | ||
|
|
5ec6d8861b | ||
|
|
ae188f324e | ||
|
|
4c30c2bdb9 | ||
|
|
b891440e2d | ||
|
|
784827cdd2 | ||
|
|
0957af04ca | ||
|
|
a3bdd193d1 | ||
|
|
dff09970ac | ||
|
|
abc7d21711 | ||
|
|
ec12ef635f | ||
|
|
81b3e6f09f | ||
|
|
cc167dceda | ||
|
|
bc52a6d8ee | ||
|
|
5bbbdbe73c | ||
|
|
fd4de05ddd | ||
|
|
9eaab2189d | ||
|
|
12147754b2 | ||
|
|
90ef263823 | ||
|
|
143590cfb4 | ||
|
|
40379014ad | ||
|
|
f7b0e99fa1 | ||
|
|
7a7ac48411 | ||
|
|
50107c5b1e | ||
|
|
e41d7e6819 | ||
|
|
691e038e84 | ||
|
|
426e79d635 | ||
|
|
326677e87f | ||
|
|
44988e30ae | ||
|
|
646ae37384 | ||
|
|
457e29a663 | ||
|
|
2771edfb2c | ||
|
|
f0001ec322 | ||
|
|
d3e02a017d | ||
|
|
a0ebed6876 | ||
|
|
dc0ab6db47 | ||
|
|
ea7900f82c | ||
|
|
0cb3fd180d | ||
|
|
b05c3e46bb | ||
|
|
a1b7d298d3 | ||
|
|
cc5516c3b3 | ||
|
|
4fb6070b89 | ||
|
|
1b926cdf53 | ||
|
|
72fc00fb65 | ||
|
|
ddc6b57253 | ||
|
|
e8b3b98338 | ||
|
|
66325a1405 | ||
|
|
0efbeaf4b8 | ||
|
|
11d487fb28 | ||
|
|
073e319ef9 | ||
|
|
3ed75f28d1 | ||
|
|
bfc0367f54 | ||
|
|
075eeb583f | ||
|
|
b7531d3b9e | ||
|
|
41dc3bd1cf | ||
|
|
b790b385a4 | ||
|
|
8700328fe9 | ||
|
|
adbd2c8200 | ||
|
|
7d552effb0 | ||
|
|
bc81d2a5a7 | ||
|
|
7620de2d91 | ||
|
|
07a43a0444 | ||
|
|
f4d5874e09 | ||
|
|
8a0b4d24bd | ||
|
|
636f19be1f | ||
|
|
0fd7f7d9b2 | ||
|
|
ab6c66534f | ||
|
|
faccf13759 | ||
|
|
4c6a28e4ed | ||
|
|
64ad88e2cb | ||
|
|
969ac90d39 | ||
|
|
fb977c1e95 | ||
|
|
d5ba3916f7 | ||
|
|
f7f1087337 | ||
|
|
47ea2dbc03 | ||
|
|
bd2cf534e5 | ||
|
|
65f1668d69 | ||
|
|
e0fb7df0aa | ||
|
|
7047f76299 | ||
|
|
c39f2d5eb6 | ||
|
|
5fda69a388 | ||
|
|
87ce954eef | ||
|
|
ebbeac413a | ||
|
|
a68bbaaab4 | ||
|
|
8784dc979f | ||
|
|
f8047544fc | ||
|
|
eeb2a05e4f | ||
|
|
6db9d7bd8b | ||
|
|
80e2fde734 | ||
|
|
ae4f5d40ee | ||
|
|
5516edadfd | ||
|
|
475afbf44b | ||
|
|
197eaf1aab |
30
.github/ISSUE_TEMPLATE/bug_report.md
vendored
@@ -1,30 +0,0 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: "[Notebook issue]"
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
Provide the following if applicable:
|
||||
+ Your Python & SDK version
|
||||
+ Python Scripts or the full notebook name
|
||||
+ Pipeline definition
|
||||
+ Environment definition
|
||||
+ Example data
|
||||
+ Any log files.
|
||||
+ Run and Workspace Id
|
||||
|
||||
**To Reproduce**
|
||||
Steps to reproduce the behavior:
|
||||
1.
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
43
.github/ISSUE_TEMPLATE/notebook-issue.md
vendored
@@ -1,43 +0,0 @@
|
||||
---
|
||||
name: Notebook issue
|
||||
about: Describe your notebook issue
|
||||
title: "[Notebook] DESCRIPTIVE TITLE"
|
||||
labels: notebook
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
### DESCRIPTION: Describe clearly + concisely
|
||||
|
||||
|
||||
.
|
||||
### REPRODUCIBLE: Steps
|
||||
|
||||
|
||||
.
|
||||
### EXPECTATION: Clear description
|
||||
|
||||
|
||||
.
|
||||
### CONFIG/ENVIRONMENT:
|
||||
```Provide where applicable
|
||||
|
||||
## Your Python & SDK version:
|
||||
|
||||
## Environment definition:
|
||||
|
||||
## Notebook name or Python scripts:
|
||||
|
||||
## Run and Workspace Id:
|
||||
|
||||
## Pipeline definition:
|
||||
|
||||
## Example data:
|
||||
|
||||
## Any log files:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
```
|
||||
12
README.md
@@ -2,7 +2,8 @@
|
||||
|
||||
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
## Quick installation
|
||||
```sh
|
||||
@@ -49,13 +50,18 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Community Repository
|
||||
Visit this [community repository](https://github.com/microsoft/MLOps/tree/master/examples) to find useful end-to-end sample notebooks. Also, please follow these [contribution guidelines](https://github.com/microsoft/MLOps/blob/master/contributing.md) when contributing to this repository.
|
||||
|
||||
## Projects using Azure Machine Learning
|
||||
|
||||
Visit following repos to see projects contributed by Azure ML users:
|
||||
|
||||
- [AMLSamples](https://github.com/Azure/AMLSamples) Number of end-to-end examples, including face recognition, predictive maintenance, customer churn and sentiment analysis.
|
||||
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
|
||||
- [Learn about Natural Language Processing best practices using Azure Machine Learning service](https://github.com/microsoft/nlp)
|
||||
- [Pre-Train BERT models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
|
||||
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
|
||||
- [UMass Amherst Student Samples](https://github.com/katiehouse3/microsoft-azure-ml-notebooks) - A number of end-to-end machine learning notebooks, including machine translation, image classification, and customer churn, created by students in the 696DS course at UMass Amherst.
|
||||
|
||||
## Data/Telemetry
|
||||
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
|
||||
|
||||
@@ -103,7 +103,7 @@
|
||||
"source": [
|
||||
"import azureml.core\n",
|
||||
"\n",
|
||||
"print(\"This notebook was created using version 1.0.57 of the Azure ML SDK\")\n",
|
||||
"print(\"This notebook was created using version Latest of the Azure ML SDK\")\n",
|
||||
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -1,307 +0,0 @@
|
||||
## How to use the RAPIDS on AzureML materials
|
||||
### Setting up requirements
|
||||
The material requires the use of the Azure ML SDK and of the Jupyter Notebook Server to run the interactive execution. Please refer to instructions to [setup the environment.](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local "Local Computer Set Up") Follow the instructions under **Local Computer**, make sure to run the last step: <span style="font-family: Courier New;">pip install \<new package\></span> with <span style="font-family: Courier New;">new package = progressbar2 (pip install progressbar2)</span>
|
||||
|
||||
After following the directions, the user should end up setting a conda environment (<span style="font-family: Courier New;">myenv</span>)that can be activated in an Anaconda prompt
|
||||
|
||||
The user would also require an Azure Subscription with a Machine Learning Services quota on the desired region for 24 nodes or more (to be able to select a vmSize with 4 GPUs as it is used on the Notebook) on the desired VM family ([NC\_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC\_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview)), the specific vmSize to be used within the chosen family would also need to be whitelisted for Machine Learning Services usage.
|
||||
|
||||
|
||||
### Getting and running the material
|
||||
Clone the AzureML Notebooks repository in GitHub by running the following command on a local_directory:
|
||||
|
||||
* C:\local_directory>git clone https://github.com/Azure/MachineLearningNotebooks.git
|
||||
|
||||
On a conda prompt navigate to the local directory, activate the conda environment (<span style="font-family: Courier New;">myenv</span>), where the Azure ML SDK was installed and launch Jupyter Notebook.
|
||||
|
||||
* (<span style="font-family: Courier New;">myenv</span>) C:\local_directory>jupyter notebook
|
||||
|
||||
From the resulting browser at http://localhost:8888/tree, navigate to the master notebook:
|
||||
|
||||
* http://localhost:8888/tree/MachineLearningNotebooks/contrib/RAPIDS/azure-ml-with-nvidia-rapids.ipynb
|
||||
|
||||
|
||||
The following notebook will appear:
|
||||
|
||||

|
||||
|
||||
|
||||
### Master Jupyter Notebook
|
||||
The notebook can be executed interactively step by step, by pressing the Run button (In a red circle in the above image.)
|
||||
|
||||
The first couple of functional steps import the necessary AzureML libraries. If you experience any errors please refer back to the [setup the environment.](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local "Local Computer Set Up") instructions.
|
||||
|
||||
|
||||
#### Setting up a Workspace
|
||||
The following step gathers the information necessary to set up a workspace to execute the RAPIDS script. This needs to be done only once, or not at all if you already have a workspace you can use set up on the Azure Portal:
|
||||
|
||||

|
||||
|
||||
|
||||
It is important to be sure to set the correct values for the subscription\_id, resource\_group, workspace\_name, and region before executing the step. An example is:
|
||||
|
||||
subscription_id = os.environ.get("SUBSCRIPTION_ID", "1358e503-xxxx-4043-xxxx-65b83xxxx32d")
|
||||
resource_group = os.environ.get("RESOURCE_GROUP", "AML-Rapids-Testing")
|
||||
workspace_name = os.environ.get("WORKSPACE_NAME", "AML_Rapids_Tester")
|
||||
workspace_region = os.environ.get("WORKSPACE_REGION", "West US 2")
|
||||
|
||||
|
||||
The resource\_group and workspace_name could take any value, the region should match the region for which the subscription has the required Machine Learning Services node quota.
|
||||
|
||||
The first time the code is executed it will redirect to the Azure Portal to validate subscription credentials. After the workspace is created, its related information is stored on a local file so that this step can be subsequently skipped. The immediate step will just load the saved workspace
|
||||
|
||||

|
||||
|
||||
Once a workspace has been created the user could skip its creation and just jump to this step. The configuration file resides in:
|
||||
|
||||
* C:\local_directory\\MachineLearningNotebooks\contrib\RAPIDS\aml_config\config.json
|
||||
|
||||
|
||||
#### Creating an AML Compute Target
|
||||
Following step, creates an AML Compute Target
|
||||
|
||||

|
||||
|
||||
Parameter vm\_size on function call AmlCompute.provisioning\_configuration() has to be a member of the VM families ([NC\_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC\_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview)) that are the ones provided with P40 or V100 GPUs, that are the ones supported by RAPIDS. In this particular case an Standard\_NC24s\_V2 was used.
|
||||
|
||||
|
||||
If the output of running the step has an error of the form:
|
||||
|
||||

|
||||
|
||||
It is an indication that even though the subscription has a node quota for VMs for that family, it does not have a node quota for Machine Learning Services for that family.
|
||||
You will need to request an increase node quota for that family in that region for **Machine Learning Services**.
|
||||
|
||||
|
||||
Another possible error is the following:
|
||||
|
||||

|
||||
|
||||
Which indicates that specified vmSize has not been whitelisted for usage on Machine Learning Services and a request to do so should be filled.
|
||||
|
||||
The successful creation of the compute target would have an output like the following:
|
||||
|
||||

|
||||
|
||||
#### RAPIDS script uploading and viewing
|
||||
The next step copies the RAPIDS script process_data.py, which is a slightly modified implementation of the [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb), into a script processing folder and it presents its contents to the user. (The script is discussed in the next section in detail).
|
||||
If the user wants to use a different RAPIDS script, the references to the <span style="font-family: Courier New;">process_data.py</span> script have to be changed
|
||||
|
||||

|
||||
|
||||
#### Data Uploading
|
||||
The RAPIDS script loads and extracts features from the Fannie Mae’s Mortgage Dataset to train an XGBoost prediction model. The script uses two years of data
|
||||
|
||||
The next few steps download and decompress the data and is made available to the script as an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data).
|
||||
|
||||
|
||||
The following functions are used to download and decompress the input data
|
||||
|
||||
|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
|
||||
The next step uses those functions to download locally file:
|
||||
http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/mortgage_2000-2001.tgz'
|
||||
And to decompress it, into local folder path = .\mortgage_2000-2001
|
||||
The step takes several minutes, the intermediate outputs provide progress indicators.
|
||||
|
||||

|
||||
|
||||
|
||||
The decompressed data should have the following structure:
|
||||
* .\mortgage_2000-2001\acq\Acquisition_<year>Q<num>.txt
|
||||
* .\mortgage_2000-2001\perf\Performance_<year>Q<num>.txt
|
||||
* .\mortgage_2000-2001\names.csv
|
||||
|
||||
The data is divided in partitions that roughly correspond to yearly quarters. RAPIDS includes support for multi-node, multi-GPU deployments, enabling scaling up and out on much larger dataset sizes. The user will be able to verify that the number of partitions that the script is able to process increases with the number of GPUs used. The RAPIDS script is implemented for single-machine scenarios. An example supporting multiple nodes will be published later.
|
||||
|
||||
|
||||
The next step upload the data into the [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data) under reference <span style="font-family: Courier New;">fileroot = mortgage_2000-2001</span>
|
||||
|
||||
The step takes several minutes to load the data, the output provides a progress indicator.
|
||||
|
||||

|
||||
|
||||
Once the data has been loaded into the Azure Machine LEarning Data Store, in subsequent run, the user can comment out the ds.upload line and just make reference to the <span style="font-family: Courier New;">mortgage_2000-2001</blog> data store reference
|
||||
|
||||
|
||||
#### Setting up required libraries and environment to run RAPIDS code
|
||||
There are two options to setup the environment to run RAPIDS code. The following steps shows how to ues a prebuilt conda environment. A recommended alternative is to specify a base Docker image and package dependencies. You can find sample code for that in the notebook.
|
||||
|
||||

|
||||
|
||||
|
||||
#### Wrapper function to submit the RAPIDS script as an Azure Machine Learning experiment
|
||||
|
||||
The next step consists of the definition of a wrapper function to be used when the user attempts to run the RAPIDS script with different arguments. It takes as arguments: <span style="font-family: Times New Roman;">*cpu\_training*</span>; a flag that indicates if the run is meant to be processed with CPU-only, <span style="font-family: Times New Roman;">*gpu\_count*</span>; the number of GPUs to be used if they are meant to be used and part_count: the number of data partitions to be used
|
||||
|
||||

|
||||
|
||||
|
||||
The core of the function resides in configuring the run by the instantiation of a ScriptRunConfig object, which defines the source_directory for the script to be executed, the name of the script and the arguments to be passed to the script.
|
||||
In addition to the wrapper function arguments, two other arguments are passed: <span style="font-family: Times New Roman;">*data\_dir*</span>, the directory where the data is stored and <span style="font-family: Times New Roman;">*end_year*</span> is the largest year to use partition from.
