mirror of
https://github.com/langgenius/dify.git
synced 2025-12-19 17:27:16 -05:00
Feat/support multimodal embedding (#29115)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -654,3 +654,9 @@ TENANT_ISOLATED_TASK_CONCURRENCY=1
|
||||
|
||||
# Maximum number of segments for dataset segments API (0 for unlimited)
|
||||
DATASET_MAX_SEGMENTS_PER_REQUEST=0
|
||||
|
||||
# Multimodal knowledgebase limit
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT=10
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT=2
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT=60
|
||||
IMAGE_FILE_BATCH_LIMIT=10
|
||||
|
||||
@@ -360,6 +360,26 @@ class FileUploadConfig(BaseSettings):
|
||||
default=10,
|
||||
)
|
||||
|
||||
IMAGE_FILE_BATCH_LIMIT: PositiveInt = Field(
|
||||
description="Maximum number of files allowed in a image batch upload operation",
|
||||
default=10,
|
||||
)
|
||||
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT: PositiveInt = Field(
|
||||
description="Maximum number of files allowed in a single chunk attachment",
|
||||
default=10,
|
||||
)
|
||||
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT: NonNegativeInt = Field(
|
||||
description="Maximum allowed image file size for attachments in megabytes",
|
||||
default=2,
|
||||
)
|
||||
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT: NonNegativeInt = Field(
|
||||
description="Timeout for downloading image attachments in seconds",
|
||||
default=60,
|
||||
)
|
||||
|
||||
inner_UPLOAD_FILE_EXTENSION_BLACKLIST: str = Field(
|
||||
description=(
|
||||
"Comma-separated list of file extensions that are blocked from upload. "
|
||||
|
||||
@@ -151,6 +151,7 @@ class DatasetUpdatePayload(BaseModel):
|
||||
external_knowledge_id: str | None = None
|
||||
external_knowledge_api_id: str | None = None
|
||||
icon_info: dict[str, Any] | None = None
|
||||
is_multimodal: bool | None = False
|
||||
|
||||
@field_validator("indexing_technique")
|
||||
@classmethod
|
||||
@@ -423,17 +424,16 @@ class DatasetApi(Resource):
|
||||
payload = DatasetUpdatePayload.model_validate(console_ns.payload or {})
|
||||
payload_data = payload.model_dump(exclude_unset=True)
|
||||
current_user, current_tenant_id = current_account_with_tenant()
|
||||
|
||||
# check embedding model setting
|
||||
if (
|
||||
payload.indexing_technique == "high_quality"
|
||||
and payload.embedding_model_provider is not None
|
||||
and payload.embedding_model is not None
|
||||
):
|
||||
DatasetService.check_embedding_model_setting(
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
dataset.tenant_id, payload.embedding_model_provider, payload.embedding_model
|
||||
)
|
||||
|
||||
payload.is_multimodal = is_multimodal
|
||||
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
|
||||
DatasetPermissionService.check_permission(
|
||||
current_user, dataset, payload.permission, payload.partial_member_list
|
||||
|
||||
@@ -424,6 +424,10 @@ class DatasetInitApi(Resource):
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=knowledge_config.embedding_model,
|
||||
)
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
current_tenant_id, knowledge_config.embedding_model_provider, knowledge_config.embedding_model
|
||||
)
|
||||
knowledge_config.is_multimodal = is_multimodal
|
||||
except InvokeAuthorizationError:
|
||||
raise ProviderNotInitializeError(
|
||||
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
|
||||
|
||||
@@ -51,6 +51,7 @@ class SegmentCreatePayload(BaseModel):
|
||||
content: str
|
||||
answer: str | None = None
|
||||
keywords: list[str] | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class SegmentUpdatePayload(BaseModel):
|
||||
@@ -58,6 +59,7 @@ class SegmentUpdatePayload(BaseModel):
|
||||
answer: str | None = None
|
||||
keywords: list[str] | None = None
|
||||
regenerate_child_chunks: bool = False
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class BatchImportPayload(BaseModel):
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from flask_restx import marshal
|
||||
from flask_restx import marshal, reqparse
|
||||
from pydantic import BaseModel, Field
|
||||
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
|
||||
|
||||
@@ -33,6 +33,7 @@ class HitTestingPayload(BaseModel):
|
||||
query: str = Field(max_length=250)
|
||||
retrieval_model: dict[str, Any] | None = None
|
||||
external_retrieval_model: dict[str, Any] | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class DatasetsHitTestingBase:
|
||||
@@ -54,16 +55,28 @@ class DatasetsHitTestingBase:
|
||||
def hit_testing_args_check(args: dict[str, Any]):
|
||||
HitTestingService.hit_testing_args_check(args)
|
||||
|
||||
@staticmethod
|
||||
def parse_args():
|
||||
parser = (
|
||||
reqparse.RequestParser()
|
||||
.add_argument("query", type=str, required=False, location="json")
|
||||
.add_argument("attachment_ids", type=list, required=False, location="json")
|
||||
.add_argument("retrieval_model", type=dict, required=False, location="json")
|
||||
.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
@staticmethod
|
||||
def perform_hit_testing(dataset, args):
|
||||
assert isinstance(current_user, Account)
|
||||
try:
|
||||
response = HitTestingService.retrieve(
|
||||
dataset=dataset,
|
||||
query=args["query"],
|
||||
query=args.get("query"),
|
||||
account=current_user,
|
||||
retrieval_model=args["retrieval_model"],
|
||||
external_retrieval_model=args["external_retrieval_model"],
|
||||
retrieval_model=args.get("retrieval_model"),
|
||||
external_retrieval_model=args.get("external_retrieval_model"),
|
||||
attachment_ids=args.get("attachment_ids"),
|
||||
limit=10,
|
||||
)
|
||||
return {"query": response["query"], "records": marshal(response["records"], hit_testing_record_fields)}
|
||||
|
||||
@@ -45,6 +45,9 @@ class FileApi(Resource):
|
||||
"video_file_size_limit": dify_config.UPLOAD_VIDEO_FILE_SIZE_LIMIT,
|
||||
"audio_file_size_limit": dify_config.UPLOAD_AUDIO_FILE_SIZE_LIMIT,
|
||||
"workflow_file_upload_limit": dify_config.WORKFLOW_FILE_UPLOAD_LIMIT,
|
||||
"image_file_batch_limit": dify_config.IMAGE_FILE_BATCH_LIMIT,
|
||||
"single_chunk_attachment_limit": dify_config.SINGLE_CHUNK_ATTACHMENT_LIMIT,
|
||||
"attachment_image_file_size_limit": dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT,
|
||||
}, 200
|
||||
|
||||
@setup_required
|
||||
|
||||
@@ -83,6 +83,7 @@ class AppRunner:
|
||||
context: str | None = None,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
@@ -111,6 +112,7 @@ class AppRunner:
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
else:
|
||||
memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
|
||||
|
||||
@@ -11,6 +11,7 @@ from core.app.entities.app_invoke_entities import (
|
||||
)
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import File
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
@@ -146,6 +147,7 @@ class ChatAppRunner(AppRunner):
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
context_files: list[File] = []
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
@@ -156,7 +158,7 @@ class ChatAppRunner(AppRunner):
|
||||
)
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
context, retrieved_files = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
@@ -171,7 +173,11 @@ class ChatAppRunner(AppRunner):
|
||||
memory=memory,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
vision_enabled=application_generate_entity.app_config.app_model_config_dict.get("file_upload", {}).get(
|
||||
"enabled", False
|
||||
),
|
||||
)
|
||||
context_files = retrieved_files or []
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
@@ -186,6 +192,7 @@ class ChatAppRunner(AppRunner):
|
||||
context=context,
|
||||
memory=memory,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
|
||||
@@ -10,6 +10,7 @@ from core.app.entities.app_invoke_entities import (
|
||||
CompletionAppGenerateEntity,
|
||||
)
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
||||
from core.moderation.base import ModerationError
|
||||
@@ -102,6 +103,7 @@ class CompletionAppRunner(AppRunner):
|
||||
|
||||
# get context from datasets
|
||||
context = None
|
||||
context_files: list[File] = []
|
||||
if app_config.dataset and app_config.dataset.dataset_ids:
|
||||
hit_callback = DatasetIndexToolCallbackHandler(
|
||||
queue_manager,
|
||||
@@ -116,7 +118,7 @@ class CompletionAppRunner(AppRunner):
|
||||
query = inputs.get(dataset_config.retrieve_config.query_variable, "")
|
||||
|
||||
dataset_retrieval = DatasetRetrieval(application_generate_entity)
|
||||
context = dataset_retrieval.retrieve(
|
||||
context, retrieved_files = dataset_retrieval.retrieve(
|
||||
app_id=app_record.id,
|
||||
user_id=application_generate_entity.user_id,
|
||||
tenant_id=app_record.tenant_id,
|
||||
@@ -130,7 +132,11 @@ class CompletionAppRunner(AppRunner):
|
||||
hit_callback=hit_callback,
|
||||
message_id=message.id,
|
||||
inputs=inputs,
|
||||
vision_enabled=application_generate_entity.app_config.app_model_config_dict.get("file_upload", {}).get(
|
||||
"enabled", False
|
||||
),
|
||||
)
|
||||
context_files = retrieved_files or []
|
||||
|
||||
# reorganize all inputs and template to prompt messages
|
||||
# Include: prompt template, inputs, query(optional), files(optional)
|
||||
@@ -144,6 +150,7 @@ class CompletionAppRunner(AppRunner):
|
||||
query=query,
|
||||
context=context,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
# check hosting moderation
|
||||
|
||||
@@ -7,7 +7,7 @@ from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, DatasetQuery, DocumentSegment
|
||||
@@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
|
||||
document_id,
|
||||
)
|
||||
continue
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunk_stmt = select(ChildChunk).where(
|
||||
ChildChunk.index_node_id == document.metadata["doc_id"],
|
||||
ChildChunk.dataset_id == dataset_document.dataset_id,
|
||||
|
||||
@@ -7,7 +7,7 @@ import time
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from flask import current_app
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm.exc import ObjectDeletedError
|
||||
|
||||
@@ -21,7 +21,7 @@ from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.datasource_type import DatasourceType
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting, NotionInfo, WebsiteInfo
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
@@ -36,6 +36,7 @@ from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from libs import helper
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
@@ -89,8 +90,17 @@ class IndexingRunner:
|
||||
text_docs = self._extract(index_processor, requeried_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
current_user = db.session.query(Account).filter_by(id=requeried_document.created_by).first()
|
||||
if not current_user:
|
||||
raise ValueError("no current user found")
|
||||
current_user.set_tenant_id(dataset.tenant_id)
|
||||
documents = self._transform(
|
||||
index_processor, dataset, text_docs, requeried_document.doc_language, processing_rule.to_dict()
|
||||
index_processor,
|
||||
dataset,
|
||||
text_docs,
|
||||
requeried_document.doc_language,
|
||||
processing_rule.to_dict(),
|
||||
current_user=current_user,
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, requeried_document, documents)
|
||||
@@ -136,7 +146,7 @@ class IndexingRunner:
|
||||
|
||||
for document_segment in document_segments:
|
||||
db.session.delete(document_segment)
|
||||
if requeried_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if requeried_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
# delete child chunks
|
||||
db.session.query(ChildChunk).where(ChildChunk.segment_id == document_segment.id).delete()
|
||||
db.session.commit()
|
||||
@@ -152,8 +162,17 @@ class IndexingRunner:
|
||||
text_docs = self._extract(index_processor, requeried_document, processing_rule.to_dict())
|
||||
|
||||
# transform
|
||||
current_user = db.session.query(Account).filter_by(id=requeried_document.created_by).first()
|
||||
if not current_user:
|
||||
raise ValueError("no current user found")
|
||||
current_user.set_tenant_id(dataset.tenant_id)
|
||||
documents = self._transform(
|
||||
index_processor, dataset, text_docs, requeried_document.doc_language, processing_rule.to_dict()
|
||||
index_processor,
|
||||
dataset,
|
||||
text_docs,
|
||||
requeried_document.doc_language,
|
||||
processing_rule.to_dict(),
|
||||
current_user=current_user,
|
||||
)
|
||||
# save segment
|
||||
self._load_segments(dataset, requeried_document, documents)
|
||||
@@ -209,7 +228,7 @@ class IndexingRunner:
|
||||
"dataset_id": document_segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if requeried_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if requeried_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = document_segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -302,6 +321,7 @@ class IndexingRunner:
|
||||
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
current_user=None,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=processing_rule.to_dict(),
|
||||
tenant_id=tenant_id,
|
||||
@@ -551,7 +571,10 @@ class IndexingRunner:
|
||||
indexing_start_at = time.perf_counter()
|
||||
tokens = 0
|
||||
create_keyword_thread = None
|
||||
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX and dataset.indexing_technique == "economy":
|
||||
if (
|
||||
dataset_document.doc_form != IndexStructureType.PARENT_CHILD_INDEX
|
||||
and dataset.indexing_technique == "economy"
|
||||
):
|
||||
# create keyword index
|
||||
create_keyword_thread = threading.Thread(
|
||||
target=self._process_keyword_index,
|
||||
@@ -590,7 +613,7 @@ class IndexingRunner:
|
||||
for future in futures:
|
||||
tokens += future.result()
|
||||
if (
|
||||
dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX
|
||||
dataset_document.doc_form != IndexStructureType.PARENT_CHILD_INDEX
|
||||
and dataset.indexing_technique == "economy"
|
||||
and create_keyword_thread is not None
|
||||
):
|
||||
@@ -635,7 +658,13 @@ class IndexingRunner:
|
||||
db.session.commit()
|
||||
|
||||
def _process_chunk(
|
||||
self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
|
||||
self,
|
||||
flask_app: Flask,
|
||||
index_processor: BaseIndexProcessor,
|
||||
chunk_documents: list[Document],
|
||||
dataset: Dataset,
|
||||
dataset_document: DatasetDocument,
|
||||
embedding_model_instance: ModelInstance | None,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
# check document is paused
|
||||
@@ -646,8 +675,15 @@ class IndexingRunner:
|
||||
page_content_list = [document.page_content for document in chunk_documents]
|
||||
tokens += sum(embedding_model_instance.get_text_embedding_num_tokens(page_content_list))
|
||||
|
||||
multimodal_documents = []
|
||||
for document in chunk_documents:
|
||||
if document.attachments and dataset.is_multimodal:
|
||||
multimodal_documents.extend(document.attachments)
|
||||
|
||||
# load index
|
||||
index_processor.load(dataset, chunk_documents, with_keywords=False)
|
||||
index_processor.load(
|
||||
dataset, chunk_documents, multimodal_documents=multimodal_documents, with_keywords=False
|
||||
)
|
||||
|
||||
document_ids = [document.metadata["doc_id"] for document in chunk_documents]
|
||||
db.session.query(DocumentSegment).where(
|
||||
@@ -710,6 +746,7 @@ class IndexingRunner:
|
||||
text_docs: list[Document],
|
||||
doc_language: str,
|
||||
process_rule: dict,
|
||||
current_user: Account | None = None,
|
||||
) -> list[Document]:
|
||||
# get embedding model instance
|
||||
embedding_model_instance = None
|
||||
@@ -729,6 +766,7 @@ class IndexingRunner:
|
||||
|
||||
documents = index_processor.transform(
|
||||
text_docs,
|
||||
current_user,
|
||||
embedding_model_instance=embedding_model_instance,
|
||||
process_rule=process_rule,
|
||||
tenant_id=dataset.tenant_id,
|
||||
@@ -737,14 +775,16 @@ class IndexingRunner:
|
||||
|
||||
return documents
|
||||
|
||||
def _load_segments(self, dataset, dataset_document, documents):
|
||||
def _load_segments(self, dataset: Dataset, dataset_document: DatasetDocument, documents: list[Document]):
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(
|
||||
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
|
||||
)
|
||||
|
||||
# add document segments
|
||||
doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)
|
||||
doc_store.add_documents(
|
||||
docs=documents, save_child=dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX
|
||||
)
|
||||
|
||||
# update document status to indexing
|
||||
cur_time = naive_utc_now()
|
||||
|
||||
@@ -10,9 +10,9 @@ from core.errors.error import ProviderTokenNotInitError
|
||||
from core.model_runtime.callbacks.base_callback import Callback
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
|
||||
@@ -200,7 +200,7 @@ class ModelInstance:
|
||||
|
||||
def invoke_text_embedding(
|
||||
self, texts: list[str], user: str | None = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
|
||||
) -> TextEmbeddingResult:
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
@@ -212,7 +212,7 @@ class ModelInstance:
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
raise Exception("Model type instance is not TextEmbeddingModel")
|
||||
return cast(
|
||||
TextEmbeddingResult,
|
||||
EmbeddingResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke,
|
||||
model=self.model,
|
||||
@@ -223,6 +223,34 @@ class ModelInstance:
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_multimodal_embedding(
|
||||
self,
|
||||
multimodel_documents: list[dict],
|
||||
user: str | None = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke large language model
|
||||
|
||||
:param multimodel_documents: multimodel documents to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, TextEmbeddingModel):
|
||||
raise Exception("Model type instance is not TextEmbeddingModel")
|
||||
return cast(
|
||||
EmbeddingResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke,
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
multimodel_documents=multimodel_documents,
|
||||
user=user,
|
||||
input_type=input_type,
|
||||
),
|
||||
)
|
||||
|
||||
def get_text_embedding_num_tokens(self, texts: list[str]) -> list[int]:
|
||||
"""
|
||||
Get number of tokens for text embedding
|
||||
@@ -276,6 +304,40 @@ class ModelInstance:
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke rerank model
|
||||
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
if not isinstance(self.model_type_instance, RerankModel):
|
||||
raise Exception("Model type instance is not RerankModel")
|
||||
return cast(
|
||||
RerankResult,
|
||||
self._round_robin_invoke(
|
||||
function=self.model_type_instance.invoke_multimodal_rerank,
|
||||
model=self.model,
|
||||
credentials=self.credentials,
|
||||
query=query,
|
||||
docs=docs,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_n,
|
||||
user=user,
|
||||
),
|
||||
)
|
||||
|
||||
def invoke_moderation(self, text: str, user: str | None = None) -> bool:
|
||||
"""
|
||||
Invoke moderation model
|
||||
@@ -461,6 +523,32 @@ class ModelManager:
|
||||
model=default_model_entity.model,
|
||||
)
|
||||
|
||||
def check_model_support_vision(self, tenant_id: str, provider: str, model: str, model_type: ModelType) -> bool:
|
||||
"""
|
||||
Check if model supports vision
|
||||
:param tenant_id: tenant id
|
||||
:param provider: provider name
|
||||
:param model: model name
|
||||
:return: True if model supports vision, False otherwise
|
||||
"""
|
||||
model_instance = self.get_model_instance(tenant_id, provider, model_type, model)
|
||||
model_type_instance = model_instance.model_type_instance
|
||||
match model_type:
|
||||
case ModelType.LLM:
|
||||
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
||||
case ModelType.TEXT_EMBEDDING:
|
||||
model_type_instance = cast(TextEmbeddingModel, model_type_instance)
|
||||
case ModelType.RERANK:
|
||||
model_type_instance = cast(RerankModel, model_type_instance)
|
||||
case _:
|
||||
raise ValueError(f"Model type {model_type} is not supported")
|
||||
model_schema = model_type_instance.get_model_schema(model, model_instance.credentials)
|
||||
if not model_schema:
|
||||
return False
|
||||
if model_schema.features and ModelFeature.VISION in model_schema.features:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class LBModelManager:
|
||||
def __init__(
|
||||
|
||||
@@ -19,7 +19,7 @@ class EmbeddingUsage(ModelUsage):
|
||||
latency: float
|
||||
|
||||
|
||||
class TextEmbeddingResult(BaseModel):
|
||||
class EmbeddingResult(BaseModel):
|
||||
"""
|
||||
Model class for text embedding result.
|
||||
"""
|
||||
@@ -27,3 +27,13 @@ class TextEmbeddingResult(BaseModel):
|
||||
model: str
|
||||
embeddings: list[list[float]]
|
||||
usage: EmbeddingUsage
|
||||
|
||||
|
||||
class FileEmbeddingResult(BaseModel):
|
||||
"""
|
||||
Model class for file embedding result.
