Files

56 lines
2.0 KiB
Python

import pandas as pd
from azureml.core import Environment
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def run_inference(test_experiment, compute_target, script_folder, train_run,
test_dataset, target_column_name, model_name):
inference_env = train_run.get_environment()
est = Estimator(source_directory=script_folder,
entry_script='infer.py',
script_params={
'--target_column_name': target_column_name,
'--model_name': model_name
},
inputs=[
test_dataset.as_named_input('test_data')
],
compute_target=compute_target,
environment_definition=inference_env)
run = test_experiment.submit(
est, tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run.log("run_algorithm", run.tags['run_algorithm'])
return run
def get_result_df(remote_run):
children = list(remote_run.get_children(recursive=True))
summary_df = pd.DataFrame(index=['run_id', 'run_algorithm',
'primary_metric', 'Score'])
goal_minimize = False
for run in children:
if('run_algorithm' in run.properties and 'score' in run.properties):
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
run.properties['primary_metric'],
float(run.properties['score'])]
if('goal' in run.properties):
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
summary_df = summary_df.T.sort_values(
'Score',
ascending=goal_minimize).drop_duplicates(['run_algorithm'])
summary_df = summary_df.set_index('run_algorithm')
return summary_df