|
||||
|
||||
|
||||
As mentioned earlier the size of the data that can be processed increases with the number of gpus, in the function, dictionary <span style="font-family: Times New Roman;">*max\_gpu\_count\_data\_partition_mapping*</span> maps the maximum number of partitions that we empirically found that the system can handle given the number of GPUs used. The function throws a warning when the number of partitions for a given number of gpus exceeds the maximum but the script is still executed, however the user should expect an error as an out of memory situation would be encountered
|
||||
If the user wants to use a different RAPIDS script, the reference to the process_data.py script has to be changed
|
||||
|
||||
|
||||
#### Submitting Experiments
|
||||
We are ready to submit experiments: launching the RAPIDS script with different sets of parameters.
|
||||
|
||||
|
||||
The following couple of steps submit experiments under different conditions.
|
||||
|
||||

|
||||
|
||||
|
||||
The user can change variable num\_gpu between one and the number of GPUs supported by the chosen vmSize. Variable part\_count can take any value between 1 and 11, but if it exceeds the maximum for num_gpu, the run would result in an error
|
||||
|
||||
|
||||
If the experiment is successfully submitted, it would be placed on a queue for processing, its status would appeared as Queued and an output like the following would appear
|
||||
|
||||

|
||||
|
||||
|
||||
When the experiment starts running, its status would appeared as Running and the output would change to something like this:
|
||||
|
||||

|
||||
|
||||
|
||||
#### Reproducing the performance gains plot results on the Blog Post
|
||||
When the run has finished successfully, its status would appeared as Completed and the output would change to something like this:
|
||||
|
||||
|
||||

|
||||
|
||||
Which is the output for an experiment run with three partitions and one GPU, notice that the reported processing time is 49.16 seconds just as depicted on the performance gains plot on the blog post
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
This output corresponds to a run with three partitions and two GPUs, notice that the reported processing time is 37.50 seconds just as depicted on the performance gains plot on the blog post
|
||||
|
||||
|
||||

|
||||
|
||||
This output corresponds to an experiment run with three partitions and three GPUs, notice that the reported processing time is 24.40 seconds just as depicted on the performance gains plot on the blog post
|
||||
|
||||
|
||||

|
||||
|
||||
This output corresponds to an experiment run with three partitions and four GPUs, notice that the reported processing time is 23.33 seconds just as depicted on the performance gains plot on the blogpost
|
||||
|
||||
|
||||

|
||||
|
||||
This output corresponds to an experiment run with three partitions and using only CPU, notice that the reported processing time is 9 minutes and 1.21 seconds or 541.21 second just as depicted on the performance gains plot on the blog post
|
||||
|
||||
|
||||

|
||||
|
||||
This output corresponds to an experiment run with nine partitions and four GPUs, notice that the notebook throws a warning signaling that the number of partitions exceed the maximum that the system can handle with those many GPUs and the run ends up failing, hence having and status of Failed.
|
||||
|
||||
|
||||
##### Freeing Resources
|
||||
In the last step the notebook deletes the compute target. (This step is optional especially if the min_nodes in the cluster is set to 0 with which the cluster will scale down to 0 nodes when there is no usage.)
|
||||
|
||||

|
||||
|
||||
|
||||
### RAPIDS Script
|
||||
The Master Notebook runs experiments by launching a RAPIDS script with different sets of parameters. In this section, the RAPIDS script, process_data.py in the material, is analyzed
|
||||
|
||||
The script first imports all the necessary libraries and parses the arguments passed by the Master Notebook.
|
||||
|
||||
The all internal functions to be used by the script are defined.
|
||||
|
||||
|
||||
#### Wrapper Auxiliary Functions:
|
||||
The below functions are wrappers for a configuration module for librmm, the RAPIDS Memory Manager python interface:
|
||||
|
||||

|
||||
|
||||
|
||||
A couple of other functions are wrappers for the submission of jobs to the DASK client:
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
#### Data Loading Functions:
|
||||
The data is loaded through the use of the following three functions
|
||||
|
||||

|
||||
|
||||
All three functions use library function cudf.read_csv(), cuDF version for the well known counterpart on Pandas.
|
||||
|
||||
|
||||
#### Data Transformation and Feature Extraction Functions:
|
||||
The raw data is transformed and processed to extract features by joining, slicing, grouping, aggregating, factoring, etc, the original dataframes just as is done with Pandas. The following functions in the script are used for that purpose:
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
#### Main() Function
|
||||
The previous functions are used in the Main function to accomplish several steps: Set up the Dask client, do all ETL operations, set up and train an XGBoost model, the function also assigns which data needs to be processed by each Dask client
|
||||
|
||||
|
||||
##### Setting Up DASK client:
|
||||
The following lines:
|
||||
|
||||

|
||||
|
||||
|
||||
Initialize and set up a DASK client with a number of workers corresponding to the number of GPUs to be used on the run. A successful execution of the set up will result on the following output:
|
||||
|
||||

|
||||
|
||||
##### All ETL functions are used on single calls to process\_quarter_gpu, one per data partition
|
||||
|
||||

|
||||
|
||||
|
||||
##### Concentrating the data assigned to each DASK worker
|
||||
The partitions assigned to each worker are concatenated and set up for training.
|
||||
|
||||

|
||||
|
||||
|
||||
##### Setting Training Parameters
|
||||
The parameters used for the training of a gradient boosted decision tree model are set up in the following code block:
|
||||

|
||||
|
||||
Notice how the parameters are modified when using the CPU-only mode.
|
||||
|
||||
|
||||
##### Launching the training of a gradient boosted decision tree model using XGBoost.
|
||||
|
||||

|
||||
|
||||
The outputs of the script can be observed in the master notebook as the script is executed
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 180 KiB |
|
Before Width: | Height: | Size: 183 KiB |
|
Before Width: | Height: | Size: 183 KiB |
|
Before Width: | Height: | Size: 177 KiB |
|
Before Width: | Height: | Size: 5.0 KiB |
|
Before Width: | Height: | Size: 4.8 KiB |
|
Before Width: | Height: | Size: 3.2 KiB |
|
Before Width: | Height: | Size: 70 KiB |
|
Before Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 554 KiB |
|
Before Width: | Height: | Size: 213 KiB |
|
Before Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 34 KiB |
|
Before Width: | Height: | Size: 4.5 KiB |
|
Before Width: | Height: | Size: 187 KiB |
|
Before Width: | Height: | Size: 22 KiB |
|
Before Width: | Height: | Size: 9.7 KiB |
|
Before Width: | Height: | Size: 163 KiB |
|
Before Width: | Height: | Size: 3.5 KiB |
|
Before Width: | Height: | Size: 2.9 KiB |
|
Before Width: | Height: | Size: 2.5 KiB |
|
Before Width: | Height: | Size: 3.0 KiB |
|
Before Width: | Height: | Size: 60 KiB |
|
Before Width: | Height: | Size: 3.5 KiB |
|
Before Width: | Height: | Size: 3.9 KiB |
|
Before Width: | Height: | Size: 5.0 KiB |
|
Before Width: | Height: | Size: 4.0 KiB |
|
Before Width: | Height: | Size: 4.1 KiB |
|
Before Width: | Height: | Size: 4.5 KiB |
|
Before Width: | Height: | Size: 5.1 KiB |
|
Before Width: | Height: | Size: 3.9 KiB |
|
Before Width: | Height: | Size: 3.6 KiB |
|
Before Width: | Height: | Size: 120 KiB |
|
Before Width: | Height: | Size: 55 KiB |
|
Before Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 181 KiB |
|
Before Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 19 KiB |
|
Before Width: | Height: | Size: 45 KiB |
|
Before Width: | Height: | Size: 31 KiB |
|
Before Width: | Height: | Size: 29 KiB |
|
Before Width: | Height: | Size: 10 KiB |
|
Before Width: | Height: | Size: 18 KiB |
|
Before Width: | Height: | Size: 2.4 KiB |
|
Before Width: | Height: | Size: 2.5 KiB |
|
Before Width: | Height: | Size: 3.4 KiB |
|
Before Width: | Height: | Size: 4.8 KiB |
|
Before Width: | Height: | Size: 99 KiB |
@@ -1,35 +0,0 @@
|
||||
name: rapids
|
||||
channels:
|
||||
- nvidia
|
||||
- numba
|
||||
- conda-forge
|
||||
- rapidsai
|
||||
- defaults
|
||||
- pytorch
|
||||
|
||||
dependencies:
|
||||
- arrow-cpp=0.12.0
|
||||
- bokeh
|
||||
- cffi=1.11.5
|
||||
- cmake=3.12
|
||||
- cuda92
|
||||
- cython==0.29
|
||||
- dask=1.1.1
|
||||
- distributed=1.25.3
|
||||
- faiss-gpu=1.5.0
|
||||
- numba=0.42
|
||||
- numpy=1.15.4
|
||||
- nvstrings
|
||||
- pandas=0.23.4
|
||||
- pyarrow=0.12.0
|
||||
- scikit-learn
|
||||
- scipy
|
||||
- cudf
|
||||
- cuml
|
||||
- python=3.6.2
|
||||
- jupyterlab
|
||||
- pip:
|
||||
- file:/rapids/xgboost/python-package/dist/xgboost-0.81-py3-none-any.whl
|
||||
- git+https://github.com/rapidsai/dask-xgboost@dask-cudf
|
||||
- git+https://github.com/rapidsai/dask-cudf@master
|
||||
- git+https://github.com/rapidsai/dask-cuda@master
|
||||
@@ -1,723 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Track Data Drift between Training and Inference Data in Production \n",
|
||||
"\n",
|
||||
"With this notebook, you will learn how to enable the DataDrift service to automatically track and determine whether your inference data is drifting from the data your model was initially trained on. The DataDrift service provides metrics and visualizations to help stakeholders identify which specific features cause the concept drift to occur.\n",
|
||||
"\n",
|
||||
"Please email driftfeedback@microsoft.com with any issues. A member from the DataDrift team will respond shortly. \n",
|
||||
"\n",
|
||||
"The DataDrift Public Preview API can be found [here](https://docs.microsoft.com/en-us/python/api/azureml-contrib-datadrift/?view=azure-ml-py). "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Prerequisites and Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Install the DataDrift package\n",
|
||||
"\n",
|
||||
"Install the azureml-contrib-datadrift, azureml-opendatasets and lightgbm packages before running this notebook.\n",
|
||||
"```\n",
|
||||
"pip install azureml-contrib-datadrift\n",
|
||||
"pip install lightgbm\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Import Dependencies"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"import time\n",
|
||||
"from datetime import datetime, timedelta\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"from azureml.contrib.datadrift import DataDriftDetector, AlertConfiguration\n",
|
||||
"from azureml.opendatasets import NoaaIsdWeather\n",
|
||||
"from azureml.core import Dataset, Workspace, Run\n",
|
||||
"from azureml.core.compute import AksCompute, ComputeTarget\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"from sklearn.externals import joblib\n",
|
||||
"from sklearn.model_selection import train_test_split\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Set up Configuraton and Create Azure ML Workspace\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Please type in your initials/alias. The prefix is prepended to the names of resources created by this notebook. \n",
|
||||
"prefix = \"dd\"\n",
|
||||
"\n",
|
||||
"# NOTE: Please do not change the model_name, as it's required by the score.py file\n",
|
||||
"model_name = \"driftmodel\"\n",
|
||||
"image_name = \"{}driftimage\".format(prefix)\n",
|
||||
"service_name = \"{}driftservice\".format(prefix)\n",
|
||||
"\n",
|
||||
"# optionally, set email address to receive an email alert for DataDrift\n",
|
||||
"email_address = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Generate Train/Testing Data\n",
|
||||
"\n",
|
||||
"For this demo, we will use NOAA weather data from [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/). You may replace this step with your own dataset. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"usaf_list = ['725724', '722149', '723090', '722159', '723910', '720279',\n",
|
||||
" '725513', '725254', '726430', '720381', '723074', '726682',\n",
|
||||
" '725486', '727883', '723177', '722075', '723086', '724053',\n",
|
||||
" '725070', '722073', '726060', '725224', '725260', '724520',\n",
|
||||
" '720305', '724020', '726510', '725126', '722523', '703333',\n",
|
||||
" '722249', '722728', '725483', '722972', '724975', '742079',\n",
|
||||
" '727468', '722193', '725624', '722030', '726380', '720309',\n",
|
||||
" '722071', '720326', '725415', '724504', '725665', '725424',\n",
|
||||
" '725066']\n",
|
||||
"\n",
|
||||
"columns = ['usaf', 'wban', 'datetime', 'latitude', 'longitude', 'elevation', 'windAngle', 'windSpeed', 'temperature', 'stationName', 'p_k']\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def enrich_weather_noaa_data(noaa_df):\n",
|
||||
" hours_in_day = 23\n",
|
||||
" week_in_year = 52\n",
|
||||
" \n",
|
||||
" noaa_df[\"hour\"] = noaa_df[\"datetime\"].dt.hour\n",
|
||||
" noaa_df[\"weekofyear\"] = noaa_df[\"datetime\"].dt.week\n",
|
||||
" \n",
|
||||
" noaa_df[\"sine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.sin((2*np.pi*x.dt.week-1)/week_in_year))\n",
|
||||
" noaa_df[\"cosine_weekofyear\"] = noaa_df['datetime'].transform(lambda x: np.cos((2*np.pi*x.dt.week-1)/week_in_year))\n",
|
||||
"\n",
|
||||
" noaa_df[\"sine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.sin(2*np.pi*x.dt.hour/hours_in_day))\n",
|
||||
" noaa_df[\"cosine_hourofday\"] = noaa_df['datetime'].transform(lambda x: np.cos(2*np.pi*x.dt.hour/hours_in_day))\n",
|
||||
" \n",
|
||||
" return noaa_df\n",
|
||||
"\n",
|
||||
"def add_window_col(input_df):\n",
|
||||
" shift_interval = pd.Timedelta('-7 days') # your X days interval\n",
|
||||
" df_shifted = input_df.copy()\n",
|
||||
" df_shifted['datetime'] = df_shifted['datetime'] - shift_interval\n",
|
||||
" df_shifted.drop(list(input_df.columns.difference(['datetime', 'usaf', 'wban', 'sine_hourofday', 'temperature'])), axis=1, inplace=True)\n",
|
||||
"\n",
|
||||
" # merge, keeping only observations where -1 lag is present\n",
|
||||
" df2 = pd.merge(input_df,\n",
|
||||
" df_shifted,\n",
|
||||
" on=['datetime', 'usaf', 'wban', 'sine_hourofday'],\n",
|
||||
" how='inner', # use 'left' to keep observations without lags\n",
|
||||
" suffixes=['', '-7'])\n",
|
||||
" return df2\n",
|
||||
"\n",
|
||||
"def get_noaa_data(start_time, end_time, cols, station_list):\n",
|
||||
" isd = NoaaIsdWeather(start_time, end_time, cols=cols)\n",
|
||||
" # Read into Pandas data frame.\n",
|
||||
" noaa_df = isd.to_pandas_dataframe()\n",
|
||||
" noaa_df = noaa_df.rename(columns={\"stationName\": \"station_name\"})\n",
|
||||
" \n",
|
||||
" df_filtered = noaa_df[noaa_df[\"usaf\"].isin(station_list)]\n",
|
||||
" df_filtered.reset_index(drop=True)\n",
|
||||
" \n",
|
||||
" # Enrich with time features\n",
|
||||
" df_enriched = enrich_weather_noaa_data(df_filtered)\n",
|
||||
" \n",
|
||||
" return df_enriched\n",
|
||||
"\n",
|
||||
"def get_featurized_noaa_df(start_time, end_time, cols, station_list):\n",
|
||||
" df_1 = get_noaa_data(start_time - timedelta(days=7), start_time - timedelta(seconds=1), cols, station_list)\n",
|
||||
" df_2 = get_noaa_data(start_time, end_time, cols, station_list)\n",
|
||||
" noaa_df = pd.concat([df_1, df_2])\n",
|
||||
" \n",
|
||||
" print(\"Adding window feature\")\n",
|
||||
" df_window = add_window_col(noaa_df)\n",
|
||||
" \n",
|
||||
" cat_columns = df_window.dtypes == object\n",
|
||||
" cat_columns = cat_columns[cat_columns == True]\n",
|
||||
" \n",
|
||||
" print(\"Encoding categorical columns\")\n",
|
||||
" df_encoded = pd.get_dummies(df_window, columns=cat_columns.keys().tolist())\n",
|
||||
" \n",
|