|
||||
"""
|
||||
|
||||
model: str
|
||||
embeddings: list[list[float]]
|
||||
usage: EmbeddingUsage
|
||||
|
||||
@@ -50,3 +50,43 @@ class RerankModel(AIModel):
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke multimodal rerank model
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
try:
|
||||
from core.plugin.impl.model import PluginModelClient
|
||||
|
||||
plugin_model_manager = PluginModelClient()
|
||||
return plugin_model_manager.invoke_multimodal_rerank(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
query=query,
|
||||
docs=docs,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_n,
|
||||
)
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
@@ -2,7 +2,7 @@ from pydantic import ConfigDict
|
||||
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
|
||||
|
||||
@@ -20,16 +20,18 @@ class TextEmbeddingModel(AIModel):
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
texts: list[str] | None = None,
|
||||
multimodel_documents: list[dict] | None = None,
|
||||
user: str | None = None,
|
||||
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
|
||||
) -> TextEmbeddingResult:
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param texts: texts to embed
|
||||
:param files: files to embed
|
||||
:param user: unique user id
|
||||
:param input_type: input type
|
||||
:return: embeddings result
|
||||
@@ -38,16 +40,29 @@ class TextEmbeddingModel(AIModel):
|
||||
|
||||
try:
|
||||
plugin_model_manager = PluginModelClient()
|
||||
return plugin_model_manager.invoke_text_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
texts=texts,
|
||||
input_type=input_type,
|
||||
)
|
||||
if texts:
|
||||
return plugin_model_manager.invoke_text_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
texts=texts,
|
||||
input_type=input_type,
|
||||
)
|
||||
if multimodel_documents:
|
||||
return plugin_model_manager.invoke_multimodal_embedding(
|
||||
tenant_id=self.tenant_id,
|
||||
user_id=user or "unknown",
|
||||
plugin_id=self.plugin_id,
|
||||
provider=self.provider_name,
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
documents=multimodel_documents,
|
||||
input_type=input_type,
|
||||
)
|
||||
raise ValueError("No texts or files provided")
|
||||
except Exception as e:
|
||||
raise self._transform_invoke_error(e)
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ from core.model_runtime.entities.llm_entities import LLMResultChunk
|
||||
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.plugin.entities.plugin_daemon import (
|
||||
PluginBasicBooleanResponse,
|
||||
@@ -243,14 +243,14 @@ class PluginModelClient(BasePluginClient):
|
||||
credentials: dict,
|
||||
texts: list[str],
|
||||
input_type: str,
|
||||
) -> TextEmbeddingResult:
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke text embedding
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/text_embedding/invoke",
|
||||
type_=TextEmbeddingResult,
|
||||
type_=EmbeddingResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
@@ -275,6 +275,48 @@ class PluginModelClient(BasePluginClient):
|
||||
|
||||
raise ValueError("Failed to invoke text embedding")
|
||||
|
||||
def invoke_multimodal_embedding(
|
||||
self,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
documents: list[dict],
|
||||
input_type: str,
|
||||
) -> EmbeddingResult:
|
||||
"""
|
||||
Invoke file embedding
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/multimodal_embedding/invoke",
|
||||
type_=EmbeddingResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
"data": {
|
||||
"provider": provider,
|
||||
"model_type": "text-embedding",
|
||||
"model": model,
|
||||
"credentials": credentials,
|
||||
"documents": documents,
|
||||
"input_type": input_type,
|
||||
},
|
||||
}
|
||||
),
|
||||
headers={
|
||||
"X-Plugin-ID": plugin_id,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
|
||||
for resp in response:
|
||||
return resp
|
||||
|
||||
raise ValueError("Failed to invoke file embedding")
|
||||
|
||||
def get_text_embedding_num_tokens(
|
||||
self,
|
||||
tenant_id: str,
|
||||
@@ -361,6 +403,51 @@ class PluginModelClient(BasePluginClient):
|
||||
|
||||
raise ValueError("Failed to invoke rerank")
|
||||
|
||||
def invoke_multimodal_rerank(
|
||||
self,
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
plugin_id: str,
|
||||
provider: str,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: dict,
|
||||
docs: list[dict],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke multimodal rerank
|
||||
"""
|
||||
response = self._request_with_plugin_daemon_response_stream(
|
||||
method="POST",
|
||||
path=f"plugin/{tenant_id}/dispatch/multimodal_rerank/invoke",
|
||||
type_=RerankResult,
|
||||
data=jsonable_encoder(
|
||||
{
|
||||
"user_id": user_id,
|
||||
"data": {
|
||||
"provider": provider,
|
||||
"model_type": "rerank",
|
||||
"model": model,
|
||||
"credentials": credentials,
|
||||
"query": query,
|
||||
"docs": docs,
|
||||
"score_threshold": score_threshold,
|
||||
"top_n": top_n,
|
||||
},
|
||||
}
|
||||
),
|
||||
headers={
|
||||
"X-Plugin-ID": plugin_id,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
for resp in response:
|
||||
return resp
|
||||
|
||||
raise ValueError("Failed to invoke multimodal rerank")
|
||||
|
||||
def invoke_tts(
|
||||
self,
|
||||
tenant_id: str,
|
||||
|
||||
@@ -49,6 +49,7 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
inputs = {key: str(value) for key, value in inputs.items()}
|
||||
|
||||
@@ -64,6 +65,7 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
else:
|
||||
prompt_messages, stops = self._get_completion_model_prompt_messages(
|
||||
@@ -76,6 +78,7 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory=memory,
|
||||
model_config=model_config,
|
||||
image_detail_config=image_detail_config,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
return prompt_messages, stops
|
||||
@@ -187,6 +190,7 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
prompt_messages: list[PromptMessage] = []
|
||||
|
||||
@@ -216,9 +220,9 @@ class SimplePromptTransform(PromptTransform):
|
||||
)
|
||||
|
||||
if query:
|
||||
prompt_messages.append(self._get_last_user_message(query, files, image_detail_config))
|
||||
prompt_messages.append(self._get_last_user_message(query, files, image_detail_config, context_files))
|
||||
else:
|
||||
prompt_messages.append(self._get_last_user_message(prompt, files, image_detail_config))
|
||||
prompt_messages.append(self._get_last_user_message(prompt, files, image_detail_config, context_files))
|
||||
|
||||
return prompt_messages, None
|
||||
|
||||
@@ -233,6 +237,7 @@ class SimplePromptTransform(PromptTransform):
|
||||
memory: TokenBufferMemory | None,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[list[PromptMessage], list[str] | None]:
|
||||
# get prompt
|
||||
prompt, prompt_rules = self._get_prompt_str_and_rules(
|
||||
@@ -275,20 +280,27 @@ class SimplePromptTransform(PromptTransform):
|
||||
if stops is not None and len(stops) == 0:
|
||||
stops = None
|
||||
|
||||
return [self._get_last_user_message(prompt, files, image_detail_config)], stops
|
||||
return [self._get_last_user_message(prompt, files, image_detail_config, context_files)], stops
|
||||
|
||||
def _get_last_user_message(
|
||||
self,
|
||||
prompt: str,
|
||||
files: Sequence["File"],
|
||||
image_detail_config: ImagePromptMessageContent.DETAIL | None = None,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> UserPromptMessage:
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
if files:
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
|
||||
)
|
||||
if context_files:
|
||||
for file in context_files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(file, image_detail_config=image_detail_config)
|
||||
)
|
||||
if prompt_message_contents:
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=prompt))
|
||||
|
||||
prompt_message = UserPromptMessage(content=prompt_message_contents)
|
||||
|
||||
@@ -2,6 +2,7 @@ from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.errors.invoke import InvokeAuthorizationError
|
||||
from core.rag.data_post_processor.reorder import ReorderRunner
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.entity.weight import KeywordSetting, VectorSetting, Weights
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
@@ -30,9 +31,10 @@ class DataPostProcessor:
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
if self.rerank_runner:
|
||||
documents = self.rerank_runner.run(query, documents, score_threshold, top_n, user)
|
||||
documents = self.rerank_runner.run(query, documents, score_threshold, top_n, user, query_type)
|
||||
|
||||
if self.reorder_runner:
|
||||
documents = self.reorder_runner.run(documents)
|
||||
|
||||
@@ -1,23 +1,30 @@
|
||||
import concurrent.futures
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Any
|
||||
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session, load_only
|
||||
|
||||
from configs import dify_config
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.embedding.retrieval import RetrievalSegments
|
||||
from core.rag.entities.metadata_entities import MetadataCondition
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.signature import sign_upload_file
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
default_retrieval_model = {
|
||||
@@ -37,14 +44,15 @@ class RetrievalService:
|
||||
retrieval_method: RetrievalMethod,
|
||||
dataset_id: str,
|
||||
query: str,
|
||||
top_k: int,
|
||||
top_k: int = 4,
|
||||
score_threshold: float | None = 0.0,
|
||||
reranking_model: dict | None = None,
|
||||
reranking_mode: str = "reranking_model",
|
||||
weights: dict | None = None,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
attachment_ids: list | None = None,
|
||||
):
|
||||
if not query:
|
||||
if not query and not attachment_ids:
|
||||
return []
|
||||
dataset = cls._get_dataset(dataset_id)
|
||||
if not dataset:
|
||||
@@ -56,69 +64,52 @@ class RetrievalService:
|
||||
# Optimize multithreading with thread pools
|
||||
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
|
||||
futures = []
|
||||
if retrieval_method == RetrievalMethod.KEYWORD_SEARCH:
|
||||
retrieval_service = RetrievalService()
|
||||
if query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.keyword_search,
|
||||
retrieval_service._retrieve,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
retrieval_method=retrieval_method,
|
||||
dataset=dataset,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
reranking_mode=reranking_mode,
|
||||
weights=weights,
|
||||
document_ids_filter=document_ids_filter,
|
||||
attachment_id=None,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method):
|
||||
futures.append(
|
||||
executor.submit(
|
||||
cls.full_text_index_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
if attachment_ids:
|
||||
for attachment_id in attachment_ids:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
retrieval_service._retrieve,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
retrieval_method=retrieval_method,
|
||||
dataset=dataset,
|
||||
query=None,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
reranking_mode=reranking_mode,
|
||||
weights=weights,
|
||||
document_ids_filter=document_ids_filter,
|
||||
attachment_id=attachment_id,
|
||||
all_documents=all_documents,
|
||||
exceptions=exceptions,
|
||||
)
|
||||
)
|
||||
)
|
||||
concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
concurrent.futures.wait(futures, timeout=3600, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
if exceptions:
|
||||
raise ValueError(";\n".join(exceptions))
|
||||
|
||||
# Deduplicate documents for hybrid search to avoid duplicate chunks
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH:
|
||||
all_documents = cls._deduplicate_documents(all_documents)
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
||||
)
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
)
|
||||
|
||||
return all_documents
|
||||
|
||||
@classmethod
|
||||
@@ -223,6 +214,7 @@ class RetrievalService:
|
||||
retrieval_method: RetrievalMethod,
|
||||
exceptions: list,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
try:
|
||||
@@ -231,14 +223,30 @@ class RetrievalService:
|
||||
raise ValueError("dataset not found")
|
||||
|
||||
vector = Vector(dataset=dataset)
|
||||
documents = vector.search_by_vector(
|
||||
query,
|
||||
search_type="similarity_score_threshold",
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
documents = []
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
documents.extend(
|
||||
vector.search_by_vector(
|
||||
query,
|
||||
search_type="similarity_score_threshold",
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if query_type == QueryType.IMAGE_QUERY:
|
||||
if not dataset.is_multimodal:
|
||||
return
|
||||
documents.extend(
|
||||
vector.search_by_file(
|
||||
file_id=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
filter={"group_id": [dataset.id]},
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
|
||||
if documents:
|
||||
if (
|
||||
@@ -250,14 +258,37 @@ class RetrievalService:
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL), reranking_model, None, False
|
||||
)
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
if dataset.is_multimodal:
|
||||
model_manager = ModelManager()
|
||||
is_support_vision = model_manager.check_model_support_vision(
|
||||
tenant_id=dataset.tenant_id,
|
||||
provider=reranking_model.get("reranking_provider_name") or "",
|
||||
model=reranking_model.get("reranking_model_name") or "",
|
||||
model_type=ModelType.RERANK,
|
||||
)
|
||||
if is_support_vision:
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
query_type=query_type,
|
||||
)
|
||||
)
|
||||
else:
|
||||
# not effective, return original documents
|
||||
all_documents.extend(documents)
|
||||
else:
|
||||
all_documents.extend(
|
||||
data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=documents,
|
||||
score_threshold=score_threshold,
|
||||
top_n=len(documents),
|
||||
query_type=query_type,
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
all_documents.extend(documents)
|
||||
except Exception as e:
|
||||
@@ -339,103 +370,159 @@ class RetrievalService:
|
||||
records = []
|
||||
include_segment_ids = set()
|
||||
segment_child_map = {}
|
||||
|
||||
# Process documents
|
||||
for document in documents:
|
||||
document_id = document.metadata.get("document_id")
|
||||
if document_id not in dataset_documents:
|
||||
continue
|
||||
|
||||
dataset_document = dataset_documents[document_id]
|
||||
if not dataset_document:
|
||||
continue
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
# Handle parent-child documents
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id == child_index_node_id)
|
||||
child_chunk = db.session.scalar(child_chunk_stmt)
|
||||
|
||||
if not child_chunk:
|
||||
segment_file_map = {}
|
||||
with Session(db.engine) as session:
|
||||
# Process documents
|
||||
for document in documents:
|
||||
segment_id = None
|
||||
attachment_info = None
|
||||
child_chunk = None
|
||||
document_id = document.metadata.get("document_id")
|
||||
if document_id not in dataset_documents:
|
||||
continue
|
||||
|
||||
segment = (
|
||||
db.session.query(DocumentSegment)
|
||||
.where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == child_chunk.segment_id,
|
||||
)
|
||||
.options(
|
||||
load_only(
|
||||
DocumentSegment.id,
|
||||
DocumentSegment.content,
|
||||
DocumentSegment.answer,
|
||||
dataset_document = dataset_documents[document_id]
|
||||
if not dataset_document:
|
||||
continue
|
||||
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
# Handle parent-child documents
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
attachment_info_dict = cls.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
attachment_info = attachment_info_dict["attchment_info"]
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
else:
|
||||
child_index_node_id = document.metadata.get("doc_id")
|
||||
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id == child_index_node_id)
|
||||
child_chunk = session.scalar(child_chunk_stmt)
|
||||
|
||||
if not child_chunk:
|
||||
continue
|
||||
segment_id = child_chunk.segment_id
|
||||
|
||||
if not segment_id:
|
||||
continue
|
||||
|
||||
segment = (
|
||||
session.query(DocumentSegment)
|
||||
.where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == segment_id,
|
||||
)
|
||||
.options(
|
||||
load_only(
|
||||
DocumentSegment.id,
|
||||
DocumentSegment.content,
|
||||
DocumentSegment.answer,
|
||||
)
|
||||
)
|
||||
.first()
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
map_detail = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
segment_child_map[segment.id] = map_detail
|
||||
record = {
|
||||
"segment": segment,
|
||||
}
|
||||
records.append(record)
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
if child_chunk:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
map_detail = {
|
||||
"max_score": document.metadata.get("score", 0.0),
|
||||
"child_chunks": [child_chunk_detail],
|
||||
}
|
||||
segment_child_map[segment.id] = map_detail
|
||||
record = {
|
||||
"segment": segment,
|
||||
}
|
||||
if attachment_info:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
records.append(record)
|
||||
else:
|
||||
if child_chunk:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
||||
segment_child_map[segment.id]["max_score"] = max(
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
if attachment_info:
|
||||
segment_file_map[segment.id].append(attachment_info)
|
||||
else:
|
||||
child_chunk_detail = {
|
||||
"id": child_chunk.id,
|
||||
"content": child_chunk.content,
|
||||
"position": child_chunk.position,
|
||||
"score": document.metadata.get("score", 0.0),
|
||||
}
|
||||
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
|
||||
segment_child_map[segment.id]["max_score"] = max(
|
||||
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
|
||||
)
|
||||
else:
|
||||
# Handle normal documents
|
||||
index_node_id = document.metadata.get("doc_id")
|
||||
if not index_node_id:
|
||||
continue
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
segment = db.session.scalar(document_segment_stmt)
|
||||
# Handle normal documents
|
||||
segment = None
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
attachment_info_dict = cls.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
attachment_info = attachment_info_dict["attchment_info"]
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.id == segment_id,
|
||||
)
|
||||
segment = db.session.scalar(document_segment_stmt)
|
||||
if segment:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
else:
|
||||
index_node_id = document.metadata.get("doc_id")
|
||||
if not index_node_id:
|
||||
continue
|
||||
document_segment_stmt = select(DocumentSegment).where(
|
||||
DocumentSegment.dataset_id == dataset_document.dataset_id,
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.index_node_id == index_node_id,
|
||||
)
|
||||
segment = db.session.scalar(document_segment_stmt)
|
||||
|
||||
if not segment:
|
||||
continue
|
||||
|
||||
include_segment_ids.add(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score"), # type: ignore
|
||||
}
|
||||
records.append(record)
|
||||
if not segment:
|
||||
continue
|
||||
if segment.id not in include_segment_ids:
|
||||
include_segment_ids.add(segment.id)
|
||||
record = {
|
||||
"segment": segment,
|
||||
"score": document.metadata.get("score"), # type: ignore
|
||||
}
|
||||
if attachment_info:
|
||||
segment_file_map[segment.id] = [attachment_info]
|
||||
records.append(record)
|
||||
else:
|
||||
if attachment_info:
|
||||
attachment_infos = segment_file_map.get(segment.id, [])
|
||||
if attachment_info not in attachment_infos:
|
||||
attachment_infos.append(attachment_info)
|
||||
segment_file_map[segment.id] = attachment_infos
|
||||
|
||||
# Add child chunks information to records
|
||||
for record in records:
|
||||
if record["segment"].id in segment_child_map:
|
||||
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
|
||||
record["score"] = segment_child_map[record["segment"].id]["max_score"]
|
||||
if record["segment"].id in segment_file_map:
|
||||
record["files"] = segment_file_map[record["segment"].id] # type: ignore[assignment]
|
||||
|
||||
result = []
|
||||
for record in records:
|
||||
@@ -447,6 +534,11 @@ class RetrievalService:
|
||||
if not isinstance(child_chunks, list):
|
||||
child_chunks = None
|
||||
|
||||
# Extract files, ensuring it's a list or None
|
||||
files = record.get("files")
|
||||
if not isinstance(files, list):
|
||||
files = None
|
||||
|
||||
# Extract score, ensuring it's a float or None
|
||||
score_value = record.get("score")
|
||||
score = (
|
||||
@@ -456,10 +548,149 @@ class RetrievalService:
|
||||
)
|
||||
|
||||
# Create RetrievalSegments object
|
||||
retrieval_segment = RetrievalSegments(segment=segment, child_chunks=child_chunks, score=score)
|
||||
retrieval_segment = RetrievalSegments(
|
||||
segment=segment, child_chunks=child_chunks, score=score, files=files
|
||||
)
|
||||
result.append(retrieval_segment)
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
raise e
|
||||
|
||||
def _retrieve(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
retrieval_method: RetrievalMethod,
|
||||
dataset: Dataset,
|
||||
query: str | None = None,
|
||||
top_k: int = 4,
|
||||
score_threshold: float | None = 0.0,
|
||||
reranking_model: dict | None = None,
|
||||
reranking_mode: str = "reranking_model",
|
||||
weights: dict | None = None,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
attachment_id: str | None = None,
|
||||
all_documents: list[Document] = [],
|
||||
exceptions: list[str] = [],
|
||||
):
|
||||
if not query and not attachment_id:
|
||||
return
|
||||
with flask_app.app_context():
|
||||
all_documents_item: list[Document] = []
|
||||
# Optimize multithreading with thread pools
|
||||
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
|
||||
futures = []
|
||||
if retrieval_method == RetrievalMethod.KEYWORD_SEARCH and query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.keyword_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
all_documents=all_documents_item,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_semantic_search(retrieval_method):
|
||||
if query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
query_type=QueryType.TEXT_QUERY,
|
||||
)
|
||||
)
|
||||
if attachment_id:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.embedding_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=attachment_id,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
query_type=QueryType.IMAGE_QUERY,
|
||||
)
|
||||
)
|
||||
if RetrievalMethod.is_support_fulltext_search(retrieval_method) and query:
|
||||
futures.append(
|
||||
executor.submit(
|
||||
self.full_text_index_search,
|
||||
flask_app=current_app._get_current_object(), # type: ignore
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
all_documents=all_documents_item,
|
||||
retrieval_method=retrieval_method,
|
||||
exceptions=exceptions,
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
)
|
||||
concurrent.futures.wait(futures, timeout=300, return_when=concurrent.futures.ALL_COMPLETED)
|
||||
|
||||
if exceptions:
|
||||
raise ValueError(";\n".join(exceptions))
|
||||
|
||||
# Deduplicate documents for hybrid search to avoid duplicate chunks
|
||||
if retrieval_method == RetrievalMethod.HYBRID_SEARCH:
|
||||
if attachment_id and reranking_mode == RerankMode.WEIGHTED_SCORE:
|
||||
all_documents.extend(all_documents_item)
|
||||
all_documents_item = self._deduplicate_documents(all_documents_item)
|
||||
data_post_processor = DataPostProcessor(
|
||||
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
|
||||
)
|
||||
|
||||
query = query or attachment_id
|
||||
if not query:
|
||||
return
|
||||
all_documents_item = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents_item,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
query_type=QueryType.TEXT_QUERY if query else QueryType.IMAGE_QUERY,
|
||||
)
|
||||
|
||||
all_documents.extend(all_documents_item)
|
||||
|
||||
@classmethod
|
||||
def get_segment_attachment_info(
|
||||
cls, dataset_id: str, tenant_id: str, attachment_id: str, session: Session
|
||||
) -> dict[str, Any] | None:
|
||||
upload_file = session.query(UploadFile).where(UploadFile.id == attachment_id).first()
|
||||
if upload_file:
|
||||
attachment_binding = (
|
||||
session.query(SegmentAttachmentBinding)
|
||||
.where(SegmentAttachmentBinding.attachment_id == upload_file.id)
|
||||
.first()
|
||||
)
|
||||
if attachment_binding:
|
||||
attchment_info = {
|
||||
"id": upload_file.id,
|
||||
"name": upload_file.name,
|
||||
"extension": "." + upload_file.extension,
|
||||
"mime_type": upload_file.mime_type,
|
||||
"source_url": sign_upload_file(upload_file.id, upload_file.extension),
|
||||
"size": upload_file.size,
|
||||
}
|
||||
return {"attchment_info": attchment_info, "segment_id": attachment_binding.segment_id}
|
||||
return None
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import base64
|
||||
import logging
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
@@ -12,10 +13,13 @@ from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.embedding.embedding_base import Embeddings
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Dataset, Whitelist
|
||||
from models.model import UploadFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -203,6 +207,47 @@ class Vector:
|
||||
self._vector_processor.create(texts=batch, embeddings=batch_embeddings, **kwargs)
|
||||
logger.info("Embedding %s texts took %s s", len(texts), time.time() - start)
|
||||
|
||||
def create_multimodal(self, file_documents: list | None = None, **kwargs):
|
||||
if file_documents:
|
||||
start = time.time()
|
||||
logger.info("start embedding %s files %s", len(file_documents), start)
|
||||
batch_size = 1000
|
||||
total_batches = len(file_documents) + batch_size - 1
|
||||
for i in range(0, len(file_documents), batch_size):
|
||||
batch = file_documents[i : i + batch_size]
|
||||
batch_start = time.time()
|
||||
logger.info("Processing batch %s/%s (%s files)", i // batch_size + 1, total_batches, len(batch))
|
||||
|
||||
# Batch query all upload files to avoid N+1 queries
|
||||
attachment_ids = [doc.metadata["doc_id"] for doc in batch]
|
||||
stmt = select(UploadFile).where(UploadFile.id.in_(attachment_ids))
|
||||
upload_files = db.session.scalars(stmt).all()
|
||||
upload_file_map = {str(f.id): f for f in upload_files}
|
||||
|
||||
file_base64_list = []
|
||||
real_batch = []
|
||||
for document in batch:
|
||||
attachment_id = document.metadata["doc_id"]
|
||||
doc_type = document.metadata["doc_type"]
|
||||
upload_file = upload_file_map.get(attachment_id)
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_base64_str = base64.b64encode(blob).decode()
|
||||
file_base64_list.append(
|
||||
{
|
||||
"content": file_base64_str,
|
||||
"content_type": doc_type,
|
||||
"file_id": attachment_id,
|
||||
}
|
||||
)
|
||||
real_batch.append(document)
|
||||
batch_embeddings = self._embeddings.embed_multimodal_documents(file_base64_list)
|
||||
logger.info(
|
||||
"Embedding batch %s/%s took %s s", i // batch_size + 1, total_batches, time.time() - batch_start
|
||||
)
|
||||
self._vector_processor.create(texts=real_batch, embeddings=batch_embeddings, **kwargs)
|
||||
logger.info("Embedding %s files took %s s", len(file_documents), time.time() - start)
|
||||
|
||||
def add_texts(self, documents: list[Document], **kwargs):
|
||||
if kwargs.get("duplicate_check", False):
|
||||
documents = self._filter_duplicate_texts(documents)
|
||||
@@ -223,6 +268,22 @@ class Vector:
|
||||
query_vector = self._embeddings.embed_query(query)
|
||||
return self._vector_processor.search_by_vector(query_vector, **kwargs)
|
||||
|
||||
def search_by_file(self, file_id: str, **kwargs: Any) -> list[Document]:
|
||||
upload_file: UploadFile | None = db.session.query(UploadFile).where(UploadFile.id == file_id).first()
|
||||
|
||||
if not upload_file:
|
||||
return []
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_base64_str = base64.b64encode(blob).decode()
|
||||
multimodal_vector = self._embeddings.embed_multimodal_query(
|
||||
{
|
||||
"content": file_base64_str,
|
||||
"content_type": DocType.IMAGE,
|
||||
"file_id": file_id,
|
||||
}
|
||||
)
|
||||
return self._vector_processor.search_by_vector(multimodal_vector, **kwargs)
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
return self._vector_processor.search_by_full_text(query, **kwargs)
|
||||
|
||||
|
||||
@@ -5,9 +5,9 @@ from sqlalchemy import func, select
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import AttachmentDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment
|
||||
from models.dataset import ChildChunk, Dataset, DocumentSegment, SegmentAttachmentBinding
|
||||
|
||||
|
||||
class DatasetDocumentStore:
|
||||
@@ -120,6 +120,9 @@ class DatasetDocumentStore:
|
||||
|
||||
db.session.add(segment_document)
|
||||
db.session.flush()
|
||||
self.add_multimodel_documents_binding(
|
||||
segment_id=segment_document.id, multimodel_documents=doc.attachments
|
||||
)
|
||||
if save_child:
|
||||
if doc.children:
|
||||
for position, child in enumerate(doc.children, start=1):
|
||||
@@ -144,6 +147,9 @@ class DatasetDocumentStore:
|
||||
segment_document.index_node_hash = doc.metadata.get("doc_hash")
|
||||
segment_document.word_count = len(doc.page_content)
|
||||
segment_document.tokens = tokens
|
||||
self.add_multimodel_documents_binding(
|
||||
segment_id=segment_document.id, multimodel_documents=doc.attachments
|
||||
)
|
||||
if save_child and doc.children:
|
||||
# delete the existing child chunks
|
||||
db.session.query(ChildChunk).where(
|
||||
@@ -233,3 +239,15 @@ class DatasetDocumentStore:
|
||||
document_segment = db.session.scalar(stmt)
|
||||
|
||||
return document_segment
|
||||
|
||||
def add_multimodel_documents_binding(self, segment_id: str, multimodel_documents: list[AttachmentDocument] | None):
|
||||
if multimodel_documents:
|
||||
for multimodel_document in multimodel_documents:
|
||||
binding = SegmentAttachmentBinding(
|
||||
tenant_id=self._dataset.tenant_id,
|
||||
dataset_id=self._dataset.id,
|
||||
document_id=self._document_id,
|
||||
segment_id=segment_id,
|
||||
attachment_id=multimodel_document.metadata["doc_id"],
|
||||
)
|
||||
db.session.add(binding)
|
||||
|
||||
@@ -104,6 +104,88 @@ class CacheEmbedding(Embeddings):
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def embed_multimodal_documents(self, multimodel_documents: list[dict]) -> list[list[float]]:
|
||||
"""Embed file documents."""
|
||||
# use doc embedding cache or store if not exists
|
||||
multimodel_embeddings: list[Any] = [None for _ in range(len(multimodel_documents))]
|
||||
embedding_queue_indices = []
|
||||
for i, multimodel_document in enumerate(multimodel_documents):
|
||||
file_id = multimodel_document["file_id"]
|
||||
embedding = (
|
||||
db.session.query(Embedding)
|
||||
.filter_by(
|
||||
model_name=self._model_instance.model, hash=file_id, provider_name=self._model_instance.provider
|
||||
)
|
||||
.first()
|
||||
)
|
||||
if embedding:
|
||||
multimodel_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
embedding_queue_indices.append(i)
|
||||
|
||||
# NOTE: avoid closing the shared scoped session here; downstream code may still have pending work
|
||||
|
||||
if embedding_queue_indices:
|
||||
embedding_queue_multimodel_documents = [multimodel_documents[i] for i in embedding_queue_indices]
|
||||
embedding_queue_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(
|
||||
self._model_instance.model, self._model_instance.credentials
|
||||
)
|
||||
max_chunks = (
|
||||
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
|
||||
else 1
|
||||
)
|
||||
for i in range(0, len(embedding_queue_multimodel_documents), max_chunks):
|
||||
batch_multimodel_documents = embedding_queue_multimodel_documents[i : i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_multimodal_embedding(
|
||||
multimodel_documents=batch_multimodel_documents,
|
||||
user=self._user,
|
||||
input_type=EmbeddingInputType.DOCUMENT,
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
# FIXME: type ignore for numpy here
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist() # type: ignore
|
||||
# stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
|
||||
if np.isnan(normalized_embedding).any():
|
||||
# for issue #11827 float values are not json compliant
|
||||
logger.warning("Normalized embedding is nan: %s", normalized_embedding)
|
||||
continue
|
||||
embedding_queue_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception:
|
||||
logger.exception("Failed transform embedding")
|
||||
cache_embeddings = []
|
||||
try:
|
||||
for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
multimodel_embeddings[i] = n_embedding
|
||||
file_id = multimodel_documents[i]["file_id"]
|
||||
if file_id not in cache_embeddings:
|
||||
embedding_cache = Embedding(
|
||||
model_name=self._model_instance.model,
|
||||
hash=file_id,
|
||||
provider_name=self._model_instance.provider,
|
||||
embedding=pickle.dumps(n_embedding, protocol=pickle.HIGHEST_PROTOCOL),
|
||||
)
|
||||
embedding_cache.set_embedding(n_embedding)
|
||||
db.session.add(embedding_cache)
|
||||
cache_embeddings.append(file_id)
|
||||
db.session.commit()
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.exception("Failed to embed documents")
|
||||
raise ex
|
||||
|
||||
return multimodel_embeddings
|
||||
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
# use doc embedding cache or store if not exists
|
||||
@@ -146,3 +228,46 @@ class CacheEmbedding(Embeddings):
|
||||
raise ex
|
||||
|
||||
return embedding_results # type: ignore
|
||||
|
||||
def embed_multimodal_query(self, multimodel_document: dict) -> list[float]:
|
||||
"""Embed multimodal documents."""
|
||||
# use doc embedding cache or store if not exists
|
||||
file_id = multimodel_document["file_id"]
|
||||
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{file_id}"
|
||||
embedding = redis_client.get(embedding_cache_key)
|
||||
if embedding:
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
|
||||
return [float(x) for x in decoded_embedding]
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_multimodal_embedding(
|
||||
multimodel_documents=[multimodel_document], user=self._user, input_type=EmbeddingInputType.QUERY
|
||||
)
|
||||
|
||||
embedding_results = embedding_result.embeddings[0]
|
||||
# FIXME: type ignore for numpy here
|
||||
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() # type: ignore
|
||||
if np.isnan(embedding_results).any():
|
||||
raise ValueError("Normalized embedding is nan please try again")
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception("Failed to embed multimodal document '%s'", multimodel_document["file_id"])
|
||||
raise ex
|
||||
|
||||
try:
|
||||
# encode embedding to base64
|
||||
embedding_vector = np.array(embedding_results)
|
||||
vector_bytes = embedding_vector.tobytes()
|
||||
# Transform to Base64
|
||||
encoded_vector = base64.b64encode(vector_bytes)
|
||||
# Transform to string
|
||||
encoded_str = encoded_vector.decode("utf-8")
|
||||
redis_client.setex(embedding_cache_key, 600, encoded_str)
|
||||
except Exception as ex:
|
||||
if dify_config.DEBUG:
|
||||
logger.exception(
|
||||
"Failed to add embedding to redis for the multimodal document '%s'", multimodel_document["file_id"]
|
||||
)
|
||||
raise ex
|
||||
|
||||
return embedding_results # type: ignore
|
||||
|
||||
@@ -9,11 +9,21 @@ class Embeddings(ABC):
|
||||
"""Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_multimodal_documents(self, multimodel_documents: list[dict]) -> list[list[float]]:
|
||||
"""Embed file documents."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_query(self, text: str) -> list[float]:
|
||||
"""Embed query text."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def embed_multimodal_query(self, multimodel_document: dict) -> list[float]:
|
||||
"""Embed multimodal query."""
|
||||
raise NotImplementedError
|
||||
|
||||
async def aembed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Asynchronous Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -19,3 +19,4 @@ class RetrievalSegments(BaseModel):
|
||||
segment: DocumentSegment
|
||||
child_chunks: list[RetrievalChildChunk] | None = None
|
||||
score: float | None = None
|
||||
files: list[dict[str, str | int]] | None = None
|
||||
|
||||
@@ -21,3 +21,4 @@ class RetrievalSourceMetadata(BaseModel):
|
||||
page: int | None = None
|
||||
doc_metadata: dict[str, Any] | None = None
|
||||
title: str | None = None
|
||||
files: list[dict[str, Any]] | None = None
|
||||
|
||||
6
api/core/rag/index_processor/constant/doc_type.py
Normal file
6
api/core/rag/index_processor/constant/doc_type.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class DocType(StrEnum):
|
||||
TEXT = "text"
|
||||
IMAGE = "image"
|
||||
@@ -1,7 +1,12 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class IndexType(StrEnum):
|
||||
class IndexStructureType(StrEnum):
|
||||
PARAGRAPH_INDEX = "text_model"
|
||||
QA_INDEX = "qa_model"
|
||||
PARENT_CHILD_INDEX = "hierarchical_model"
|
||||
|
||||
|
||||
class IndexTechniqueType(StrEnum):
|
||||
ECONOMY = "economy"
|
||||
HIGH_QUALITY = "high_quality"
|
||||
|
||||
6
api/core/rag/index_processor/constant/query_type.py
Normal file
6
api/core/rag/index_processor/constant/query_type.py
Normal file
@@ -0,0 +1,6 @@
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
class QueryType(StrEnum):
|
||||
TEXT_QUERY = "text_query"
|
||||
IMAGE_QUERY = "image_query"
|
||||
@@ -1,20 +1,34 @@
|
||||
"""Abstract interface for document loader implementations."""
