feat - update euler-168 with more flexible problem (#46445)

This commit is contained in:
Jeremy L Thompson
2022-06-11 00:58:08 -06:00
committed by GitHub
parent a624aab59a
commit 19e0fe09e4

View File

@@ -14,14 +14,20 @@ It can be verified that $714285 = 5 × 142857$.
This demonstrates an unusual property of 142857: it is a divisor of its right-rotation.
Find the last 5 digits of the sum of all integers $n$, $10 < n < 10100$, that have this property.
For integer number of digits $a$ and $b$, find the last 5 digits of the sum of all integers $n$, $10^a < n < 10^b$, that have this property.
# --hints--
`numberRotations()` should return `59206`.
`numberRotations(2, 10)` should return `98311`.
```js
assert.strictEqual(numberRotations(), 59206);
assert.strictEqual(numberRotations(2, 10), 98311);
```
`numberRotations(2, 100)` should return `59206`.
```js
assert.strictEqual(numberRotations(2, 100), 59206);
```
# --seed--
@@ -29,9 +35,9 @@ assert.strictEqual(numberRotations(), 59206);
## --seed-contents--
```js
function numberRotations() {
function numberRotations(a, b) {
return true;
return 0;
}
numberRotations();
@@ -40,5 +46,37 @@ numberRotations();
# --solutions--
```js
// solution required
function numberRotations(minDigits, maxDigits) {
const DIGITS_TO_KEEP = 100000n;
const powersOfTen = Array(maxDigits).fill(0);
powersOfTen[0] = 1n;
for (let i = 1; i < maxDigits; i++) {
powersOfTen[i] = powersOfTen[i - 1] * 10n;
}
// We want numbers of the form xd * m = dx
// Or more precisely:
// (x * 10 + d) * m = d*10^(n-1) + x
// Solving for x:
// x = d (10^(n-1) - m) / (10 * m - 1)
let total = 0n;
for (let numDigits = minDigits; numDigits <= maxDigits; numDigits++) {
// Check all multiplier - digit pairs to see if a candidate can be built
// with the correct number of digits
for (let multiplier = 1n; multiplier < 10n; multiplier++) {
for (let lastDigit = 1n; lastDigit < 10n; lastDigit++) {
const numerator = lastDigit * (powersOfTen[numDigits - 1] - multiplier);
const denominator = (powersOfTen[1] * multiplier - 1n);
if (numerator % denominator === 0n) {
const candidate = (numerator / denominator) * 10n + lastDigit;
if (candidate.toString().length === numDigits) {
total = (total + candidate) % DIGITS_TO_KEEP;
}
}
}
}
}
return parseInt(total);
}
```