||||
" print(\"Dropping unnecessary columns\")\n",
|
||||
" df_featurized = df_encoded.drop(['windAngle', 'windSpeed', 'datetime', 'elevation'], axis=1).dropna().drop_duplicates()\n",
|
||||
" \n",
|
||||
" return df_featurized"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Train model on Jan 1 - 14, 2009 data\n",
|
||||
"df = get_featurized_noaa_df(datetime(2009, 1, 1), datetime(2009, 1, 14, 23, 59, 59), columns, usaf_list)\n",
|
||||
"df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"label = \"temperature\"\n",
|
||||
"x_df = df.drop(label, axis=1)\n",
|
||||
"y_df = df[[label]]\n",
|
||||
"x_train, x_test, y_train, y_test = train_test_split(df, y_df, test_size=0.2, random_state=223)\n",
|
||||
"print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)\n",
|
||||
"\n",
|
||||
"training_dir = 'outputs/training'\n",
|
||||
"training_file = \"training.csv\"\n",
|
||||
"\n",
|
||||
"# Generate training dataframe to register as Training Dataset\n",
|
||||
"os.makedirs(training_dir, exist_ok=True)\n",
|
||||
"training_df = pd.merge(x_train.drop(label, axis=1), y_train, left_index=True, right_index=True)\n",
|
||||
"training_df.to_csv(training_dir + \"/\" + training_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create/Register Training Dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dataset_name = \"dataset\"\n",
|
||||
"name_suffix = datetime.utcnow().strftime(\"%Y-%m-%d-%H-%M-%S\")\n",
|
||||
"snapshot_name = \"snapshot-{}\".format(name_suffix)\n",
|
||||
"\n",
|
||||
"dstore = ws.get_default_datastore()\n",
|
||||
"dstore.upload(training_dir, \"data/training\", show_progress=True)\n",
|
||||
"dpath = dstore.path(\"data/training/training.csv\")\n",
|
||||
"trainingDataset = Dataset.auto_read_files(dpath, include_path=True)\n",
|
||||
"trainingDataset = trainingDataset.register(workspace=ws, name=dataset_name, description=\"dset\", exist_ok=True)\n",
|
||||
"\n",
|
||||
"datasets = [(Dataset.Scenario.TRAINING, trainingDataset)]\n",
|
||||
"print(\"dataset registration done.\\n\")\n",
|
||||
"datasets"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train and Save Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import lightgbm as lgb\n",
|
||||
"\n",
|
||||
"train = lgb.Dataset(data=x_train, \n",
|
||||
" label=y_train)\n",
|
||||
"\n",
|
||||
"test = lgb.Dataset(data=x_test, \n",
|
||||
" label=y_test,\n",
|
||||
" reference=train)\n",
|
||||
"\n",
|
||||
"params = {'learning_rate' : 0.1,\n",
|
||||
" 'boosting' : 'gbdt',\n",
|
||||
" 'metric' : 'rmse',\n",
|
||||
" 'feature_fraction' : 1,\n",
|
||||
" 'bagging_fraction' : 1,\n",
|
||||
" 'max_depth': 6,\n",
|
||||
" 'num_leaves' : 31,\n",
|
||||
" 'objective' : 'regression',\n",
|
||||
" 'bagging_freq' : 1,\n",
|
||||
" \"verbose\": -1,\n",
|
||||
" 'min_data_per_leaf': 100}\n",
|
||||
"\n",
|
||||
"model = lgb.train(params, \n",
|
||||
" num_boost_round=500,\n",
|
||||
" train_set=train,\n",
|
||||
" valid_sets=[train, test],\n",
|
||||
" verbose_eval=50,\n",
|
||||
" early_stopping_rounds=25)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_file = 'outputs/{}.pkl'.format(model_name)\n",
|
||||
"\n",
|
||||
"os.makedirs('outputs', exist_ok=True)\n",
|
||||
"joblib.dump(model, model_file)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Register Model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = Model.register(model_path=model_file,\n",
|
||||
" model_name=model_name,\n",
|
||||
" workspace=ws,\n",
|
||||
" datasets=datasets)\n",
|
||||
"\n",
|
||||
"print(model_name, image_name, service_name, model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Deploy Model To AKS"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Prepare Environment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn', 'joblib', 'lightgbm', 'pandas'],\n",
|
||||
" pip_packages=['azureml-monitoring', 'azureml-sdk[automl]'])\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Image creation may take up to 15 minutes.\n",
|
||||
"\n",
|
||||
"image_name = image_name + str(model.version)\n",
|
||||
"\n",
|
||||
"if not image_name in ws.images:\n",
|
||||
" # Use the score.py defined in this directory as the execution script\n",
|
||||
" # NOTE: The Model Data Collector must be enabled in the execution script for DataDrift to run correctly\n",
|
||||
" image_config = ContainerImage.image_configuration(execution_script=\"score.py\",\n",
|
||||
" runtime=\"python\",\n",
|
||||
" conda_file=\"myenv.yml\",\n",
|
||||
" description=\"Image with weather dataset model\")\n",
|
||||
" image = ContainerImage.create(name=image_name,\n",
|
||||
" models=[model],\n",
|
||||
" image_config=image_config,\n",
|
||||
" workspace=ws)\n",
|
||||
"\n",
|
||||
" image.wait_for_creation(show_output=True)\n",
|
||||
"else:\n",
|
||||
" image = ws.images[image_name]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create Compute Target"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aks_name = 'dd-demo-e2e'\n",
|
||||
"prov_config = AksCompute.provisioning_configuration()\n",
|
||||
"\n",
|
||||
"if not aks_name in ws.compute_targets:\n",
|
||||
" aks_target = ComputeTarget.create(workspace=ws,\n",
|
||||
" name=aks_name,\n",
|
||||
" provisioning_configuration=prov_config)\n",
|
||||
"\n",
|
||||
" aks_target.wait_for_completion(show_output=True)\n",
|
||||
" print(aks_target.provisioning_state)\n",
|
||||
" print(aks_target.provisioning_errors)\n",
|
||||
"else:\n",
|
||||
" aks_target=ws.compute_targets[aks_name]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"aks_service_name = service_name\n",
|
||||
"\n",
|
||||
"if not aks_service_name in ws.webservices:\n",
|
||||
" aks_config = AksWebservice.deploy_configuration(collect_model_data=True, enable_app_insights=True)\n",
|
||||
" aks_service = Webservice.deploy_from_image(workspace=ws,\n",
|
||||
" name=aks_service_name,\n",
|
||||
" image=image,\n",
|
||||
" deployment_config=aks_config,\n",
|
||||
" deployment_target=aks_target)\n",
|
||||
" aks_service.wait_for_deployment(show_output=True)\n",
|
||||
" print(aks_service.state)\n",
|
||||
"else:\n",
|
||||
" aks_service = ws.webservices[aks_service_name]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Run DataDrift Analysis"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Send Scoring Data to Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Download Scoring Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Score Model on March 15, 2016 data\n",
|
||||
"scoring_df = get_noaa_data(datetime(2016, 3, 15) - timedelta(days=7), datetime(2016, 3, 16), columns, usaf_list)\n",
|
||||
"# Add the window feature column\n",
|
||||
"scoring_df = add_window_col(scoring_df)\n",
|
||||
"\n",
|
||||
"# Drop features not used by the model\n",
|
||||
"print(\"Dropping unnecessary columns\")\n",
|
||||
"scoring_df = scoring_df.drop(['windAngle', 'windSpeed', 'datetime', 'elevation'], axis=1).dropna()\n",
|
||||
"scoring_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# One Hot Encode the scoring dataset to match the training dataset schema\n",
|
||||
"columns_dict = model.datasets[\"training\"][0].get_profile().columns\n",
|
||||
"extra_cols = ('Path', 'Column1')\n",
|
||||
"for k in extra_cols:\n",
|
||||
" columns_dict.pop(k, None)\n",
|
||||
"training_columns = list(columns_dict.keys())\n",
|
||||
"\n",
|
||||
"categorical_columns = scoring_df.dtypes == object\n",
|
||||
"categorical_columns = categorical_columns[categorical_columns == True]\n",
|
||||
"\n",
|
||||
"test_df = pd.get_dummies(scoring_df[categorical_columns.keys().tolist()])\n",
|
||||
"encoded_df = scoring_df.join(test_df)\n",
|
||||
"\n",
|
||||
"# Populate missing OHE columns with 0 values to match traning dataset schema\n",
|
||||
"difference = list(set(training_columns) - set(encoded_df.columns.tolist()))\n",
|
||||
"for col in difference:\n",
|
||||
" encoded_df[col] = 0\n",
|
||||
"encoded_df.head()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Serialize dataframe to list of row dictionaries\n",
|
||||
"encoded_dict = encoded_df.to_dict('records')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Submit Scoring Data to Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"\n",
|
||||
"# retreive the API keys. AML generates two keys.\n",
|
||||
"key1, key2 = aks_service.get_keys()\n",
|
||||
"\n",
|
||||
"total_count = len(scoring_df)\n",
|
||||
"i = 0\n",
|
||||
"load = []\n",
|
||||
"for row in encoded_dict:\n",
|
||||
" load.append(row)\n",
|
||||
" i = i + 1\n",
|
||||
" if i % 100 == 0:\n",
|
||||
" payload = json.dumps({\"data\": load})\n",
|
||||
" \n",
|
||||
" # construct raw HTTP request and send to the service\n",
|
||||
" payload_binary = bytes(payload,encoding = 'utf8')\n",
|
||||
" headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
|
||||
" resp = requests.post(aks_service.scoring_uri, payload_binary, headers=headers)\n",
|
||||
" \n",
|
||||
" print(\"prediction:\", resp.content, \"Progress: {}/{}\".format(i, total_count)) \n",
|
||||
"\n",
|
||||
" load = []\n",
|
||||
" time.sleep(3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We need to wait up to 10 minutes for the Model Data Collector to dump the model input and inference data to storage in the Workspace, where it's used by the DataDriftDetector job."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"time.sleep(600)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Configure DataDrift"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"services = [service_name]\n",
|
||||
"start = datetime.now() - timedelta(days=2)\n",
|
||||
"end = datetime(year=2020, month=1, day=22, hour=15, minute=16)\n",
|
||||
"feature_list = ['usaf', 'wban', 'latitude', 'longitude', 'station_name', 'p_k', 'sine_hourofday', 'cosine_hourofday', 'temperature-7']\n",
|
||||
"alert_config = AlertConfiguration([email_address]) if email_address else None\n",
|
||||
"\n",
|
||||
"# there will be an exception indicating using get() method if DataDrift object already exist\n",
|
||||
"try:\n",
|
||||
" datadrift = DataDriftDetector.create(ws, model.name, model.version, services, frequency=\"Day\", alert_config=alert_config)\n",
|
||||
"except KeyError:\n",
|
||||
" datadrift = DataDriftDetector.get(ws, model.name, model.version)\n",
|
||||
" \n",
|
||||
"print(\"Details of DataDrift Object:\\n{}\".format(datadrift))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Run an Adhoc DataDriftDetector Run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"target_date = datetime.today()\n",
|
||||
"run = datadrift.run(target_date, services, feature_list=feature_list, create_compute_target=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"exp = Experiment(ws, datadrift._id)\n",
|
||||
"dd_run = Run(experiment=exp, run_id=run)\n",
|
||||
"RunDetails(dd_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Get Drift Analysis Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(dd_run.get_children())\n",
|
||||
"for child in children:\n",
|
||||
" child.wait_for_completion()\n",
|
||||
"\n",
|
||||
"drift_metrics = datadrift.get_output(start_time=start, end_time=end)\n",
|
||||
"drift_metrics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Show all drift figures, one per serivice.\n",
|
||||
"# If setting with_details is False (by default), only drift will be shown; if it's True, all details will be shown.\n",
|
||||
"\n",
|
||||
"drift_figures = datadrift.show(with_details=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Enable DataDrift Schedule"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"datadrift.enable_schedule()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "rafarmah"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
name: azure-ml-datadrift
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
- azureml-contrib-datadrift
|
||||
- azureml-opendatasets
|
||||
- lightgbm
|
||||
- azureml-widgets
|
||||
@@ -1,58 +0,0 @@
|
||||
import pickle
|
||||
import json
|
||||
import numpy
|
||||
import azureml.train.automl
|
||||
from sklearn.externals import joblib
|
||||
from sklearn.linear_model import Ridge
|
||||
from azureml.core.model import Model
|
||||
from azureml.core.run import Run
|
||||
from azureml.monitoring import ModelDataCollector
|
||||
import time
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def init():
|
||||
global model, inputs_dc, prediction_dc, feature_names, categorical_features
|
||||
|
||||
print("Model is initialized" + time.strftime("%H:%M:%S"))
|
||||
model_path = Model.get_model_path(model_name="driftmodel")
|
||||
model = joblib.load(model_path)
|
||||
|
||||
feature_names = ["usaf", "wban", "latitude", "longitude", "station_name", "p_k",
|
||||
"sine_weekofyear", "cosine_weekofyear", "sine_hourofday", "cosine_hourofday",
|
||||
"temperature-7"]
|
||||
|
||||
categorical_features = ["usaf", "wban", "p_k", "station_name"]
|
||||
|
||||
inputs_dc = ModelDataCollector(model_name="driftmodel",
|
||||
identifier="inputs",
|
||||
feature_names=feature_names)
|
||||
|
||||
prediction_dc = ModelDataCollector("driftmodel",
|
||||
identifier="predictions",
|
||||
feature_names=["temperature"])
|
||||
|
||||
|
||||
def run(raw_data):
|
||||
global inputs_dc, prediction_dc
|
||||
|
||||
try:
|
||||
data = json.loads(raw_data)["data"]
|
||||
data = pd.DataFrame(data)
|
||||
|
||||
# Remove the categorical features as the model expects OHE values
|
||||
input_data = data.drop(categorical_features, axis=1)
|
||||
|
||||
result = model.predict(input_data)
|
||||
|
||||
# Collect the non-OHE dataframe
|
||||
collected_df = data[feature_names]
|
||||
|
||||
inputs_dc.collect(collected_df.values)
|
||||
prediction_dc.collect(result)
|
||||
return result.tolist()
|
||||
except Exception as e:
|
||||
error = str(e)
|
||||
|
||||
print(error + time.strftime("%H:%M:%S"))
|
||||
return error
|
||||
@@ -6,7 +6,7 @@ dependencies:
|
||||
- python>=3.5.2,<3.6.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.11.0,<=1.16.2
|
||||
- numpy>=1.16.0,<=1.16.2
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
@@ -14,6 +14,7 @@ dependencies:
|
||||
- pandas>=0.22.0,<=0.23.4
|
||||
- py-xgboost<=0.80
|
||||
- pyarrow>=0.11.0
|
||||
- conda-forge::fbprophet==0.5
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
@@ -21,5 +22,6 @@ dependencies:
|
||||
- azureml-train-automl
|
||||
- azureml-widgets
|
||||
- azureml-explain-model
|
||||
- azureml-contrib-explain-model
|
||||
- pandas_ml
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ dependencies:
|
||||
- python>=3.5.2,<3.6.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.11.0,<=1.16.2
|
||||
- numpy>=1.16.0,<=1.16.2
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
@@ -15,6 +15,7 @@ dependencies:
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- py-xgboost<=0.80
|
||||
- pyarrow>=0.11.0
|
||||
- conda-forge::fbprophet==0.5
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
@@ -22,5 +23,6 @@ dependencies:
|
||||
- azureml-train-automl
|
||||
- azureml-widgets
|
||||
- azureml-explain-model
|
||||
- azureml-contrib-explain-model
|
||||
- pandas_ml
|
||||
|
||||
|
||||
@@ -92,8 +92,6 @@
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-classification-bmarketing'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-classification-bankmarketing'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -103,7 +101,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -164,20 +161,7 @@
|
||||
"source": [
|
||||
"# Data\n",
|
||||
"\n",
|
||||
"Here load the data in the get_data() script to be utilized in azure compute. To do this first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_Run_config."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
" \n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)"
|
||||
"Create a run configuration for the remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -207,7 +191,7 @@
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Here we create the script to be run in azure comput for loading the data, we load the bank marketing dataset into X_train and y_train. Next X_train and y_train is returned for training the model."
