mirror of
https://github.com/langgenius/dify.git
synced 2025-12-25 01:00:42 -05:00
2.6 KiB
2.6 KiB
Dify Node.js SDK
This is the Node.js SDK for the Dify API, which allows you to easily integrate Dify into your Node.js applications.
Install
npm install dify-client
Usage
After installing the SDK, you can use it in your project like this:
import {
DifyClient,
ChatClient,
CompletionClient,
WorkflowClient,
KnowledgeBaseClient,
WorkspaceClient
} from 'dify-client'
const API_KEY = 'your-app-api-key'
const DATASET_API_KEY = 'your-dataset-api-key'
const user = 'random-user-id'
const query = 'Please tell me a short story in 10 words or less.'
const chatClient = new ChatClient(API_KEY)
const completionClient = new CompletionClient(API_KEY)
const workflowClient = new WorkflowClient(API_KEY)
const kbClient = new KnowledgeBaseClient(DATASET_API_KEY)
const workspaceClient = new WorkspaceClient(DATASET_API_KEY)
const client = new DifyClient(API_KEY)
// App core
await client.getApplicationParameters(user)
await client.messageFeedback('message-id', 'like', user)
// Completion (blocking)
await completionClient.createCompletionMessage({
inputs: { query },
user,
response_mode: 'blocking'
})
// Chat (streaming)
const stream = await chatClient.createChatMessage({
inputs: {},
query,
user,
response_mode: 'streaming'
})
for await (const event of stream) {
console.log(event.event, event.data)
}
// Chatflow (advanced chat via workflow_id)
await chatClient.createChatMessage({
inputs: {},
query,
user,
workflow_id: 'workflow-id',
response_mode: 'blocking'
})
// Workflow run (blocking or streaming)
await workflowClient.run({
inputs: { query },
user,
response_mode: 'blocking'
})
// Knowledge base (dataset token required)
await kbClient.listDatasets({ page: 1, limit: 20 })
await kbClient.createDataset({ name: 'KB', indexing_technique: 'economy' })
// RAG pipeline (may require service API route registration)
const pipelineStream = await kbClient.runPipeline('dataset-id', {
inputs: {},
datasource_type: 'online_document',
datasource_info_list: [],
start_node_id: 'start-node-id',
is_published: true,
response_mode: 'streaming'
})
for await (const event of pipelineStream) {
console.log(event.data)
}
// Workspace models (dataset token required)
await workspaceClient.getModelsByType('text-embedding')
Notes:
- App endpoints use an app API token; knowledge base and workspace endpoints use a dataset API token.
- Chat/completion require a stable
useridentifier in the request payload. - For streaming responses, iterate the returned AsyncIterable. Use
stream.toText()to collect text.
License
This SDK is released under the MIT License.