Files
dify/sdks/nodejs-client/README.md
yyh 4d48791f3c refactor: nodejs sdk (#30036)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-12-23 23:24:38 +08:00

2.6 KiB

Dify Node.js SDK

This is the Node.js SDK for the Dify API, which allows you to easily integrate Dify into your Node.js applications.

Install

npm install dify-client

Usage

After installing the SDK, you can use it in your project like this:

import {
  DifyClient,
  ChatClient,
  CompletionClient,
  WorkflowClient,
  KnowledgeBaseClient,
  WorkspaceClient
} from 'dify-client'

const API_KEY = 'your-app-api-key'
const DATASET_API_KEY = 'your-dataset-api-key'
const user = 'random-user-id'
const query = 'Please tell me a short story in 10 words or less.'

const chatClient = new ChatClient(API_KEY)
const completionClient = new CompletionClient(API_KEY)
const workflowClient = new WorkflowClient(API_KEY)
const kbClient = new KnowledgeBaseClient(DATASET_API_KEY)
const workspaceClient = new WorkspaceClient(DATASET_API_KEY)
const client = new DifyClient(API_KEY)

// App core
await client.getApplicationParameters(user)
await client.messageFeedback('message-id', 'like', user)

// Completion (blocking)
await completionClient.createCompletionMessage({
  inputs: { query },
  user,
  response_mode: 'blocking'
})

// Chat (streaming)
const stream = await chatClient.createChatMessage({
  inputs: {},
  query,
  user,
  response_mode: 'streaming'
})
for await (const event of stream) {
  console.log(event.event, event.data)
}

// Chatflow (advanced chat via workflow_id)
await chatClient.createChatMessage({
  inputs: {},
  query,
  user,
  workflow_id: 'workflow-id',
  response_mode: 'blocking'
})

// Workflow run (blocking or streaming)
await workflowClient.run({
  inputs: { query },
  user,
  response_mode: 'blocking'
})

// Knowledge base (dataset token required)
await kbClient.listDatasets({ page: 1, limit: 20 })
await kbClient.createDataset({ name: 'KB', indexing_technique: 'economy' })

// RAG pipeline (may require service API route registration)
const pipelineStream = await kbClient.runPipeline('dataset-id', {
  inputs: {},
  datasource_type: 'online_document',
  datasource_info_list: [],
  start_node_id: 'start-node-id',
  is_published: true,
  response_mode: 'streaming'
})
for await (const event of pipelineStream) {
  console.log(event.data)
}

// Workspace models (dataset token required)
await workspaceClient.getModelsByType('text-embedding')

Notes:

  • App endpoints use an app API token; knowledge base and workspace endpoints use a dataset API token.
  • Chat/completion require a stable user identifier in the request payload.
  • For streaming responses, iterate the returned AsyncIterable. Use stream.toText() to collect text.

License

This SDK is released under the MIT License.