|
||||
"Load the bank marketing dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -218,8 +202,6 @@
|
||||
"source": [
|
||||
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\"\n",
|
||||
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
||||
"X_train = dataset.drop_columns(columns=['y'])\n",
|
||||
"y_train = dataset.keep_columns(columns=['y'], validate=True)\n",
|
||||
"dataset.take(5).to_pandas_dataframe()"
|
||||
]
|
||||
},
|
||||
@@ -238,9 +220,8 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
@@ -263,10 +244,9 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
" training_data = dataset,\n",
|
||||
" label_column_name = 'y',\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
@@ -446,7 +426,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
|
||||
" pip_packages=['azureml-train-automl'])\n",
|
||||
" pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'myenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -483,45 +463,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image\n",
|
||||
"\n",
|
||||
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
|
||||
"or when testing a model that is under development."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'area': \"bmData\", 'type': \"automl_classification\"},\n",
|
||||
" description = \"Image for automl classification sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automlsampleimage\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance\n",
|
||||
"\n",
|
||||
"Deploy an image that contains the model and other assets needed by the service."
|
||||
"### Deploy the model as a Web Service on Azure Container Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -530,28 +472,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"bmData\", 'type': \"automl_classification\"}, \n",
|
||||
" description = 'sample service for Automl Classification')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
" description = 'sample service for Automl Classification')\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-sample-bankmarketing'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
|
||||
@@ -92,8 +92,6 @@
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-classification-ccard'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-classification-creditcard'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -103,7 +101,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -164,20 +161,7 @@
|
||||
"source": [
|
||||
"# Data\n",
|
||||
"\n",
|
||||
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
" \n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)"
|
||||
"Create a run configuration for the remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -207,7 +191,7 @@
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Here create the script to be run in azure compute for loading the data, load the credit card dataset into cards and store the Class column (y) in the y variable and store the remaining data in the x variable. Next split the data using random_split and return X_train and y_train for training the model."
|
||||
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -218,10 +202,10 @@
|
||||
"source": [
|
||||
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
|
||||
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
||||
"X = dataset.drop_columns(columns=['Class'])\n",
|
||||
"y = dataset.keep_columns(columns=['Class'], validate=True)\n",
|
||||
"X_train, X_test = X.random_split(percentage=0.8, seed=223)\n",
|
||||
"y_train, y_test = y.random_split(percentage=0.8, seed=223)"
|
||||
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
|
||||
"label_column_name = 'Class'\n",
|
||||
"X_test = validation_data.drop_columns(columns=[label_column_name])\n",
|
||||
"y_test = validation_data.keep_columns(columns=[label_column_name], validate=True)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -239,9 +223,8 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
@@ -270,11 +253,10 @@
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors_20190417.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
" training_data = training_data,\n",
|
||||
" label_column_name = label_column_name,\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
@@ -453,7 +435,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
|
||||
" pip_packages=['azureml-train-automl'])\n",
|
||||
" pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'myenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -490,45 +472,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image\n",
|
||||
"\n",
|
||||
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
|
||||
"or when testing a model that is under development."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'area': \"cards\", 'type': \"automl_classification\"},\n",
|
||||
" description = \"Image for automl classification sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automlsampleimage\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance\n",
|
||||
"\n",
|
||||
"Deploy an image that contains the model and other assets needed by the service."
|
||||
"### Deploy the model as a Web Service on Azure Container Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -537,28 +481,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"cards\", 'type': \"automl_classification\"}, \n",
|
||||
" description = 'sample service for Automl Classification')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
" description = 'sample service for Automl Classification')\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-sample-creditcard'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
|
||||
@@ -92,8 +92,6 @@
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-classification-deployment'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-classification-deployment'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -103,7 +101,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -126,8 +123,7 @@
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -148,8 +144,7 @@
|
||||
" iterations = 10,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" path = project_folder)"
|
||||
" y = y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -310,7 +305,7 @@
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
|
||||
" pip_packages=['azureml-train-automl'])\n",
|
||||
" pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'myenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -347,40 +342,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_classification\"},\n",
|
||||
" description = \"Image for automl classification sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automlsampleimage\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance"
|
||||
"### Deploy the model as a Web Service on Azure Container Instance\n",
|
||||
"\n",
|
||||
"Create the configuration needed for deploying the model as a web service service."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -389,8 +353,13 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_classification\"}, \n",
|
||||
@@ -404,17 +373,33 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-sample-01'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Get the logs from service deployment"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if aci_service.state != 'Healthy':\n",
|
||||
" # run this command for debugging.\n",
|
||||
" print(aci_service.get_logs())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -431,22 +416,6 @@
|
||||
"#aci_service.delete()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Get Logs from a Deployed Web Service"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#aci_service.get_logs()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -89,9 +89,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-classification-onnx'\n",
|
||||
"project_folder = './sample_projects/automl-classification-onnx'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -101,7 +100,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -127,9 +125,7 @@
|
||||
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
|
||||
" iris.target, \n",
|
||||
" test_size=0.2, \n",
|
||||
" random_state=0)\n",
|
||||
"\n",
|
||||
"\n"
|
||||
" random_state=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,8 +166,7 @@
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -196,8 +191,7 @@
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" preprocess=True,\n",
|
||||
" enable_onnx_compatible_models=True,\n",
|
||||
" path = project_folder)"
|
||||
" enable_onnx_compatible_models=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -100,9 +100,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-local-whitelist'\n",
|
||||
"project_folder = './sample_projects/automl-local-whitelist'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -112,7 +111,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -158,7 +156,6 @@
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
|
||||
]
|
||||
},
|
||||
@@ -177,8 +174,7 @@
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" enable_tf=True,\n",
|
||||
" whitelist_models=whitelist_models,\n",
|
||||
" path = project_folder)"
|
||||
" whitelist_models=whitelist_models)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -113,9 +113,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-classification'\n",
|
||||
"project_folder = './sample_projects/automl-classification'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -125,7 +124,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
|
||||
@@ -1,529 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Prepare Data using `azureml.dataprep` for Remote Execution (AmlCompute)**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
|
||||
"2. Pass the `Dataflow` to AutoML for a local run.\n",
|
||||
"3. Pass the `Dataflow` to AutoML for a remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.compute import DsvmCompute\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"import azureml.dataprep as dprep\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
" \n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-dataprep-remote-dsvm'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-dataprep-remote-dsvm'\n",
|
||||
" \n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
" \n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
|
||||
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
|
||||
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
|
||||
"# and convert column types manually.\n",
|
||||
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
|
||||
"dflow = dprep.read_csv(example_data, infer_column_types=True)\n",
|
||||
"dflow.get_profile()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
|
||||
"dflow = dflow.drop_nulls('Primary Type')\n",
|
||||
"dflow.head(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Review the Data Preparation Result\n",
|
||||
"\n",
|
||||
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
|
||||
"\n",
|
||||
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
|
||||
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"This creates a general AutoML settings object applicable for both local and remote runs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"iteration_timeout_minutes\" : 10,\n",
|
||||
" \"iterations\" : 2,\n",
|
||||
" \"primary_metric\" : 'AUC_weighted',\n",
|
||||
" \"preprocess\" : True,\n",
|
||||
" \"verbosity\" : logging.INFO\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create or Attach an AmlCompute cluster"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"\n",
|
||||
"# Choose a name for your cluster.\n",
|
||||
"amlcompute_cluster_name = \"cpu-cluster\"\n",
|
||||
"\n",
|
||||
"found = False\n",
|
||||
"\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
"\n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
||||
" #vm_priority = 'lowpriority', # optional\n",
|
||||
" max_nodes = 6)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\\n\",\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
"\n",
|
||||
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
||||
"\n",
|
||||
" # For a more detailed view of current AmlCompute status, use get_status()."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to AmlCompute\n",
|
||||
"conda_run_config.target = compute_target\n",
|
||||
"conda_run_config.environment.docker.enabled = True\n",
|
||||
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
|
||||
"\n",
|
||||
"dprep_dependency = 'azureml-dataprep==' + pkg_resources.get_distribution(\"azureml-dataprep\").version\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', dprep_dependency], conda_packages=['numpy','py-xgboost<=0.80'])\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pass Data with `Dataflow` Objects\n",
|
||||
"\n",
|
||||
"The `Dataflow` objects captured above can also be passed to the `submit` method for a remote run. AutoML will serialize the `Dataflow` object and send it to the remote compute target. The `Dataflow` will not be evaluated locally."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pre-process cache cleanup\n",
|
||||
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run.clean_preprocessor_cache()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Cancelling Runs\n",
|
||||
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
|
||||
"# remote_run.cancel()\n",
|
||||
"\n",
|
||||
"# Cancel iteration 1 and move onto iteration 2.\n",
|
||||
"# remote_run.cancel_iteration(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
"\n",
|
||||
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(remote_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(remote_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
" \n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = remote_run.get_output()\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Best Model Based on Any Other Metric\n",
|
||||
"Show the run and the model that has the smallest `log_loss` value:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lookup_metric = \"log_loss\"\n",
|
||||
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Model from a Specific Iteration\n",
|
||||
"Show the run and the model from the first iteration:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"iteration = 0\n",
|
||||
"best_run, fitted_model = remote_run.get_output(iteration = iteration)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data\n",
|
||||
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
|
||||
"dflow_test = dflow_test.drop_nulls('Primary Type')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Testing Our Best Fitted Model\n",
|
||||
"We will use confusion matrix to see how our model works."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pandas_ml import ConfusionMatrix\n",
|
||||
"\n",
|
||||
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
|
||||
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"ypred = fitted_model.predict(X_test)\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
|
||||
"\n",
|
||||
"print(cm)\n",
|
||||
"\n",
|
||||
"cm.plot()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,417 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Prepare Data using `azureml.dataprep` for Local Execution**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Test](#Test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
|
||||
"\n",
|
||||
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
|
||||
"2. Pass the `Dataflow` to AutoML for a local run.\n",
|
||||
"3. Pass the `Dataflow` to AutoML for a remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"import azureml.dataprep as dprep\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
" \n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-dataprep-local'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-dataprep-local'\n",
|
||||
" \n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
" \n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
|
||||
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
|
||||
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
|
||||
"# and convert column types manually.\n",
|
||||
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
|
||||
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n",
|
||||
"dflow.get_profile()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
|
||||
"dflow = dflow.drop_nulls('Primary Type')\n",
|
||||
"dflow.head(5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Review the Data Preparation Result\n",
|
||||
"\n",
|
||||
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
|
||||
"\n",
|
||||
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
|
||||
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"This creates a general AutoML settings object applicable for both local and remote runs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"iteration_timeout_minutes\" : 10,\n",
|
||||
" \"iterations\" : 2,\n",
|
||||
" \"primary_metric\" : 'AUC_weighted',\n",
|
||||
" \"preprocess\" : True,\n",
|
||||
" \"verbosity\" : logging.INFO\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Pass Data with `Dataflow` Objects\n",
|
||||
"\n",
|
||||
"The `Dataflow` objects captured above can be passed to the `submit` method for a local run. AutoML will retrieve the results from the `Dataflow` for model training."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"local_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
"\n",
|
||||
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(local_run).show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve All Child Runs\n",
|
||||
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"children = list(local_run.get_children())\n",
|
||||
"metricslist = {}\n",
|
||||
"for run in children:\n",
|
||||
" properties = run.get_properties()\n",
|
||||
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
|
||||
" metricslist[int(properties['iteration'])] = metrics\n",
|
||||
" \n",
|
||||
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
|
||||
"rundata"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Retrieve the Best Model\n",
|
||||
"\n",
|
||||
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"best_run, fitted_model = local_run.get_output()\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Best Model Based on Any Other Metric\n",
|
||||
"Show the run and the model that has the smallest `log_loss` value:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lookup_metric = \"log_loss\"\n",
|
||||
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Model from a Specific Iteration\n",
|
||||
"Show the run and the model from the first iteration:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"iteration = 0\n",
|
||||
"best_run, fitted_model = local_run.get_output(iteration = iteration)\n",
|
||||
"print(best_run)\n",
|
||||
"print(fitted_model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test\n",
|
||||
"\n",
|
||||
"#### Load Test Data\n",
|
||||
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
|
||||
"dflow_test = dflow_test.drop_nulls('Primary Type')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Testing Our Best Fitted Model\n",
|
||||
"We will use confusion matrix to see how our model works."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pandas_ml import ConfusionMatrix\n",
|
||||
"\n",
|
||||
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
|
||||
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
|
||||
"\n",
|
||||
"ypred = fitted_model.predict(X_test)\n",
|
||||
"\n",
|
||||
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
|
||||
"\n",
|
||||
"print(cm)\n",
|
||||
"\n",
|
||||
"cm.plot()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "savitam"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -87,8 +87,6 @@
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-dataset-remote-bai'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-dataprep-remote-bai'\n",
|
||||
" \n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
" \n",
|
||||
@@ -98,7 +96,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -141,8 +138,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = dataset.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
|
||||
"y = dataset.keep_columns(columns=['Primary Type'], validate=True)"
|
||||
"training_data = dataset.drop_columns(columns=['FBI Code'])\n",
|
||||
"label_column_name = 'Primary Type'"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -253,10 +250,9 @@
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
" training_data = training_data,\n",
|
||||
" label_column_name = label_column_name,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -87,8 +87,6 @@
|
||||
" \n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-dataset-local'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-dataset-local'\n",
|
||||
" \n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
" \n",
|
||||
@@ -98,7 +96,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -141,8 +138,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = dataset.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
|
||||
"y = dataset.keep_columns(columns=['Primary Type'], validate=True)"
|
||||
"training_data = dataset.drop_columns(columns=['FBI Code'])\n",
|
||||
"label_column_name = 'Primary Type'"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -186,8 +183,8 @@
|
||||
"source": [
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
" training_data = training_data,\n",
|
||||
" label_column_name = label_column_name,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -6,3 +6,4 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- pandas_ml
|
||||
- azureml-dataprep[pandas]
|
||||
|
||||
@@ -97,8 +97,6 @@
|
||||
"\n",
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"experiment_name = 'automl-bikeshareforecasting'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-bikeshareforecasting'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -108,7 +106,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -221,11 +218,12 @@
|
||||
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
|
||||
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"|**training_data**|Input dataset, containing both features and label column.|\n",
|
||||
"|**label_column_name**|The name of the label column.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
|
||||
"\n",
|
||||
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -246,12 +244,12 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task='forecasting', \n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" blacklist_models = ['ExtremeRandomTrees'],\n",
|
||||
" iterations=10,\n",
|
||||
" iteration_timeout_minutes=5,\n",
|
||||
" X=X_train,\n",
|
||||
" y=y_train,\n",
|
||||
" training_data=train,\n",
|
||||
" label_column_name=target_column_name,\n",
|
||||
" n_cross_validations=3, \n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" **automl_settings)"
|
||||
]
|
||||
|
||||
@@ -93,8 +93,6 @@
|
||||
"\n",
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"experiment_name = 'automl-energydemandforecasting'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-energydemandforecasting'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -104,7 +102,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -213,8 +210,7 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
|
||||
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -231,13 +227,12 @@
|
||||
"automl_config = AutoMLConfig(task='forecasting',\n",
|
||||
" debug_log='automl_nyc_energy_errors.log',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" blacklist_models = ['ExtremeRandomTrees'],\n",
|
||||
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima'],\n",
|
||||
" iterations=10,\n",
|
||||
" iteration_timeout_minutes=5,\n",
|
||||
" X=X_train,\n",
|
||||
" y=y_train,\n",
|
||||
" n_cross_validations=3,\n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" **time_series_settings)"
|
||||
]
|
||||
@@ -463,7 +458,9 @@
|
||||
"source": [
|
||||
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation.\n",
|
||||
"\n",
|
||||
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must still specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features."
