mirror of
https://github.com/apache/impala.git
synced 2025-12-25 02:03:09 -05:00
IMPALA-5333: [DOCS] Document Impala ADLS support
Change-Id: Id5a98217741e5d540d9874e9b30e36f01644ef14 Reviewed-on: http://gerrit.cloudera.org:8080/7175 Reviewed-by: Sailesh Mukil <sailesh@cloudera.com> Reviewed-by: Laurel Hale <laurel@cloudera.com> Reviewed-by: John Russell <jrussell@cloudera.com> Tested-by: Impala Public Jenkins
This commit is contained in:
committed by
Impala Public Jenkins
parent
07d3cea1f0
commit
717dd73d78
@@ -288,6 +288,7 @@ under the License.
|
||||
<topicref href="topics/impala_kudu.xml"/>
|
||||
<topicref href="topics/impala_hbase.xml"/>
|
||||
<topicref href="topics/impala_s3.xml"/>
|
||||
<topicref rev="2.9.0" href="topics/impala_adls.xml"/>
|
||||
<topicref href="topics/impala_isilon.xml"/>
|
||||
<topicref href="topics/impala_logging.xml"/>
|
||||
<topicref href="topics/impala_troubleshooting.xml">
|
||||
|
||||
@@ -1069,6 +1069,13 @@ drop database temp;
|
||||
<codeph>hadoop fs -cp</codeph>, or <codeph>INSERT</codeph> in Impala or Hive.
|
||||
</p>
|
||||
|
||||
<p rev="2.9.0 IMPALA-5333" id="adls_dml_performance">
|
||||
<draft-comment>
|
||||
Currently nothing to say on this subject. Leaving this placeholder
|
||||
in case there are DML performance implications to discuss in future.
|
||||
</draft-comment>
|
||||
</p>
|
||||
|
||||
<p rev="2.6.0 IMPALA-1878" id="s3_dml_performance">
|
||||
Because of differences between S3 and traditional filesystems, DML operations
|
||||
for S3 tables can take longer than for tables on HDFS. For example, both the
|
||||
@@ -1085,6 +1092,14 @@ drop database temp;
|
||||
See <xref href="../topics/impala_s3_skip_insert_staging.xml#s3_skip_insert_staging"/> for details.
|
||||
</p>
|
||||
|
||||
<p id="adls_block_splitting" rev="IMPALA-5383">
|
||||
Because ADLS does not expose the block sizes of data files the way HDFS does,
|
||||
any Impala <codeph>INSERT</codeph> or <codeph>CREATE TABLE AS SELECT</codeph> statements
|
||||
use the <codeph>PARQUET_FILE_SIZE</codeph> query option setting to define the size of
|
||||
Parquet data files. (Using a large block size is more important for Parquet tables than
|
||||
for tables that use other file formats.)
|
||||
</p>
|
||||
|
||||
<p rev="2.6.0 IMPALA-3453" id="s3_block_splitting">
|
||||
In <keyword keyref="impala26_full"/> and higher, Impala queries are optimized for files stored in Amazon S3.
|
||||
For Impala tables that use the file formats Parquet, RCFile, SequenceFile,
|
||||
@@ -1100,6 +1115,13 @@ drop database temp;
|
||||
to 268435456 (256 MB) to match the row group size produced by Impala.
|
||||
</p>
|
||||
|
||||
<note rev="2.9.0 IMPALA-5333" id="adls_production" type="important">
|
||||
<p>
|
||||
Currently, the ADLS support in Impala is preliminary and not
|
||||
fully tested. Do not use Impala with ADLS in a production environment.
|
||||
</p>
|
||||
</note>
|
||||
|
||||
<note rev="2.6.0 IMPALA-1878" id="s3_production" type="important">
|
||||
<p>
|
||||
In <keyword keyref="impala26_full"/> and higher, Impala supports both queries (<codeph>SELECT</codeph>)
|
||||
@@ -1126,6 +1148,18 @@ drop database temp;
|
||||
See <xref href="../topics/impala_s3.xml#s3"/> for details about reading and writing S3 data with Impala.