|
||||
|
||||
import cgi
|
||||
import logging
|
||||
import mimetypes
|
||||
import os
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Mapping
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
from urllib.parse import unquote, urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
from configs import dify_config
|
||||
from core.helper import ssrf_proxy
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.models.document import AttachmentDocument, Document
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.rag.splitter.fixed_text_splitter import (
|
||||
EnhanceRecursiveCharacterTextSplitter,
|
||||
FixedRecursiveCharacterTextSplitter,
|
||||
)
|
||||
from core.rag.splitter.text_splitter import TextSplitter
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models import Account, ToolFile
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import UploadFile
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.model_manager import ModelInstance
|
||||
@@ -28,11 +42,18 @@ class BaseIndexProcessor(ABC):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
@@ -96,3 +117,178 @@ class BaseIndexProcessor(ABC):
|
||||
)
|
||||
|
||||
return character_splitter # type: ignore
|
||||
|
||||
def _get_content_files(self, document: Document, current_user: Account | None = None) -> list[AttachmentDocument]:
|
||||
"""
|
||||
Get the content files from the document.
|
||||
"""
|
||||
multi_model_documents: list[AttachmentDocument] = []
|
||||
text = document.page_content
|
||||
images = self._extract_markdown_images(text)
|
||||
if not images:
|
||||
return multi_model_documents
|
||||
upload_file_id_list = []
|
||||
|
||||
for image in images:
|
||||
# Collect all upload_file_ids including duplicates to preserve occurrence count
|
||||
|
||||
# For data before v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/image-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For data after v0.10.0
|
||||
pattern = r"/files/([a-f0-9\-]+)/file-preview(?:\?.*?)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
upload_file_id = match.group(1)
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
|
||||
# For tools directory - direct file formats (e.g., .png, .jpg, etc.)
|
||||
# Match URL including any query parameters up to common URL boundaries (space, parenthesis, quotes)
|
||||
pattern = r"/files/tools/([a-f0-9\-]+)\.([a-zA-Z0-9]+)(?:\?[^\s\)\"\']*)?"
|
||||
match = re.search(pattern, image)
|
||||
if match:
|
||||
if current_user:
|
||||
tool_file_id = match.group(1)
|
||||
upload_file_id = self._download_tool_file(tool_file_id, current_user)
|
||||
if upload_file_id:
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
continue
|
||||
if current_user:
|
||||
upload_file_id = self._download_image(image.split(" ")[0], current_user)
|
||||
if upload_file_id:
|
||||
upload_file_id_list.append(upload_file_id)
|
||||
|
||||
if not upload_file_id_list:
|
||||
return multi_model_documents
|
||||
|
||||
# Get unique IDs for database query
|
||||
unique_upload_file_ids = list(set(upload_file_id_list))
|
||||
upload_files = db.session.query(UploadFile).where(UploadFile.id.in_(unique_upload_file_ids)).all()
|
||||
|
||||
# Create a mapping from ID to UploadFile for quick lookup
|
||||
upload_file_map = {upload_file.id: upload_file for upload_file in upload_files}
|
||||
|
||||
# Create a Document for each occurrence (including duplicates)
|
||||
for upload_file_id in upload_file_id_list:
|
||||
upload_file = upload_file_map.get(upload_file_id)
|
||||
if upload_file:
|
||||
multi_model_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=upload_file.name,
|
||||
metadata={
|
||||
"doc_id": upload_file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.metadata.get("document_id"),
|
||||
"dataset_id": document.metadata.get("dataset_id"),
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
return multi_model_documents
|
||||
|
||||
def _extract_markdown_images(self, text: str) -> list[str]:
|
||||
"""
|
||||
Extract the markdown images from the text.
|
||||
"""
|
||||
pattern = r"!\[.*?\]\((.*?)\)"
|
||||
return re.findall(pattern, text)
|
||||
|
||||
def _download_image(self, image_url: str, current_user: Account) -> str | None:
|
||||
"""
|
||||
Download the image from the URL.
|
||||
Image size must not exceed 2MB.
|
||||
"""
|
||||
from services.file_service import FileService
|
||||
|
||||
MAX_IMAGE_SIZE = dify_config.ATTACHMENT_IMAGE_FILE_SIZE_LIMIT * 1024 * 1024
|
||||
DOWNLOAD_TIMEOUT = dify_config.ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT
|
||||
|
||||
try:
|
||||
# Download with timeout
|
||||
response = ssrf_proxy.get(image_url, timeout=DOWNLOAD_TIMEOUT)
|
||||
response.raise_for_status()
|
||||
|
||||
# Check Content-Length header if available
|
||||
content_length = response.headers.get("Content-Length")
|
||||
if content_length and int(content_length) > MAX_IMAGE_SIZE:
|
||||
logging.warning("Image from %s exceeds 2MB limit (size: %s bytes)", image_url, content_length)
|
||||
return None
|
||||
|
||||
filename = None
|
||||
|
||||
content_disposition = response.headers.get("content-disposition")
|
||||
if content_disposition:
|
||||
_, params = cgi.parse_header(content_disposition)
|
||||
if "filename" in params:
|
||||
filename = params["filename"]
|
||||
filename = unquote(filename)
|
||||
|
||||
if not filename:
|
||||
parsed_url = urlparse(image_url)
|
||||
# unquote 处理 URL 中的中文
|
||||
path = unquote(parsed_url.path)
|
||||
filename = os.path.basename(path)
|
||||
|
||||
if not filename:
|
||||
filename = "downloaded_image_file"
|
||||
|
||||
name, current_ext = os.path.splitext(filename)
|
||||
|
||||
content_type = response.headers.get("content-type", "").split(";")[0].strip()
|
||||
|
||||
real_ext = mimetypes.guess_extension(content_type)
|
||||
|
||||
if not current_ext and real_ext or current_ext in [".php", ".jsp", ".asp", ".html"] and real_ext:
|
||||
filename = f"{name}{real_ext}"
|
||||
# Download content with size limit
|
||||
blob = b""
|
||||
for chunk in response.iter_bytes(chunk_size=8192):
|
||||
blob += chunk
|
||||
if len(blob) > MAX_IMAGE_SIZE:
|
||||
logging.warning("Image from %s exceeds 2MB limit during download", image_url)
|
||||
return None
|
||||
|
||||
if not blob:
|
||||
logging.warning("Image from %s is empty", image_url)
|
||||
return None
|
||||
|
||||
upload_file = FileService(db.engine).upload_file(
|
||||
filename=filename,
|
||||
content=blob,
|
||||
mimetype=content_type,
|
||||
user=current_user,
|
||||
)
|
||||
return upload_file.id
|
||||
except httpx.TimeoutException:
|
||||
logging.warning("Timeout downloading image from %s after %s seconds", image_url, DOWNLOAD_TIMEOUT)
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logging.warning("Error downloading image from %s: %s", image_url, str(e))
|
||||
return None
|
||||
except Exception:
|
||||
logging.exception("Unexpected error downloading image from %s", image_url)
|
||||
return None
|
||||
|
||||
def _download_tool_file(self, tool_file_id: str, current_user: Account) -> str | None:
|
||||
"""
|
||||
Download the tool file from the ID.
|
||||
"""
|
||||
from services.file_service import FileService
|
||||
|
||||
tool_file = db.session.query(ToolFile).where(ToolFile.id == tool_file_id).first()
|
||||
if not tool_file:
|
||||
return None
|
||||
blob = storage.load_once(tool_file.file_key)
|
||||
upload_file = FileService(db.engine).upload_file(
|
||||
filename=tool_file.name,
|
||||
content=blob,
|
||||
mimetype=tool_file.mimetype,
|
||||
user=current_user,
|
||||
)
|
||||
return upload_file.id
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
"""Abstract interface for document loader implementations."""
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.processor.paragraph_index_processor import ParagraphIndexProcessor
|
||||
from core.rag.index_processor.processor.parent_child_index_processor import ParentChildIndexProcessor
|
||||
@@ -19,11 +19,11 @@ class IndexProcessorFactory:
|
||||
if not self._index_type:
|
||||
raise ValueError("Index type must be specified.")
|
||||
|
||||
if self._index_type == IndexType.PARAGRAPH_INDEX:
|
||||
if self._index_type == IndexStructureType.PARAGRAPH_INDEX:
|
||||
return ParagraphIndexProcessor()
|
||||
elif self._index_type == IndexType.QA_INDEX:
|
||||
elif self._index_type == IndexStructureType.QA_INDEX:
|
||||
return QAIndexProcessor()
|
||||
elif self._index_type == IndexType.PARENT_CHILD_INDEX:
|
||||
elif self._index_type == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
return ParentChildIndexProcessor()
|
||||
else:
|
||||
raise ValueError(f"Index type {self._index_type} is not supported.")
|
||||
|
||||
@@ -11,14 +11,17 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import AttachmentDocument, Document, MultimodalGeneralStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
|
||||
|
||||
@@ -33,7 +36,7 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
@@ -69,6 +72,11 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
if document_node.metadata is not None:
|
||||
document_node.metadata["doc_id"] = doc_id
|
||||
document_node.metadata["doc_hash"] = hash
|
||||
multimodal_documents = (
|
||||
self._get_content_files(document_node, current_user) if document_node.metadata else None
|
||||
)
|
||||
if multimodal_documents:
|
||||
document_node.attachments = multimodal_documents
|
||||
# delete Splitter character
|
||||
page_content = remove_leading_symbols(document_node.page_content).strip()
|
||||
if len(page_content) > 0:
|
||||
@@ -77,10 +85,19 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
with_keywords = False
|
||||
if with_keywords:
|
||||
keywords_list = kwargs.get("keywords_list")
|
||||
@@ -134,8 +151,9 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
return docs
|
||||
|
||||
def index(self, dataset: Dataset, document: DatasetDocument, chunks: Any):
|
||||
documents: list[Any] = []
|
||||
all_multimodal_documents: list[Any] = []
|
||||
if isinstance(chunks, list):
|
||||
documents = []
|
||||
for content in chunks:
|
||||
metadata = {
|
||||
"dataset_id": dataset.id,
|
||||
@@ -144,26 +162,68 @@ class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
"doc_hash": helper.generate_text_hash(content),
|
||||
}
|
||||
doc = Document(page_content=content, metadata=metadata)
|
||||
attachments = self._get_content_files(doc)
|
||||
if attachments:
|
||||
doc.attachments = attachments
|
||||
all_multimodal_documents.extend(attachments)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(dataset=dataset, user_id=document.created_by, document_id=document.id)
|
||||
# add document segments
|
||||
doc_store.add_documents(docs=documents, save_child=False)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
elif dataset.indexing_technique == "economy":
|
||||
keyword = Keyword(dataset)
|
||||
keyword.add_texts(documents)
|
||||
else:
|
||||
raise ValueError("Chunks is not a list")
|
||||
multimodal_general_structure = MultimodalGeneralStructureChunk.model_validate(chunks)
|
||||
for general_chunk in multimodal_general_structure.general_chunks:
|
||||
metadata = {
|
||||
"dataset_id": dataset.id,
|
||||
"document_id": document.id,
|
||||
"doc_id": str(uuid.uuid4()),
|
||||
"doc_hash": helper.generate_text_hash(general_chunk.content),
|
||||
}
|
||||
doc = Document(page_content=general_chunk.content, metadata=metadata)
|
||||
if general_chunk.files:
|
||||
attachments = []
|
||||
for file in general_chunk.files:
|
||||
file_metadata = {
|
||||
"doc_id": file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.id,
|
||||
"dataset_id": dataset.id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
}
|
||||
file_document = AttachmentDocument(
|
||||
page_content=file.filename or "image_file", metadata=file_metadata
|
||||
)
|
||||
attachments.append(file_document)
|
||||
all_multimodal_documents.append(file_document)
|
||||
doc.attachments = attachments
|
||||
else:
|
||||
account = AccountService.load_user(document.created_by)
|
||||
if not account:
|
||||
raise ValueError("Invalid account")
|
||||
doc.attachments = self._get_content_files(doc, current_user=account)
|
||||
if doc.attachments:
|
||||
all_multimodal_documents.extend(doc.attachments)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# save node to document segment
|
||||
doc_store = DatasetDocumentStore(dataset=dataset, user_id=document.created_by, document_id=document.id)
|
||||
# add document segments
|
||||
doc_store.add_documents(docs=documents, save_child=False)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if all_multimodal_documents:
|
||||
vector.create_multimodal(all_multimodal_documents)
|
||||
elif dataset.indexing_technique == "economy":
|
||||
keyword = Keyword(dataset)
|
||||
keyword.add_texts(documents)
|
||||
|
||||
def format_preview(self, chunks: Any) -> Mapping[str, Any]:
|
||||
if isinstance(chunks, list):
|
||||
preview = []
|
||||
for content in chunks:
|
||||
preview.append({"content": content})
|
||||
return {"chunk_structure": IndexType.PARAGRAPH_INDEX, "preview": preview, "total_segments": len(chunks)}
|
||||
return {
|
||||
"chunk_structure": IndexStructureType.PARAGRAPH_INDEX,
|
||||
"preview": preview,
|
||||
"total_segments": len(chunks),
|
||||
}
|
||||
else:
|
||||
raise ValueError("Chunks is not a list")
|
||||
|
||||
@@ -13,14 +13,17 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import ChildDocument, Document, ParentChildStructureChunk
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document, ParentChildStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from extensions.ext_database import db
|
||||
from libs import helper
|
||||
from models import Account
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.account_service import AccountService
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
|
||||
|
||||
@@ -35,7 +38,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
raise ValueError("No process rule found.")
|
||||
@@ -77,6 +80,9 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
page_content = page_content
|
||||
if len(page_content) > 0:
|
||||
document_node.page_content = page_content
|
||||
multimodel_documents = self._get_content_files(document_node, current_user)
|
||||
if multimodel_documents:
|
||||
document_node.attachments = multimodel_documents
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document_node, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
@@ -87,6 +93,9 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
elif rules.parent_mode == ParentMode.FULL_DOC:
|
||||
page_content = "\n".join([document.page_content for document in documents])
|
||||
document = Document(page_content=page_content, metadata=documents[0].metadata)
|
||||
multimodel_documents = self._get_content_files(document)
|
||||
if multimodel_documents:
|
||||
document.attachments = multimodel_documents
|
||||
# parse document to child nodes
|
||||
child_nodes = self._split_child_nodes(
|
||||
document, rules, process_rule.get("mode"), kwargs.get("embedding_model_instance")
|
||||
@@ -104,7 +113,14 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
return all_documents
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
for document in documents:
|
||||
@@ -114,6 +130,8 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
Document.model_validate(child_document.model_dump()) for child_document in child_documents
|
||||
]
|
||||
vector.create(formatted_child_documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
# node_ids is segment's node_ids
|
||||
@@ -244,6 +262,24 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
}
|
||||
child_documents.append(ChildDocument(page_content=child, metadata=child_metadata))
|
||||
doc = Document(page_content=parent_child.parent_content, metadata=metadata, children=child_documents)
|
||||
if parent_child.files and len(parent_child.files) > 0:
|
||||
attachments = []
|
||||
for file in parent_child.files:
|
||||
file_metadata = {
|
||||
"doc_id": file.id,
|
||||
"doc_hash": "",
|
||||
"document_id": document.id,
|
||||
"dataset_id": dataset.id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
}
|
||||
file_document = AttachmentDocument(page_content=file.filename or "", metadata=file_metadata)
|
||||
attachments.append(file_document)
|
||||
doc.attachments = attachments
|
||||
else:
|
||||
account = AccountService.load_user(document.created_by)
|
||||
if not account:
|
||||
raise ValueError("Invalid account")
|
||||
doc.attachments = self._get_content_files(doc, current_user=account)
|
||||
documents.append(doc)
|
||||
if documents:
|
||||
# update document parent mode
|
||||
@@ -267,12 +303,17 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
doc_store.add_documents(docs=documents, save_child=True)
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
all_child_documents = []
|
||||
all_multimodal_documents = []
|
||||
for doc in documents:
|
||||
if doc.children:
|
||||
all_child_documents.extend(doc.children)
|
||||
if doc.attachments:
|
||||
all_multimodal_documents.extend(doc.attachments)
|
||||
vector = Vector(dataset)
|
||||
if all_child_documents:
|
||||
vector = Vector(dataset)
|
||||
vector.create(all_child_documents)
|
||||
if all_multimodal_documents:
|
||||
vector.create_multimodal(all_multimodal_documents)
|
||||
|
||||
def format_preview(self, chunks: Any) -> Mapping[str, Any]:
|
||||
parent_childs = ParentChildStructureChunk.model_validate(chunks)
|
||||
@@ -280,7 +321,7 @@ class ParentChildIndexProcessor(BaseIndexProcessor):
|
||||
for parent_child in parent_childs.parent_child_chunks:
|
||||
preview.append({"content": parent_child.parent_content, "child_chunks": parent_child.child_contents})
|
||||
return {
|
||||
"chunk_structure": IndexType.PARENT_CHILD_INDEX,
|
||||
"chunk_structure": IndexStructureType.PARENT_CHILD_INDEX,
|
||||
"parent_mode": parent_childs.parent_mode,
|
||||
"preview": preview,
|
||||
"total_segments": len(parent_childs.parent_child_chunks),
|
||||
|
||||
@@ -18,12 +18,13 @@ from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import Document, QAStructureChunk
|
||||
from core.rag.models.document import AttachmentDocument, Document, QAStructureChunk
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
from libs import helper
|
||||
from models.account import Account
|
||||
from models.dataset import Dataset
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.entities.knowledge_entities.knowledge_entities import Rule
|
||||
@@ -41,7 +42,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
)
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
def transform(self, documents: list[Document], current_user: Account | None = None, **kwargs) -> list[Document]:
|
||||
preview = kwargs.get("preview")
|
||||
process_rule = kwargs.get("process_rule")
|
||||
if not process_rule:
|
||||
@@ -116,7 +117,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
try:
|
||||
# Skip the first row
|
||||
df = pd.read_csv(file)
|
||||
df = pd.read_csv(file) # type: ignore
|
||||
text_docs = []
|
||||
for _, row in df.iterrows():
|
||||
data = Document(page_content=row.iloc[0], metadata={"answer": row.iloc[1]})
|
||||
@@ -128,10 +129,19 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
raise ValueError(str(e))
|
||||
return text_docs
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True, **kwargs):
|
||||
def load(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
documents: list[Document],
|
||||
multimodal_documents: list[AttachmentDocument] | None = None,
|
||||
with_keywords: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if multimodal_documents and dataset.is_multimodal:
|
||||
vector.create_multimodal(multimodal_documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: list[str] | None, with_keywords: bool = True, **kwargs):
|
||||
vector = Vector(dataset)
|
||||
@@ -197,7 +207,7 @@ class QAIndexProcessor(BaseIndexProcessor):
|
||||
for qa_chunk in qa_chunks.qa_chunks:
|
||||
preview.append({"question": qa_chunk.question, "answer": qa_chunk.answer})
|
||||
return {
|
||||
"chunk_structure": IndexType.QA_INDEX,
|
||||
"chunk_structure": IndexStructureType.QA_INDEX,
|
||||
"qa_preview": preview,
|
||||
"total_segments": len(qa_chunks.qa_chunks),
|
||||
}
|
||||
|
||||
@@ -4,6 +4,8 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.file import File
|
||||
|
||||
|
||||
class ChildDocument(BaseModel):
|
||||
"""Class for storing a piece of text and associated metadata."""
|
||||
@@ -15,7 +17,19 @@ class ChildDocument(BaseModel):
|
||||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: dict = Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class AttachmentDocument(BaseModel):
|
||||
"""Class for storing a piece of text and associated metadata."""
|
||||
|
||||
page_content: str
|
||||
|
||||
provider: str | None = "dify"
|
||||
|
||||
vector: list[float] | None = None
|
||||
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class Document(BaseModel):
|
||||
@@ -28,12 +42,31 @@ class Document(BaseModel):
|
||||
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
||||
documents, etc.).
|
||||
"""
|
||||
metadata: dict = Field(default_factory=dict)
|
||||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
provider: str | None = "dify"
|
||||
|
||||
children: list[ChildDocument] | None = None
|
||||
|
||||
attachments: list[AttachmentDocument] | None = None
|
||||
|
||||
|
||||
class GeneralChunk(BaseModel):
|
||||
"""
|
||||
General Chunk.
|
||||
"""
|
||||
|
||||
content: str
|
||||
files: list[File] | None = None
|
||||
|
||||
|
||||
class MultimodalGeneralStructureChunk(BaseModel):
|
||||
"""
|
||||
Multimodal General Structure Chunk.
|
||||
"""
|
||||
|
||||
general_chunks: list[GeneralChunk]
|
||||
|
||||
|
||||
class GeneralStructureChunk(BaseModel):
|
||||
"""
|
||||
@@ -50,6 +83,7 @@ class ParentChildChunk(BaseModel):
|
||||
|
||||
parent_content: str
|
||||
child_contents: list[str]
|
||||
files: list[File] | None = None
|
||||
|
||||
|
||||
class ParentChildStructureChunk(BaseModel):
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
|
||||
|
||||
@@ -12,6 +13,7 @@ class BaseRerankRunner(ABC):
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
|
||||
@@ -1,6 +1,15 @@
|
||||
from core.model_manager import ModelInstance
|
||||
import base64
|
||||
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankResult
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.model import UploadFile
|
||||
|
||||
|
||||
class RerankModelRunner(BaseRerankRunner):
|
||||
@@ -14,6 +23,7 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
@@ -24,6 +34,56 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
:param user: unique user id if needed
|
||||
:return:
|
||||
"""
|
||||
model_manager = ModelManager()
|
||||
is_support_vision = model_manager.check_model_support_vision(
|
||||
tenant_id=self.rerank_model_instance.provider_model_bundle.configuration.tenant_id,
|
||||
provider=self.rerank_model_instance.provider,
|
||||
model=self.rerank_model_instance.model,
|
||||
model_type=ModelType.RERANK,
|
||||
)
|
||||
if not is_support_vision:
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
|
||||
else:
|
||||
return documents
|
||||
else:
|
||||
rerank_result, unique_documents = self.fetch_multimodal_rerank(
|
||||
query, documents, score_threshold, top_n, user, query_type
|
||||
)
|
||||
|
||||
rerank_documents = []
|
||||
for result in rerank_result.docs:
|
||||
if score_threshold is None or result.score >= score_threshold:
|
||||
# format document
|
||||
rerank_document = Document(
|
||||
page_content=result.text,
|
||||
metadata=unique_documents[result.index].metadata,
|
||||
provider=unique_documents[result.index].provider,
|
||||
)
|
||||
if rerank_document.metadata is not None:
|
||||
rerank_document.metadata["score"] = result.score
|
||||
rerank_documents.append(rerank_document)
|
||||
|
||||
rerank_documents.sort(key=lambda x: x.metadata.get("score", 0.0), reverse=True)
|
||||
return rerank_documents[:top_n] if top_n else rerank_documents
|
||||
|
||||
def fetch_text_rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[Document],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> tuple[RerankResult, list[Document]]:
|
||||
"""
|
||||
Fetch text rerank
|
||||
:param query: search query
|
||||
:param documents: documents for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id if needed
|
||||
:return:
|
||||
"""
|
||||
docs = []
|
||||
doc_ids = set()
|
||||
unique_documents = []
|
||||
@@ -33,33 +93,99 @@ class RerankModelRunner(BaseRerankRunner):
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
if not document.metadata.get("doc_type") or document.metadata.get("doc_type") == DocType.TEXT:
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
elif document.provider == "external":
|
||||
if document not in unique_documents:
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
|
||||
documents = unique_documents
|
||||
|
||||
rerank_result = self.rerank_model_instance.invoke_rerank(
|
||||
query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
||||
)
|
||||
return rerank_result, unique_documents
|
||||
|
||||
rerank_documents = []
|
||||
def fetch_multimodal_rerank(
|
||||
self,
|
||||
query: str,
|
||||
documents: list[Document],
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> tuple[RerankResult, list[Document]]:
|
||||
"""
|
||||
Fetch multimodal rerank
|
||||
:param query: search query
|
||||
:param documents: documents for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n
|
||||
:param user: unique user id if needed
|
||||
:param query_type: query type
|
||||
:return: rerank result
|
||||
"""
|
||||
docs = []
|
||||
doc_ids = set()
|
||||
unique_documents = []
|
||||
for document in documents:
|
||||
if (
|
||||
document.provider == "dify"
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
if document.metadata.get("doc_type") == DocType.IMAGE:
|
||||
# Query file info within db.session context to ensure thread-safe access
|
||||
upload_file = (
|
||||
db.session.query(UploadFile).where(UploadFile.id == document.metadata["doc_id"]).first()
|
||||
)
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
document_file_base64 = base64.b64encode(blob).decode()
|
||||
document_file_dict = {
|
||||
"content": document_file_base64,
|
||||
"content_type": document.metadata["doc_type"],
|
||||
}
|
||||
docs.append(document_file_dict)
|
||||
else:
|
||||
document_text_dict = {
|
||||
"content": document.page_content,
|
||||
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
|
||||
}
|
||||
docs.append(document_text_dict)
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
unique_documents.append(document)
|
||||
elif document.provider == "external":
|
||||
if document not in unique_documents:
|
||||
docs.append(
|
||||
{
|
||||
"content": document.page_content,
|
||||
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
|
||||
}
|
||||
)
|
||||
unique_documents.append(document)
|
||||
|
||||
for result in rerank_result.docs:
|
||||
if score_threshold is None or result.score >= score_threshold:
|
||||
# format document
|
||||
rerank_document = Document(
|
||||
page_content=result.text,
|
||||
metadata=documents[result.index].metadata,
|
||||
provider=documents[result.index].provider,
|
||||
documents = unique_documents
|
||||
if query_type == QueryType.TEXT_QUERY:
|
||||
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
|
||||
return rerank_result, unique_documents
|
||||
elif query_type == QueryType.IMAGE_QUERY:
|
||||
# Query file info within db.session context to ensure thread-safe access
|
||||
upload_file = db.session.query(UploadFile).where(UploadFile.id == query).first()
|
||||
if upload_file:
|
||||
blob = storage.load_once(upload_file.key)
|
||||
file_query = base64.b64encode(blob).decode()
|
||||
file_query_dict = {
|
||||
"content": file_query,
|
||||
"content_type": DocType.IMAGE,
|
||||
}
|
||||
rerank_result = self.rerank_model_instance.invoke_multimodal_rerank(
|
||||
query=file_query_dict, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
|
||||
)
|
||||
if rerank_document.metadata is not None:
|
||||
rerank_document.metadata["score"] = result.score
|
||||
rerank_documents.append(rerank_document)
|
||||
return rerank_result, unique_documents
|
||||
else:
|
||||
raise ValueError(f"Upload file not found for query: {query}")
|
||||
|
||||
rerank_documents.sort(key=lambda x: x.metadata.get("score", 0.0), reverse=True)
|
||||
return rerank_documents[:top_n] if top_n else rerank_documents
|
||||
else:
|
||||
raise ValueError(f"Query type {query_type} is not supported")
|
||||
|
||||
@@ -7,6 +7,8 @@ from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
||||
from core.rag.embedding.cached_embedding import CacheEmbedding
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.entity.weight import VectorSetting, Weights
|
||||
from core.rag.rerank.rerank_base import BaseRerankRunner
|
||||
@@ -24,6 +26,7 @@ class WeightRerankRunner(BaseRerankRunner):
|
||||
score_threshold: float | None = None,
|
||||
top_n: int | None = None,
|
||||
user: str | None = None,
|
||||
query_type: QueryType = QueryType.TEXT_QUERY,
|
||||
) -> list[Document]:
|
||||
"""
|
||||
Run rerank model
|
||||
@@ -43,8 +46,10 @@ class WeightRerankRunner(BaseRerankRunner):
|
||||
and document.metadata is not None
|
||||
and document.metadata["doc_id"] not in doc_ids
|
||||
):
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
unique_documents.append(document)
|
||||
# weight rerank only support text documents
|
||||
if not document.metadata.get("doc_type") or document.metadata.get("doc_type") == DocType.TEXT:
|
||||
doc_ids.add(document.metadata["doc_id"])
|
||||
unique_documents.append(document)
|
||||
else:
|
||||
if document not in unique_documents:
|
||||
unique_documents.append(document)
|
||||
|
||||
@@ -8,6 +8,7 @@ from typing import Any, Union, cast
|
||||
|
||||
from flask import Flask, current_app
|
||||
from sqlalchemy import and_, or_, select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.app.app_config.entities import (
|
||||
DatasetEntity,
|
||||
@@ -19,6 +20,7 @@ from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCre
|
||||
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.file import File, FileTransferMethod, FileType
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
||||
@@ -37,7 +39,9 @@ from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.rag.entities.context_entities import DocumentContext
|
||||
from core.rag.entities.metadata_entities import Condition, MetadataCondition
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType, IndexTechniqueType
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
@@ -52,10 +56,12 @@ from core.rag.retrieval.template_prompts import (
|
||||
METADATA_FILTER_USER_PROMPT_2,
|
||||
METADATA_FILTER_USER_PROMPT_3,
|
||||
)
|
||||
from core.tools.signature import sign_upload_file
|
||||
from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
||||
from extensions.ext_database import db
|
||||
from libs.json_in_md_parser import parse_and_check_json_markdown
|
||||
from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
|
||||
from models import UploadFile
|
||||
from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
@@ -99,7 +105,8 @@ class DatasetRetrieval:
|
||||
message_id: str,
|
||||
memory: TokenBufferMemory | None = None,
|
||||
inputs: Mapping[str, Any] | None = None,
|
||||
) -> str | None:
|
||||
vision_enabled: bool = False,
|
||||
) -> tuple[str | None, list[File] | None]:
|
||||
"""
|
||||
Retrieve dataset.