|
||||
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must still specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features.\n",
|
||||
"\n",
|
||||
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -482,13 +479,12 @@
|
||||
"automl_config_lags = AutoMLConfig(task='forecasting',\n",
|
||||
" debug_log='automl_nyc_energy_errors.log',\n",
|
||||
" primary_metric='normalized_root_mean_squared_error',\n",
|
||||
" blacklist_models=['ElasticNet','ExtremeRandomTrees','GradientBoosting'],\n",
|
||||
" blacklist_models=['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor'],\n",
|
||||
" iterations=10,\n",
|
||||
" iteration_timeout_minutes=10,\n",
|
||||
" X=X_train,\n",
|
||||
" y=y_train,\n",
|
||||
" n_cross_validations=3,\n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" **time_series_settings_with_lags)"
|
||||
]
|
||||
@@ -556,7 +552,21 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### What features matter for the forecast?"
|
||||
"### What features matter for the forecast?\n",
|
||||
"The following steps will allow you to compute and visualize engineered feature importance based on your test data for forecasting. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Setup the model explanations for AutoML models\n",
|
||||
"The *fitted_model* can generate the following which will be used for getting the engineered and raw feature explanations using *automl_setup_model_explanations*:-\n",
|
||||
"1. Featurized data from train samples/test samples \n",
|
||||
"2. Gather engineered and raw feature name lists\n",
|
||||
"3. Find the classes in your labeled column in classification scenarios\n",
|
||||
"\n",
|
||||
"The *automl_explainer_setup_obj* contains all the structures from above list. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -565,14 +575,74 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.automlexplainer import explain_model\n",
|
||||
"\n",
|
||||
"# feature names are everything in the transformed data except the target\n",
|
||||
"features = X_trans_lags.columns[:-1]\n",
|
||||
"expl = explain_model(fitted_model_lags, X_train.copy(), X_test.copy(), features=features, best_run=best_run_lags, y_train=y_train)\n",
|
||||
"# unpack the tuple\n",
|
||||
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
|
||||
"best_run_lags"
|
||||
"from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
|
||||
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train.copy(), \n",
|
||||
" X_test=X_test.copy(), y=y_train, \n",
|
||||
" task='forecasting')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Initialize the Mimic Explainer for feature importance\n",
|
||||
"For explaining the AutoML models, use the *MimicWrapper* from *azureml.explain.model* package. The *MimicWrapper* can be initialized with fields in *automl_explainer_setup_obj*, your workspace and a LightGBM model which acts as a surrogate model to explain the AutoML model (*fitted_model* here). The *MimicWrapper* also takes the *best_run* object where the raw and engineered explanations will be uploaded."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
|
||||
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, \n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=best_run,\n",
|
||||
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||
" feature_maps=[automl_explainer_setup_obj.feature_map])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
|
||||
"The *explain()* method in *MimicWrapper* can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the generated engineered features by AutoML featurizers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
|
||||
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
|
||||
"ExplanationDashboard(engineered_explanations, automl_explainer_setup_obj.automl_estimator, automl_explainer_setup_obj.X_test_transform)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
|
||||
"The *explain()* method in *MimicWrapper* can be again called with the transformed test samples and setting *get_raw* to *True* to get the feature importance for the raw features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True, \n",
|
||||
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
|
||||
" eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
|
||||
"ExplanationDashboard(raw_explanations, automl_explainer_setup_obj.automl_pipeline, automl_explainer_setup_obj.X_test_raw)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -8,3 +8,4 @@ dependencies:
|
||||
- pandas_ml
|
||||
- statsmodels
|
||||
- azureml-explain-model
|
||||
- azureml-contrib-explain-model
|
||||
|
||||
@@ -89,8 +89,6 @@
|
||||
"\n",
|
||||
"# choose a name for the run history container in the workspace\n",
|
||||
"experiment_name = 'automl-ojforecasting'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-local-ojforecasting'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -100,7 +98,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Run History Name'] = experiment_name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -247,7 +244,6 @@
|
||||
"|**enable_voting_ensemble**|Allow AutoML to create a Voting ensemble of the best performing models\n",
|
||||
"|**enable_stack_ensemble**|Allow AutoML to create a Stack ensemble of the best performing models\n",
|
||||
"|**debug_log**|Log file path for writing debugging information\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"|**time_column_name**|Name of the datetime column in the input data|\n",
|
||||
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
|
||||
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
|
||||
@@ -276,7 +272,6 @@
|
||||
" n_cross_validations=3,\n",
|
||||
" enable_voting_ensemble=False,\n",
|
||||
" enable_stack_ensemble=False,\n",
|
||||
" path=project_folder,\n",
|
||||
" verbosity=logging.INFO,\n",
|
||||
" **time_series_settings)"
|
||||
]
|
||||
@@ -668,7 +663,7 @@
|
||||
"for p in ['azureml-train-automl', 'azureml-core']:\n",
|
||||
" print('{}\\t{}'.format(p, dependencies[p]))\n",
|
||||
"\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-train-automl'])\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy>=1.16.0,<=1.16.2','scikit-learn','fbprophet==0.5'], pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
]
|
||||
@@ -705,40 +700,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'type': \"automl-forecasting\"},\n",
|
||||
" description = \"Image for automl forecasting sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automl-fcast-image\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance"
|
||||
"### Deploy the model as a Web Service on Azure Container Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -747,29 +709,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'type': \"automl-forecasting\"},\n",
|
||||
" description = \"Automl forecasting sample service\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
" description = \"Automl forecasting sample service\")\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-forecast-01'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
|
||||
@@ -93,7 +93,6 @@
|
||||
"\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-local-missing-data'\n",
|
||||
"project_folder = './sample_projects/automl-local-missing-data'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -103,7 +102,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -166,8 +164,7 @@
|
||||
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
|
||||
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -186,8 +183,7 @@
|
||||
" blacklist_models = ['KNN','LinearSVM'],\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" path = project_folder)"
|
||||
" y = y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -0,0 +1,593 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
|
||||
"\n",
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Regression on remote compute using Computer Hardware dataset with model explanations**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Explanations](#Explanations)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Introduction\n",
|
||||
"\n",
|
||||
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. After training AutoML models for this regression data set, we show how you can compute model explanations on your remote compute using a sample explainer script.\n",
|
||||
"\n",
|
||||
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
|
||||
"\n",
|
||||
"In this notebook you will learn how to:\n",
|
||||
"1. Create an `Experiment` in an existing `Workspace`.\n",
|
||||
"2. Configure AutoML using `AutoMLConfig`.\n",
|
||||
"3. Train the model using remote compute.\n",
|
||||
"4. Explore the results.\n",
|
||||
"5. Setup remote compute for computing the model explanations for a given AutoML model.\n",
|
||||
"6. Start an AzureML experiment on your remote compute to compute explanations for an AutoML model.\n",
|
||||
"7. Download the feature importance for engineered features and visualize the explanations for engineered features. \n",
|
||||
"8. Download the feature importance for raw features and visualize the explanations for raw features. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import logging\n",
|
||||
"\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"import pandas as pd\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-regression-computer-hardware'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
"output = {}\n",
|
||||
"output['SDK version'] = azureml.core.VERSION\n",
|
||||
"output['Subscription ID'] = ws.subscription_id\n",
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
"outputDf.T"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create or Attach existing AmlCompute\n",
|
||||
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
|
||||
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
|
||||
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
|
||||
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.compute import AmlCompute\n",
|
||||
"from azureml.core.compute import ComputeTarget\n",
|
||||
"\n",
|
||||
"# Choose a name for your cluster.\n",
|
||||
"amlcompute_cluster_name = \"automlcl\"\n",
|
||||
"\n",
|
||||
"found = False\n",
|
||||
"# Check if this compute target already exists in the workspace.\n",
|
||||
"cts = ws.compute_targets\n",
|
||||
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
|
||||
" found = True\n",
|
||||
" print('Found existing compute target.')\n",
|
||||
" compute_target = cts[amlcompute_cluster_name]\n",
|
||||
" \n",
|
||||
"if not found:\n",
|
||||
" print('Creating a new compute target...')\n",
|
||||
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
|
||||
" #vm_priority = 'lowpriority', # optional\n",
|
||||
" max_nodes = 6)\n",
|
||||
"\n",
|
||||
" # Create the cluster.\n",
|
||||
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
|
||||
" \n",
|
||||
"print('Checking cluster status...')\n",
|
||||
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
|
||||
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
|
||||
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
|
||||
" \n",
|
||||
"# For a more detailed view of current AmlCompute status, use get_status()."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Conda Dependecies for AutoML training experiment\n",
|
||||
"\n",
|
||||
"Create the conda dependencies for running AutoML experiment on remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to AmlCompute\n",
|
||||
"conda_run_config.target = compute_target\n",
|
||||
"conda_run_config.environment.docker.enabled = True\n",
|
||||
"\n",
|
||||
"cd = CondaDependencies.create(conda_packages=['numpy','py-xgboost<=0.80'])\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = cd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup Training and Test Data for AutoML experiment\n",
|
||||
"\n",
|
||||
"Here we create the train and test datasets for hardware performance dataset. We also register the datasets in your workspace using a name so that these datasets may be accessed from the remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Data source\n",
|
||||
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/machineData.csv\"\n",
|
||||
"\n",
|
||||
"# Create dataset from the url\n",
|
||||
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
|
||||
"\n",
|
||||
"# Split the dataset into train and test datasets\n",
|
||||
"train_dataset, test_dataset = dataset.random_split(percentage=0.8, seed=223)\n",
|
||||
"\n",
|
||||
"# Register the train dataset with your workspace\n",
|
||||
"train_dataset.register(workspace = ws, name = 'hardware_performance_train_dataset',\n",
|
||||
" description = 'hardware performance training data',\n",
|
||||
" create_new_version=True)\n",
|
||||
"\n",
|
||||
"# Register the test dataset with your workspace\n",
|
||||
"test_dataset.register(workspace = ws, name = 'hardware_performance_test_dataset',\n",
|
||||
" description = 'hardware performance test data',\n",
|
||||
" create_new_version=True)\n",
|
||||
"\n",
|
||||
"# Drop the labeled column from the train dataset\n",
|
||||
"X_train = train_dataset.drop_columns(columns=['ERP'])\n",
|
||||
"y_train = train_dataset.keep_columns(columns=['ERP'], validate=True)\n",
|
||||
"\n",
|
||||
"# Drop the labeled column from the test dataset\n",
|
||||
"X_test = test_dataset.drop_columns(columns=['ERP']) \n",
|
||||
"\n",
|
||||
"# Display the top rows in the train dataset\n",
|
||||
"X_train.take(5).to_pandas_dataframe()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
|
||||
"\n",
|
||||
"|Property|Description|\n",
|
||||
"|-|-|\n",
|
||||
"|**task**|classification or regression|\n",
|
||||
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"iteration_timeout_minutes\": 5,\n",
|
||||
" \"iterations\": 10,\n",
|
||||
" \"n_cross_validations\": 2,\n",
|
||||
" \"primary_metric\": 'spearman_correlation',\n",
|
||||
" \"preprocess\": True,\n",
|
||||
" \"max_concurrent_iterations\": 1,\n",
|
||||
" \"verbosity\": logging.INFO,\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log = 'automl_errors_model_exp.log',\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
" **automl_settings\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
|
||||
"In this example, we specify `show_output = True` to print currently running iterations to the console."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remote_run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Widget for Monitoring Runs\n",
|
||||
"\n",
|
||||
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
|
||||
"\n",
|
||||
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.widgets import RunDetails\n",
|
||||
"RunDetails(remote_run).show() "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explanations\n",
|
||||
"This section will walk you through the workflow to compute model explanations for an AutoML model on your remote compute.\n",
|
||||
"\n",
|
||||
"### Retrieve any AutoML Model for explanations\n",
|
||||
"\n",
|
||||
"Below we select the some AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run, fitted_model = remote_run.get_output(iteration=5)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Setup model explanation run on the remote compute\n",
|
||||
"The following section provides details on how to setup an AzureML experiment to run model explanations for an AutoML model on your remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Sample script used for computing explanations\n",
|
||||
"View the sample script for computing the model explanations for your AutoML model on remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('train_explainer.py', 'r') as cefr:\n",
|
||||
" print(cefr.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Substitute values in your sample script\n",
|
||||
"The following cell shows how you change the values in the sample script so that you can change the sample script according to your experiment and dataset."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import shutil\n",
|
||||
"\n",
|
||||
"# create script folder\n",
|
||||
"script_folder = './sample_projects/automl-regression-computer-hardware'\n",
|
||||
"if not os.path.exists(script_folder):\n",
|
||||
" os.makedirs(script_folder)\n",
|
||||
"\n",
|
||||
"# Copy the sample script to script folder.\n",
|
||||
"shutil.copy('train_explainer.py', script_folder)\n",
|
||||
"\n",
|
||||
"# Create the explainer script that will run on the remote compute.\n",
|
||||
"script_file_name = script_folder + '/train_explainer.py'\n",
|
||||
"\n",
|
||||
"# Open the sample script for modification\n",
|
||||
"with open(script_file_name, 'r') as cefr:\n",
|
||||
" content = cefr.read()\n",
|
||||
"\n",
|
||||
"# Replace the values in train_explainer.py file with the appropriate values\n",
|
||||
"content = content.replace('<<experimnet_name>>', automl_run.experiment.name) # your experiment name.\n",
|
||||
"content = content.replace('<<run_id>>', automl_run.id) # Run-id of the AutoML run for which you want to explain the model.\n",
|
||||
"content = content.replace('<<target_column_name>>', 'ERP') # Your target column name\n",
|
||||
"content = content.replace('<<task>>', 'regression') # Training task type\n",
|
||||
"# Name of your training dataset register with your workspace\n",
|
||||
"content = content.replace('<<train_dataset_name>>', 'hardware_performance_train_dataset') \n",
|
||||
"# Name of your test dataset register with your workspace\n",
|
||||
"content = content.replace('<<test_dataset_name>>', 'hardware_performance_test_dataset')\n",
|
||||
"\n",
|
||||
"# Write sample file into your script folder.\n",
|
||||
"with open(script_file_name, 'w') as cefw:\n",
|
||||
" cefw.write(content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Create conda configuration for model explanations experiment\n",
|
||||
"We need `azureml-explain-model`, `azureml-train-automl` and `azureml-core` packages for computing model explanations for your AutoML model on remote compute."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.runconfig import RunConfiguration\n",
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"import pkg_resources\n",
|
||||
"\n",
|
||||
"# create a new RunConfig object\n",
|
||||
"conda_run_config = RunConfiguration(framework=\"python\")\n",
|
||||
"\n",
|
||||
"# Set compute target to AmlCompute\n",
|
||||
"conda_run_config.target = compute_target\n",
|
||||
"conda_run_config.environment.docker.enabled = True\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-train-automl', 'azureml-core', 'azureml-explain-model'\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"conda_run_config.environment.python.conda_dependencies = CondaDependencies.create(\n",
|
||||
" conda_packages=['scikit-learn', 'numpy','py-xgboost<=0.80'],\n",
|
||||
" pip_packages=azureml_pip_packages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Submit the experiment for model explanations\n",