|
||||
</p>
|
||||
|
||||
<p rev="2.9.0 IMPALA-5333" id="adls_dml">
|
||||
In <keyword keyref="impala29_full"/> and higher, the Impala DML statements (<codeph>INSERT</codeph>, <codeph>LOAD DATA</codeph>,
|
||||
and <codeph>CREATE TABLE AS SELECT</codeph>) can write data into a table or partition that resides in the
|
||||
Azure Data Lake Store (ADLS).
|
||||
The syntax of the DML statements is the same as for any other tables, because the ADLS location for tables and
|
||||
partitions is specified by an <codeph>adl://</codeph> prefix in the
|
||||
<codeph>LOCATION</codeph> attribute of
|
||||
<codeph>CREATE TABLE</codeph> or <codeph>ALTER TABLE</codeph> statements.
|
||||
If you bring data into ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements,
|
||||
issue a <codeph>REFRESH</codeph> statement for the table before using Impala to query the ADLS data.
|
||||
</p>
|
||||
|
||||
<p rev="2.6.0 IMPALA-1878" id="s3_dml">
|
||||
In <keyword keyref="impala26_full"/> and higher, the Impala DML statements (<codeph>INSERT</codeph>, <codeph>LOAD DATA</codeph>,
|
||||
and <codeph>CREATE TABLE AS SELECT</codeph>) can write data into a table or partition that resides in the
|
||||
@@ -2392,6 +2426,10 @@ flight_num: INT32 SNAPPY DO:83456393 FPO:83488603 SZ:10216514/11474301
|
||||
<b>Amazon S3 considerations:</b>
|
||||
</p>
|
||||
|
||||
<p id="adls_blurb" rev="2.9.0">
|
||||
<b>ADLS considerations:</b>
|
||||
</p>
|
||||
|
||||
<p id="isilon_blurb" rev="2.2.3">
|
||||
<b>Isilon considerations:</b>
|
||||
</p>
|
||||
|
||||
669
docs/topics/impala_adls.xml
Normal file
669
docs/topics/impala_adls.xml
Normal file
@@ -0,0 +1,669 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!--
|
||||
Licensed to the Apache Software Foundation (ASF) under one
|
||||
or more contributor license agreements. See the NOTICE file
|
||||
distributed with this work for additional information
|
||||
regarding copyright ownership. The ASF licenses this file
|
||||
to you under the Apache License, Version 2.0 (the
|
||||
"License"); you may not use this file except in compliance
|
||||
with the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing,
|
||||
software distributed under the License is distributed on an
|
||||
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations
|
||||
under the License.
|
||||
-->
|
||||
<!DOCTYPE concept PUBLIC "-//OASIS//DTD DITA Concept//EN" "concept.dtd">
|
||||
<concept id="adls" rev="2.9.0">
|
||||
|
||||
<title>Using Impala with the Azure Data Lake Store (ADLS)</title>
|
||||
<titlealts audience="PDF"><navtitle>ADLS Tables</navtitle></titlealts>
|
||||
<prolog>
|
||||
<metadata>
|
||||
<data name="Category" value="Impala"/>
|
||||
<data name="Category" value="ADLS"/>
|
||||
<data name="Category" value="Data Analysts"/>
|
||||
<data name="Category" value="Developers"/>
|
||||
<data name="Category" value="Querying"/>
|
||||
<data name="Category" value="Preview Features"/>
|
||||
</metadata>
|
||||
</prolog>
|
||||
|
||||
<conbody>
|
||||
|
||||
<note conref="../shared/impala_common.xml#common/adls_production"/>
|
||||
|
||||
<p>
|
||||
<indexterm audience="hidden">ADLS with Impala</indexterm>
|
||||
You can use Impala to query data residing on the Azure Data Lake Store (ADLS) filesystem.
