Files
freeCodeCamp/curriculum/challenges/german/10-coding-interview-prep/rosetta-code/y-combinator.md
2023-05-15 07:06:59 -07:00

86 lines
1.9 KiB
Markdown

---
id: 594810f028c0303b75339ad5
title: Y combinator
challengeType: 1
forumTopicId: 302345
dashedName: y-combinator
---
# --description--
In strict <a href="https://www.freecodecamp.org/news/the-principles-of-functional-programming/" target="_blank" rel="noopener noreferrer nofollow">functional programming</a> and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function.
The Y combinator is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators.
# --instructions--
Define the stateless Y combinator function and use it to compute the factorials. The `factorial(N)` function is already given to you.
# --hints--
Y sollte eine Funktion zurückgeben.
```js
assert.equal(typeof Y((f) => (n) => n), 'function');
```
factorial(1) sollte 1 zurückgeben.
```js
assert.equal(factorial(1), 1);
```
factorial(2) sollte 2 zurückgeben.
```js
assert.equal(factorial(2), 2);
```
factorial(3) sollte 6 zurückgeben.
```js
assert.equal(factorial(3), 6);
```
factorial(4) sollte 24 zurückgeben.
```js
assert.equal(factorial(4), 24);
```
factorial(10) sollte 3628800 zurückgeben.
```js
assert.equal(factorial(10), 3628800);
```
# --seed--
## --after-user-code--
```js
var factorial = Y(f => n => (n > 1 ? n * f(n - 1) : 1));
```
## --seed-contents--
```js
function Y(f) {
return function() {
};
}
var factorial = Y(function(f) {
return function (n) {
return n > 1 ? n * f(n - 1) : 1;
};
});
```
# --solutions--
```js
var Y = f => (x => x(x))(y => f(x => y(y)(x)));
```