|
||||
:param app_id: app_id
|
||||
@@ -118,7 +125,7 @@ class DatasetRetrieval:
|
||||
"""
|
||||
dataset_ids = config.dataset_ids
|
||||
if len(dataset_ids) == 0:
|
||||
return None
|
||||
return None, []
|
||||
retrieve_config = config.retrieve_config
|
||||
|
||||
# check model is support tool calling
|
||||
@@ -136,7 +143,7 @@ class DatasetRetrieval:
|
||||
)
|
||||
|
||||
if not model_schema:
|
||||
return None
|
||||
return None, []
|
||||
|
||||
planning_strategy = PlanningStrategy.REACT_ROUTER
|
||||
features = model_schema.features
|
||||
@@ -182,8 +189,8 @@ class DatasetRetrieval:
|
||||
tenant_id,
|
||||
user_id,
|
||||
user_from,
|
||||
available_datasets,
|
||||
query,
|
||||
available_datasets,
|
||||
model_instance,
|
||||
model_config,
|
||||
planning_strategy,
|
||||
@@ -213,6 +220,7 @@ class DatasetRetrieval:
|
||||
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||
document_context_list: list[DocumentContext] = []
|
||||
context_files: list[File] = []
|
||||
retrieval_resource_list: list[RetrievalSourceMetadata] = []
|
||||
# deal with external documents
|
||||
for item in external_documents:
|
||||
@@ -248,6 +256,31 @@ class DatasetRetrieval:
|
||||
score=record.score,
|
||||
)
|
||||
)
|
||||
if vision_enabled:
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(
|
||||
SegmentAttachmentBinding.segment_id == segment.id,
|
||||
)
|
||||
).all()
|
||||
if attachments_with_bindings:
|
||||
for _, upload_file in attachments_with_bindings:
|
||||
attchment_info = File(
|
||||
id=upload_file.id,
|
||||
filename=upload_file.name,
|
||||
extension="." + upload_file.extension,
|
||||
mime_type=upload_file.mime_type,
|
||||
tenant_id=segment.tenant_id,
|
||||
type=FileType.IMAGE,
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
remote_url=upload_file.source_url,
|
||||
related_id=upload_file.id,
|
||||
size=upload_file.size,
|
||||
storage_key=upload_file.key,
|
||||
url=sign_upload_file(upload_file.id, upload_file.extension),
|
||||
)
|
||||
context_files.append(attchment_info)
|
||||
if show_retrieve_source:
|
||||
for record in records:
|
||||
segment = record.segment
|
||||
@@ -288,8 +321,10 @@ class DatasetRetrieval:
|
||||
hit_callback.return_retriever_resource_info(retrieval_resource_list)
|
||||
if document_context_list:
|
||||
document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
|
||||
return str("\n".join([document_context.content for document_context in document_context_list]))
|
||||
return ""
|
||||
return str(
|
||||
"\n".join([document_context.content for document_context in document_context_list])
|
||||
), context_files
|
||||
return "", context_files
|
||||
|
||||
def single_retrieve(
|
||||
self,
|
||||
@@ -297,8 +332,8 @@ class DatasetRetrieval:
|
||||
tenant_id: str,
|
||||
user_id: str,
|
||||
user_from: str,
|
||||
available_datasets: list,
|
||||
query: str,
|
||||
available_datasets: list,
|
||||
model_instance: ModelInstance,
|
||||
model_config: ModelConfigWithCredentialsEntity,
|
||||
planning_strategy: PlanningStrategy,
|
||||
@@ -336,7 +371,7 @@ class DatasetRetrieval:
|
||||
dataset_id, router_usage = function_call_router.invoke(query, tools, model_config, model_instance)
|
||||
|
||||
self._record_usage(router_usage)
|
||||
|
||||
timer = None
|
||||
if dataset_id:
|
||||
# get retrieval model config
|
||||
dataset_stmt = select(Dataset).where(Dataset.id == dataset_id)
|
||||
@@ -406,10 +441,19 @@ class DatasetRetrieval:
|
||||
weights=retrieval_model_config.get("weights", None),
|
||||
document_ids_filter=document_ids_filter,
|
||||
)
|
||||
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
||||
self._on_query(query, None, [dataset_id], app_id, user_from, user_id)
|
||||
|
||||
if results:
|
||||
self._on_retrieval_end(results, message_id, timer)
|
||||
thread = threading.Thread(
|
||||
target=self._on_retrieval_end,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"documents": results,
|
||||
"message_id": message_id,
|
||||
"timer": timer,
|
||||
},
|
||||
)
|
||||
thread.start()
|
||||
|
||||
return results
|
||||
return []
|
||||
@@ -421,7 +465,7 @@ class DatasetRetrieval:
|
||||
user_id: str,
|
||||
user_from: str,
|
||||
available_datasets: list,
|
||||
query: str,
|
||||
query: str | None,
|
||||
top_k: int,
|
||||
score_threshold: float,
|
||||
reranking_mode: str,
|
||||
@@ -431,10 +475,11 @@ class DatasetRetrieval:
|
||||
message_id: str | None = None,
|
||||
metadata_filter_document_ids: dict[str, list[str]] | None = None,
|
||||
metadata_condition: MetadataCondition | None = None,
|
||||
attachment_ids: list[str] | None = None,
|
||||
):
|
||||
if not available_datasets:
|
||||
return []
|
||||
threads = []
|
||||
all_threads = []
|
||||
all_documents: list[Document] = []
|
||||
dataset_ids = [dataset.id for dataset in available_datasets]
|
||||
index_type_check = all(
|
||||
@@ -467,131 +512,226 @@ class DatasetRetrieval:
|
||||
0
|
||||
].embedding_model_provider
|
||||
weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
|
||||
|
||||
for dataset in available_datasets:
|
||||
index_type = dataset.indexing_technique
|
||||
document_ids_filter = None
|
||||
if dataset.provider != "external":
|
||||
if metadata_condition and not metadata_filter_document_ids:
|
||||
continue
|
||||
if metadata_filter_document_ids:
|
||||
document_ids = metadata_filter_document_ids.get(dataset.id, [])
|
||||
if document_ids:
|
||||
document_ids_filter = document_ids
|
||||
else:
|
||||
continue
|
||||
retrieval_thread = threading.Thread(
|
||||
target=self._retriever,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"dataset_id": dataset.id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"all_documents": all_documents,
|
||||
"document_ids_filter": document_ids_filter,
|
||||
"metadata_condition": metadata_condition,
|
||||
},
|
||||
)
|
||||
threads.append(retrieval_thread)
|
||||
retrieval_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
with measure_time() as timer:
|
||||
if reranking_enable:
|
||||
# do rerank for searched documents
|
||||
data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
|
||||
|
||||
all_documents = data_post_processor.invoke(
|
||||
query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
|
||||
if query:
|
||||
query_thread = threading.Thread(
|
||||
target=self._multiple_retrieve_thread,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"available_datasets": available_datasets,
|
||||
"metadata_condition": metadata_condition,
|
||||
"metadata_filter_document_ids": metadata_filter_document_ids,
|
||||
"all_documents": all_documents,
|
||||
"tenant_id": tenant_id,
|
||||
"reranking_enable": reranking_enable,
|
||||
"reranking_mode": reranking_mode,
|
||||
"reranking_model": reranking_model,
|
||||
"weights": weights,
|
||||
"top_k": top_k,
|
||||
"score_threshold": score_threshold,
|
||||
"query": query,
|
||||
"attachment_id": None,
|
||||
},
|
||||
)
|
||||
else:
|
||||
if index_type == "economy":
|
||||
all_documents = self.calculate_keyword_score(query, all_documents, top_k)
|
||||
elif index_type == "high_quality":
|
||||
all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
|
||||
else:
|
||||
all_documents = all_documents[:top_k] if top_k else all_documents
|
||||
|
||||
self._on_query(query, dataset_ids, app_id, user_from, user_id)
|
||||
all_threads.append(query_thread)
|
||||
query_thread.start()
|
||||
if attachment_ids:
|
||||
for attachment_id in attachment_ids:
|
||||
attachment_thread = threading.Thread(
|
||||
target=self._multiple_retrieve_thread,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"available_datasets": available_datasets,
|
||||
"metadata_condition": metadata_condition,
|
||||
"metadata_filter_document_ids": metadata_filter_document_ids,
|
||||
"all_documents": all_documents,
|
||||
"tenant_id": tenant_id,
|
||||
"reranking_enable": reranking_enable,
|
||||
"reranking_mode": reranking_mode,
|
||||
"reranking_model": reranking_model,
|
||||
"weights": weights,
|
||||
"top_k": top_k,
|
||||
"score_threshold": score_threshold,
|
||||
"query": None,
|
||||
"attachment_id": attachment_id,
|
||||
},
|
||||
)
|
||||
all_threads.append(attachment_thread)
|
||||
attachment_thread.start()
|
||||
for thread in all_threads:
|
||||
thread.join()
|
||||
self._on_query(query, attachment_ids, dataset_ids, app_id, user_from, user_id)
|
||||
|
||||
if all_documents:
|
||||
self._on_retrieval_end(all_documents, message_id, timer)
|
||||
|
||||
return all_documents
|
||||
|
||||
def _on_retrieval_end(self, documents: list[Document], message_id: str | None = None, timer: dict | None = None):
|
||||
"""Handle retrieval end."""
|
||||
dify_documents = [document for document in documents if document.provider == "dify"]
|
||||
for document in dify_documents:
|
||||
if document.metadata is not None:
|
||||
dataset_document_stmt = select(DatasetDocument).where(
|
||||
DatasetDocument.id == document.metadata["document_id"]
|
||||
)
|
||||
dataset_document = db.session.scalar(dataset_document_stmt)
|
||||
if dataset_document:
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
child_chunk_stmt = select(ChildChunk).where(
|
||||
ChildChunk.index_node_id == document.metadata["doc_id"],
|
||||
ChildChunk.dataset_id == dataset_document.dataset_id,
|
||||
ChildChunk.document_id == dataset_document.id,
|
||||
)
|
||||
child_chunk = db.session.scalar(child_chunk_stmt)
|
||||
if child_chunk:
|
||||
_ = (
|
||||
db.session.query(DocumentSegment)
|
||||
.where(DocumentSegment.id == child_chunk.segment_id)
|
||||
.update(
|
||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
||||
synchronize_session=False,
|
||||
)
|
||||
)
|
||||
else:
|
||||
query = db.session.query(DocumentSegment).where(
|
||||
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
||||
)
|
||||
|
||||
# if 'dataset_id' in document.metadata:
|
||||
if "dataset_id" in document.metadata:
|
||||
query = query.where(DocumentSegment.dataset_id == document.metadata["dataset_id"])
|
||||
|
||||
# add hit count to document segment
|
||||
query.update(
|
||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
# get tracing instance
|
||||
trace_manager: TraceQueueManager | None = (
|
||||
self.application_generate_entity.trace_manager if self.application_generate_entity else None
|
||||
)
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
|
||||
)
|
||||
# add thread to call _on_retrieval_end
|
||||
retrieval_end_thread = threading.Thread(
|
||||
target=self._on_retrieval_end,
|
||||
kwargs={
|
||||
"flask_app": current_app._get_current_object(), # type: ignore
|
||||
"documents": all_documents,
|
||||
"message_id": message_id,
|
||||
"timer": timer,
|
||||
},
|
||||
)
|
||||
retrieval_end_thread.start()
|
||||
retrieval_resource_list = []
|
||||
doc_ids_filter = []
|
||||
for document in all_documents:
|
||||
if document.provider == "dify":
|
||||
doc_id = document.metadata.get("doc_id")
|
||||
if doc_id and doc_id not in doc_ids_filter:
|
||||
doc_ids_filter.append(doc_id)
|
||||
retrieval_resource_list.append(document)
|
||||
elif document.provider == "external":
|
||||
retrieval_resource_list.append(document)
|
||||
return retrieval_resource_list
|
||||
|
||||
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str):
|
||||
def _on_retrieval_end(
|
||||
self, flask_app: Flask, documents: list[Document], message_id: str | None = None, timer: dict | None = None
|
||||
):
|
||||
"""Handle retrieval end."""
|
||||
with flask_app.app_context():
|
||||
dify_documents = [document for document in documents if document.provider == "dify"]
|
||||
segment_ids = []
|
||||
segment_index_node_ids = []
|
||||
with Session(db.engine) as session:
|
||||
for document in dify_documents:
|
||||
if document.metadata is not None:
|
||||
dataset_document_stmt = select(DatasetDocument).where(
|
||||
DatasetDocument.id == document.metadata["document_id"]
|
||||
)
|
||||
dataset_document = session.scalar(dataset_document_stmt)
|
||||
if dataset_document:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
segment_id = None
|
||||
if (
|
||||
"doc_type" not in document.metadata
|
||||
or document.metadata.get("doc_type") == DocType.TEXT
|
||||
):
|
||||
child_chunk_stmt = select(ChildChunk).where(
|
||||
ChildChunk.index_node_id == document.metadata["doc_id"],
|
||||
ChildChunk.dataset_id == dataset_document.dataset_id,
|
||||
ChildChunk.document_id == dataset_document.id,
|
||||
)
|
||||
child_chunk = session.scalar(child_chunk_stmt)
|
||||
if child_chunk:
|
||||
segment_id = child_chunk.segment_id
|
||||
elif (
|
||||
"doc_type" in document.metadata
|
||||
and document.metadata.get("doc_type") == DocType.IMAGE
|
||||
):
|
||||
attachment_info_dict = RetrievalService.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
if segment_id:
|
||||
if segment_id not in segment_ids:
|
||||
segment_ids.append(segment_id)
|
||||
_ = (
|
||||
session.query(DocumentSegment)
|
||||
.where(DocumentSegment.id == segment_id)
|
||||
.update(
|
||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
||||
synchronize_session=False,
|
||||
)
|
||||
)
|
||||
else:
|
||||
query = None
|
||||
if (
|
||||
"doc_type" not in document.metadata
|
||||
or document.metadata.get("doc_type") == DocType.TEXT
|
||||
):
|
||||
if document.metadata["doc_id"] not in segment_index_node_ids:
|
||||
segment = (
|
||||
session.query(DocumentSegment)
|
||||
.where(DocumentSegment.index_node_id == document.metadata["doc_id"])
|
||||
.first()
|
||||
)
|
||||
if segment:
|
||||
segment_index_node_ids.append(document.metadata["doc_id"])
|
||||
segment_ids.append(segment.id)
|
||||
query = session.query(DocumentSegment).where(
|
||||
DocumentSegment.id == segment.id
|
||||
)
|
||||
elif (
|
||||
"doc_type" in document.metadata
|
||||
and document.metadata.get("doc_type") == DocType.IMAGE
|
||||
):
|
||||
attachment_info_dict = RetrievalService.get_segment_attachment_info(
|
||||
dataset_document.dataset_id,
|
||||
dataset_document.tenant_id,
|
||||
document.metadata.get("doc_id") or "",
|
||||
session,
|
||||
)
|
||||
if attachment_info_dict:
|
||||
segment_id = attachment_info_dict["segment_id"]
|
||||
if segment_id not in segment_ids:
|
||||
segment_ids.append(segment_id)
|
||||
query = session.query(DocumentSegment).where(DocumentSegment.id == segment_id)
|
||||
if query:
|
||||
# if 'dataset_id' in document.metadata:
|
||||
if "dataset_id" in document.metadata:
|
||||
query = query.where(
|
||||
DocumentSegment.dataset_id == document.metadata["dataset_id"]
|
||||
)
|
||||
|
||||
# add hit count to document segment
|
||||
query.update(
|
||||
{DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
|
||||
synchronize_session=False,
|
||||
)
|
||||
|
||||
db.session.commit()
|
||||
|
||||
# get tracing instance
|
||||
trace_manager: TraceQueueManager | None = (
|
||||
self.application_generate_entity.trace_manager if self.application_generate_entity else None
|
||||
)
|
||||
if trace_manager:
|
||||
trace_manager.add_trace_task(
|
||||
TraceTask(
|
||||
TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
|
||||
)
|
||||
)
|
||||
|
||||
def _on_query(
|
||||
self,
|
||||
query: str | None,
|
||||
attachment_ids: list[str] | None,
|
||||
dataset_ids: list[str],
|
||||
app_id: str,
|
||||
user_from: str,
|
||||
user_id: str,
|
||||
):
|
||||
"""
|
||||
Handle query.
|
||||
"""
|
||||
if not query:
|
||||
if not query and not attachment_ids:
|
||||
return
|
||||
dataset_queries = []
|
||||
for dataset_id in dataset_ids:
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset_id,
|
||||
content=query,
|
||||
source="app",
|
||||
source_app_id=app_id,
|
||||
created_by_role=user_from,
|
||||
created_by=user_id,
|
||||
)
|
||||
dataset_queries.append(dataset_query)
|
||||
if dataset_queries:
|
||||
db.session.add_all(dataset_queries)
|
||||
contents = []
|
||||
if query:
|
||||
contents.append({"content_type": QueryType.TEXT_QUERY, "content": query})
|
||||
if attachment_ids:
|
||||
for attachment_id in attachment_ids:
|
||||
contents.append({"content_type": QueryType.IMAGE_QUERY, "content": attachment_id})
|
||||
if contents:
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset_id,
|
||||
content=json.dumps(contents),
|
||||
source="app",
|
||||
source_app_id=app_id,
|
||||
created_by_role=user_from,
|
||||
created_by=user_id,
|
||||
)
|
||||
dataset_queries.append(dataset_query)
|
||||
if dataset_queries:
|
||||
db.session.add_all(dataset_queries)
|
||||
db.session.commit()
|
||||
|
||||
def _retriever(
|
||||
@@ -603,6 +743,7 @@ class DatasetRetrieval:
|
||||
all_documents: list,
|
||||
document_ids_filter: list[str] | None = None,
|
||||
metadata_condition: MetadataCondition | None = None,
|
||||
attachment_ids: list[str] | None = None,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
dataset_stmt = select(Dataset).where(Dataset.id == dataset_id)
|
||||
@@ -611,7 +752,7 @@ class DatasetRetrieval:
|
||||
if not dataset:
|
||||
return []
|
||||
|
||||
if dataset.provider == "external":
|
||||
if dataset.provider == "external" and query:
|
||||
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
@@ -663,6 +804,7 @@ class DatasetRetrieval:
|
||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||
weights=retrieval_model.get("weights", None),
|
||||
document_ids_filter=document_ids_filter,
|
||||
attachment_ids=attachment_ids,
|
||||
)
|
||||
|
||||
all_documents.extend(documents)
|
||||
@@ -1222,3 +1364,86 @@ class DatasetRetrieval:
|
||||
usage = LLMUsage.empty_usage()
|
||||
|
||||
return full_text, usage
|
||||
|
||||
def _multiple_retrieve_thread(
|
||||
self,
|
||||
flask_app: Flask,
|
||||
available_datasets: list,
|
||||
metadata_condition: MetadataCondition | None,
|
||||
metadata_filter_document_ids: dict[str, list[str]] | None,
|
||||
all_documents: list[Document],
|
||||
tenant_id: str,
|
||||
reranking_enable: bool,
|
||||
reranking_mode: str,
|
||||
reranking_model: dict | None,
|
||||
weights: dict[str, Any] | None,
|
||||
top_k: int,
|
||||
score_threshold: float,
|
||||
query: str | None,
|
||||
attachment_id: str | None,
|
||||
):
|
||||
with flask_app.app_context():
|
||||
threads = []
|
||||
all_documents_item: list[Document] = []
|
||||
index_type = None
|
||||
for dataset in available_datasets:
|
||||
index_type = dataset.indexing_technique
|
||||
document_ids_filter = None
|
||||
if dataset.provider != "external":
|
||||
if metadata_condition and not metadata_filter_document_ids:
|
||||
continue
|
||||
if metadata_filter_document_ids:
|
||||
document_ids = metadata_filter_document_ids.get(dataset.id, [])
|
||||
if document_ids:
|
||||
document_ids_filter = document_ids
|
||||
else:
|
||||
continue
|
||||
retrieval_thread = threading.Thread(
|
||||
target=self._retriever,
|
||||
kwargs={
|
||||
"flask_app": flask_app,
|
||||
"dataset_id": dataset.id,
|
||||
"query": query,
|
||||
"top_k": top_k,
|
||||
"all_documents": all_documents_item,
|
||||
"document_ids_filter": document_ids_filter,
|
||||
"metadata_condition": metadata_condition,
|
||||
"attachment_ids": [attachment_id] if attachment_id else None,
|
||||
},
|
||||
)
|
||||
threads.append(retrieval_thread)
|
||||
retrieval_thread.start()
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
if reranking_enable:
|
||||
# do rerank for searched documents
|
||||
data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
|
||||
if query:
|
||||
all_documents_item = data_post_processor.invoke(
|
||||
query=query,
|
||||
documents=all_documents_item,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
query_type=QueryType.TEXT_QUERY,
|
||||
)
|
||||
if attachment_id:
|
||||
all_documents_item = data_post_processor.invoke(
|
||||
documents=all_documents_item,
|
||||
score_threshold=score_threshold,
|
||||
top_n=top_k,
|
||||
query_type=QueryType.IMAGE_QUERY,
|
||||
query=attachment_id,
|
||||
)
|
||||
else:
|
||||
if index_type == IndexTechniqueType.ECONOMY:
|
||||
if not query:
|
||||
all_documents_item = []
|
||||
else:
|
||||
all_documents_item = self.calculate_keyword_score(query, all_documents_item, top_k)
|
||||
elif index_type == IndexTechniqueType.HIGH_QUALITY:
|
||||
all_documents_item = self.calculate_vector_score(all_documents_item, top_k, score_threshold)
|
||||
else:
|
||||
all_documents_item = all_documents_item[:top_k] if top_k else all_documents_item
|
||||
if all_documents_item:
|
||||
all_documents.extend(all_documents_item)
|
||||
|
||||
@@ -0,0 +1,65 @@
|
||||
{
|
||||
"$id": "https://dify.ai/schemas/v1/multimodal_general_structure.json",
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"version": "1.0.0",
|
||||
"type": "array",
|
||||
"title": "Multimodal General Structure",
|
||||
"description": "Schema for multimodal general structure (v1) - array of objects",
|
||||
"properties": {
|
||||
"general_chunks": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "string",
|
||||
"description": "The content"
|
||||
},
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "file name"
|
||||
},
|
||||
"size": {
|
||||
"type": "number",
|
||||
"description": "file size"
|
||||
},
|
||||
"extension": {
|
||||
"type": "string",
|
||||
"description": "file extension"
|
||||
},
|
||||
"type": {
|
||||
"type": "string",
|
||||
"description": "file type"
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": "file mime type"
|
||||
},
|
||||
"transfer_method": {
|
||||
"type": "string",
|
||||
"description": "file transfer method"
|
||||
},
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "file url"
|
||||
},
|
||||
"related_id": {
|
||||
"type": "string",
|
||||
"description": "file related id"
|
||||
}
|
||||
},
|
||||
"description": "List of files"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["content"]
|
||||
},
|
||||
"description": "List of content and files"
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,78 @@
|
||||
{
|
||||
"$id": "https://dify.ai/schemas/v1/multimodal_parent_child_structure.json",
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"version": "1.0.0",
|
||||
"type": "object",
|
||||
"title": "Multimodal Parent-Child Structure",
|
||||
"description": "Schema for multimodal parent-child structure (v1)",
|
||||
"properties": {
|
||||
"parent_mode": {
|
||||
"type": "string",
|
||||
"description": "The mode of parent-child relationship"
|
||||
},
|
||||
"parent_child_chunks": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"parent_content": {
|
||||
"type": "string",
|
||||
"description": "The parent content"
|
||||
},
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "file name"
|
||||
},
|
||||
"size": {
|
||||
"type": "number",
|
||||
"description": "file size"
|
||||
},
|
||||
"extension": {
|
||||
"type": "string",
|
||||
"description": "file extension"
|
||||
},
|
||||
"type": {
|
||||
"type": "string",
|
||||
"description": "file type"
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": "file mime type"
|
||||
},
|
||||
"transfer_method": {
|
||||
"type": "string",
|
||||
"description": "file transfer method"
|
||||
},
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "file url"
|
||||
},
|
||||
"related_id": {
|
||||
"type": "string",
|
||||
"description": "file related id"
|
||||
}
|
||||
},
|
||||
"required": ["name", "size", "extension", "type", "mime_type", "transfer_method", "url", "related_id"]
|
||||
},
|
||||
"description": "List of files"
|
||||
},
|
||||
"child_contents": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
},
|
||||
"description": "List of child contents"
|
||||
}
|
||||
},
|
||||
"required": ["parent_content", "child_contents"]
|
||||
},
|
||||
"description": "List of parent-child chunk pairs"
|
||||
}
|
||||
},
|
||||
"required": ["parent_mode", "parent_child_chunks"]
|
||||
}
|
||||
@@ -25,6 +25,24 @@ def sign_tool_file(tool_file_id: str, extension: str) -> str:
|
||||
return f"{file_preview_url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}"
|
||||
|
||||
|
||||
def sign_upload_file(upload_file_id: str, extension: str) -> str:
|
||||
"""
|
||||
sign file to get a temporary url for plugin access
|
||||
"""
|
||||
# Use internal URL for plugin/tool file access in Docker environments
|
||||
base_url = dify_config.INTERNAL_FILES_URL or dify_config.FILES_URL
|
||||
file_preview_url = f"{base_url}/files/{upload_file_id}/image-preview"
|
||||
|
||||
timestamp = str(int(time.time()))
|
||||
nonce = os.urandom(16).hex()
|
||||
data_to_sign = f"image-preview|{upload_file_id}|{timestamp}|{nonce}"
|
||||
secret_key = dify_config.SECRET_KEY.encode() if dify_config.SECRET_KEY else b""
|
||||
sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
|
||||
encoded_sign = base64.urlsafe_b64encode(sign).decode()
|
||||
|
||||
return f"{file_preview_url}?timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}"
|
||||
|
||||
|
||||
def verify_tool_file_signature(file_id: str, timestamp: str, nonce: str, sign: str) -> bool:
|
||||
"""
|
||||
verify signature
|
||||
|
||||
@@ -13,5 +13,5 @@ def remove_leading_symbols(text: str) -> str:
|
||||
"""
|
||||
# Match Unicode ranges for punctuation and symbols
|
||||
# FIXME this pattern is confused quick fix for #11868 maybe refactor it later
|
||||
pattern = r"^[\u2000-\u206F\u2E00-\u2E7F\u3000-\u303F!\"#$%&'()*+,./:;<=>?@^_`~]+"
|
||||
pattern = r"^[\u2000-\u206F\u2E00-\u2E7F\u3000-\u303F\"#$%&'()*+,./:;<=>?@^_`~]+"
|
||||
return re.sub(pattern, "", text)
|
||||
|
||||
@@ -3,6 +3,7 @@ from datetime import datetime
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from core.file import File
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities.pause_reason import PauseReason
|
||||
@@ -14,6 +15,7 @@ from .base import NodeEventBase
|
||||
class RunRetrieverResourceEvent(NodeEventBase):
|
||||
retriever_resources: Sequence[RetrievalSourceMetadata] = Field(..., description="retriever resources")
|
||||
context: str = Field(..., description="context")
|
||||
context_files: list[File] | None = Field(default=None, description="context files")
|
||||
|
||||
|
||||
class ModelInvokeCompletedEvent(NodeEventBase):
|
||||
|
||||
@@ -114,7 +114,8 @@ class KnowledgeRetrievalNodeData(BaseNodeData):
|
||||
"""
|
||||
|
||||
type: str = "knowledge-retrieval"
|
||||
query_variable_selector: list[str]
|
||||
query_variable_selector: list[str] | None | str = None
|
||||
query_attachment_selector: list[str] | None | str = None
|
||||
dataset_ids: list[str]
|
||||
retrieval_mode: Literal["single", "multiple"]
|
||||
multiple_retrieval_config: MultipleRetrievalConfig | None = None
|
||||
|
||||
@@ -25,6 +25,8 @@ from core.rag.entities.metadata_entities import Condition, MetadataCondition
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.variables import (
|
||||
ArrayFileSegment,
|
||||
FileSegment,
|
||||
StringSegment,
|
||||
)
|
||||
from core.variables.segments import ArrayObjectSegment
|
||||
@@ -119,20 +121,41 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
return "1"
|
||||
|
||||
def _run(self) -> NodeRunResult:
|
||||
# extract variables
|
||||
variable = self.graph_runtime_state.variable_pool.get(self.node_data.query_variable_selector)
|
||||
if not isinstance(variable, StringSegment):
|
||||
if not self._node_data.query_variable_selector and not self._node_data.query_attachment_selector:
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED,
|
||||
inputs={},
|
||||
error="Query variable is not string type.",
|
||||
)
|
||||
query = variable.value
|
||||
variables = {"query": query}
|
||||
if not query:
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error="Query is required."