|
||||
This capability allows convenient access to a storage system that is remotely managed,
|
||||
accessible from anywhere, and integrated with various cloud-based services. Impala can
|
||||
query files in any supported file format from ADLS. The ADLS storage location
|
||||
can be for an entire table, or individual partitions in a partitioned table.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The default Impala tables use data files stored on HDFS, which are ideal for bulk loads and queries using
|
||||
full-table scans. In contrast, queries against ADLS data are less performant, making ADLS suitable for holding
|
||||
<q>cold</q> data that is only queried occasionally, while more frequently accessed <q>hot</q> data resides in
|
||||
HDFS. In a partitioned table, you can set the <codeph>LOCATION</codeph> attribute for individual partitions
|
||||
to put some partitions on HDFS and others on ADLS, typically depending on the age of the data.
|
||||
</p>
|
||||
|
||||
<p outputclass="toc inpage"/>
|
||||
|
||||
</conbody>
|
||||
|
||||
<concept id="prereqs">
|
||||
<title>Prerequisites</title>
|
||||
<conbody>
|
||||
<p>
|
||||
These procedures presume that you have already set up an Azure account,
|
||||
configured an ADLS store, and configured your Hadoop cluster with appropriate
|
||||
credentials to be able to access ADLS. See the following resources for information:
|
||||
</p>
|
||||
<ul>
|
||||
<li>
|
||||
<p>
|
||||
<xref href="https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-get-started-portal" scope="external" format="html">Get started with Azure Data Lake Store using the Azure Portal</xref>
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
<xref href="https://hadoop.apache.org/docs/current2/hadoop-azure-datalake/index.html" scope="external" format="html">Hadoop Azure Data Lake Support</xref>
|
||||
</p>
|
||||
</li>
|
||||
</ul>
|
||||
</conbody>
|
||||
</concept>
|
||||
|
||||
<concept id="sql">
|
||||
<title>How Impala SQL Statements Work with ADLS</title>
|
||||
<conbody>
|
||||
<p>
|
||||
Impala SQL statements work with data on ADLS as follows:
|
||||
</p>
|
||||
<ul>
|
||||
<li>
|
||||
<p>
|
||||
The <xref href="impala_create_table.xml#create_table"/>
|
||||
or <xref href="impala_alter_table.xml#alter_table"/> statements
|
||||
can specify that a table resides on the ADLS filesystem by
|
||||
encoding an <codeph>adl://</codeph> prefix for the <codeph>LOCATION</codeph>
|
||||
property. <codeph>ALTER TABLE</codeph> can also set the <codeph>LOCATION</codeph>
|
||||
property for an individual partition, so that some data in a table resides on
|
||||
ADLS and other data in the same table resides on HDFS.
|
||||
</p>
|
||||
<p>
|
||||
The full format of the location URI is typically:
|
||||
<codeblock>
|
||||
adl://<varname>your_account</varname>.azuredatalakestore.net/<varname>rest_of_directory_path</varname>
|
||||
</codeblock>
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
Once a table or partition is designated as residing on ADLS, the <xref href="impala_select.xml#select"/>
|
||||
statement transparently accesses the data files from the appropriate storage layer.
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
If the ADLS table is an internal table, the <xref href="impala_drop_table.xml#drop_table"/> statement
|
||||
removes the corresponding data files from ADLS when the table is dropped.
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
The <xref href="impala_truncate_table.xml#truncate_table"/> statement always removes the corresponding
|
||||
data files from ADLS when the table is truncated.
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
The <xref href="impala_load_data.xml#load_data"/> can move data files residing in HDFS into
|
||||
an ADLS table.
