mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 10:35:12 -05:00
49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
# Code for Azure Machine Learning Compute - Run-based creation
|
|
|
|
# Check core SDK version number
|
|
import azureml.core
|
|
|
|
print("SDK version:", azureml.core.VERSION)
|
|
|
|
|
|
from azureml.core import Workspace
|
|
ws = Workspace.from_config()
|
|
|
|
|
|
# Set up an experiment
|
|
from azureml.core import Experiment
|
|
experiment_name = 'my-experiment'
|
|
script_folder= "./"
|
|
|
|
exp = Experiment(workspace=ws, name=experiment_name)
|
|
|
|
|
|
#<run_temp_compute>
|
|
from azureml.core.compute import ComputeTarget, AmlCompute
|
|
|
|
# First, list the supported VM families for Azure Machine Learning Compute
|
|
print(AmlCompute.supported_vmsizes(workspace=ws))
|
|
|
|
from azureml.core.runconfig import RunConfiguration
|
|
# Create a new runconfig object
|
|
run_temp_compute = RunConfiguration()
|
|
|
|
# Signal that you want to use AmlCompute to execute the script
|
|
run_temp_compute.target = "amlcompute"
|
|
|
|
# AmlCompute is created in the same region as your workspace
|
|
# Set the VM size for AmlCompute from the list of supported_vmsizes
|
|
run_temp_compute.amlcompute.vm_size = 'STANDARD_D2_V2'
|
|
#</run_temp_compute>
|
|
|
|
|
|
# Submit the experiment using the run configuration
|
|
from azureml.core import ScriptRunConfig
|
|
|
|
src = ScriptRunConfig(source_directory = script_folder, script = 'train.py', run_config = run_temp_compute)
|
|
run = exp.submit(src)
|
|
run.wait_for_completion(show_output = True)
|
|
|
|
|
|
|