|
||||
"Submit the experiment with the above `run_config` and the sample script for computing explanations."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Now submit a run on AmlCompute for model explanations\n",
|
||||
"from azureml.core.script_run_config import ScriptRunConfig\n",
|
||||
"\n",
|
||||
"script_run_config = ScriptRunConfig(source_directory=script_folder,\n",
|
||||
" script='train_explainer.py',\n",
|
||||
" run_config=conda_run_config)\n",
|
||||
"\n",
|
||||
"run = experiment.submit(script_run_config)\n",
|
||||
"\n",
|
||||
"# Show run details\n",
|
||||
"run"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"# Shows output of the run on stdout.\n",
|
||||
"run.wait_for_completion(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Feature importance and explanation dashboard\n",
|
||||
"In this section we describe how you can download the explanation results from the explanations experiment and visualize the feature importance for your AutoML model. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Setup for visualizing the model explanation results\n",
|
||||
"For visualizing the explanation results for the *fitted_model* we need to perform the following steps:-\n",
|
||||
"1. Featurize test data samples.\n",
|
||||
"\n",
|
||||
"The *automl_explainer_setup_obj* contains all the structures from above list. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
|
||||
"explainer_setup_class = automl_setup_model_explanations(fitted_model, 'regression', X_test=X_test)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download engineered feature importance from artifact store\n",
|
||||
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the engineered features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
|
||||
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
|
||||
"client = ExplanationClient.from_run(automl_run)\n",
|
||||
"engineered_explanations = client.download_model_explanation(raw=False)\n",
|
||||
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||
"ExplanationDashboard(engineered_explanations, explainer_setup_class.automl_estimator, explainer_setup_class.X_test_transform)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download raw feature importance from artifact store\n",
|
||||
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_explanations = client.download_model_explanation(raw=True)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||
"ExplanationDashboard(raw_explanations, explainer_setup_class.automl_pipeline, explainer_setup_class.X_test_raw)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "v-rasav"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.6",
|
||||
"language": "python",
|
||||
"name": "python36"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
name: auto-ml-dataprep-remote-execution
|
||||
name: auto-ml-model-explanations-remote-compute
|
||||
dependencies:
|
||||
- pip:
|
||||
- azureml-sdk
|
||||
@@ -6,3 +6,5 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- pandas_ml
|
||||
- azureml-explain-model
|
||||
- azureml-contrib-explain-model
|
||||
@@ -0,0 +1,64 @@
|
||||
# Copyright (c) Microsoft. All rights reserved.
|
||||
# Licensed under the MIT license.
|
||||
import os
|
||||
|
||||
from azureml.core.run import Run
|
||||
from azureml.core.experiment import Experiment
|
||||
from sklearn.externals import joblib
|
||||
from azureml.core.dataset import Dataset
|
||||
from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations
|
||||
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
|
||||
from azureml.explain.model.mimic_wrapper import MimicWrapper
|
||||
from automl.client.core.common.constants import MODEL_PATH
|
||||
|
||||
|
||||
OUTPUT_DIR = './outputs/'
|
||||
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
||||
|
||||
# Get workspace from the run context
|
||||
run = Run.get_context()
|
||||
ws = run.experiment.workspace
|
||||
|
||||
# Get the AutoML run object from the experiment name and the workspace
|
||||
experiment = Experiment(ws, '<<experimnet_name>>')
|
||||
automl_run = Run(experiment=experiment, run_id='<<run_id>>')
|
||||
|
||||
# Download the best model from the artifact store
|
||||
automl_run.download_file(name=MODEL_PATH, output_file_path='model.pkl')
|
||||
|
||||
# Load the AutoML model into memory
|
||||
fitted_model = joblib.load('model.pkl')
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
|
||||
# Drop the lablled column to get the training set.
|
||||
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
|
||||
|
||||
# Get the train dataset from the workspace
|
||||
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
|
||||
# Drop the lablled column to get the testing set.
|
||||
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
|
||||
|
||||
# Setup the class for explaining the AtuoML models
|
||||
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
|
||||
X=X_train, X_test=X_test,
|
||||
y=y_train)
|
||||
|
||||
# Initialize the Mimic Explainer
|
||||
explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
|
||||
init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,
|
||||
features=automl_explainer_setup_obj.engineered_feature_names,
|
||||
feature_maps=[automl_explainer_setup_obj.feature_map],
|
||||
classes=automl_explainer_setup_obj.classes)
|
||||
|
||||
# Compute the engineered explanations
|
||||
engineered_explanations = explainer.explain(['local', 'global'],
|
||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||
|
||||
# Compute the raw explanations
|
||||
raw_explanations = explainer.explain(['local', 'global'], get_raw=True,
|
||||
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
|
||||
eval_dataset=automl_explainer_setup_obj.X_test_transform)
|
||||
|
||||
print("Engineered and raw explanations computed successfully")
|
||||
@@ -21,14 +21,16 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Automated Machine Learning\n",
|
||||
"_**Explain classification model and visualize the explanation**_\n",
|
||||
"_**Explain classification model, visualize the explanation and operationalize the explainer along with AutoML model**_\n",
|
||||
"\n",
|
||||
"## Contents\n",
|
||||
"1. [Introduction](#Introduction)\n",
|
||||
"1. [Setup](#Setup)\n",
|
||||
"1. [Data](#Data)\n",
|
||||
"1. [Train](#Train)\n",
|
||||
"1. [Results](#Results)"
|
||||
"1. [Results](#Results)\n",
|
||||
"1. [Explanations](#Explanations)\n",
|
||||
"1. [Operationailze](#Operationailze)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -45,7 +47,8 @@
|
||||
"2. Instantiating AutoMLConfig\n",
|
||||
"3. Training the Model using local compute and explain the model\n",
|
||||
"4. Visualization model's feature importance in widget\n",
|
||||
"5. Explore best model's explanation"
|
||||
"5. Explore any model's explanation\n",
|
||||
"6. Operationalize the AutoML model and the explaination model"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -69,7 +72,9 @@
|
||||
"import azureml.core\n",
|
||||
"from azureml.core.experiment import Experiment\n",
|
||||
"from azureml.core.workspace import Workspace\n",
|
||||
"from azureml.train.automl import AutoMLConfig"
|
||||
"from azureml.train.automl import AutoMLConfig\n",
|
||||
"from azureml.core.dataset import Dataset\n",
|
||||
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -82,8 +87,6 @@
|
||||
"\n",
|
||||
"# choose a name for experiment\n",
|
||||
"experiment_name = 'automl-model-explanation'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/automl-model-explanation'\n",
|
||||
"\n",
|
||||
"experiment=Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -93,7 +96,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -107,29 +109,42 @@
|
||||
"## Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Training Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn import datasets\n",
|
||||
"\n",
|
||||
"iris = datasets.load_iris()\n",
|
||||
"y = iris.target\n",
|
||||
"X = iris.data\n",
|
||||
"\n",
|
||||
"features = iris.feature_names\n",
|
||||
"\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
|
||||
" y,\n",
|
||||
" test_size=0.1,\n",
|
||||
" random_state=100,\n",
|
||||
" stratify=y)\n",
|
||||
"\n",
|
||||
"X_train = pd.DataFrame(X_train, columns=features)\n",
|
||||
"X_test = pd.DataFrame(X_test, columns=features)"
|
||||
"train_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\"\n",
|
||||
"train_dataset = Dataset.Tabular.from_delimited_files(train_data)\n",
|
||||
"X_train = train_dataset.drop_columns(columns=['y']).to_pandas_dataframe()\n",
|
||||
"y_train = train_dataset.keep_columns(columns=['y'], validate=True).to_pandas_dataframe()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Test Data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_test.csv\"\n",
|
||||
"test_dataset = Dataset.Tabular.from_delimited_files(test_data)\n",
|
||||
"X_test = test_dataset.drop_columns(columns=['y']).to_pandas_dataframe()\n",
|
||||
"y_test = test_dataset.keep_columns(columns=['y'], validate=True).to_pandas_dataframe()"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -148,10 +163,7 @@
|
||||
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**model_explainability**|Indicate to explain each trained pipeline or not |\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. |"
|
||||
"|**model_explainability**|Indicate to explain each trained pipeline or not |"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -166,12 +178,11 @@
|
||||
" iteration_timeout_minutes = 200,\n",
|
||||
" iterations = 10,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" preprocess = True,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" X_valid = X_test,\n",
|
||||
" y_valid = y_test,\n",
|
||||
" model_explainability=True,\n",
|
||||
" path=project_folder)"
|
||||
" n_cross_validations = 5,\n",
|
||||
" model_explainability=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -254,55 +265,15 @@
|
||||
"source": [
|
||||
"### Best Model 's explanation\n",
|
||||
"\n",
|
||||
"Retrieve the explanation from the best_run. And explanation information includes:\n",
|
||||
"\n",
|
||||
"1.\tshap_values: The explanation information generated by shap lib\n",
|
||||
"2.\texpected_values: The expected value of the model applied to set of X_train data.\n",
|
||||
"3.\toverall_summary: The model level feature importance values sorted in descending order\n",
|
||||
"4.\toverall_imp: The feature names sorted in the same order as in overall_summary\n",
|
||||
"5.\tper_class_summary: The class level feature importance values sorted in descending order. Only available for the classification case\n",
|
||||
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case\n",
|
||||
"\n",
|
||||
"Note:- The **retrieve_model_explanation()** API only works in case AutoML has been configured with **'model_explainability'** flag set to **True**. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.automlexplainer import retrieve_model_explanation\n",
|
||||
"\n",
|
||||
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
|
||||
" retrieve_model_explanation(best_run)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(overall_summary)\n",
|
||||
"print(overall_imp)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(per_class_summary)\n",
|
||||
"print(per_class_imp)"
|
||||
"Retrieve the explanation from the *best_run* which includes explanations for engineered features and raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Beside retrieve the existed model explanation information, explain the model with different train/test data"
|
||||
"#### Download engineered feature importance from artifact store\n",
|
||||
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *best_run*."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -311,10 +282,65 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.train.automl.automlexplainer import explain_model\n",
|
||||
"client = ExplanationClient.from_run(best_run)\n",
|
||||
"engineered_explanations = client.download_model_explanation(raw=False)\n",
|
||||
"print(engineered_explanations.get_feature_importance_dict())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Download raw feature importance from artifact store\n",
|
||||
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *best_run*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"client = ExplanationClient.from_run(best_run)\n",
|
||||
"raw_explanations = client.download_model_explanation(raw=True)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Explanations\n",
|
||||
"In this section, we will show how to compute model explanations and visualize the explanations using azureml-explain-model package. Besides retrieving an existing model explanation for an AutoML model, you can also explain your AutoML model with different test data. The following steps will allow you to compute and visualize engineered feature importance and raw feature importance based on your test data. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Retrieve any other AutoML model from training"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"automl_run, fitted_model = local_run.get_output(iteration=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Setup the model explanations for AutoML models\n",
|
||||
"The *fitted_model* can generate the following which will be used for getting the engineered and raw feature explanations using *automl_setup_model_explanations*:-\n",
|
||||
"1. Featurized data from train samples/test samples \n",
|
||||
"2. Gather engineered and raw feature name lists\n",
|
||||
"3. Find the classes in your labeled column in classification scenarios\n",
|
||||
"\n",
|
||||
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
|
||||
" explain_model(fitted_model, X_train, X_test, features=features)"
|
||||
"The *automl_explainer_setup_obj* contains all the structures from above list. "
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -323,8 +349,257 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(overall_summary)\n",
|
||||
"print(overall_imp)"
|
||||
"from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
|
||||
"\n",
|
||||
"automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train, \n",
|
||||
" X_test=X_test, y=y_train, \n",
|
||||
" task='classification')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Initialize the Mimic Explainer for feature importance\n",
|
||||
"For explaining the AutoML models, use the *MimicWrapper* from *azureml.explain.model* package. The *MimicWrapper* can be initialized with fields in *automl_explainer_setup_obj*, your workspace and a LightGBM model which acts as a surrogate model to explain the AutoML model (*fitted_model* here). The *MimicWrapper* also takes the *automl_run* object where the raw and engineered explanations will be uploaded."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel\n",
|
||||
"from azureml.explain.model.mimic_wrapper import MimicWrapper\n",
|
||||
"explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel, \n",
|
||||
" init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,\n",
|
||||
" features=automl_explainer_setup_obj.engineered_feature_names, \n",
|
||||
" feature_maps=[automl_explainer_setup_obj.feature_map],\n",
|
||||
" classes=automl_explainer_setup_obj.classes)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
|
||||
"The *explain()* method in *MimicWrapper* can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the generated engineered features by AutoML featurizers."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
|
||||
"print(engineered_explanations.get_feature_importance_dict())\n",
|
||||
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
|
||||
"ExplanationDashboard(engineered_explanations, automl_explainer_setup_obj.automl_estimator, automl_explainer_setup_obj.X_test_transform)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use Mimic Explainer for computing and visualizing raw feature importance\n",
|
||||
"The *explain()* method in *MimicWrapper* can be again called with the transformed test samples and setting *get_raw* to *True* to get the feature importance for the raw features. You can also use *ExplanationDashboard* to view the dash board visualization of the feature importance values of the raw features."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_explanations = explainer.explain(['local', 'global'], get_raw=True, \n",
|
||||
" raw_feature_names=automl_explainer_setup_obj.raw_feature_names,\n",
|
||||
" eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
|
||||
"print(raw_explanations.get_feature_importance_dict())\n",
|
||||
"from azureml.contrib.explain.model.visualize import ExplanationDashboard\n",
|
||||
"ExplanationDashboard(raw_explanations, automl_explainer_setup_obj.automl_pipeline, automl_explainer_setup_obj.X_test_raw)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Operationailze\n",
|
||||
"In this section we will show how you can operationalize an AutoML model and the explainer which was used to compute the explanations in the previous section.\n",
|
||||
"\n",
|
||||
"#### Register the AutoML model and the scoring explainer\n",
|
||||
"We use the *TreeScoringExplainer* from *azureml.explain.model* package to create the scoring explainer which will be used to compute the raw and engineered feature importances at the inference time. Note that, we initialize the scoring explainer with the *feature_map* that was computed previously. The *feature_map* will be used by the scoring explainer to return the raw feature importance.\n",
|
||||
"\n",
|
||||
"In the cell below, we pickle the scoring explainer and register the AutoML model and the scoring explainer with the Model Management Service."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save\n",
|
||||
"\n",
|
||||
"# Initialize the ScoringExplainer\n",
|
||||
"scoring_explainer = TreeScoringExplainer(explainer._internal_explainer, feature_maps=[automl_explainer_setup_obj.feature_map])\n",
|
||||
"\n",
|
||||
"# Pickle scoring explainer locally\n",
|
||||
"save(scoring_explainer, exist_ok=True)\n",
|
||||
"\n",
|
||||
"# Register trained automl model present in the 'outputs' folder in the artifacts\n",
|
||||
"original_model = automl_run.register_model(model_name='automl_model', \n",
|
||||
" model_path='outputs/model.pkl')\n",
|
||||
"\n",
|
||||
"# Register scoring explainer\n",
|
||||
"automl_run.upload_file('scoring_explainer.pkl', 'scoring_explainer.pkl')\n",
|
||||
"scoring_explainer_model = automl_run.register_model(model_name='scoring_explainer', model_path='scoring_explainer.pkl')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Create the conda dependencies for setting up the service\n",
|
||||
"We need to create the conda dependencies comprising of the *azureml-explain-model*, *azureml-train-automl* and *azureml-defaults* packages. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"azureml_pip_packages = [\n",