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
The <xref href="impala_insert.xml#insert"/>, or the <codeph>CREATE TABLE AS SELECT</codeph>
|
||||
form of the <codeph>CREATE TABLE</codeph> statement, can copy data from an HDFS table or another ADLS
|
||||
table into an ADLS table.
|
||||
</p>
|
||||
</li>
|
||||
</ul>
|
||||
<p>
|
||||
For usage information about Impala SQL statements with ADLS tables, see <xref href="impala_adls.xml#ddl"/>
|
||||
and <xref href="impala_adls.xml#dml"/>.
|
||||
</p>
|
||||
</conbody>
|
||||
</concept>
|
||||
|
||||
<concept id="creds">
|
||||
|
||||
<title>Specifying Impala Credentials to Access Data in ADLS</title>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
To allow Impala to access data in ADLS, specify values for the following configuration settings in your
|
||||
<filepath>core-site.xml</filepath> file:
|
||||
</p>
|
||||
|
||||
<codeblock><![CDATA[
|
||||
<property>
|
||||
<name>dfs.adls.oauth2.access.token.provider.type</name>
|
||||
<value>ClientCredential</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>dfs.adls.oauth2.client.id</name>
|
||||
<value><varname>your_client_id</varname></value>
|
||||
</property>
|
||||
<property>
|
||||
<name>dfs.adls.oauth2.credential</name>
|
||||
<value><varname>your_client_secret</varname></value>
|
||||
</property>
|
||||
<property>
|
||||
<name>dfs.adls.oauth2.refresh.url</name>
|
||||
<value><varname>refresh_URL</varname></value>
|
||||
</property>
|
||||
]]>
|
||||
</codeblock>
|
||||
|
||||
<note>
|
||||
<p>
|
||||
Check if your Hadoop distribution or cluster management tool includes support for
|
||||
filling in and distributing credentials across the cluster in an automated way.
|
||||
</p>
|
||||
</note>
|
||||
|
||||
<p>
|
||||
After specifying the credentials, restart both the Impala and
|
||||
Hive services. (Restarting Hive is required because Impala queries, CREATE TABLE statements, and so on go
|
||||
through the Hive metastore.)
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="etl">
|
||||
|
||||
<title>Loading Data into ADLS for Impala Queries</title>
|
||||
<prolog>
|
||||
<metadata>
|
||||
<data name="Category" value="ETL"/>
|
||||
<data name="Category" value="Ingest"/>
|
||||
</metadata>
|
||||
</prolog>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
If your ETL pipeline involves moving data into ADLS and then querying through Impala,
|
||||
you can either use Impala DML statements to create, move, or copy the data, or
|
||||
use the same data loading techniques as you would for non-Impala data.
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
|
||||
<concept id="dml">
|
||||
<title>Using Impala DML Statements for ADLS Data</title>
|
||||
<conbody>
|
||||
<p conref="../shared/impala_common.xml#common/adls_dml"/>
|
||||
</conbody>
|
||||
</concept>
|
||||
|
||||
<concept id="manual_etl">
|
||||
<title>Manually Loading Data into Impala Tables on ADLS</title>
|
||||
<conbody>
|
||||
<p>
|
||||
As an alternative, you can use the Microsoft-provided methods to bring data files
|
||||
into ADLS for querying through Impala. See
|
||||
<xref href="https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-copy-data-azure-storage-blob" scope="external" format="html">the Microsoft ADLS documentation</xref>
|
||||
for details.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
After you upload data files to a location already mapped to an Impala table or partition, or if you delete
|
||||
files in ADLS from such a location, issue the <codeph>REFRESH <varname>table_name</varname></codeph>
|
||||
statement to make Impala aware of the new set of data files.
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
</concept>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="ddl">
|
||||
|
||||
<title>Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS</title>
|
||||
<prolog>
|
||||
<metadata>
|
||||
<data name="Category" value="Databases"/>
|
||||
</metadata>
|
||||
</prolog>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
Impala reads data for a table or partition from ADLS based on the <codeph>LOCATION</codeph> attribute for the
|
||||
table or partition. Specify the ADLS details in the <codeph>LOCATION</codeph> clause of a <codeph>CREATE
|
||||
TABLE</codeph> or <codeph>ALTER TABLE</codeph> statement. The notation for the <codeph>LOCATION</codeph>
|
||||
clause is <codeph>adl://<varname>store</varname>/<varname>path/to/file</varname></codeph>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For a partitioned table, either specify a separate <codeph>LOCATION</codeph> clause for each new partition,
|
||||
or specify a base <codeph>LOCATION</codeph> for the table and set up a directory structure in ADLS to mirror
|
||||
the way Impala partitioned tables are structured in HDFS. Although, strictly speaking, ADLS filenames do not
|
||||
have directory paths, Impala treats ADLS filenames with <codeph>/</codeph> characters the same as HDFS
|
||||
pathnames that include directories.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
To point a nonpartitioned table or an individual partition at ADLS, specify a single directory
|
||||
path in ADLS, which could be any arbitrary directory. To replicate the structure of an entire Impala
|
||||
partitioned table or database in ADLS requires more care, with directories and subdirectories nested and
|
||||
named to match the equivalent directory tree in HDFS. Consider setting up an empty staging area if
|
||||
necessary in HDFS, and recording the complete directory structure so that you can replicate it in ADLS.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For example, the following session creates a partitioned table where only a single partition resides on ADLS.