|
||||
process_data={},
|
||||
outputs={},
|
||||
metadata={},
|
||||
llm_usage=LLMUsage.empty_usage(),
|
||||
)
|
||||
variables: dict[str, Any] = {}
|
||||
# extract variables
|
||||
if self._node_data.query_variable_selector:
|
||||
variable = self.graph_runtime_state.variable_pool.get(self._node_data.query_variable_selector)
|
||||
if not isinstance(variable, StringSegment):
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
inputs={},
|
||||
error="Query variable is not string type.",
|
||||
)
|
||||
query = variable.value
|
||||
variables["query"] = query
|
||||
|
||||
if self._node_data.query_attachment_selector:
|
||||
variable = self.graph_runtime_state.variable_pool.get(self._node_data.query_attachment_selector)
|
||||
if not isinstance(variable, ArrayFileSegment) and not isinstance(variable, FileSegment):
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
inputs={},
|
||||
error="Attachments variable is not array file or file type.",
|
||||
)
|
||||
if isinstance(variable, ArrayFileSegment):
|
||||
variables["attachments"] = variable.value
|
||||
else:
|
||||
variables["attachments"] = [variable.value]
|
||||
|
||||
# TODO(-LAN-): Move this check outside.
|
||||
# check rate limit
|
||||
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(self.tenant_id)
|
||||
@@ -161,7 +184,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
# retrieve knowledge
|
||||
usage = LLMUsage.empty_usage()
|
||||
try:
|
||||
results, usage = self._fetch_dataset_retriever(node_data=self.node_data, query=query)
|
||||
results, usage = self._fetch_dataset_retriever(node_data=self._node_data, variables=variables)
|
||||
outputs = {"result": ArrayObjectSegment(value=results)}
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.SUCCEEDED,
|
||||
@@ -198,12 +221,16 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
db.session.close()
|
||||
|
||||
def _fetch_dataset_retriever(
|
||||
self, node_data: KnowledgeRetrievalNodeData, query: str
|
||||
self, node_data: KnowledgeRetrievalNodeData, variables: dict[str, Any]
|
||||
) -> tuple[list[dict[str, Any]], LLMUsage]:
|
||||
usage = LLMUsage.empty_usage()
|
||||
available_datasets = []
|
||||
dataset_ids = node_data.dataset_ids
|
||||
|
||||
query = variables.get("query")
|
||||
attachments = variables.get("attachments")
|
||||
metadata_filter_document_ids = None
|
||||
metadata_condition = None
|
||||
metadata_usage = LLMUsage.empty_usage()
|
||||
# Subquery: Count the number of available documents for each dataset
|
||||
subquery = (
|
||||
db.session.query(Document.dataset_id, func.count(Document.id).label("available_document_count"))
|
||||
@@ -234,13 +261,14 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
if not dataset:
|
||||
continue
|
||||
available_datasets.append(dataset)
|
||||
metadata_filter_document_ids, metadata_condition, metadata_usage = self._get_metadata_filter_condition(
|
||||
[dataset.id for dataset in available_datasets], query, node_data
|
||||
)
|
||||
usage = self._merge_usage(usage, metadata_usage)
|
||||
if query:
|
||||
metadata_filter_document_ids, metadata_condition, metadata_usage = self._get_metadata_filter_condition(
|
||||
[dataset.id for dataset in available_datasets], query, node_data
|
||||
)
|
||||
usage = self._merge_usage(usage, metadata_usage)
|
||||
all_documents = []
|
||||
dataset_retrieval = DatasetRetrieval()
|
||||
if node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
|
||||
if str(node_data.retrieval_mode) == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE and query:
|
||||
# fetch model config
|
||||
if node_data.single_retrieval_config is None:
|
||||
raise ValueError("single_retrieval_config is required")
|
||||
@@ -272,7 +300,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
metadata_filter_document_ids=metadata_filter_document_ids,
|
||||
metadata_condition=metadata_condition,
|
||||
)
|
||||
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
||||
elif str(node_data.retrieval_mode) == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
|
||||
if node_data.multiple_retrieval_config is None:
|
||||
raise ValueError("multiple_retrieval_config is required")
|
||||
if node_data.multiple_retrieval_config.reranking_mode == "reranking_model":
|
||||
@@ -319,6 +347,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
reranking_enable=node_data.multiple_retrieval_config.reranking_enable,
|
||||
metadata_filter_document_ids=metadata_filter_document_ids,
|
||||
metadata_condition=metadata_condition,
|
||||
attachment_ids=[attachment.related_id for attachment in attachments] if attachments else None,
|
||||
)
|
||||
usage = self._merge_usage(usage, dataset_retrieval.llm_usage)
|
||||
|
||||
@@ -327,7 +356,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
retrieval_resource_list = []
|
||||
# deal with external documents
|
||||
for item in external_documents:
|
||||
source = {
|
||||
source: dict[str, dict[str, str | Any | dict[Any, Any] | None] | Any | str | None] = {
|
||||
"metadata": {
|
||||
"_source": "knowledge",
|
||||
"dataset_id": item.metadata.get("dataset_id"),
|
||||
@@ -384,6 +413,7 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
"doc_metadata": document.doc_metadata,
|
||||
},
|
||||
"title": document.name,
|
||||
"files": list(record.files) if record.files else None,
|
||||
}
|
||||
if segment.answer:
|
||||
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
|
||||
@@ -393,13 +423,21 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
if retrieval_resource_list:
|
||||
retrieval_resource_list = sorted(
|
||||
retrieval_resource_list,
|
||||
key=lambda x: x["metadata"]["score"] if x["metadata"].get("score") is not None else 0.0,
|
||||
key=self._score, # type: ignore[arg-type, return-value]
|
||||
reverse=True,
|
||||
)
|
||||
for position, item in enumerate(retrieval_resource_list, start=1):
|
||||
item["metadata"]["position"] = position
|
||||
item["metadata"]["position"] = position # type: ignore[index]
|
||||
return retrieval_resource_list, usage
|
||||
|
||||
def _score(self, item: dict[str, Any]) -> float:
|
||||
meta = item.get("metadata")
|
||||
if isinstance(meta, dict):
|
||||
s = meta.get("score")
|
||||
if isinstance(s, (int, float)):
|
||||
return float(s)
|
||||
return 0.0
|
||||
|
||||
def _get_metadata_filter_condition(
|
||||
self, dataset_ids: list, query: str, node_data: KnowledgeRetrievalNodeData
|
||||
) -> tuple[dict[str, list[str]] | None, MetadataCondition | None, LLMUsage]:
|
||||
@@ -659,7 +697,10 @@ class KnowledgeRetrievalNode(LLMUsageTrackingMixin, Node[KnowledgeRetrievalNodeD
|
||||
typed_node_data = KnowledgeRetrievalNodeData.model_validate(node_data)
|
||||
|
||||
variable_mapping = {}
|
||||
variable_mapping[node_id + ".query"] = typed_node_data.query_variable_selector
|
||||
if typed_node_data.query_variable_selector:
|
||||
variable_mapping[node_id + ".query"] = typed_node_data.query_variable_selector
|
||||
if typed_node_data.query_attachment_selector:
|
||||
variable_mapping[node_id + ".queryAttachment"] = typed_node_data.query_attachment_selector
|
||||
return variable_mapping
|
||||
|
||||
def get_model_config(self, model: ModelConfig) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
|
||||
|
||||
@@ -7,8 +7,10 @@ import time
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Literal
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.file import FileType, file_manager
|
||||
from core.file import File, FileTransferMethod, FileType, file_manager
|
||||
from core.helper.code_executor import CodeExecutor, CodeLanguage
|
||||
from core.llm_generator.output_parser.errors import OutputParserError
|
||||
from core.llm_generator.output_parser.structured_output import invoke_llm_with_structured_output
|
||||
@@ -44,6 +46,7 @@ from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
|
||||
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.tools.signature import sign_upload_file
|
||||
from core.variables import (
|
||||
ArrayFileSegment,
|
||||
ArraySegment,
|
||||
@@ -72,6 +75,9 @@ from core.workflow.nodes.base.entities import VariableSelector
|
||||
from core.workflow.nodes.base.node import Node
|
||||
from core.workflow.nodes.base.variable_template_parser import VariableTemplateParser
|
||||
from core.workflow.runtime import VariablePool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import SegmentAttachmentBinding
|
||||
from models.model import UploadFile
|
||||
|
||||
from . import llm_utils
|
||||
from .entities import (
|
||||
@@ -179,12 +185,17 @@ class LLMNode(Node[LLMNodeData]):
|
||||
# fetch context value
|
||||
generator = self._fetch_context(node_data=self.node_data)
|
||||
context = None
|
||||
context_files: list[File] = []
|
||||
for event in generator:
|
||||
context = event.context
|
||||
context_files = event.context_files or []
|
||||
yield event
|
||||
if context:
|
||||
node_inputs["#context#"] = context
|
||||
|
||||
if context_files:
|
||||
node_inputs["#context_files#"] = [file.model_dump() for file in context_files]
|
||||
|
||||
# fetch model config
|
||||
model_instance, model_config = LLMNode._fetch_model_config(
|
||||
node_data_model=self.node_data.model,
|
||||
@@ -220,6 +231,7 @@ class LLMNode(Node[LLMNodeData]):
|
||||
variable_pool=variable_pool,
|
||||
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
|
||||
tenant_id=self.tenant_id,
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
# handle invoke result
|
||||
@@ -654,10 +666,13 @@ class LLMNode(Node[LLMNodeData]):
|
||||
context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
|
||||
if context_value_variable:
|
||||
if isinstance(context_value_variable, StringSegment):
|
||||
yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
|
||||
yield RunRetrieverResourceEvent(
|
||||
retriever_resources=[], context=context_value_variable.value, context_files=[]
|
||||
)
|
||||
elif isinstance(context_value_variable, ArraySegment):
|
||||
context_str = ""
|
||||
original_retriever_resource: list[RetrievalSourceMetadata] = []
|
||||
context_files: list[File] = []
|
||||
for item in context_value_variable.value:
|
||||
if isinstance(item, str):
|
||||
context_str += item + "\n"
|
||||
@@ -670,9 +685,34 @@ class LLMNode(Node[LLMNodeData]):
|
||||
retriever_resource = self._convert_to_original_retriever_resource(item)
|
||||
if retriever_resource:
|
||||
original_retriever_resource.append(retriever_resource)
|
||||
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(
|
||||
SegmentAttachmentBinding.segment_id == retriever_resource.segment_id,
|
||||
)
|
||||
).all()
|
||||
if attachments_with_bindings:
|
||||
for _, upload_file in attachments_with_bindings:
|
||||
attchment_info = File(
|
||||
id=upload_file.id,
|
||||
filename=upload_file.name,
|
||||
extension="." + upload_file.extension,
|
||||
mime_type=upload_file.mime_type,
|
||||
tenant_id=self.tenant_id,
|
||||
type=FileType.IMAGE,
|
||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||
remote_url=upload_file.source_url,
|
||||
related_id=upload_file.id,
|
||||
size=upload_file.size,
|
||||
storage_key=upload_file.key,
|
||||
url=sign_upload_file(upload_file.id, upload_file.extension),
|
||||
)
|
||||
context_files.append(attchment_info)
|
||||
yield RunRetrieverResourceEvent(
|
||||
retriever_resources=original_retriever_resource, context=context_str.strip()
|
||||
retriever_resources=original_retriever_resource,
|
||||
context=context_str.strip(),
|
||||
context_files=context_files,
|
||||
)
|
||||
|
||||
def _convert_to_original_retriever_resource(self, context_dict: dict) -> RetrievalSourceMetadata | None:
|
||||
@@ -700,6 +740,7 @@ class LLMNode(Node[LLMNodeData]):
|
||||
content=context_dict.get("content"),
|
||||
page=metadata.get("page"),
|
||||
doc_metadata=metadata.get("doc_metadata"),
|
||||
files=context_dict.get("files"),
|
||||
)
|
||||
|
||||
return source
|
||||
@@ -741,6 +782,7 @@ class LLMNode(Node[LLMNodeData]):
|
||||
variable_pool: VariablePool,
|
||||
jinja2_variables: Sequence[VariableSelector],
|
||||
tenant_id: str,
|
||||
context_files: list["File"] | None = None,
|
||||
) -> tuple[Sequence[PromptMessage], Sequence[str] | None]:
|
||||
prompt_messages: list[PromptMessage] = []
|
||||
|
||||
@@ -853,6 +895,23 @@ class LLMNode(Node[LLMNodeData]):
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=file_prompts))
|
||||
|
||||
# The context_files
|
||||
if vision_enabled and context_files:
|
||||
file_prompts = []
|
||||
for file in context_files:
|
||||
file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
|
||||
file_prompts.append(file_prompt)
|
||||
# If last prompt is a user prompt, add files into its contents,
|
||||
# otherwise append a new user prompt
|
||||
if (
|
||||
len(prompt_messages) > 0
|
||||
and isinstance(prompt_messages[-1], UserPromptMessage)
|
||||
and isinstance(prompt_messages[-1].content, list)
|
||||
):
|
||||
prompt_messages[-1] = UserPromptMessage(content=file_prompts + prompt_messages[-1].content)
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=file_prompts))
|
||||
|
||||
# Remove empty messages and filter unsupported content
|
||||
filtered_prompt_messages = []
|
||||
for prompt_message in prompt_messages:
|
||||
|
||||
@@ -97,11 +97,27 @@ dataset_detail_fields = {
|
||||
"total_documents": fields.Integer,
|
||||
"total_available_documents": fields.Integer,
|
||||
"enable_api": fields.Boolean,
|
||||
"is_multimodal": fields.Boolean,
|
||||
}
|
||||
|
||||
file_info_fields = {
|
||||
"id": fields.String,
|
||||
"name": fields.String,
|
||||
"size": fields.Integer,
|
||||
"extension": fields.String,
|
||||
"mime_type": fields.String,
|
||||
"source_url": fields.String,
|
||||
}
|
||||
|
||||
content_fields = {
|
||||
"content_type": fields.String,
|
||||
"content": fields.String,
|
||||
"file_info": fields.Nested(file_info_fields, allow_null=True),
|
||||
}
|
||||
|
||||
dataset_query_detail_fields = {
|
||||
"id": fields.String,
|
||||
"content": fields.String,
|
||||
"queries": fields.Nested(content_fields),
|
||||
"source": fields.String,
|
||||
"source_app_id": fields.String,
|
||||
"created_by_role": fields.String,
|
||||
|
||||
@@ -9,6 +9,8 @@ upload_config_fields = {
|
||||
"video_file_size_limit": fields.Integer,
|
||||
"audio_file_size_limit": fields.Integer,
|
||||
"workflow_file_upload_limit": fields.Integer,
|
||||
"image_file_batch_limit": fields.Integer,
|
||||
"single_chunk_attachment_limit": fields.Integer,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -43,9 +43,19 @@ child_chunk_fields = {
|
||||
"score": fields.Float,
|
||||
}
|
||||
|
||||
files_fields = {
|
||||
"id": fields.String,
|
||||
"name": fields.String,
|
||||
"size": fields.Integer,
|
||||
"extension": fields.String,
|
||||
"mime_type": fields.String,
|
||||
"source_url": fields.String,
|
||||
}
|
||||
|
||||
hit_testing_record_fields = {
|
||||
"segment": fields.Nested(segment_fields),
|
||||
"child_chunks": fields.List(fields.Nested(child_chunk_fields)),
|
||||
"score": fields.Float,
|
||||
"tsne_position": fields.Raw,
|
||||
"files": fields.List(fields.Nested(files_fields)),
|
||||
}
|
||||
|
||||
@@ -13,6 +13,15 @@ child_chunk_fields = {
|
||||
"updated_at": TimestampField,
|
||||
}
|
||||
|
||||
attachment_fields = {
|
||||
"id": fields.String,
|
||||
"name": fields.String,
|
||||
"size": fields.Integer,
|
||||
"extension": fields.String,
|
||||
"mime_type": fields.String,
|
||||
"source_url": fields.String,
|
||||
}
|
||||
|
||||
segment_fields = {
|
||||
"id": fields.String,
|
||||
"position": fields.Integer,
|
||||
@@ -39,4 +48,5 @@ segment_fields = {
|
||||
"error": fields.String,
|
||||
"stopped_at": TimestampField,
|
||||
"child_chunks": fields.List(fields.Nested(child_chunk_fields)),
|
||||
"attachments": fields.List(fields.Nested(attachment_fields)),
|
||||
}
|
||||
|
||||
@@ -0,0 +1,57 @@
|
||||
"""support-multi-modal
|
||||
|
||||
Revision ID: d57accd375ae
|
||||
Revises: 03f8dcbc611e
|
||||
Create Date: 2025-11-12 15:37:12.363670
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import models as models
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = 'd57accd375ae'
|
||||
down_revision = '7bb281b7a422'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('segment_attachment_bindings',
|
||||
sa.Column('id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('tenant_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('dataset_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('document_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('segment_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('attachment_id', models.types.StringUUID(), nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), server_default=sa.text("CURRENT_TIMESTAMP"), nullable=False),
|
||||
sa.PrimaryKeyConstraint('id', name='segment_attachment_binding_pkey')
|
||||
)
|
||||
with op.batch_alter_table('segment_attachment_bindings', schema=None) as batch_op:
|
||||
batch_op.create_index(
|
||||
'segment_attachment_binding_tenant_dataset_document_segment_idx',
|
||||
['tenant_id', 'dataset_id', 'document_id', 'segment_id'],
|
||||
unique=False
|
||||
)
|
||||
batch_op.create_index('segment_attachment_binding_attachment_idx', ['attachment_id'], unique=False)
|
||||
|
||||
with op.batch_alter_table('datasets', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('is_multimodal', sa.Boolean(), server_default=sa.text('false'), nullable=False))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please
|
||||
with op.batch_alter_table('datasets', schema=None) as batch_op:
|
||||
batch_op.drop_column('is_multimodal')
|
||||
|
||||
|
||||
with op.batch_alter_table('segment_attachment_bindings', schema=None) as batch_op:
|
||||
batch_op.drop_index('segment_attachment_binding_attachment_idx')
|
||||
batch_op.drop_index('segment_attachment_binding_tenant_dataset_document_segment_idx')
|
||||
|
||||
op.drop_table('segment_attachment_bindings')
|
||||
# ### end Alembic commands ###
|
||||
@@ -19,7 +19,9 @@ from sqlalchemy.orm import Mapped, Session, mapped_column
|
||||
|
||||
from configs import dify_config
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField, MetadataDataSource
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.signature import sign_upload_file
|
||||
from extensions.ext_storage import storage
|
||||
from libs.uuid_utils import uuidv7
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode, Rule
|
||||
@@ -76,6 +78,7 @@ class Dataset(Base):
|
||||
pipeline_id = mapped_column(StringUUID, nullable=True)
|
||||
chunk_structure = mapped_column(sa.String(255), nullable=True)
|
||||
enable_api = mapped_column(sa.Boolean, nullable=False, server_default=sa.text("true"))
|
||||
is_multimodal = mapped_column(sa.Boolean, nullable=False, server_default=db.text("false"))
|
||||
|
||||
@property
|
||||
def total_documents(self):
|
||||
@@ -728,9 +731,7 @@ class DocumentSegment(Base):
|
||||
created_by = mapped_column(StringUUID, nullable=False)
|
||||
created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
updated_by = mapped_column(StringUUID, nullable=True)
|
||||
updated_at: Mapped[datetime] = mapped_column(
|
||||
DateTime, nullable=False, server_default=func.current_timestamp(), onupdate=func.current_timestamp()
|
||||
)
|
||||
updated_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
indexing_at: Mapped[datetime | None] = mapped_column(DateTime, nullable=True)
|
||||
completed_at: Mapped[datetime | None] = mapped_column(DateTime, nullable=True)
|
||||
error = mapped_column(LongText, nullable=True)
|
||||
@@ -866,6 +867,47 @@ class DocumentSegment(Base):
|
||||
|
||||
return text
|
||||
|
||||
@property
|
||||
def attachments(self) -> list[dict[str, Any]]:
|
||||
# Use JOIN to fetch attachments in a single query instead of two separate queries
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(
|
||||
SegmentAttachmentBinding.tenant_id == self.tenant_id,
|
||||
SegmentAttachmentBinding.dataset_id == self.dataset_id,
|
||||
SegmentAttachmentBinding.document_id == self.document_id,
|
||||
SegmentAttachmentBinding.segment_id == self.id,
|
||||
)
|
||||
).all()
|
||||
if not attachments_with_bindings:
|
||||
return []
|
||||
attachment_list = []
|
||||
for _, attachment in attachments_with_bindings:
|
||||
upload_file_id = attachment.id
|
||||
nonce = os.urandom(16).hex()
|
||||
timestamp = str(int(time.time()))
|
||||
data_to_sign = f"image-preview|{upload_file_id}|{timestamp}|{nonce}"
|
||||
secret_key = dify_config.SECRET_KEY.encode() if dify_config.SECRET_KEY else b""
|
||||
sign = hmac.new(secret_key, data_to_sign.encode(), hashlib.sha256).digest()
|
||||
encoded_sign = base64.urlsafe_b64encode(sign).decode()
|
||||
|
||||
params = f"timestamp={timestamp}&nonce={nonce}&sign={encoded_sign}"
|
||||
reference_url = dify_config.CONSOLE_API_URL or ""
|
||||
base_url = f"{reference_url}/files/{upload_file_id}/image-preview"
|
||||
source_url = f"{base_url}?{params}"
|
||||
attachment_list.append(
|
||||
{
|
||||
"id": attachment.id,
|
||||
"name": attachment.name,
|
||||
"size": attachment.size,
|
||||
"extension": attachment.extension,
|
||||
"mime_type": attachment.mime_type,
|
||||
"source_url": source_url,
|
||||
}
|
||||
)
|
||||
return attachment_list
|
||||
|
||||
|
||||
class ChildChunk(Base):
|
||||
__tablename__ = "child_chunks"
|
||||
@@ -963,6 +1005,38 @@ class DatasetQuery(TypeBase):
|
||||
DateTime, nullable=False, server_default=sa.func.current_timestamp(), init=False
|
||||
)
|
||||
|
||||
@property
|
||||
def queries(self) -> list[dict[str, Any]]:
|
||||
try:
|
||||
queries = json.loads(self.content)
|
||||
if isinstance(queries, list):
|
||||
for query in queries:
|
||||
if query["content_type"] == QueryType.IMAGE_QUERY:
|
||||
file_info = db.session.query(UploadFile).filter_by(id=query["content"]).first()
|
||||
if file_info:
|
||||
query["file_info"] = {
|
||||
"id": file_info.id,
|
||||
"name": file_info.name,
|
||||
"size": file_info.size,
|
||||
"extension": file_info.extension,
|
||||
"mime_type": file_info.mime_type,
|
||||
"source_url": sign_upload_file(file_info.id, file_info.extension),
|
||||
}
|
||||
else:
|
||||
query["file_info"] = None
|
||||
|
||||
return queries
|
||||
else:
|
||||
return [queries]
|
||||
except JSONDecodeError:
|
||||
return [
|
||||
{
|
||||
"content_type": QueryType.TEXT_QUERY,
|
||||
"content": self.content,
|
||||
"file_info": None,
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class DatasetKeywordTable(TypeBase):
|
||||
__tablename__ = "dataset_keyword_tables"
|
||||
@@ -1470,3 +1544,25 @@ class PipelineRecommendedPlugin(TypeBase):
|
||||
onupdate=func.current_timestamp(),
|
||||
init=False,
|
||||
)
|
||||
|
||||
|
||||
class SegmentAttachmentBinding(Base):
|
||||
__tablename__ = "segment_attachment_bindings"
|
||||
__table_args__ = (
|
||||
sa.PrimaryKeyConstraint("id", name="segment_attachment_binding_pkey"),
|
||||
sa.Index(
|
||||
"segment_attachment_binding_tenant_dataset_document_segment_idx",
|
||||
"tenant_id",
|
||||
"dataset_id",
|
||||
"document_id",
|
||||
"segment_id",
|
||||
),
|
||||
sa.Index("segment_attachment_binding_attachment_idx", "attachment_id"),
|
||||
)
|
||||
id: Mapped[str] = mapped_column(StringUUID, default=lambda: str(uuidv7()))
|
||||
tenant_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
|
||||
dataset_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
|
||||
document_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
|
||||
segment_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
|
||||
attachment_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
|
||||
created_at: Mapped[datetime] = mapped_column(sa.DateTime, nullable=False, server_default=func.current_timestamp())
|
||||
|
||||
31
api/services/attachment_service.py
Normal file
31
api/services/attachment_service.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import base64
|
||||
|
||||
from sqlalchemy import Engine
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from werkzeug.exceptions import NotFound
|
||||
|
||||
from extensions.ext_storage import storage
|
||||
from models.model import UploadFile
|
||||
|
||||
PREVIEW_WORDS_LIMIT = 3000
|
||||
|
||||
|
||||
class AttachmentService:
|
||||
_session_maker: sessionmaker
|
||||
|
||||
def __init__(self, session_factory: sessionmaker | Engine | None = None):
|
||||
if isinstance(session_factory, Engine):
|
||||
self._session_maker = sessionmaker(bind=session_factory)
|
||||
elif isinstance(session_factory, sessionmaker):
|
||||
self._session_maker = session_factory
|
||||
else:
|
||||
raise AssertionError("must be a sessionmaker or an Engine.")