|
||||
" 'azureml-explain-model', 'azureml-train-automl', 'azureml-defaults'\n",
|
||||
"]\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"# specify CondaDependencies obj\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas', 'numpy', 'py-xgboost<=0.80'],\n",
|
||||
" pip_packages=azureml_pip_packages,\n",
|
||||
" pin_sdk_version=True)\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myenv.serialize_to_string())\n",
|
||||
"\n",
|
||||
"with open(\"myenv.yml\",\"r\") as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### View your scoring file"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"score_local_explain.py\",\"r\") as f:\n",
|
||||
" print(f.read())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Deploy the service\n",
|
||||
"In the cell below, we deploy the service using the conda file and the scoring file from the previous steps. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
|
||||
" memory_gb=1, \n",
|
||||
" tags={\"data\": \"Bank Marketing\", \n",
|
||||
" \"method\" : \"local_explanation\"}, \n",
|
||||
" description='Get local explanations for Bank marketing test data')\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime= \"python\", \n",
|
||||
" entry_script=\"score_local_explain.py\",\n",
|
||||
" conda_file=\"myenv.yml\")\n",
|
||||
"\n",
|
||||
"# Use configs and models generated above\n",
|
||||
"service = Model.deploy(ws, 'model-scoring', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
|
||||
"service.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### View the service logs"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"service.get_logs()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Inference using some test data\n",
|
||||
"Inference using some test data to see the predicted value from autml model, view the engineered feature importance for the predicted value and raw feature importance for the predicted value."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if service.state == 'Healthy':\n",
|
||||
" # Serialize the first row of the test data into json\n",
|
||||
" X_test_json = X_test[:1].to_json(orient='records')\n",
|
||||
" print(X_test_json)\n",
|
||||
" # Call the service to get the predictions and the engineered and raw explanations\n",
|
||||
" output = service.run(X_test_json)\n",
|
||||
" # Print the predicted value\n",
|
||||
" print(output['predictions'])\n",
|
||||
" # Print the engineered feature importances for the predicted value\n",
|
||||
" print(output['engineered_local_importance_values'])\n",
|
||||
" # Print the raw feature importances for the predicted value\n",
|
||||
" print(output['raw_local_importance_values'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Delete the service\n",
|
||||
"Delete the service once you have finished inferencing."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"service.delete()"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -349,7 +624,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.6"
|
||||
"version": "3.6.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -7,3 +7,4 @@ dependencies:
|
||||
- matplotlib
|
||||
- pandas_ml
|
||||
- azureml-explain-model
|
||||
- azureml-contrib-explain-model
|
||||
|
||||
@@ -0,0 +1,42 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
import pickle
|
||||
import azureml.train.automl
|
||||
import azureml.explain.model
|
||||
from azureml.train.automl.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations
|
||||
from sklearn.externals import joblib
|
||||
from azureml.core.model import Model
|
||||
|
||||
|
||||
def init():
|
||||
|
||||
global automl_model
|
||||
global scoring_explainer
|
||||
|
||||
# Retrieve the path to the model file using the model name
|
||||
# Assume original model is named original_prediction_model
|
||||
automl_model_path = Model.get_model_path('automl_model')
|
||||
scoring_explainer_path = Model.get_model_path('scoring_explainer')
|
||||
|
||||
automl_model = joblib.load(automl_model_path)
|
||||
scoring_explainer = joblib.load(scoring_explainer_path)
|
||||
|
||||
|
||||
def run(raw_data):
|
||||
# Get predictions and explanations for each data point
|
||||
data = pd.read_json(raw_data, orient='records')
|
||||
# Make prediction
|
||||
predictions = automl_model.predict(data)
|
||||
# Setup for inferencing explanations
|
||||
automl_explainer_setup_obj = automl_setup_model_explanations(automl_model,
|
||||
X_test=data, task='classification')
|
||||
# Retrieve model explanations for engineered explanations
|
||||
engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform)
|
||||
# Retrieve model explanations for raw explanations
|
||||
raw_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform, get_raw=True)
|
||||
# You can return any data type as long as it is JSON-serializable
|
||||
return {'predictions': predictions.tolist(),
|
||||
'engineered_local_importance_values': engineered_local_importance_values,
|
||||
'raw_local_importance_values': raw_local_importance_values}
|
||||
@@ -87,9 +87,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-regression-concrete'\n",
|
||||
"project_folder = './sample_projects/automl-regression-concrete'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -99,7 +98,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -160,20 +158,7 @@
|
||||
"source": [
|
||||
"# Data\n",
|
||||
"\n",
|
||||
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
" \n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)"
|
||||
"Create a run configuration for the remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -203,7 +188,7 @@
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Here create the script to be run in azure compute for loading the data, load the concrete strength dataset into the X and y variables. Next, split the data using random_split and return X_train and y_train for training the model. Finally, return X_train and y_train for training the model."
|
||||
"Load the concrete strength dataset into X and y. X contains the training features, which are inputs to the model. y contains the training labels, which are the expected output of the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -238,7 +223,6 @@
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
@@ -268,7 +252,6 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log = 'automl.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
@@ -490,7 +473,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost==0.80'], pip_packages=['azureml-train-automl'])\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost==0.80'], pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'myenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -527,45 +510,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image\n",
|
||||
"\n",
|
||||
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
|
||||
"or when testing a model that is under development."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_regression\"},\n",
|
||||
" description = \"Image for automl regression sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automlsampleimage\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance\n",
|
||||
"\n",
|
||||
"Deploy an image that contains the model and other assets needed by the service."
|
||||
"### Deploy the model as a Web Service on Azure Container Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -574,28 +519,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_regression\"}, \n",
|
||||
" description = 'sample service for Automl Regression')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
" description = 'sample service for Automl Regression')\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-sample-concrete'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
|
||||
@@ -8,3 +8,4 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- pandas_ml
|
||||
- azureml-dataprep[pandas]
|
||||
|
||||
@@ -87,9 +87,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-regression-hardware'\n",
|
||||
"project_folder = './sample_projects/automl-remote-regression'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -99,7 +98,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -160,20 +158,7 @@
|
||||
"source": [
|
||||
"# Data\n",
|
||||
"\n",
|
||||
"Here load the data in the get_data script to be utilized in azure compute. To do this, first load all the necessary libraries and dependencies to set up paths for the data and to create the conda_run_config."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
" \n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)"
|
||||
"Create a run configuration for the remote run."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -203,7 +188,7 @@
|
||||
"source": [
|
||||
"### Load Data\n",
|
||||
"\n",
|
||||
"Here create the script to be run in azure compute for loading the data, load the hardware dataset into the X and y variables. Next split the data using random_split and return X_train and y_train for training the model."
|
||||
"Load the hardware performance dataset into X and y. X contains the training features, which are inputs to the model. y contains the training labels, which are the expected output of the model."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -239,7 +224,6 @@
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
|
||||
"\n",
|
||||
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
|
||||
]
|
||||
@@ -268,8 +252,7 @@
|
||||
"}\n",
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'regression',\n",
|
||||
" debug_log = 'automl_errors_20190417.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X_train,\n",
|
||||
" y = y_train,\n",
|
||||
@@ -508,7 +491,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost==0.80'], pip_packages=['azureml-train-automl'])\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost==0.80'], pip_packages=['azureml-defaults','azureml-train-automl'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'myenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -545,45 +528,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Create a Container Image\n",
|
||||
"\n",
|
||||
"Next use Azure Container Instances for deploying models as a web service for quickly deploying and validating your model\n",
|
||||
"or when testing a model that is under development."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image, ContainerImage\n",
|
||||
"\n",
|
||||
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
|
||||
" execution_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name,\n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_regression\"},\n",
|
||||
" description = \"Image for automl regression sample\")\n",
|
||||
"\n",
|
||||
"image = Image.create(name = \"automlsampleimage\",\n",
|
||||
" # this is the model object \n",
|
||||
" models = [model],\n",
|
||||
" image_config = image_config, \n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"image.wait_for_creation(show_output = True)\n",
|
||||
"\n",
|
||||
"if image.creation_state == 'Failed':\n",
|
||||
" print(\"Image build log at: \" + image.image_build_log_uri)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Deploy the Image as a Web Service on Azure Container Instance\n",
|
||||
"\n",
|
||||
"Deploy an image that contains the model and other assets needed by the service."
|
||||
"### Deploy the model as a Web Service on Azure Container Instance"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -592,28 +537,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.webservice import AciWebservice\n",
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime = \"python\", \n",
|
||||
" entry_script = script_file_name,\n",
|
||||
" conda_file = conda_env_file_name)\n",
|
||||
"\n",
|
||||
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
|
||||
" memory_gb = 1, \n",
|
||||
" tags = {'area': \"digits\", 'type': \"automl_regression\"}, \n",
|
||||
" description = 'sample service for Automl Regression')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
" description = 'sample service for Automl Regression')\n",
|
||||
"\n",
|
||||
"aci_service_name = 'automl-sample-hardware'\n",
|
||||
"print(aci_service_name)\n",
|
||||
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
|
||||
" image = image,\n",
|
||||
" name = aci_service_name,\n",
|
||||
" workspace = ws)\n",
|
||||
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
||||
"aci_service.wait_for_deployment(True)\n",
|
||||
"print(aci_service.state)"
|
||||
]
|
||||
|
||||
@@ -8,3 +8,4 @@ dependencies:
|
||||
- azureml-widgets
|
||||
- matplotlib
|
||||
- pandas_ml
|
||||
- azureml-dataprep[pandas]
|
||||
|
||||
@@ -84,9 +84,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-local-regression'\n",
|
||||
"project_folder = './sample_projects/automl-local-regression'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -96,7 +95,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -144,8 +142,7 @@
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -162,8 +159,7 @@
|
||||
" debug_log = 'automl.log',\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" path = project_folder)"
|
||||
" y = y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -93,9 +93,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"# Choose an experiment name.\n",
|
||||
"experiment_name = 'automl-remote-amlcompute-with-onnx'\n",
|
||||
"project_folder = './project'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -105,7 +104,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -179,12 +177,6 @@
|
||||
"source": [
|
||||
"iris = datasets.load_iris()\n",
|
||||
"\n",
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
"\n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)\n",
|
||||
"\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
|
||||
" iris.target, \n",
|
||||
" test_size=0.2, \n",
|
||||
@@ -211,6 +203,9 @@
|
||||
"X_test = pd.DataFrame(X_test, columns=['c1', 'c2', 'c3', 'c4'])\n",
|
||||
"y_train = pd.DataFrame(y_train, columns=['label'])\n",
|
||||
"\n",
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
"\n",
|
||||
"X_train.to_csv(\"data/X_train.csv\", index=False)\n",
|
||||
"y_train.to_csv(\"data/y_train.csv\", index=False)\n",
|
||||
"\n",
|
||||
@@ -264,7 +259,7 @@
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. \n",
|
||||
"\n",
|
||||
"**Note:** Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
|
||||
"\n",
|
||||
@@ -276,7 +271,7 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of nodes in the AmlCompute cluster.|\n",
|
||||
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|"
|
||||
]
|
||||
},
|
||||
@@ -305,7 +300,6 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
|
||||
@@ -95,9 +95,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the run history container in the workspace.\n",
|
||||
"# Choose an experiment name.\n",
|
||||
"experiment_name = 'automl-remote-amlcompute'\n",
|
||||
"project_folder = './project'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -107,7 +106,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -183,10 +181,7 @@
|
||||
"\n",
|
||||
"if not os.path.isdir('data'):\n",
|
||||
" os.mkdir('data')\n",
|
||||
" \n",
|
||||
"if not os.path.exists(project_folder):\n",
|
||||
" os.makedirs(project_folder)\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"pd.DataFrame(data_train.data[100:,:]).to_csv(\"data/X_train.csv\", index=False)\n",
|
||||
"pd.DataFrame(data_train.target[100:]).to_csv(\"data/y_train.csv\", index=False)\n",
|
||||
"\n",
|
||||
@@ -240,7 +235,7 @@
|
||||
"source": [
|
||||
"## Train\n",
|
||||
"\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
|
||||
"You can specify `automl_settings` as `**kwargs` as well.\n",
|
||||
"\n",
|
||||
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
|
||||
"\n",
|
||||
@@ -250,7 +245,7 @@
|
||||
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
|
||||
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
|
||||
"|**n_cross_validations**|Number of cross validation splits.|\n",
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
|
||||
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of nodes in the AmlCompute cluster.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -261,7 +256,7 @@
|
||||
"source": [
|
||||
"automl_settings = {\n",
|
||||
" \"iteration_timeout_minutes\": 10,\n",
|
||||
" \"iterations\": 20,\n",
|
||||
" \"iterations\": 10,\n",
|
||||
" \"n_cross_validations\": 5,\n",
|
||||
" \"primary_metric\": 'AUC_weighted',\n",
|
||||
" \"preprocess\": False,\n",
|
||||
@@ -271,7 +266,6 @@
|
||||
"\n",
|
||||
"automl_config = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
" path = project_folder,\n",
|
||||
" run_configuration=conda_run_config,\n",
|
||||
" X = X,\n",
|
||||
" y = y,\n",
|
||||
|
||||
@@ -82,8 +82,6 @@
|
||||
"experiment_name = 'non_sample_weight_experiment'\n",
|
||||
"sample_weight_experiment_name = 'sample_weight_experiment'\n",
|
||||
"\n",
|
||||
"project_folder = './sample_projects/sample_weight'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"sample_weight_experiment=Experiment(ws, sample_weight_experiment_name)\n",
|
||||
"\n",
|
||||
@@ -93,7 +91,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -131,8 +128,7 @@
|
||||
" n_cross_validations = 2,\n",
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" path = project_folder)\n",
|
||||
" y = y_train)\n",
|
||||
"\n",
|
||||
"automl_sample_weight = AutoMLConfig(task = 'classification',\n",
|
||||
" debug_log = 'automl_errors.log',\n",
|
||||
@@ -143,8 +139,7 @@
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" sample_weight = sample_weight,\n",
|
||||
" path = project_folder)"
|
||||
" sample_weight = sample_weight)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -87,8 +87,6 @@
|
||||
"\n",
|
||||
"# choose a name for the experiment\n",
|
||||
"experiment_name = 'sparse-data-train-test-split'\n",
|
||||
"# project folder\n",
|
||||
"project_folder = './sample_projects/sparse-data-train-test-split'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -98,7 +96,6 @@
|
||||
"output['Workspace'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"outputDf = pd.DataFrame(data = output, index = [''])\n",
|
||||
@@ -165,8 +162,7 @@
|
||||
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
|
||||
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features] for the custom validation set.|\n",
|
||||
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
|
||||
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
|
||||
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -185,8 +181,7 @@
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" X_valid = X_valid, \n",
|
||||
" y_valid = y_valid, \n",
|
||||
" path = project_folder)"
|
||||
" y_valid = y_valid)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
-- This shows using the AutoMLPredict stored procedure to predict using a forecasting model for the nyc_energy dataset.