|
||||
The partitions for years 2013 and 2014 are located on HDFS. The partition for year 2015 includes a
|
||||
<codeph>LOCATION</codeph> attribute with an <codeph>adl://</codeph> URL, and so refers to data residing on
|
||||
ADLS, under a specific path underneath the store <codeph>impalademo</codeph>.
|
||||
</p>
|
||||
|
||||
<codeblock>[localhost:21000] > create database db_on_hdfs;
|
||||
[localhost:21000] > use db_on_hdfs;
|
||||
[localhost:21000] > create table mostly_on_hdfs (x int) partitioned by (year int);
|
||||
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2013);
|
||||
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2014);
|
||||
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2015)
|
||||
> location 'adl://impalademo.azuredatalakestore.net/dir1/dir2/dir3/t1';
|
||||
</codeblock>
|
||||
|
||||
<p>
|
||||
For convenience when working with multiple tables with data files stored in ADLS, you can create a database
|
||||
with a <codeph>LOCATION</codeph> attribute pointing to an ADLS path.
|
||||
Specify a URL of the form <codeph>adl://<varname>store</varname>/<varname>root/path/for/database</varname></codeph>
|
||||
for the <codeph>LOCATION</codeph> attribute of the database.
|
||||
Any tables created inside that database
|
||||
automatically create directories underneath the one specified by the database
|
||||
<codeph>LOCATION</codeph> attribute.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The following session creates a database and two partitioned tables residing entirely on ADLS, one
|
||||
partitioned by a single column and the other partitioned by multiple columns. Because a
|
||||
<codeph>LOCATION</codeph> attribute with an <codeph>adl://</codeph> URL is specified for the database, the
|
||||
tables inside that database are automatically created on ADLS underneath the database directory. To see the
|
||||
names of the associated subdirectories, including the partition key values, we use an ADLS client tool to
|
||||
examine how the directory structure is organized on ADLS. For example, Impala partition directories such as
|
||||
<codeph>month=1</codeph> do not include leading zeroes, which sometimes appear in partition directories created
|
||||
through Hive.