|
||||
|
||||
def get_file_base64(self, file_id: str) -> str:
|
||||
upload_file = (
|
||||
self._session_maker(expire_on_commit=False).query(UploadFile).where(UploadFile.id == file_id).first()
|
||||
)
|
||||
if not upload_file:
|
||||
raise NotFound("File not found")
|
||||
blob = storage.load_once(upload_file.key)
|
||||
return base64.b64encode(blob).decode()
|
||||
@@ -7,7 +7,7 @@ import time
|
||||
import uuid
|
||||
from collections import Counter
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Literal
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
import sqlalchemy as sa
|
||||
from redis.exceptions import LockNotOwnedError
|
||||
@@ -19,9 +19,10 @@ from configs import dify_config
|
||||
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
|
||||
from core.helper.name_generator import generate_incremental_name
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
||||
from core.rag.index_processor.constant.built_in_field import BuiltInField
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from enums.cloud_plan import CloudPlan
|
||||
from events.dataset_event import dataset_was_deleted
|
||||
@@ -46,6 +47,7 @@ from models.dataset import (
|
||||
DocumentSegment,
|
||||
ExternalKnowledgeBindings,
|
||||
Pipeline,
|
||||
SegmentAttachmentBinding,
|
||||
)
|
||||
from models.model import UploadFile
|
||||
from models.provider_ids import ModelProviderID
|
||||
@@ -363,6 +365,27 @@ class DatasetService:
|
||||
except ProviderTokenNotInitError as ex:
|
||||
raise ValueError(ex.description)
|
||||
|
||||
@staticmethod
|
||||
def check_is_multimodal_model(tenant_id: str, model_provider: str, model: str):
|
||||
try:
|
||||
model_manager = ModelManager()
|
||||
model_instance = model_manager.get_model_instance(
|
||||
tenant_id=tenant_id,
|
||||
provider=model_provider,
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=model,
|
||||
)
|
||||
text_embedding_model = cast(TextEmbeddingModel, model_instance.model_type_instance)
|
||||
model_schema = text_embedding_model.get_model_schema(model_instance.model, model_instance.credentials)
|
||||
if not model_schema:
|
||||
raise ValueError("Model schema not found")
|
||||
if model_schema.features and ModelFeature.VISION in model_schema.features:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
except LLMBadRequestError:
|
||||
raise ValueError("No Model available. Please configure a valid provider in the Settings -> Model Provider.")
|
||||
|
||||
@staticmethod
|
||||
def check_reranking_model_setting(tenant_id: str, reranking_model_provider: str, reranking_model: str):
|
||||
try:
|
||||
@@ -402,13 +425,13 @@ class DatasetService:
|
||||
if not dataset:
|
||||
raise ValueError("Dataset not found")
|
||||
# check if dataset name is exists
|
||||
|
||||
if DatasetService._has_dataset_same_name(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
name=data.get("name", dataset.name),
|
||||
):
|
||||
raise ValueError("Dataset name already exists")
|
||||
if data.get("name") and data.get("name") != dataset.name:
|
||||
if DatasetService._has_dataset_same_name(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
name=data.get("name", dataset.name),
|
||||
):
|
||||
raise ValueError("Dataset name already exists")
|
||||
|
||||
# Verify user has permission to update this dataset
|
||||
DatasetService.check_dataset_permission(dataset, user)
|
||||
@@ -844,6 +867,12 @@ class DatasetService:
|
||||
model_type=ModelType.TEXT_EMBEDDING,
|
||||
model=knowledge_configuration.embedding_model or "",
|
||||
)
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
current_user.current_tenant_id,
|
||||
knowledge_configuration.embedding_model_provider,
|
||||
knowledge_configuration.embedding_model,
|
||||
)
|
||||
dataset.is_multimodal = is_multimodal
|
||||
dataset.embedding_model = embedding_model.model
|
||||
dataset.embedding_model_provider = embedding_model.provider
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
@@ -880,6 +909,12 @@ class DatasetService:
|
||||
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
|
||||
embedding_model.provider, embedding_model.model
|
||||
)
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
current_user.current_tenant_id,
|
||||
knowledge_configuration.embedding_model_provider,
|
||||
knowledge_configuration.embedding_model,
|
||||
)
|
||||
dataset.is_multimodal = is_multimodal
|
||||
dataset.collection_binding_id = dataset_collection_binding.id
|
||||
dataset.indexing_technique = knowledge_configuration.indexing_technique
|
||||
except LLMBadRequestError:
|
||||
@@ -937,6 +972,12 @@ class DatasetService:
|
||||
)
|
||||
)
|
||||
dataset.collection_binding_id = dataset_collection_binding.id
|
||||
is_multimodal = DatasetService.check_is_multimodal_model(
|
||||
current_user.current_tenant_id,
|
||||
knowledge_configuration.embedding_model_provider,
|
||||
knowledge_configuration.embedding_model,
|
||||
)
|
||||
dataset.is_multimodal = is_multimodal
|
||||
except LLMBadRequestError:
|
||||
raise ValueError(
|
||||
"No Embedding Model available. Please configure a valid provider "
|
||||
@@ -2305,6 +2346,7 @@ class DocumentService:
|
||||
embedding_model_provider=knowledge_config.embedding_model_provider,
|
||||
collection_binding_id=dataset_collection_binding_id,
|
||||
retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
|
||||
is_multimodal=knowledge_config.is_multimodal,
|
||||
)
|
||||
|
||||
db.session.add(dataset)
|
||||
@@ -2685,6 +2727,13 @@ class SegmentService:
|
||||
if "content" not in args or not args["content"] or not args["content"].strip():
|
||||
raise ValueError("Content is empty")
|
||||
|
||||
if args.get("attachment_ids"):
|
||||
if not isinstance(args["attachment_ids"], list):
|
||||
raise ValueError("Attachment IDs is invalid")
|
||||
single_chunk_attachment_limit = dify_config.SINGLE_CHUNK_ATTACHMENT_LIMIT
|
||||
if len(args["attachment_ids"]) > single_chunk_attachment_limit:
|
||||
raise ValueError(f"Exceeded maximum attachment limit of {single_chunk_attachment_limit}")
|
||||
|
||||
@classmethod
|
||||
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
|
||||
assert isinstance(current_user, Account)
|
||||
@@ -2731,11 +2780,23 @@ class SegmentService:
|
||||
segment_document.word_count += len(args["answer"])
|
||||
segment_document.answer = args["answer"]
|
||||
|
||||
db.session.add(segment_document)
|
||||
# update document word count
|
||||
assert document.word_count is not None
|
||||
document.word_count += segment_document.word_count
|
||||
db.session.add(document)
|
||||
db.session.add(segment_document)
|
||||
# update document word count
|
||||
assert document.word_count is not None
|
||||
document.word_count += segment_document.word_count
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
|
||||
if args["attachment_ids"]:
|
||||
for attachment_id in args["attachment_ids"]:
|
||||
binding = SegmentAttachmentBinding(
|
||||
tenant_id=current_user.current_tenant_id,
|
||||
dataset_id=document.dataset_id,
|
||||
document_id=document.id,
|
||||
segment_id=segment_document.id,
|
||||
attachment_id=attachment_id,
|
||||
)
|
||||
db.session.add(binding)
|
||||
db.session.commit()
|
||||
|
||||
# save vector index
|
||||
@@ -2899,7 +2960,7 @@ class SegmentService:
|
||||
document.word_count = max(0, document.word_count + word_count_change)
|
||||
db.session.add(document)
|
||||
# update segment index task
|
||||
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
||||
if document.doc_form == IndexStructureType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
||||
# regenerate child chunks
|
||||
# get embedding model instance
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
@@ -2926,12 +2987,11 @@ class SegmentService:
|
||||
.where(DatasetProcessRule.id == document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
if not processing_rule:
|
||||
raise ValueError("No processing rule found.")
|
||||
VectorService.generate_child_chunks(
|
||||
segment, document, dataset, embedding_model_instance, processing_rule, True
|
||||
)
|
||||
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
|
||||
if processing_rule:
|
||||
VectorService.generate_child_chunks(
|
||||
segment, document, dataset, embedding_model_instance, processing_rule, True
|
||||
)
|
||||
elif document.doc_form in (IndexStructureType.PARAGRAPH_INDEX, IndexStructureType.QA_INDEX):
|
||||
if args.enabled or keyword_changed:
|
||||
# update segment vector index
|
||||
VectorService.update_segment_vector(args.keywords, segment, dataset)
|
||||
@@ -2976,7 +3036,7 @@ class SegmentService:
|
||||
db.session.add(document)
|
||||
db.session.add(segment)
|
||||
db.session.commit()
|
||||
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
||||
if document.doc_form == IndexStructureType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
|
||||
# get embedding model instance
|
||||
if dataset.indexing_technique == "high_quality":
|
||||
# check embedding model setting
|
||||
@@ -3002,15 +3062,15 @@ class SegmentService:
|
||||
.where(DatasetProcessRule.id == document.dataset_process_rule_id)
|
||||
.first()
|
||||
)
|
||||
if not processing_rule:
|
||||
raise ValueError("No processing rule found.")
|
||||
VectorService.generate_child_chunks(
|
||||
segment, document, dataset, embedding_model_instance, processing_rule, True
|
||||
)
|
||||
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
|
||||
if processing_rule:
|
||||
VectorService.generate_child_chunks(
|
||||
segment, document, dataset, embedding_model_instance, processing_rule, True
|
||||
)
|
||||
elif document.doc_form in (IndexStructureType.PARAGRAPH_INDEX, IndexStructureType.QA_INDEX):
|
||||
# update segment vector index
|
||||
VectorService.update_segment_vector(args.keywords, segment, dataset)
|
||||
|
||||
# update multimodel vector index
|
||||
VectorService.update_multimodel_vector(segment, args.attachment_ids or [], dataset)
|
||||
except Exception as e:
|
||||
logger.exception("update segment index failed")
|
||||
segment.enabled = False
|
||||
@@ -3048,7 +3108,9 @@ class SegmentService:
|
||||
)
|
||||
child_node_ids = [chunk[0] for chunk in child_chunks if chunk[0]]
|
||||
|
||||
delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id, child_node_ids)
|
||||
delete_segment_from_index_task.delay(
|
||||
[segment.index_node_id], dataset.id, document.id, [segment.id], child_node_ids
|
||||
)
|
||||
|
||||
db.session.delete(segment)
|
||||
# update document word count
|
||||
@@ -3097,7 +3159,9 @@ class SegmentService:
|
||||
|
||||
# Start async cleanup with both parent and child node IDs
|
||||
if index_node_ids or child_node_ids:
|
||||
delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id, child_node_ids)
|
||||
delete_segment_from_index_task.delay(
|
||||
index_node_ids, dataset.id, document.id, segment_db_ids, child_node_ids
|
||||
)
|
||||
|
||||
if document.word_count is None:
|
||||
document.word_count = 0
|
||||
|
||||
@@ -124,6 +124,14 @@ class KnowledgeConfig(BaseModel):
|
||||
embedding_model: str | None = None
|
||||
embedding_model_provider: str | None = None
|
||||
name: str | None = None
|
||||
is_multimodal: bool = False
|
||||
|
||||
|
||||
class SegmentCreateArgs(BaseModel):
|
||||
content: str | None = None
|
||||
answer: str | None = None
|
||||
keywords: list[str] | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class SegmentUpdateArgs(BaseModel):
|
||||
@@ -132,6 +140,7 @@ class SegmentUpdateArgs(BaseModel):
|
||||
keywords: list[str] | None = None
|
||||
regenerate_child_chunks: bool = False
|
||||
enabled: bool | None = None
|
||||
attachment_ids: list[str] | None = None
|
||||
|
||||
|
||||
class ChildChunkUpdateArgs(BaseModel):
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import base64
|
||||
import hashlib
|
||||
import os
|
||||
import uuid
|
||||
@@ -123,6 +124,15 @@ class FileService:
|
||||
|
||||
return file_size <= file_size_limit
|
||||
|
||||
def get_file_base64(self, file_id: str) -> str:
|
||||
upload_file = (
|
||||
self._session_maker(expire_on_commit=False).query(UploadFile).where(UploadFile.id == file_id).first()
|
||||
)
|
||||
if not upload_file:
|
||||
raise NotFound("File not found")
|
||||
blob = storage.load_once(upload_file.key)
|
||||
return base64.b64encode(blob).decode()
|
||||
|
||||
def upload_text(self, text: str, text_name: str, user_id: str, tenant_id: str) -> UploadFile:
|
||||
if len(text_name) > 200:
|
||||
text_name = text_name[:200]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
@@ -5,6 +6,7 @@ from typing import Any
|
||||
from core.app.app_config.entities import ModelConfig
|
||||
from core.model_runtime.entities import LLMMode
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.index_processor.constant.query_type import QueryType
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
@@ -32,6 +34,7 @@ class HitTestingService:
|
||||
account: Account,
|
||||
retrieval_model: Any, # FIXME drop this any
|
||||
external_retrieval_model: dict,
|
||||
attachment_ids: list | None = None,
|
||||
limit: int = 10,
|
||||
):
|
||||
start = time.perf_counter()
|
||||
@@ -41,7 +44,7 @@ class HitTestingService:
|
||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||
document_ids_filter = None
|
||||
metadata_filtering_conditions = retrieval_model.get("metadata_filtering_conditions", {})
|
||||
if metadata_filtering_conditions:
|
||||
if metadata_filtering_conditions and query:
|
||||
dataset_retrieval = DatasetRetrieval()
|
||||
|
||||
from core.app.app_config.entities import MetadataFilteringCondition
|
||||
@@ -66,6 +69,7 @@ class HitTestingService:
|
||||
retrieval_method=RetrievalMethod(retrieval_model.get("search_method", RetrievalMethod.SEMANTIC_SEARCH)),
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
attachment_ids=attachment_ids,
|
||||
top_k=retrieval_model.get("top_k", 4),
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
@@ -80,17 +84,24 @@ class HitTestingService:
|
||||
|
||||
end = time.perf_counter()
|
||||
logger.debug("Hit testing retrieve in %s seconds", end - start)
|
||||
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset.id,
|
||||
content=query,
|
||||
source="hit_testing",
|
||||
source_app_id=None,
|
||||
created_by_role="account",
|
||||
created_by=account.id,
|
||||
)
|
||||
|
||||
db.session.add(dataset_query)
|
||||
dataset_queries = []
|
||||
if query:
|
||||
content = {"content_type": QueryType.TEXT_QUERY, "content": query}
|
||||
dataset_queries.append(content)
|
||||
if attachment_ids:
|
||||
for attachment_id in attachment_ids:
|
||||
content = {"content_type": QueryType.IMAGE_QUERY, "content": attachment_id}
|
||||
dataset_queries.append(content)
|
||||
if dataset_queries:
|
||||
dataset_query = DatasetQuery(
|
||||
dataset_id=dataset.id,
|
||||
content=json.dumps(dataset_queries),
|
||||
source="hit_testing",
|
||||
source_app_id=None,
|
||||
created_by_role="account",
|
||||
created_by=account.id,
|
||||
)
|
||||
db.session.add(dataset_query)
|
||||
db.session.commit()
|
||||
|
||||
return cls.compact_retrieve_response(query, all_documents)
|
||||
@@ -168,9 +179,14 @@ class HitTestingService:
|
||||
@classmethod
|
||||
def hit_testing_args_check(cls, args):
|
||||
query = args["query"]
|
||||
attachment_ids = args["attachment_ids"]
|
||||
|
||||
if not query or len(query) > 250:
|
||||
raise ValueError("Query is required and cannot exceed 250 characters")
|
||||
if not attachment_ids and not query:
|
||||
raise ValueError("Query or attachment_ids is required")
|
||||
if query and len(query) > 250:
|
||||
raise ValueError("Query cannot exceed 250 characters")
|
||||
if attachment_ids and not isinstance(attachment_ids, list):
|
||||
raise ValueError("Attachment_ids must be a list")
|
||||
|
||||
@staticmethod
|
||||
def escape_query_for_search(query: str) -> str:
|
||||
|
||||
@@ -4,11 +4,14 @@ from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.models.document import AttachmentDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
|
||||
from models import UploadFile
|
||||
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.entities.knowledge_entities.knowledge_entities import ParentMode
|
||||
|
||||
@@ -21,9 +24,10 @@ class VectorService:
|
||||
cls, keywords_list: list[list[str]] | None, segments: list[DocumentSegment], dataset: Dataset, doc_form: str
|
||||
):
|
||||
documents: list[Document] = []
|
||||
multimodal_documents: list[AttachmentDocument] = []
|
||||
|
||||
for segment in segments:
|
||||
if doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
dataset_document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
|
||||
if not dataset_document:
|
||||
logger.warning(
|
||||
@@ -70,12 +74,29 @@ class VectorService:
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.TEXT,
|
||||
},
|
||||
)
|
||||
documents.append(rag_document)
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodal_document: AttachmentDocument = AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
multimodal_documents.append(multimodal_document)
|
||||
index_processor: BaseIndexProcessor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
|
||||
if len(documents) > 0:
|
||||
index_processor = IndexProcessorFactory(doc_form).init_index_processor()
|
||||
index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
|
||||
index_processor.load(dataset, documents, None, with_keywords=True, keywords_list=keywords_list)
|
||||
if len(multimodal_documents) > 0:
|
||||
index_processor.load(dataset, [], multimodal_documents, with_keywords=False)
|
||||
|
||||
@classmethod
|
||||
def update_segment_vector(cls, keywords: list[str] | None, segment: DocumentSegment, dataset: Dataset):
|
||||
@@ -130,6 +151,7 @@ class VectorService:
|
||||
"doc_hash": segment.index_node_hash,
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.TEXT,
|
||||
},
|
||||
)
|
||||
# use full doc mode to generate segment's child chunk
|
||||
@@ -226,3 +248,92 @@ class VectorService:
|
||||
def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
|
||||
vector = Vector(dataset=dataset)
|
||||
vector.delete_by_ids([child_chunk.index_node_id])
|
||||
|
||||
@classmethod
|
||||
def update_multimodel_vector(cls, segment: DocumentSegment, attachment_ids: list[str], dataset: Dataset):
|
||||
if dataset.indexing_technique != "high_quality":
|
||||
return
|
||||
|
||||
attachments = segment.attachments
|
||||
old_attachment_ids = [attachment["id"] for attachment in attachments] if attachments else []
|
||||
|
||||
# Check if there's any actual change needed
|
||||
if set(attachment_ids) == set(old_attachment_ids):
|
||||
return
|
||||
|
||||
try:
|
||||
vector = Vector(dataset=dataset)
|
||||
if dataset.is_multimodal:
|
||||
# Delete old vectors if they exist
|
||||
if old_attachment_ids:
|
||||
vector.delete_by_ids(old_attachment_ids)
|
||||
|
||||
# Delete existing segment attachment bindings in one operation
|
||||
db.session.query(SegmentAttachmentBinding).where(SegmentAttachmentBinding.segment_id == segment.id).delete(
|
||||
synchronize_session=False
|
||||
)
|
||||
|
||||
if not attachment_ids:
|
||||
db.session.commit()
|
||||
return
|
||||
|
||||
# Bulk fetch upload files - only fetch needed fields
|
||||
upload_file_list = db.session.query(UploadFile).where(UploadFile.id.in_(attachment_ids)).all()
|
||||
|
||||
if not upload_file_list:
|
||||
db.session.commit()
|
||||
return
|
||||
|
||||
# Create a mapping for quick lookup
|
||||
upload_file_map = {upload_file.id: upload_file for upload_file in upload_file_list}
|
||||
|
||||
# Prepare batch operations
|
||||
bindings = []
|
||||
documents = []
|
||||
|
||||
# Create common metadata base to avoid repetition
|
||||
base_metadata = {
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
}
|
||||
|
||||
# Process attachments in the order specified by attachment_ids
|
||||
for attachment_id in attachment_ids:
|
||||
upload_file = upload_file_map.get(attachment_id)
|
||||
if not upload_file:
|
||||
logger.warning("Upload file not found for attachment_id: %s", attachment_id)
|
||||
continue
|
||||
|
||||
# Create segment attachment binding
|
||||
bindings.append(
|
||||
SegmentAttachmentBinding(
|
||||
tenant_id=segment.tenant_id,
|
||||
dataset_id=segment.dataset_id,
|
||||
document_id=segment.document_id,
|
||||
segment_id=segment.id,
|
||||
attachment_id=upload_file.id,
|
||||
)
|
||||
)
|
||||
|
||||
# Create document for vector indexing
|
||||
documents.append(
|
||||
Document(page_content=upload_file.name, metadata={**base_metadata, "doc_id": upload_file.id})
|
||||
)
|
||||
|
||||
# Bulk insert all bindings at once
|
||||
if bindings:
|
||||
db.session.add_all(bindings)
|
||||
|
||||
# Add documents to vector store if any
|
||||
if documents and dataset.is_multimodal:
|
||||
vector.add_texts(documents, duplicate_check=True)
|
||||
|
||||
# Single commit for all operations
|
||||
db.session.commit()
|
||||
|
||||
except Exception:
|
||||
logger.exception("Failed to update multimodal vector for segment %s", segment.id)
|
||||
db.session.rollback()
|
||||
raise
|
||||
|
||||
@@ -4,9 +4,10 @@ import time
|
||||
import click
|
||||
from celery import shared_task
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
@@ -55,6 +56,7 @@ def add_document_to_index_task(dataset_document_id: str):
|
||||
)
|
||||
|
||||
documents = []
|
||||
multimodal_documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
@@ -65,7 +67,7 @@ def add_document_to_index_task(dataset_document_id: str):
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -81,11 +83,25 @@ def add_document_to_index_task(dataset_document_id: str):
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodal_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
documents.append(document)
|
||||
|
||||
index_type = dataset.doc_form
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
index_processor.load(dataset, documents)
|
||||
index_processor.load(dataset, documents, multimodal_documents=multimodal_documents)
|
||||
|
||||
# delete auto disable log
|
||||
db.session.query(DatasetAutoDisableLog).where(DatasetAutoDisableLog.document_id == dataset_document.id).delete()
|
||||
|
||||
@@ -18,6 +18,7 @@ from models.dataset import (
|
||||
DatasetQuery,
|
||||
Document,
|
||||
DocumentSegment,
|
||||
SegmentAttachmentBinding,
|
||||
)
|
||||
from models.model import UploadFile
|
||||
|
||||
@@ -58,14 +59,20 @@ def clean_dataset_task(
|
||||
)
|
||||
documents = db.session.scalars(select(Document).where(Document.dataset_id == dataset_id)).all()
|
||||
segments = db.session.scalars(select(DocumentSegment).where(DocumentSegment.dataset_id == dataset_id)).all()
|
||||
# Use JOIN to fetch attachments with bindings in a single query
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(SegmentAttachmentBinding.tenant_id == tenant_id, SegmentAttachmentBinding.dataset_id == dataset_id)
|
||||
).all()
|
||||
|
||||
# Enhanced validation: Check if doc_form is None, empty string, or contains only whitespace
|
||||
# This ensures all invalid doc_form values are properly handled
|
||||
if doc_form is None or (isinstance(doc_form, str) and not doc_form.strip()):
|
||||
# Use default paragraph index type for empty/invalid datasets to enable vector database cleanup
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
|
||||
doc_form = IndexType.PARAGRAPH_INDEX
|
||||
doc_form = IndexStructureType.PARAGRAPH_INDEX
|
||||
logger.info(
|
||||
click.style(f"Invalid doc_form detected, using default index type for cleanup: {doc_form}", fg="yellow")
|
||||
)
|
||||
@@ -90,6 +97,7 @@ def clean_dataset_task(
|
||||
|
||||
for document in documents:
|
||||
db.session.delete(document)
|
||||
# delete document file
|
||||
|
||||
for segment in segments:
|
||||
image_upload_file_ids = get_image_upload_file_ids(segment.content)
|
||||
@@ -107,6 +115,19 @@ def clean_dataset_task(
|
||||
)
|
||||
db.session.delete(image_file)
|
||||
db.session.delete(segment)
|
||||
# delete segment attachments
|
||||
if attachments_with_bindings:
|
||||
for binding, attachment_file in attachments_with_bindings:
|
||||
try:
|
||||
storage.delete(attachment_file.key)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
"Delete attachment_file failed when storage deleted, \
|
||||
attachment_file_id: %s",
|
||||
binding.attachment_id,
|
||||
)
|
||||
db.session.delete(attachment_file)
|
||||
db.session.delete(binding)
|
||||
|
||||
db.session.query(DatasetProcessRule).where(DatasetProcessRule.dataset_id == dataset_id).delete()
|
||||
db.session.query(DatasetQuery).where(DatasetQuery.dataset_id == dataset_id).delete()
|
||||
|
||||
@@ -9,7 +9,7 @@ from core.rag.index_processor.index_processor_factory import IndexProcessorFacto
|
||||
from core.tools.utils.web_reader_tool import get_image_upload_file_ids
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_storage import storage
|
||||
from models.dataset import Dataset, DatasetMetadataBinding, DocumentSegment
|
||||
from models.dataset import Dataset, DatasetMetadataBinding, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.model import UploadFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -36,6 +36,16 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
|
||||
raise Exception("Document has no dataset")
|
||||
|
||||
segments = db.session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
|
||||
# Use JOIN to fetch attachments with bindings in a single query
|
||||
attachments_with_bindings = db.session.execute(
|
||||
select(SegmentAttachmentBinding, UploadFile)
|
||||
.join(UploadFile, UploadFile.id == SegmentAttachmentBinding.attachment_id)
|
||||
.where(
|
||||
SegmentAttachmentBinding.tenant_id == dataset.tenant_id,
|
||||
SegmentAttachmentBinding.dataset_id == dataset_id,
|
||||
SegmentAttachmentBinding.document_id == document_id,
|
||||
)
|
||||
).all()
|
||||
# check segment is exist
|
||||
if segments:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
@@ -69,6 +79,19 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
|
||||
logger.exception("Delete file failed when document deleted, file_id: %s", file_id)
|
||||
db.session.delete(file)
|
||||
db.session.commit()
|
||||
# delete segment attachments
|
||||
if attachments_with_bindings:
|
||||
for binding, attachment_file in attachments_with_bindings:
|
||||
try:
|
||||
storage.delete(attachment_file.key)
|
||||
except Exception:
|
||||
logger.exception(
|
||||
"Delete attachment_file failed when storage deleted, \
|
||||
attachment_file_id: %s",
|
||||
binding.attachment_id,
|
||||
)
|
||||
db.session.delete(attachment_file)
|
||||
db.session.delete(binding)
|
||||
|
||||
# delete dataset metadata binding
|
||||
db.session.query(DatasetMetadataBinding).where(
|
||||
|
||||
@@ -4,9 +4,10 @@ import time
|
||||
import click
|
||||
from celery import shared_task # type: ignore
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
@@ -28,7 +29,7 @@ def deal_dataset_index_update_task(dataset_id: str, action: str):
|
||||
|
||||
if not dataset:
|
||||
raise Exception("Dataset not found")
|
||||
index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
|
||||
index_type = dataset.doc_form or IndexStructureType.PARAGRAPH_INDEX
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
if action == "upgrade":
|
||||
dataset_documents = (
|
||||
@@ -119,6 +120,7 @@ def deal_dataset_index_update_task(dataset_id: str, action: str):
|
||||
)
|
||||
if segments:
|
||||
documents = []
|
||||
multimodal_documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
@@ -129,7 +131,7 @@ def deal_dataset_index_update_task(dataset_id: str, action: str):
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -145,9 +147,25 @@ def deal_dataset_index_update_task(dataset_id: str, action: str):
