mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 18:42:41 -05:00
39 lines
1.8 KiB
Python
39 lines
1.8 KiB
Python
import os
|
|
import shutil
|
|
from azureml.core import ScriptRunConfig
|
|
|
|
|
|
def run_remote_inference(test_experiment, compute_target, train_run,
|
|
test_dataset, target_column_name, inference_folder='./forecast'):
|
|
# Create local directory to copy the model.pkl and forecsting_script.py files into.
|
|
# These files will be uploaded to and executed on the compute instance.
|
|
os.makedirs(inference_folder, exist_ok=True)
|
|
shutil.copy('forecasting_script.py', inference_folder)
|
|
|
|
train_run.download_file('outputs/model.pkl',
|
|
os.path.join(inference_folder, 'model.pkl'))
|
|
|
|
inference_env = train_run.get_environment()
|
|
|
|
config = ScriptRunConfig(source_directory=inference_folder,
|
|
script='forecasting_script.py',
|
|
arguments=['--target_column_name',
|
|
target_column_name,
|
|
'--test_dataset',
|
|
test_dataset.as_named_input(test_dataset.name)],
|
|
compute_target=compute_target,
|
|
environment=inference_env)
|
|
|
|
run = test_experiment.submit(config,
|
|
tags={'training_run_id':
|
|
train_run.id,
|
|
'run_algorithm':
|
|
train_run.properties['run_algorithm'],
|
|
'valid_score':
|
|
train_run.properties['score'],
|
|
'primary_metric':
|
|
train_run.properties['primary_metric']})
|
|
|
|
run.log("run_algorithm", run.tags['run_algorithm'])
|
|
return run
|