|
||||
</p>
|
||||
|
||||
<codeblock>[localhost:21000] > create database db_on_adls location 'adl://impalademo.azuredatalakestore.net/dir1/dir2/dir3';
|
||||
[localhost:21000] > use db_on_adls;
|
||||
|
||||
[localhost:21000] > create table partitioned_on_adls (x int) partitioned by (year int);
|
||||
[localhost:21000] > alter table partitioned_on_adls add partition (year=2013);
|
||||
[localhost:21000] > alter table partitioned_on_adls add partition (year=2014);
|
||||
[localhost:21000] > alter table partitioned_on_adls add partition (year=2015);
|
||||
|
||||
[localhost:21000] > ! hadoop fs -ls adl://impalademo.azuredatalakestore.net/dir1/dir2/dir3 --recursive;
|
||||
2015-03-17 13:56:34 0 dir1/dir2/dir3/
|
||||
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_adls/
|
||||
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_adls/year=2013/
|
||||
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_adls/year=2014/
|
||||
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_adls/year=2015/
|
||||
|
||||
[localhost:21000] > create table partitioned_multiple_keys (x int)
|
||||
> partitioned by (year smallint, month tinyint, day tinyint);
|
||||
[localhost:21000] > alter table partitioned_multiple_keys
|
||||
> add partition (year=2015,month=1,day=1);
|
||||
[localhost:21000] > alter table partitioned_multiple_keys
|
||||
> add partition (year=2015,month=1,day=31);
|
||||
[localhost:21000] > alter table partitioned_multiple_keys
|
||||
> add partition (year=2015,month=2,day=28);
|
||||
|
||||
[localhost:21000] > ! hadoop fs -ls adl://impalademo.azuredatalakestore.net/dir1/dir2/dir3 --recursive;
|
||||
2015-03-17 13:56:34 0 dir1/dir2/dir3/
|
||||
2015-03-17 16:47:13 0 dir1/dir2/dir3/partitioned_multiple_keys/
|
||||
2015-03-17 16:47:44 0 dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=1/day=1/
|
||||
2015-03-17 16:47:50 0 dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=1/day=31/
|
||||
2015-03-17 16:47:57 0 dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=2/day=28/
|
||||
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_adls/
|
||||
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_adls/year=2013/
|
||||
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_adls/year=2014/
|
||||
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_adls/year=2015/
|
||||
</codeblock>
|
||||
|
||||
<p>
|
||||
The <codeph>CREATE DATABASE</codeph> and <codeph>CREATE TABLE</codeph> statements create the associated
|
||||
directory paths if they do not already exist. You can specify multiple levels of directories, and the
|
||||
<codeph>CREATE</codeph> statement creates all appropriate levels, similar to using <codeph>mkdir
|
||||
-p</codeph>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Use the standard ADLS file upload methods to actually put the data files into the right locations. You can
|
||||
also put the directory paths and data files in place before creating the associated Impala databases or
|
||||
tables, and Impala automatically uses the data from the appropriate location after the associated databases
|
||||
and tables are created.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
You can switch whether an existing table or partition points to data in HDFS or ADLS. For example, if you
|
||||
have an Impala table or partition pointing to data files in HDFS or ADLS, and you later transfer those data
|
||||
files to the other filesystem, use an <codeph>ALTER TABLE</codeph> statement to adjust the
|
||||
<codeph>LOCATION</codeph> attribute of the corresponding table or partition to reflect that change. Because
|
||||
Impala does not have an <codeph>ALTER DATABASE</codeph> statement, this location-switching technique is not
|
||||
practical for entire databases that have a custom <codeph>LOCATION</codeph> attribute.
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="internal_external">
|
||||
|
||||
<title>Internal and External Tables Located on ADLS</title>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
Just as with tables located on HDFS storage, you can designate ADLS-based tables as either internal (managed
|
||||
by Impala) or external, by using the syntax <codeph>CREATE TABLE</codeph> or <codeph>CREATE EXTERNAL
|
||||
TABLE</codeph> respectively. When you drop an internal table, the files associated with the table are
|
||||
removed, even if they are on ADLS storage. When you drop an external table, the files associated with the
|
||||
table are left alone, and are still available for access by other tools or components. See
|
||||
<xref href="impala_tables.xml#tables"/> for details.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
If the data on ADLS is intended to be long-lived and accessed by other tools in addition to Impala, create
|
||||
any associated ADLS tables with the <codeph>CREATE EXTERNAL TABLE</codeph> syntax, so that the files are not
|
||||
deleted from ADLS when the table is dropped.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
If the data on ADLS is only needed for querying by Impala and can be safely discarded once the Impala
|
||||
workflow is complete, create the associated ADLS tables using the <codeph>CREATE TABLE</codeph> syntax, so
|
||||
that dropping the table also deletes the corresponding data files on ADLS.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
For example, this session creates a table in ADLS with the same column layout as a table in HDFS, then
|
||||
examines the ADLS table and queries some data from it. The table in ADLS works the same as a table in HDFS as
|
||||
far as the expected file format of the data, table and column statistics, and other table properties. The
|
||||
only indication that it is not an HDFS table is the <codeph>adl://</codeph> URL in the
|
||||
<codeph>LOCATION</codeph> property. Many data files can reside in the ADLS directory, and their combined
|
||||
contents form the table data. Because the data in this example is uploaded after the table is created, a
|
||||
<codeph>REFRESH</codeph> statement prompts Impala to update its cached information about the data files.