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodal_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_processor.load(dataset, documents, with_keywords=False)
|
||||
index_processor.load(
|
||||
dataset, documents, multimodal_documents=multimodal_documents, with_keywords=False
|
||||
)
|
||||
db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
|
||||
{"indexing_status": "completed"}, synchronize_session=False
|
||||
)
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import Literal
|
||||
|
||||
import click
|
||||
from celery import shared_task
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
@@ -17,7 +17,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "add", "update"]):
|
||||
def deal_dataset_vector_index_task(dataset_id: str, action: str):
|
||||
"""
|
||||
Async deal dataset from index
|
||||
:param dataset_id: dataset_id
|
||||
@@ -32,7 +32,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "a
|
||||
|
||||
if not dataset:
|
||||
raise Exception("Dataset not found")
|
||||
index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
|
||||
index_type = dataset.doc_form or IndexStructureType.PARAGRAPH_INDEX
|
||||
index_processor = IndexProcessorFactory(index_type).init_index_processor()
|
||||
if action == "remove":
|
||||
index_processor.clean(dataset, None, with_keywords=False)
|
||||
@@ -119,6 +119,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "a
|
||||
)
|
||||
if segments:
|
||||
documents = []
|
||||
multimodal_documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
@@ -129,7 +130,7 @@ def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "a
|
||||
"dataset_id": segment.dataset_id,
|
||||
},
|
||||
)
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -145,9 +146,25 @@ def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "a
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodal_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_processor.load(dataset, documents, with_keywords=False)
|
||||
index_processor.load(
|
||||
dataset, documents, multimodal_documents=multimodal_documents, with_keywords=False
|
||||
)
|
||||
db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
|
||||
{"indexing_status": "completed"}, synchronize_session=False
|
||||
)
|
||||
|
||||
@@ -6,14 +6,15 @@ from celery import shared_task
|
||||
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document
|
||||
from models.dataset import Dataset, Document, SegmentAttachmentBinding
|
||||
from models.model import UploadFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@shared_task(queue="dataset")
|
||||
def delete_segment_from_index_task(
|
||||
index_node_ids: list, dataset_id: str, document_id: str, child_node_ids: list | None = None
|
||||
index_node_ids: list, dataset_id: str, document_id: str, segment_ids: list, child_node_ids: list | None = None
|
||||
):
|
||||
"""
|
||||
Async Remove segment from index
|
||||
@@ -49,6 +50,21 @@ def delete_segment_from_index_task(
|
||||
delete_child_chunks=True,
|
||||
precomputed_child_node_ids=child_node_ids,
|
||||
)
|
||||
if dataset.is_multimodal:
|
||||
# delete segment attachment binding
|
||||
segment_attachment_bindings = (
|
||||
db.session.query(SegmentAttachmentBinding)
|
||||
.where(SegmentAttachmentBinding.segment_id.in_(segment_ids))
|
||||
.all()
|
||||
)
|
||||
if segment_attachment_bindings:
|
||||
attachment_ids = [binding.attachment_id for binding in segment_attachment_bindings]
|
||||
index_processor.clean(dataset=dataset, node_ids=attachment_ids, with_keywords=False)
|
||||
for binding in segment_attachment_bindings:
|
||||
db.session.delete(binding)
|
||||
# delete upload file
|
||||
db.session.query(UploadFile).where(UploadFile.id.in_(attachment_ids)).delete(synchronize_session=False)
|
||||
db.session.commit()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logger.info(click.style(f"Segment deleted from index latency: {end_at - start_at}", fg="green"))
|
||||
|
||||
@@ -8,7 +8,7 @@ from sqlalchemy import select
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset, DocumentSegment
|
||||
from models.dataset import Dataset, DocumentSegment, SegmentAttachmentBinding
|
||||
from models.dataset import Document as DatasetDocument
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -59,6 +59,16 @@ def disable_segments_from_index_task(segment_ids: list, dataset_id: str, documen
|
||||
|
||||
try:
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
if dataset.is_multimodal:
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
segment_attachment_bindings = (
|
||||
db.session.query(SegmentAttachmentBinding)
|
||||
.where(SegmentAttachmentBinding.segment_id.in_(segment_ids))
|
||||
.all()
|
||||
)
|
||||
if segment_attachment_bindings:
|
||||
attachment_ids = [binding.attachment_id for binding in segment_attachment_bindings]
|
||||
index_node_ids.extend(attachment_ids)
|
||||
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=False)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
|
||||
@@ -4,9 +4,10 @@ import time
|
||||
import click
|
||||
from celery import shared_task
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
@@ -67,7 +68,7 @@ def enable_segment_to_index_task(segment_id: str):
|
||||
return
|
||||
|
||||
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -83,8 +84,24 @@ def enable_segment_to_index_task(segment_id: str):
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
multimodel_documents = []
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodel_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
# save vector index
|
||||
index_processor.load(dataset, [document])
|
||||
index_processor.load(dataset, [document], multimodal_documents=multimodel_documents)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logger.info(click.style(f"Segment enabled to index: {segment.id} latency: {end_at - start_at}", fg="green"))
|
||||
|
||||
@@ -5,9 +5,10 @@ import click
|
||||
from celery import shared_task
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.doc_type import DocType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from core.rag.models.document import AttachmentDocument, ChildDocument, Document
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
@@ -60,6 +61,7 @@ def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_i
|
||||
|
||||
try:
|
||||
documents = []
|
||||
multimodal_documents = []
|
||||
for segment in segments:
|
||||
document = Document(
|
||||
page_content=segment.content,
|
||||
@@ -71,7 +73,7 @@ def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_i
|
||||
},
|
||||
)
|
||||
|
||||
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
|
||||
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
|
||||
child_chunks = segment.get_child_chunks()
|
||||
if child_chunks:
|
||||
child_documents = []
|
||||
@@ -87,9 +89,24 @@ def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_i
|
||||
)
|
||||
child_documents.append(child_document)
|
||||
document.children = child_documents
|
||||
|
||||
if dataset.is_multimodal:
|
||||
for attachment in segment.attachments:
|
||||
multimodal_documents.append(
|
||||
AttachmentDocument(
|
||||
page_content=attachment["name"],
|
||||
metadata={
|
||||
"doc_id": attachment["id"],
|
||||
"doc_hash": "",
|
||||
"document_id": segment.document_id,
|
||||
"dataset_id": segment.dataset_id,
|
||||
"doc_type": DocType.IMAGE,
|
||||
},
|
||||
)
|
||||
)
|
||||
documents.append(document)
|
||||
# save vector index
|
||||
index_processor.load(dataset, documents)
|
||||
index_processor.load(dataset, documents, multimodal_documents=multimodal_documents)
|
||||
|
||||
end_at = time.perf_counter()
|
||||
logger.info(click.style(f"Segments enabled to index latency: {end_at - start_at}", fg="green"))
|
||||
|
||||
@@ -3,7 +3,7 @@ from unittest.mock import MagicMock, patch
|
||||
import pytest
|
||||
from faker import Faker
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models import Account, Tenant, TenantAccountJoin, TenantAccountRole
|
||||
@@ -95,7 +95,7 @@ class TestAddDocumentToIndexTask:
|
||||
created_by=account.id,
|
||||
indexing_status="completed",
|
||||
enabled=True,
|
||||
doc_form=IndexType.PARAGRAPH_INDEX,
|
||||
doc_form=IndexStructureType.PARAGRAPH_INDEX,
|
||||
)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
@@ -172,7 +172,9 @@ class TestAddDocumentToIndexTask:
|
||||
|
||||
# Assert: Verify the expected outcomes
|
||||
# Verify index processor was called correctly
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.PARAGRAPH_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.PARAGRAPH_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify database state changes
|
||||
@@ -204,7 +206,7 @@ class TestAddDocumentToIndexTask:
|
||||
)
|
||||
|
||||
# Update document to use different index type
|
||||
document.doc_form = IndexType.QA_INDEX
|
||||
document.doc_form = IndexStructureType.QA_INDEX
|
||||
db.session.commit()
|
||||
|
||||
# Refresh dataset to ensure doc_form property reflects the updated document
|
||||
@@ -221,7 +223,9 @@ class TestAddDocumentToIndexTask:
|
||||
add_document_to_index_task(document.id)
|
||||
|
||||
# Assert: Verify different index type handling
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.QA_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.QA_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify the load method was called with correct parameters
|
||||
@@ -360,7 +364,7 @@ class TestAddDocumentToIndexTask:
|
||||
)
|
||||
|
||||
# Update document to use parent-child index type
|
||||
document.doc_form = IndexType.PARENT_CHILD_INDEX
|
||||
document.doc_form = IndexStructureType.PARENT_CHILD_INDEX
|
||||
db.session.commit()
|
||||
|
||||
# Refresh dataset to ensure doc_form property reflects the updated document
|
||||
@@ -391,7 +395,7 @@ class TestAddDocumentToIndexTask:
|
||||
|
||||
# Assert: Verify parent-child index processing
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexType.PARENT_CHILD_INDEX
|
||||
IndexStructureType.PARENT_CHILD_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
@@ -465,8 +469,10 @@ class TestAddDocumentToIndexTask:
|
||||
# Act: Execute the task
|
||||
add_document_to_index_task(document.id)
|
||||
|
||||
# Assert: Verify index processing occurred with all completed segments
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.PARAGRAPH_INDEX)
|
||||
# Assert: Verify index processing occurred but with empty documents list
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.PARAGRAPH_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify the load method was called with all completed segments
|
||||
@@ -532,7 +538,9 @@ class TestAddDocumentToIndexTask:
|
||||
assert len(remaining_logs) == 0
|
||||
|
||||
# Verify index processing occurred normally
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.PARAGRAPH_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.PARAGRAPH_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify segments were enabled
|
||||
@@ -699,7 +707,9 @@ class TestAddDocumentToIndexTask:
|
||||
add_document_to_index_task(document.id)
|
||||
|
||||
# Assert: Verify only eligible segments were processed
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.PARAGRAPH_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.PARAGRAPH_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify the load method was called with correct parameters
|
||||
|
||||
@@ -12,7 +12,7 @@ from unittest.mock import MagicMock, patch
|
||||
|
||||
from faker import Faker
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from models import Account, Dataset, Document, DocumentSegment, Tenant
|
||||
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
|
||||
|
||||
@@ -164,7 +164,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
document.updated_at = fake.date_time_this_year()
|
||||
document.doc_type = kwargs.get("doc_type", "text")
|
||||
document.doc_metadata = kwargs.get("doc_metadata", {})
|
||||
document.doc_form = kwargs.get("doc_form", IndexType.PARAGRAPH_INDEX)
|
||||
document.doc_form = kwargs.get("doc_form", IndexStructureType.PARAGRAPH_INDEX)
|
||||
document.doc_language = kwargs.get("doc_language", "en")
|
||||
|
||||
db_session_with_containers.add(document)
|
||||
@@ -244,8 +244,11 @@ class TestDeleteSegmentFromIndexTask:
|
||||
mock_processor = MagicMock()
|
||||
mock_index_processor_factory.return_value.init_index_processor.return_value = mock_processor
|
||||
|
||||
# Extract segment IDs for the task
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Execute the task
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed successfully
|
||||
assert result is None # Task should return None on success
|
||||
@@ -279,7 +282,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
index_node_ids = [f"node_{fake.uuid4()}" for _ in range(3)]
|
||||
|
||||
# Execute the task with non-existent dataset
|
||||
result = delete_segment_from_index_task(index_node_ids, non_existent_dataset_id, non_existent_document_id)
|
||||
result = delete_segment_from_index_task(index_node_ids, non_existent_dataset_id, non_existent_document_id, [])
|
||||
|
||||
# Verify the task completed without exceptions
|
||||
assert result is None # Task should return None when dataset not found
|
||||
@@ -305,7 +308,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
index_node_ids = [f"node_{fake.uuid4()}" for _ in range(3)]
|
||||
|
||||
# Execute the task with non-existent document
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, non_existent_document_id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, non_existent_document_id, [])
|
||||
|
||||
# Verify the task completed without exceptions
|
||||
assert result is None # Task should return None when document not found
|
||||
@@ -330,9 +333,10 @@ class TestDeleteSegmentFromIndexTask:
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 3, fake)
|
||||
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Execute the task with disabled document
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed without exceptions
|
||||
assert result is None # Task should return None when document is disabled
|
||||
@@ -357,9 +361,10 @@ class TestDeleteSegmentFromIndexTask:
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 3, fake)
|
||||
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Execute the task with archived document
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed without exceptions
|
||||
assert result is None # Task should return None when document is archived
|
||||
@@ -386,9 +391,10 @@ class TestDeleteSegmentFromIndexTask:
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 3, fake)
|
||||
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Execute the task with incomplete indexing
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed without exceptions
|
||||
assert result is None # Task should return None when indexing is not completed
|
||||
@@ -409,7 +415,11 @@ class TestDeleteSegmentFromIndexTask:
|
||||
fake = Faker()
|
||||
|
||||
# Test different document forms
|
||||
document_forms = [IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX, IndexType.PARENT_CHILD_INDEX]
|
||||
document_forms = [
|
||||
IndexStructureType.PARAGRAPH_INDEX,
|
||||
IndexStructureType.QA_INDEX,
|
||||
IndexStructureType.PARENT_CHILD_INDEX,
|
||||
]
|
||||
|
||||
for doc_form in document_forms:
|
||||
# Create test data for each document form
|
||||
@@ -420,13 +430,14 @@ class TestDeleteSegmentFromIndexTask:
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 2, fake)
|
||||
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Mock the index processor
|
||||
mock_processor = MagicMock()
|
||||
mock_index_processor_factory.return_value.init_index_processor.return_value = mock_processor
|
||||
|
||||
# Execute the task
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed successfully
|
||||
assert result is None
|
||||
@@ -469,6 +480,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 3, fake)
|
||||
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Mock the index processor to raise an exception
|
||||
mock_processor = MagicMock()
|
||||
@@ -476,7 +488,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
mock_index_processor_factory.return_value.init_index_processor.return_value = mock_processor
|
||||
|
||||
# Execute the task - should not raise exception
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed without raising exceptions
|
||||
assert result is None # Task should return None even when exceptions occur
|
||||
@@ -518,7 +530,7 @@ class TestDeleteSegmentFromIndexTask:
|
||||
mock_index_processor_factory.return_value.init_index_processor.return_value = mock_processor
|
||||
|
||||
# Execute the task
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, [])
|
||||
|
||||
# Verify the task completed successfully
|
||||
assert result is None
|
||||
@@ -555,13 +567,14 @@ class TestDeleteSegmentFromIndexTask:
|
||||
# Create large number of segments
|
||||
segments = self._create_test_document_segments(db_session_with_containers, document, account, 50, fake)
|
||||
index_node_ids = [segment.index_node_id for segment in segments]
|
||||
segment_ids = [segment.id for segment in segments]
|
||||
|
||||
# Mock the index processor
|
||||
mock_processor = MagicMock()
|
||||
mock_index_processor_factory.return_value.init_index_processor.return_value = mock_processor
|
||||
|
||||
# Execute the task
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id)
|
||||
result = delete_segment_from_index_task(index_node_ids, dataset.id, document.id, segment_ids)
|
||||
|
||||
# Verify the task completed successfully
|
||||
assert result is None
|
||||
|
||||
@@ -3,7 +3,7 @@ from unittest.mock import MagicMock, patch
|
||||
import pytest
|
||||
from faker import Faker
|
||||
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.account import Account, Tenant, TenantAccountJoin, TenantAccountRole
|
||||
@@ -95,7 +95,7 @@ class TestEnableSegmentsToIndexTask:
|
||||
created_by=account.id,
|
||||
indexing_status="completed",
|
||||
enabled=True,
|
||||
doc_form=IndexType.PARAGRAPH_INDEX,
|
||||
doc_form=IndexStructureType.PARAGRAPH_INDEX,
|
||||
)
|
||||
db.session.add(document)
|
||||
db.session.commit()
|
||||
@@ -166,7 +166,7 @@ class TestEnableSegmentsToIndexTask:
|
||||
)
|
||||
|
||||
# Update document to use different index type
|
||||
document.doc_form = IndexType.QA_INDEX
|
||||
document.doc_form = IndexStructureType.QA_INDEX
|
||||
db.session.commit()
|
||||
|
||||
# Refresh dataset to ensure doc_form property reflects the updated document
|
||||
@@ -185,7 +185,9 @@ class TestEnableSegmentsToIndexTask:
|
||||
enable_segments_to_index_task(segment_ids, dataset.id, document.id)
|
||||
|
||||
# Assert: Verify different index type handling
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.QA_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.QA_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
# Verify the load method was called with correct parameters
|
||||
@@ -328,7 +330,9 @@ class TestEnableSegmentsToIndexTask:
|
||||
enable_segments_to_index_task(non_existent_segment_ids, dataset.id, document.id)
|
||||
|
||||
# Assert: Verify index processor was created but load was not called
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(IndexType.PARAGRAPH_INDEX)
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexStructureType.PARAGRAPH_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_not_called()
|
||||
|
||||
def test_enable_segments_to_index_with_parent_child_structure(
|
||||
@@ -350,7 +354,7 @@ class TestEnableSegmentsToIndexTask:
|
||||
)
|
||||
|
||||
# Update document to use parent-child index type
|
||||
document.doc_form = IndexType.PARENT_CHILD_INDEX
|
||||
document.doc_form = IndexStructureType.PARENT_CHILD_INDEX
|
||||
db.session.commit()
|
||||
|
||||
# Refresh dataset to ensure doc_form property reflects the updated document
|
||||
@@ -383,7 +387,7 @@ class TestEnableSegmentsToIndexTask:
|
||||
|
||||
# Assert: Verify parent-child index processing
|
||||
mock_external_service_dependencies["index_processor_factory"].assert_called_once_with(
|
||||
IndexType.PARENT_CHILD_INDEX
|
||||
IndexStructureType.PARENT_CHILD_INDEX
|
||||
)
|
||||
mock_external_service_dependencies["index_processor"].load.assert_called_once()
|
||||
|
||||
|
||||
@@ -53,7 +53,7 @@ from sqlalchemy.exc import IntegrityError
|
||||
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingResult, EmbeddingUsage
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeConnectionError,
|
||||
@@ -99,10 +99,10 @@ class TestCacheEmbeddingDocuments:
|
||||
|
||||
@pytest.fixture
|
||||
def sample_embedding_result(self):
|
||||
"""Create a sample TextEmbeddingResult for testing.
|
||||
"""Create a sample EmbeddingResult for testing.
|
||||
|
||||
Returns:
|
||||
TextEmbeddingResult: Mock embedding result with proper structure
|
||||
EmbeddingResult: Mock embedding result with proper structure
|
||||
"""
|
||||
# Create normalized embedding vectors (dimension 1536 for ada-002)
|
||||
embedding_vector = np.random.randn(1536)
|
||||
@@ -118,7 +118,7 @@ class TestCacheEmbeddingDocuments:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
return TextEmbeddingResult(
|
||||
return EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized_vector],
|
||||
usage=usage,
|
||||
@@ -197,7 +197,7 @@ class TestCacheEmbeddingDocuments:
|
||||
latency=0.8,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -296,7 +296,7 @@ class TestCacheEmbeddingDocuments:
|
||||
latency=0.6,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=new_embeddings,
|
||||
usage=usage,
|
||||
@@ -386,7 +386,7 @@ class TestCacheEmbeddingDocuments:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
return TextEmbeddingResult(
|
||||
return EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -449,7 +449,7 @@ class TestCacheEmbeddingDocuments:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[valid_vector.tolist(), nan_vector],
|
||||
usage=usage,
|
||||
@@ -629,7 +629,7 @@ class TestCacheEmbeddingQuery:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -728,7 +728,7 @@ class TestCacheEmbeddingQuery:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[nan_vector],
|
||||
usage=usage,
|
||||
@@ -793,7 +793,7 @@ class TestCacheEmbeddingQuery:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -873,13 +873,13 @@ class TestEmbeddingModelSwitching:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
result_ada = TextEmbeddingResult(
|
||||
result_ada = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized_ada],
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
result_3_small = TextEmbeddingResult(
|
||||
result_3_small = EmbeddingResult(
|
||||
model="text-embedding-3-small",
|
||||
embeddings=[normalized_3_small],
|
||||
usage=usage,
|
||||
@@ -953,13 +953,13 @@ class TestEmbeddingModelSwitching:
|
||||
latency=0.4,
|
||||
)
|
||||
|
||||
result_openai = TextEmbeddingResult(
|
||||
result_openai = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized_openai],
|
||||
usage=usage_openai,
|
||||
)
|
||||
|
||||
result_cohere = TextEmbeddingResult(
|
||||
result_cohere = EmbeddingResult(
|
||||
model="embed-english-v3.0",
|
||||
embeddings=[normalized_cohere],
|
||||
usage=usage_cohere,
|
||||
@@ -1042,7 +1042,7 @@ class TestEmbeddingDimensionValidation:
|
||||
latency=0.7,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1095,7 +1095,7 @@ class TestEmbeddingDimensionValidation:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1148,7 +1148,7 @@ class TestEmbeddingDimensionValidation:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
result_ada = TextEmbeddingResult(
|
||||
result_ada = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized_ada],
|
||||
usage=usage_ada,
|
||||
@@ -1181,7 +1181,7 @@ class TestEmbeddingDimensionValidation:
|
||||
latency=0.4,
|
||||
)
|
||||
|
||||
result_cohere = TextEmbeddingResult(
|
||||
result_cohere = EmbeddingResult(
|
||||
model="embed-english-v3.0",
|
||||
embeddings=[normalized_cohere],
|
||||
usage=usage_cohere,
|
||||
@@ -1279,7 +1279,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.1,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -1322,7 +1322,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=1.5,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -1370,7 +1370,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1422,7 +1422,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.2,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1478,7 +1478,7 @@ class TestEmbeddingEdgeCases:
|
||||
)
|
||||
|
||||
# Model returns embeddings for all texts
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1546,7 +1546,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.8,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1603,7 +1603,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -1657,7 +1657,7 @@ class TestEmbeddingEdgeCases:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1757,7 +1757,7 @@ class TestEmbeddingCachePerformance:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
@@ -1826,7 +1826,7 @@ class TestEmbeddingCachePerformance:
|
||||
latency=0.5,
|
||||
)
|
||||
|
||||
return TextEmbeddingResult(
|
||||
return EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=embeddings,
|
||||
usage=usage,
|
||||
@@ -1888,7 +1888,7 @@ class TestEmbeddingCachePerformance:
|
||||
latency=0.3,
|
||||
)
|
||||
|
||||
embedding_result = TextEmbeddingResult(
|
||||
embedding_result = EmbeddingResult(
|
||||
model="text-embedding-ada-002",
|
||||
embeddings=[normalized],
|
||||
usage=usage,
|
||||
|
||||
@@ -62,7 +62,7 @@ from core.indexing_runner import (
|
||||
IndexingRunner,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import ModelType
|
||||
from core.rag.index_processor.constant.index_type import IndexType
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.models.document import ChildDocument, Document
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.dataset import Dataset, DatasetProcessRule
|
||||
@@ -112,7 +112,7 @@ def create_mock_dataset_document(
|
||||
document_id: str | None = None,
|
||||
dataset_id: str | None = None,
|
||||
tenant_id: str | None = None,
|
||||
doc_form: str = IndexType.PARAGRAPH_INDEX,
|
||||
doc_form: str = IndexStructureType.PARAGRAPH_INDEX,
|
||||
data_source_type: str = "upload_file",
|
||||
doc_language: str = "English",
|
||||
) -> Mock:
|
||||
@@ -133,8 +133,8 @@ def create_mock_dataset_document(
|
||||
Mock: A configured mock DatasetDocument object with all required attributes.
|
||||
|
||||
Example:
|
||||
>>> doc = create_mock_dataset_document(doc_form=IndexType.QA_INDEX)
|
||||
>>> assert doc.doc_form == IndexType.QA_INDEX
|
||||
>>> doc = create_mock_dataset_document(doc_form=IndexStructureType.QA_INDEX)
|
||||
>>> assert doc.doc_form == IndexStructureType.QA_INDEX
|
||||
"""
|
||||
doc = Mock(spec=DatasetDocument)
|
||||
doc.id = document_id or str(uuid.uuid4())
|
||||
@@ -276,7 +276,7 @@ class TestIndexingRunnerExtract:
|
||||
doc.id = str(uuid.uuid4())
|
||||
doc.dataset_id = str(uuid.uuid4())
|
||||
doc.tenant_id = str(uuid.uuid4())
|
||||
doc.doc_form = IndexType.PARAGRAPH_INDEX
|
||||
doc.doc_form = IndexStructureType.PARAGRAPH_INDEX
|
||||
doc.data_source_type = "upload_file"
|
||||
doc.data_source_info_dict = {"upload_file_id": str(uuid.uuid4())}
|
||||
return doc
|
||||
@@ -616,7 +616,7 @@ class TestIndexingRunnerLoad:
|
||||
doc = Mock(spec=DatasetDocument)
|
||||
doc.id = str(uuid.uuid4())
|
||||
doc.dataset_id = str(uuid.uuid4())
|
||||
doc.doc_form = IndexType.PARAGRAPH_INDEX
|
||||
doc.doc_form = IndexStructureType.PARAGRAPH_INDEX
|
||||
return doc
|
||||
|
||||
@pytest.fixture
|
||||
@@ -700,7 +700,7 @@ class TestIndexingRunnerLoad:
|
||||
"""Test loading with parent-child index structure."""
