mirror of
https://github.com/freeCodeCamp/freeCodeCamp.git
synced 2026-01-30 15:04:00 -05:00
45 lines
942 B
Markdown
45 lines
942 B
Markdown
---
|
||
id: 5900f3f31000cf542c50ff06
|
||
title: 'Problem 135: Gleiche Unterschiede'
|
||
challengeType: 1
|
||
forumTopicId: 301763
|
||
dashedName: problem-135-same-differences
|
||
---
|
||
|
||
# --description--
|
||
|
||
Da die positiven ganzen Zahlen $x$, $y$ und $z$ aufeinanderfolgende Terme einer arithmetischen Progression sind, ist der kleinste Wert der positiven ganzen Zahl $n$, für den die Gleichung $x^2 - y^2 - z^2 = n$ genau zwei Lösungen hat, $n = 27$:
|
||
|
||
$$34^2 − 27^2 − 20^2 = 12^2 − 9^2 − 6^2 = 27$$
|
||
|
||
Es stellt sich heraus, dass $n = 1155$ der kleinste Wert ist, der genau zehn Lösungen hat.
|
||
|
||
Wie viele Werte von $n$, unter einer Million, haben genau zehn verschiedene Lösungen?
|
||
|
||
# --hints--
|
||
|
||
`sameDifferences()` sollte `4989` zurückgeben.
|
||
|
||
```js
|
||
assert.strictEqual(sameDifferences(), 4989);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function sameDifferences() {
|
||
|
||
return true;
|
||
}
|
||
|
||
sameDifferences();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|