|
||||
|
||||
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
|
||||
WHERE ExperimentName = 'automl-sql-forecast'
|
||||
ORDER BY CreatedDate DESC)
|
||||
|
||||
EXEC dbo.AutoMLPredict @input_query='
|
||||
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
|
||||
demand,
|
||||
precip,
|
||||
temp
|
||||
FROM nyc_energy
|
||||
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
|
||||
AND timeStamp >= ''2017-02-01''',
|
||||
@label_column='demand',
|
||||
@model=@model
|
||||
WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))
|
||||
@@ -77,9 +77,8 @@
|
||||
"source": [
|
||||
"ws = Workspace.from_config()\n",
|
||||
"\n",
|
||||
"# Choose a name for the experiment and specify the project folder.\n",
|
||||
"# Choose a name for the experiment.\n",
|
||||
"experiment_name = 'automl-subsampling'\n",
|
||||
"project_folder = './sample_projects/automl-subsampling'\n",
|
||||
"\n",
|
||||
"experiment = Experiment(ws, experiment_name)\n",
|
||||
"\n",
|
||||
@@ -89,7 +88,6 @@
|
||||
"output['Workspace Name'] = ws.name\n",
|
||||
"output['Resource Group'] = ws.resource_group\n",
|
||||
"output['Location'] = ws.location\n",
|
||||
"output['Project Directory'] = project_folder\n",
|
||||
"output['Experiment Name'] = experiment.name\n",
|
||||
"pd.set_option('display.max_colwidth', -1)\n",
|
||||
"pd.DataFrame(data = output, index = ['']).T"
|
||||
@@ -150,8 +148,7 @@
|
||||
" verbosity = logging.INFO,\n",
|
||||
" X = X_train, \n",
|
||||
" y = y_train,\n",
|
||||
" enable_subsampling=True,\n",
|
||||
" path = project_folder)"
|
||||
" enable_subsampling=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -170,13 +167,6 @@
|
||||
"source": [
|
||||
"local_run = experiment.submit(automl_config, show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -11,13 +11,6 @@
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -11,13 +11,6 @@
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -178,42 +171,18 @@
|
||||
"source": [
|
||||
"#deploy to ACI\n",
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"\n",
|
||||
"myaci_config = AciWebservice.deploy_configuration(\n",
|
||||
" cpu_cores = 2, \n",
|
||||
"myaci_config = AciWebservice.deploy_configuration(cpu_cores = 2, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'name':'Databricks Azure ML ACI'}, \n",
|
||||
" description = 'This is for ADB and AML example. Azure Databricks & Azure ML SDK demo with ACI by Parashar.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# this will take 10-15 minutes to finish\n",
|
||||
" description = 'This is for ADB and AML example.')\n",
|
||||
"\n",
|
||||
"service_name = \"aciws\"\n",
|
||||
"runtime = \"spark-py\" \n",
|
||||
"driver_file = \"score_sparkml.py\"\n",
|
||||
"my_conda_file = \"mydeployenv.yml\"\n",
|
||||
"\n",
|
||||
"# image creation\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
|
||||
" runtime = runtime, \n",
|
||||
" conda_file = my_conda_file)\n",
|
||||
"\n",
|
||||
"# Webservice creation\n",
|
||||
"myservice = Webservice.deploy_from_model(\n",
|
||||
" workspace=ws, \n",
|
||||
" name=service_name,\n",
|
||||
" deployment_config = myaci_config,\n",
|
||||
" models = [mymodel],\n",
|
||||
" image_config = myimage_config\n",
|
||||
" )\n",
|
||||
"inference_config = InferenceConfig(runtime= 'spark-py', \n",
|
||||
" entry_script='score_sparkml.py',\n",
|
||||
" conda_file='mydeployenv.yml')\n",
|
||||
"\n",
|
||||
"myservice = Model.deploy(ws, 'aciws', [mymodel], inference_config, myaci_config)\n",
|
||||
"myservice.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -11,13 +11,6 @@
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -70,11 +63,23 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# List images by ws\n",
|
||||
"#Register the model\n",
|
||||
"import os\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"for i in ContainerImage.list(workspace = ws):\n",
|
||||
" print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"
|
||||
"model_name = \"AdultCensus_runHistory_aks.mml\" # \n",
|
||||
"model_name_dbfs = os.path.join(\"/dbfs\", model_name)\n",
|
||||
"\n",
|
||||
"print(\"copy model from dbfs to local\")\n",
|
||||
"model_local = \"file:\" + os.getcwd() + \"/\" + model_name\n",
|
||||
"dbutils.fs.cp(model_name, model_local, True)\n",
|
||||
"\n",
|
||||
"mymodel = Model.register(model_path = model_name, # this points to a local file\n",
|
||||
" model_name = model_name, # this is the name the model is registered as, am using same name for both path and name. \n",
|
||||
" description = \"ADB trained model by Parashar\",\n",
|
||||
" workspace = ws)\n",
|
||||
"\n",
|
||||
"print(mymodel.name, mymodel.description, mymodel.version)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -83,8 +88,69 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.image import Image\n",
|
||||
"myimage = Image(workspace=ws, name=\"aciws\")"
|
||||
"#%%writefile score_sparkml.py\n",
|
||||
"score_sparkml = \"\"\"\n",
|
||||
" \n",
|
||||
"import json\n",
|
||||
" \n",
|
||||
"def init():\n",
|
||||
" # One-time initialization of PySpark and predictive model\n",
|
||||
" import pyspark\n",
|
||||
" from azureml.core.model import Model\n",
|
||||
" from pyspark.ml import PipelineModel\n",
|
||||
" \n",
|
||||
" global trainedModel\n",
|
||||
" global spark\n",
|
||||
" \n",
|
||||
" spark = pyspark.sql.SparkSession.builder.appName(\"ADB and AML notebook by Parashar\").getOrCreate()\n",
|
||||
" model_name = \"{model_name}\" #interpolated\n",
|
||||
" model_path = Model.get_model_path(model_name)\n",
|
||||
" trainedModel = PipelineModel.load(model_path)\n",
|
||||
" \n",
|
||||
"def run(input_json):\n",
|
||||
" if isinstance(trainedModel, Exception):\n",
|
||||
" return json.dumps({{\"trainedModel\":str(trainedModel)}})\n",
|
||||
" \n",
|
||||
" try:\n",
|
||||
" sc = spark.sparkContext\n",
|
||||
" input_list = json.loads(input_json)\n",
|
||||
" input_rdd = sc.parallelize(input_list)\n",
|
||||
" input_df = spark.read.json(input_rdd)\n",
|
||||
" \n",
|
||||
" # Compute prediction\n",
|
||||
" prediction = trainedModel.transform(input_df)\n",
|
||||
" #result = prediction.first().prediction\n",
|
||||
" predictions = prediction.collect()\n",
|
||||
" \n",
|
||||
" #Get each scored result\n",
|
||||
" preds = [str(x['prediction']) for x in predictions]\n",
|
||||
" result = \",\".join(preds)\n",
|
||||
" # you can return any data type as long as it is JSON-serializable\n",
|
||||
" return result.tolist()\n",
|
||||
" except Exception as e:\n",
|
||||
" result = str(e)\n",
|
||||
" return result\n",
|
||||
" \n",
|
||||
"\"\"\".format(model_name=model_name)\n",
|
||||
" \n",
|
||||
"exec(score_sparkml)\n",
|
||||
" \n",
|
||||
"with open(\"score_sparkml.py\", \"w\") as file:\n",
|
||||
" file.write(score_sparkml)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies \n",
|
||||
"\n",
|
||||
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) #showing how to add libs as an eg. - not needed for this model.\n",
|
||||
"\n",
|
||||
"with open(\"mydeployenv.yml\",\"w\") as f:\n",
|
||||
" f.write(myacienv.serialize_to_string())"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -120,34 +186,17 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice\n",
|
||||
"help( Webservice.deploy_from_image)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from azureml.core.webservice import Webservice, AksWebservice\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"#deploy to AKS\n",
|
||||
"from azureml.core.webservice import AksWebservice, Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"\n",
|
||||
"#Set the web service configuration (using default here with app insights)\n",
|
||||
"aks_config = AksWebservice.deploy_configuration(enable_app_insights=True)\n",
|
||||
"\n",
|
||||
"#unique service name\n",
|
||||
"service_name ='ps-aks-service'\n",
|
||||
"\n",
|
||||
"# Webservice creation using single command, there is a variant to use image directly as well.\n",
|
||||
"aks_service = Webservice.deploy_from_image(\n",
|
||||
" workspace=ws, \n",
|
||||
" name=service_name,\n",
|
||||
" deployment_config = aks_config,\n",
|
||||
" image = myimage,\n",
|
||||
" deployment_target = aks_target\n",
|
||||
" )\n",
|
||||
"inference_config = InferenceConfig(runtime = 'spark-py', \n",
|
||||
" entry_script ='score_sparkml.py',\n",
|
||||
" conda_file ='mydeployenv.yml')\n",
|
||||
"\n",
|
||||
"aks_service = Model.deploy(ws, 'ps-aks-service', [mymodel], inference_config, aks_config, aks_target)\n",
|
||||
"aks_service.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
@@ -206,7 +255,6 @@
|
||||
"source": [
|
||||
"#comment to not delete the web service\n",
|
||||
"aks_service.delete()\n",
|
||||
"#image.delete()\n",
|
||||
"#model.delete()\n",
|
||||
"aks_target.delete() "
|
||||
]
|
||||
@@ -11,13 +11,6 @@
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -11,13 +11,6 @@
|
||||
"Licensed under the MIT License."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
||||
@@ -638,7 +638,7 @@
|
||||
"source": [
|
||||
"from azureml.core.conda_dependencies import CondaDependencies\n",
|
||||
"\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
|
||||
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-defaults', 'azureml-sdk[automl]'])\n",
|
||||
"\n",
|
||||
"conda_env_file_name = 'mydeployenv.yml'\n",
|
||||
"myenv.save_to_file('.', conda_env_file_name)"
|
||||
@@ -648,30 +648,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Create ACI config"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#deploy to ACI\n",
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"\n",
|
||||
"myaci_config = AciWebservice.deploy_configuration(\n",
|
||||
" cpu_cores = 2, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'name':'Databricks Azure ML ACI'}, \n",
|
||||
" description = 'This is for ADB and AutoML example.')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Deploy the Image as a Web Service on Azure Container Instance\n",
|
||||
"## Deploy the model as a Web Service on Azure Container Instance\n",
|
||||
"Replace servicename with any meaningful name of service"
|
||||
]
|
||||
},
|
||||
@@ -683,30 +660,26 @@
|
||||
"source": [
|
||||
"# this will take 10-15 minutes to finish\n",
|
||||
"\n",
|
||||
"from azureml.core.webservice import AciWebservice, Webservice\n",
|
||||
"from azureml.core.model import InferenceConfig\n",
|
||||
"from azureml.core.model import Model\n",
|
||||
"import uuid\n",
|
||||
"from azureml.core.image import ContainerImage\n",
|
||||
"\n",
|
||||
"myaci_config = AciWebservice.deploy_configuration(\n",
|
||||
" cpu_cores = 2, \n",
|
||||
" memory_gb = 2, \n",
|
||||
" tags = {'name':'Databricks Azure ML ACI'}, \n",
|
||||
" description = 'This is for ADB and AutoML example.')\n",
|
||||
"\n",
|
||||
"inference_config = InferenceConfig(runtime= 'spark-py', \n",
|
||||
" entry_script='score.py',\n",
|
||||
" conda_file='mydeployenv.yml')\n",
|
||||
"\n",
|
||||
"guid = str(uuid.uuid4()).split(\"-\")[0]\n",
|
||||
"service_name = \"myservice-{}\".format(guid)\n",
|
||||
"print(\"Creating service with name: {}\".format(service_name))\n",
|
||||
"runtime = \"spark-py\" \n",
|
||||
"driver_file = \"score.py\"\n",
|
||||
"my_conda_file = \"mydeployenv.yml\"\n",
|
||||
"\n",
|
||||
"# image creation\n",
|
||||
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
|
||||
" runtime = runtime, \n",
|
||||
" conda_file = 'mydeployenv.yml')\n",
|
||||
"\n",
|
||||
"# Webservice creation\n",
|
||||
"myservice = Webservice.deploy_from_model(\n",
|
||||
" workspace=ws, \n",
|
||||
" name=service_name,\n",
|
||||
" deployment_config = myaci_config,\n",
|
||||
" models = [model],\n",
|
||||
" image_config = myimage_config\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"myservice = Model.deploy(ws, service_name, [model], inference_config, myaci_config)\n",
|
||||
"myservice.wait_for_deployment(show_output=True)"
|
||||
]
|
||||
},
|
||||
|
||||