|
||||
# Arrange
|
||||
runner = IndexingRunner()
|
||||
sample_dataset_document.doc_form = IndexType.PARENT_CHILD_INDEX
|
||||
sample_dataset_document.doc_form = IndexStructureType.PARENT_CHILD_INDEX
|
||||
sample_dataset.indexing_technique = "high_quality"
|
||||
|
||||
# Add child documents
|
||||
@@ -775,7 +775,7 @@ class TestIndexingRunnerRun:
|
||||
doc.id = str(uuid.uuid4())
|
||||
doc.dataset_id = str(uuid.uuid4())
|
||||
doc.tenant_id = str(uuid.uuid4())
|
||||
doc.doc_form = IndexType.PARAGRAPH_INDEX
|
||||
doc.doc_form = IndexStructureType.PARAGRAPH_INDEX
|
||||
doc.doc_language = "English"
|
||||
doc.data_source_type = "upload_file"
|
||||
doc.data_source_info_dict = {"upload_file_id": str(uuid.uuid4())}
|
||||
@@ -802,6 +802,21 @@ class TestIndexingRunnerRun:
|
||||
mock_process_rule.to_dict.return_value = {"mode": "automatic", "rules": {}}
|
||||
mock_dependencies["db"].session.scalar.return_value = mock_process_rule
|
||||
|
||||
# Mock current_user (Account) for _transform
|
||||
mock_current_user = MagicMock()
|
||||
mock_current_user.set_tenant_id = MagicMock()
|
||||
|
||||
# Setup db.session.query to return different results based on the model
|
||||
def mock_query_side_effect(model):
|
||||
mock_query_result = MagicMock()
|
||||
if model.__name__ == "Dataset":
|
||||
mock_query_result.filter_by.return_value.first.return_value = mock_dataset
|
||||
elif model.__name__ == "Account":
|
||||
mock_query_result.filter_by.return_value.first.return_value = mock_current_user
|
||||
return mock_query_result
|
||||
|
||||
mock_dependencies["db"].session.query.side_effect = mock_query_side_effect
|
||||
|
||||
# Mock processor
|
||||
mock_processor = MagicMock()
|
||||
mock_dependencies["factory"].return_value.init_index_processor.return_value = mock_processor
|
||||
@@ -1268,7 +1283,7 @@ class TestIndexingRunnerLoadSegments:
|
||||
doc.id = str(uuid.uuid4())
|
||||
doc.dataset_id = str(uuid.uuid4())
|
||||
doc.created_by = str(uuid.uuid4())
|
||||
doc.doc_form = IndexType.PARAGRAPH_INDEX
|
||||
doc.doc_form = IndexStructureType.PARAGRAPH_INDEX
|
||||
return doc
|
||||
|
||||
@pytest.fixture
|
||||
@@ -1316,7 +1331,7 @@ class TestIndexingRunnerLoadSegments:
|
||||
"""Test loading segments for parent-child index."""
|
||||
# Arrange
|
||||
runner = IndexingRunner()
|
||||
sample_dataset_document.doc_form = IndexType.PARENT_CHILD_INDEX
|
||||
sample_dataset_document.doc_form = IndexStructureType.PARENT_CHILD_INDEX
|
||||
|
||||
# Add child documents
|
||||
for doc in sample_documents:
|
||||
@@ -1413,7 +1428,7 @@ class TestIndexingRunnerEstimate:
|
||||
tenant_id=tenant_id,
|
||||
extract_settings=extract_settings,
|
||||
tmp_processing_rule={"mode": "automatic", "rules": {}},
|
||||
doc_form=IndexType.PARAGRAPH_INDEX,
|
||||
doc_form=IndexStructureType.PARAGRAPH_INDEX,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -26,6 +26,18 @@ from core.rag.rerank.rerank_type import RerankMode
|
||||
from core.rag.rerank.weight_rerank import WeightRerankRunner
|
||||
|
||||
|
||||
def create_mock_model_instance():
|
||||
"""Create a properly configured mock ModelInstance for reranking tests."""
|
||||
mock_instance = Mock(spec=ModelInstance)
|
||||
# Setup provider_model_bundle chain for check_model_support_vision
|
||||
mock_instance.provider_model_bundle = Mock()
|
||||
mock_instance.provider_model_bundle.configuration = Mock()
|
||||
mock_instance.provider_model_bundle.configuration.tenant_id = "test-tenant-id"
|
||||
mock_instance.provider = "test-provider"
|
||||
mock_instance.model = "test-model"
|
||||
return mock_instance
|
||||
|
||||
|
||||
class TestRerankModelRunner:
|
||||
"""Unit tests for RerankModelRunner.
|
||||
|
||||
@@ -37,10 +49,23 @@ class TestRerankModelRunner:
|
||||
- Metadata preservation and score injection
|
||||
"""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_model_manager(self):
|
||||
"""Auto-use fixture to patch ModelManager for all tests in this class."""
|
||||
with patch("core.rag.rerank.rerank_model.ModelManager") as mock_mm:
|
||||
mock_mm.return_value.check_model_support_vision.return_value = False
|
||||
yield mock_mm
|
||||
|
||||
@pytest.fixture
|
||||
def mock_model_instance(self):
|
||||
"""Create a mock ModelInstance for reranking."""
|
||||
mock_instance = Mock(spec=ModelInstance)
|
||||
# Setup provider_model_bundle chain for check_model_support_vision
|
||||
mock_instance.provider_model_bundle = Mock()
|
||||
mock_instance.provider_model_bundle.configuration = Mock()
|
||||
mock_instance.provider_model_bundle.configuration.tenant_id = "test-tenant-id"
|
||||
mock_instance.provider = "test-provider"
|
||||
mock_instance.model = "test-model"
|
||||
return mock_instance
|
||||
|
||||
@pytest.fixture
|
||||
@@ -803,7 +828,7 @@ class TestRerankRunnerFactory:
|
||||
- Parameters are forwarded to runner constructor
|
||||
"""
|
||||
# Arrange: Mock model instance
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
|
||||
# Act: Create runner via factory
|
||||
runner = RerankRunnerFactory.create_rerank_runner(
|
||||
@@ -865,7 +890,7 @@ class TestRerankRunnerFactory:
|
||||
- String values are properly matched
|
||||
"""
|
||||
# Arrange: Mock model instance
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
|
||||
# Act: Create runner using enum value
|
||||
runner = RerankRunnerFactory.create_rerank_runner(
|
||||
@@ -886,6 +911,13 @@ class TestRerankIntegration:
|
||||
- Real-world usage scenarios
|
||||
"""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_model_manager(self):
|
||||
"""Auto-use fixture to patch ModelManager for all tests in this class."""
|
||||
with patch("core.rag.rerank.rerank_model.ModelManager") as mock_mm:
|
||||
mock_mm.return_value.check_model_support_vision.return_value = False
|
||||
yield mock_mm
|
||||
|
||||
def test_model_reranking_full_workflow(self):
|
||||
"""Test complete model-based reranking workflow.
|
||||
|
||||
@@ -895,7 +927,7 @@ class TestRerankIntegration:
|
||||
- Top results are returned correctly
|
||||
"""
|
||||
# Arrange: Create mock model and documents
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -951,7 +983,7 @@ class TestRerankIntegration:
|
||||
- Normalization is consistent
|
||||
"""
|
||||
# Arrange: Create mock model with various scores
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -991,6 +1023,13 @@ class TestRerankEdgeCases:
|
||||
- Concurrent reranking scenarios
|
||||
"""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_model_manager(self):
|
||||
"""Auto-use fixture to patch ModelManager for all tests in this class."""
|
||||
with patch("core.rag.rerank.rerank_model.ModelManager") as mock_mm:
|
||||
mock_mm.return_value.check_model_support_vision.return_value = False
|
||||
yield mock_mm
|
||||
|
||||
def test_rerank_with_empty_metadata(self):
|
||||
"""Test reranking when documents have empty metadata.
|
||||
|
||||
@@ -1000,7 +1039,7 @@ class TestRerankEdgeCases:
|
||||
- Empty metadata documents are processed correctly
|
||||
"""
|
||||
# Arrange: Create documents with empty metadata
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -1046,7 +1085,7 @@ class TestRerankEdgeCases:
|
||||
- Score comparison logic works at boundary
|
||||
"""
|
||||
# Arrange: Create mock with various scores including negatives
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -1082,7 +1121,7 @@ class TestRerankEdgeCases:
|
||||
- No overflow or precision issues
|
||||
"""
|
||||
# Arrange: All documents with perfect scores
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -1117,7 +1156,7 @@ class TestRerankEdgeCases:
|
||||
- Content encoding is preserved
|
||||
"""
|
||||
# Arrange: Documents with special characters
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -1159,7 +1198,7 @@ class TestRerankEdgeCases:
|
||||
- Content is not truncated unexpectedly
|
||||
"""
|
||||
# Arrange: Documents with very long content
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
long_content = "This is a very long document. " * 1000 # ~30,000 characters
|
||||
|
||||
mock_rerank_result = RerankResult(
|
||||
@@ -1196,7 +1235,7 @@ class TestRerankEdgeCases:
|
||||
- All documents are processed correctly
|
||||
"""
|
||||
# Arrange: Create 100 documents
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
num_docs = 100
|
||||
|
||||
# Create rerank results for all documents
|
||||
@@ -1287,7 +1326,7 @@ class TestRerankEdgeCases:
|
||||
- Documents can still be ranked
|
||||
"""
|
||||
# Arrange: Empty query
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
@@ -1325,6 +1364,13 @@ class TestRerankPerformance:
|
||||
- Score calculation optimization
|
||||
"""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_model_manager(self):
|
||||
"""Auto-use fixture to patch ModelManager for all tests in this class."""
|
||||
with patch("core.rag.rerank.rerank_model.ModelManager") as mock_mm:
|
||||
mock_mm.return_value.check_model_support_vision.return_value = False
|
||||
yield mock_mm
|
||||
|
||||
def test_rerank_batch_processing(self):
|
||||
"""Test that documents are processed in a single batch.
|
||||
|
||||
@@ -1334,7 +1380,7 @@ class TestRerankPerformance:
|
||||
- Efficient batch processing
|
||||
"""
|
||||
# Arrange: Multiple documents
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[RerankDocument(index=i, text=f"Doc {i}", score=0.9 - i * 0.1) for i in range(5)],
|
||||
@@ -1435,6 +1481,13 @@ class TestRerankErrorHandling:
|
||||
- Error propagation
|
||||
"""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_model_manager(self):
|
||||
"""Auto-use fixture to patch ModelManager for all tests in this class."""
|
||||
with patch("core.rag.rerank.rerank_model.ModelManager") as mock_mm:
|
||||
mock_mm.return_value.check_model_support_vision.return_value = False
|
||||
yield mock_mm
|
||||
|
||||
def test_rerank_model_invocation_error(self):
|
||||
"""Test handling of model invocation errors.
|
||||
|
||||
@@ -1444,7 +1497,7 @@ class TestRerankErrorHandling:
|
||||
- Error context is preserved
|
||||
"""
|
||||
# Arrange: Mock model that raises exception
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_model_instance.invoke_rerank.side_effect = RuntimeError("Model invocation failed")
|
||||
|
||||
documents = [
|
||||
@@ -1470,7 +1523,7 @@ class TestRerankErrorHandling:
|
||||
- Invalid results don't corrupt output
|
||||
"""
|
||||
# Arrange: Rerank result with invalid index
|
||||
mock_model_instance = Mock(spec=ModelInstance)
|
||||
mock_model_instance = create_mock_model_instance()
|
||||
mock_rerank_result = RerankResult(
|
||||
model="bge-reranker-base",
|
||||
docs=[
|
||||
|
||||
@@ -425,15 +425,15 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Vector Search Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_vector_search_basic(self, mock_get_dataset, mock_embedding_search, mock_dataset, sample_documents):
|
||||
def test_vector_search_basic(self, mock_get_dataset, mock_retrieve, mock_dataset, sample_documents):
|
||||
"""
|
||||
Test basic vector/semantic search functionality.
|
||||
|
||||
This test validates the core vector search flow:
|
||||
1. Dataset is retrieved from database
|
||||
2. embedding_search is called via ThreadPoolExecutor
|
||||
2. _retrieve is called via ThreadPoolExecutor
|
||||
3. Documents are added to shared all_documents list
|
||||
4. Results are returned to caller
|
||||
|
||||
@@ -447,28 +447,28 @@ class TestRetrievalService:
|
||||
# Set up the mock dataset that will be "retrieved" from database
|
||||
mock_get_dataset.return_value = mock_dataset
|
||||
|
||||
# Create a side effect function that simulates embedding_search behavior
|
||||
# In the real implementation, embedding_search:
|
||||
# 1. Gets the dataset
|
||||
# 2. Creates a Vector instance
|
||||
# 3. Calls search_by_vector with embeddings
|
||||
# 4. Extends all_documents with results
|
||||
def side_effect_embedding_search(
|
||||
# Create a side effect function that simulates _retrieve behavior
|
||||
# _retrieve modifies the all_documents list in place
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
"""Simulate embedding_search adding documents to the shared list."""
|
||||
all_documents.extend(sample_documents)
|
||||
"""Simulate _retrieve adding documents to the shared list."""
|
||||
if all_documents is not None:
|
||||
all_documents.extend(sample_documents)
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding_search
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
# Define test parameters
|
||||
query = "What is Python?" # Natural language query
|
||||
@@ -481,7 +481,7 @@ class TestRetrievalService:
|
||||
# 1. Check if query is empty (early return if so)
|
||||
# 2. Get the dataset using _get_dataset
|
||||
# 3. Create ThreadPoolExecutor
|
||||
# 4. Submit embedding_search task
|
||||
# 4. Submit _retrieve task
|
||||
# 5. Wait for completion
|
||||
# 6. Return all_documents list
|
||||
results = RetrievalService.retrieve(
|
||||
@@ -502,15 +502,13 @@ class TestRetrievalService:
|
||||
# Verify documents maintain their scores (highest score first in sample_documents)
|
||||
assert results[0].metadata["score"] == 0.95, "First document should have highest score from sample_documents"
|
||||
|
||||
# Verify embedding_search was called exactly once
|
||||
# Verify _retrieve was called exactly once
|
||||
# This confirms the search method was invoked by ThreadPoolExecutor
|
||||
mock_embedding_search.assert_called_once()
|
||||
mock_retrieve.assert_called_once()
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_vector_search_with_document_filter(
|
||||
self, mock_get_dataset, mock_embedding_search, mock_dataset, sample_documents
|
||||
):
|
||||
def test_vector_search_with_document_filter(self, mock_get_dataset, mock_retrieve, mock_dataset, sample_documents):
|
||||
"""
|
||||
Test vector search with document ID filtering.
|
||||
|
||||
@@ -522,21 +520,25 @@ class TestRetrievalService:
|
||||
mock_get_dataset.return_value = mock_dataset
|
||||
filtered_docs = [sample_documents[0]]
|
||||
|
||||
def side_effect_embedding_search(
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
all_documents.extend(filtered_docs)
|
||||
if all_documents is not None:
|
||||
all_documents.extend(filtered_docs)
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding_search
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
document_ids_filter = [sample_documents[0].metadata["document_id"]]
|
||||
|
||||
# Act
|
||||
@@ -552,12 +554,12 @@ class TestRetrievalService:
|
||||
assert len(results) == 1
|
||||
assert results[0].metadata["doc_id"] == "doc1"
|
||||
# Verify document_ids_filter was passed
|
||||
call_kwargs = mock_embedding_search.call_args.kwargs
|
||||
call_kwargs = mock_retrieve.call_args.kwargs
|
||||
assert call_kwargs["document_ids_filter"] == document_ids_filter
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_vector_search_empty_results(self, mock_get_dataset, mock_embedding_search, mock_dataset):
|
||||
def test_vector_search_empty_results(self, mock_get_dataset, mock_retrieve, mock_dataset):
|
||||
"""
|
||||
Test vector search when no results match the query.
|
||||
|
||||
@@ -567,8 +569,8 @@ class TestRetrievalService:
|
||||
"""
|
||||
# Arrange
|
||||
mock_get_dataset.return_value = mock_dataset
|
||||
# embedding_search doesn't add anything to all_documents
|
||||
mock_embedding_search.side_effect = lambda *args, **kwargs: None
|
||||
# _retrieve doesn't add anything to all_documents
|
||||
mock_retrieve.side_effect = lambda *args, **kwargs: None
|
||||
|
||||
# Act
|
||||
results = RetrievalService.retrieve(
|
||||
@@ -583,9 +585,9 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Keyword Search Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.keyword_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_keyword_search_basic(self, mock_get_dataset, mock_keyword_search, mock_dataset, sample_documents):
|
||||
def test_keyword_search_basic(self, mock_get_dataset, mock_retrieve, mock_dataset, sample_documents):
|
||||
"""
|
||||
Test basic keyword search functionality.
|
||||
|
||||
@@ -597,12 +599,25 @@ class TestRetrievalService:
|
||||
# Arrange
|
||||
mock_get_dataset.return_value = mock_dataset
|
||||
|
||||
def side_effect_keyword_search(
|
||||
flask_app, dataset_id, query, top_k, all_documents, exceptions, document_ids_filter=None
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
retrieval_method,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
all_documents.extend(sample_documents)
|
||||
if all_documents is not None:
|
||||
all_documents.extend(sample_documents)
|
||||
|
||||
mock_keyword_search.side_effect = side_effect_keyword_search
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
query = "Python programming"
|
||||
top_k = 3
|
||||
@@ -618,7 +633,7 @@ class TestRetrievalService:
|
||||
# Assert
|
||||
assert len(results) == 3
|
||||
assert all(isinstance(doc, Document) for doc in results)
|
||||
mock_keyword_search.assert_called_once()
|
||||
mock_retrieve.assert_called_once()
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.keyword_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
@@ -1147,11 +1162,9 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Metadata Filtering Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_vector_search_with_metadata_filter(
|
||||
self, mock_get_dataset, mock_embedding_search, mock_dataset, sample_documents
|
||||
):
|
||||
def test_vector_search_with_metadata_filter(self, mock_get_dataset, mock_retrieve, mock_dataset, sample_documents):
|
||||
"""
|
||||
Test vector search with metadata-based document filtering.
|
||||
|
||||
@@ -1166,21 +1179,25 @@ class TestRetrievalService:
|
||||
filtered_doc = sample_documents[0]
|
||||
filtered_doc.metadata["category"] = "programming"
|
||||
|
||||
def side_effect_embedding(
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
all_documents.append(filtered_doc)
|
||||
if all_documents is not None:
|
||||
all_documents.append(filtered_doc)
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
# Act
|
||||
results = RetrievalService.retrieve(
|
||||
@@ -1243,9 +1260,9 @@ class TestRetrievalService:
|
||||
# Assert
|
||||
assert results == []
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_retrieve_with_exception_handling(self, mock_get_dataset, mock_embedding_search, mock_dataset):
|
||||
def test_retrieve_with_exception_handling(self, mock_get_dataset, mock_retrieve, mock_dataset):
|
||||
"""
|
||||
Test that exceptions during retrieval are properly handled.
|
||||
|
||||
@@ -1256,22 +1273,26 @@ class TestRetrievalService:
|
||||
# Arrange
|
||||
mock_get_dataset.return_value = mock_dataset
|
||||
|
||||
# Make embedding_search add an exception to the exceptions list
|
||||
# Make _retrieve add an exception to the exceptions list
|
||||
def side_effect_with_exception(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
exceptions.append("Search failed")
|
||||
if exceptions is not None:
|
||||
exceptions.append("Search failed")
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_with_exception
|
||||
mock_retrieve.side_effect = side_effect_with_exception
|
||||
|
||||
# Act & Assert
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
@@ -1286,9 +1307,9 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Score Threshold Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_vector_search_with_score_threshold(self, mock_get_dataset, mock_embedding_search, mock_dataset):
|
||||
def test_vector_search_with_score_threshold(self, mock_get_dataset, mock_retrieve, mock_dataset):
|
||||
"""
|
||||
Test vector search with score threshold filtering.
|
||||
|
||||
@@ -1306,21 +1327,25 @@ class TestRetrievalService:
|
||||
provider="dify",
|
||||
)
|
||||
|
||||
def side_effect_embedding(
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
all_documents.append(high_score_doc)
|
||||
if all_documents is not None:
|
||||
all_documents.append(high_score_doc)
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
score_threshold = 0.8
|
||||
|
||||
@@ -1339,9 +1364,9 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Top-K Limiting Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_retrieve_respects_top_k_limit(self, mock_get_dataset, mock_embedding_search, mock_dataset):
|
||||
def test_retrieve_respects_top_k_limit(self, mock_get_dataset, mock_retrieve, mock_dataset):
|
||||
"""
|
||||
Test that retrieval respects top_k parameter.
|
||||
|
||||
@@ -1362,22 +1387,26 @@ class TestRetrievalService:
|
||||
for i in range(10)
|
||||
]
|
||||
|
||||
def side_effect_embedding(
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
# Return only top_k documents
|
||||
all_documents.extend(many_docs[:top_k])
|
||||
if all_documents is not None:
|
||||
all_documents.extend(many_docs[:top_k])
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
top_k = 3
|
||||
|
||||
@@ -1390,9 +1419,9 @@ class TestRetrievalService:
|
||||
)
|
||||
|
||||
# Assert
|
||||
# Verify top_k was passed to embedding_search
|
||||
assert mock_embedding_search.called
|
||||
call_kwargs = mock_embedding_search.call_args.kwargs
|
||||
# Verify _retrieve was called
|
||||
assert mock_retrieve.called
|
||||
call_kwargs = mock_retrieve.call_args.kwargs
|
||||
assert call_kwargs["top_k"] == top_k
|
||||
# Verify we got the right number of results
|
||||
assert len(results) == top_k
|
||||
@@ -1421,11 +1450,9 @@ class TestRetrievalService:
|
||||
|
||||
# ==================== Reranking Tests ====================
|
||||
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService.embedding_search")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._retrieve")
|
||||
@patch("core.rag.datasource.retrieval_service.RetrievalService._get_dataset")
|
||||
def test_semantic_search_with_reranking(
|
||||
self, mock_get_dataset, mock_embedding_search, mock_dataset, sample_documents
|
||||
):
|
||||
def test_semantic_search_with_reranking(self, mock_get_dataset, mock_retrieve, mock_dataset, sample_documents):
|
||||
"""
|
||||
Test semantic search with reranking model.
|
||||
|
||||
@@ -1439,22 +1466,26 @@ class TestRetrievalService:
|
||||
# Simulate reranking changing order
|
||||
reranked_docs = list(reversed(sample_documents))
|
||||
|
||||
def side_effect_embedding(
|
||||
def side_effect_retrieve(
|
||||
flask_app,
|
||||
dataset_id,
|
||||
query,
|
||||
top_k,
|
||||
score_threshold,
|
||||
reranking_model,
|
||||
all_documents,
|
||||
retrieval_method,
|
||||
exceptions,
|
||||
dataset,
|
||||
query=None,
|
||||
top_k=4,
|
||||
score_threshold=None,
|
||||
reranking_model=None,
|
||||
reranking_mode="reranking_model",
|
||||
weights=None,
|
||||
document_ids_filter=None,
|
||||
attachment_id=None,
|
||||
all_documents=None,
|
||||
exceptions=None,
|
||||
):
|
||||
# embedding_search handles reranking internally
|
||||
all_documents.extend(reranked_docs)
|
||||
# _retrieve handles reranking internally
|
||||
if all_documents is not None:
|
||||
all_documents.extend(reranked_docs)
|
||||
|
||||
mock_embedding_search.side_effect = side_effect_embedding
|
||||
mock_retrieve.side_effect = side_effect_retrieve
|
||||
|
||||
reranking_model = {
|
||||
"reranking_provider_name": "cohere",
|
||||
@@ -1473,7 +1504,7 @@ class TestRetrievalService:
|
||||
# Assert
|
||||
# For semantic search with reranking, reranking_model should be passed
|
||||
assert len(results) == 3
|
||||
call_kwargs = mock_embedding_search.call_args.kwargs
|
||||
call_kwargs = mock_retrieve.call_args.kwargs
|
||||
assert call_kwargs["reranking_model"] == reranking_model
|
||||
|
||||
|
||||
|
||||
@@ -8,7 +8,9 @@ from core.tools.utils.text_processing_utils import remove_leading_symbols
|
||||
[
|
||||
("...Hello, World!", "Hello, World!"),
|
||||
("。测试中文标点", "测试中文标点"),
|
||||
("!@#Test symbols", "Test symbols"),
|
||||
# Note: ! is not in the removal pattern, only @# are removed, leaving "!Test symbols"
|
||||
# The pattern intentionally excludes ! as per #11868 fix
|
||||
("@#Test symbols", "Test symbols"),
|
||||
("Hello, World!", "Hello, World!"),
|
||||
("", ""),
|
||||
(" ", " "),
|
||||
|
||||
@@ -808,6 +808,19 @@ UPLOAD_FILE_BATCH_LIMIT=5
|
||||
# Recommended: exe,bat,cmd,com,scr,vbs,ps1,msi,dll
|
||||
UPLOAD_FILE_EXTENSION_BLACKLIST=
|
||||
|
||||
# Maximum number of files allowed in a single chunk attachment, default 10.
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT=10
|
||||
|
||||
# Maximum number of files allowed in a image batch upload operation
|
||||
IMAGE_FILE_BATCH_LIMIT=10
|
||||
|
||||
# Maximum allowed image file size for attachments in megabytes, default 2.
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT=2
|
||||
|
||||
# Timeout for downloading image attachments in seconds, default 60.
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT=60
|
||||
|
||||
|
||||
# ETL type, support: `dify`, `Unstructured`
|
||||
# `dify` Dify's proprietary file extraction scheme
|
||||
# `Unstructured` Unstructured.io file extraction scheme
|
||||
@@ -1415,4 +1428,4 @@ WORKFLOW_SCHEDULE_POLLER_BATCH_SIZE=100
|
||||
WORKFLOW_SCHEDULE_MAX_DISPATCH_PER_TICK=0
|
||||
|
||||
# Tenant isolated task queue configuration
|
||||
TENANT_ISOLATED_TASK_CONCURRENCY=1
|
||||
TENANT_ISOLATED_TASK_CONCURRENCY=1
|
||||
|
||||
@@ -364,6 +364,10 @@ x-shared-env: &shared-api-worker-env
|
||||
UPLOAD_FILE_SIZE_LIMIT: ${UPLOAD_FILE_SIZE_LIMIT:-15}
|
||||
UPLOAD_FILE_BATCH_LIMIT: ${UPLOAD_FILE_BATCH_LIMIT:-5}
|
||||
UPLOAD_FILE_EXTENSION_BLACKLIST: ${UPLOAD_FILE_EXTENSION_BLACKLIST:-}
|
||||
SINGLE_CHUNK_ATTACHMENT_LIMIT: ${SINGLE_CHUNK_ATTACHMENT_LIMIT:-10}
|
||||
IMAGE_FILE_BATCH_LIMIT: ${IMAGE_FILE_BATCH_LIMIT:-10}
|
||||
ATTACHMENT_IMAGE_FILE_SIZE_LIMIT: ${ATTACHMENT_IMAGE_FILE_SIZE_LIMIT:-2}
|
||||
ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT: ${ATTACHMENT_IMAGE_DOWNLOAD_TIMEOUT:-60}
|
||||
ETL_TYPE: ${ETL_TYPE:-dify}
|
||||
UNSTRUCTURED_API_URL: ${UNSTRUCTURED_API_URL:-}
|
||||
UNSTRUCTURED_API_KEY: ${UNSTRUCTURED_API_KEY:-}
|
||||
|
||||
Reference in New Issue
Block a user