|
||||
</p>
|
||||
|
||||
<codeblock>[localhost:21000] > create table usa_cities_adls like usa_cities location 'adl://impalademo.azuredatalakestore.net/usa_cities';
|
||||
[localhost:21000] > desc usa_cities_adls;
|
||||
+-------+----------+---------+
|
||||
| name | type | comment |
|
||||
+-------+----------+---------+
|
||||
| id | smallint | |
|
||||
| city | string | |
|
||||
| state | string | |
|
||||
+-------+----------+---------+
|
||||
|
||||
-- Now from a web browser, upload the same data file(s) to ADLS as in the HDFS table,
|
||||
-- under the relevant store and path. If you already have the data in ADLS, you would
|
||||
-- point the table LOCATION at an existing path.
|
||||
|
||||
[localhost:21000] > refresh usa_cities_adls;
|
||||
[localhost:21000] > select count(*) from usa_cities_adls;
|
||||
+----------+
|
||||
| count(*) |
|
||||
+----------+
|
||||
| 289 |
|
||||
+----------+
|
||||
[localhost:21000] > select distinct state from sample_data_adls limit 5;
|
||||
+----------------------+
|
||||
| state |
|
||||
+----------------------+
|
||||
| Louisiana |
|
||||
| Minnesota |
|
||||
| Georgia |
|
||||
| Alaska |
|
||||
| Ohio |
|
||||
+----------------------+
|
||||
[localhost:21000] > desc formatted usa_cities_adls;
|
||||
+------------------------------+----------------------------------------------------+---------+
|
||||
| name | type | comment |
|
||||
+------------------------------+----------------------------------------------------+---------+
|
||||
| # col_name | data_type | comment |
|
||||
| | NULL | NULL |
|
||||
| id | smallint | NULL |
|
||||
| city | string | NULL |
|
||||
| state | string | NULL |
|
||||
| | NULL | NULL |
|
||||
| # Detailed Table Information | NULL | NULL |
|
||||
| Database: | adls_testing | NULL |
|
||||
| Owner: | jrussell | NULL |
|
||||
| CreateTime: | Mon Mar 16 11:36:25 PDT 2017 | NULL |
|
||||
| LastAccessTime: | UNKNOWN | NULL |
|
||||
| Protect Mode: | None | NULL |
|
||||
| Retention: | 0 | NULL |
|
||||
| Location: | adl://impalademo.azuredatalakestore.net/usa_cities | NULL |
|
||||
| Table Type: | MANAGED_TABLE | NULL |
|
||||
...
|
||||
+------------------------------+----------------------------------------------------+---------+
|
||||
</codeblock>
|
||||
|
||||
<p>
|
||||
In this case, we have already uploaded a Parquet file with a million rows of data to the
|
||||
<codeph>sample_data</codeph> directory underneath the <codeph>impalademo</codeph> store on ADLS. This
|
||||
session creates a table with matching column settings pointing to the corresponding location in ADLS, then
|
||||
queries the table. Because the data is already in place on ADLS when the table is created, no
|
||||
<codeph>REFRESH</codeph> statement is required.
|
||||
</p>
|
||||
|
||||
<codeblock>[localhost:21000] > create table sample_data_adls
|
||||
> (id int, id bigint, val int, zerofill string,
|
||||
> name string, assertion boolean, city string, state string)
|
||||
> stored as parquet location 'adl://impalademo.azuredatalakestore.net/sample_data';
|
||||
[localhost:21000] > select count(*) from sample_data_adls;
|
||||
+----------+
|
||||
| count(*) |
|
||||
+----------+
|
||||
| 1000000 |
|
||||
+----------+
|
||||
[localhost:21000] > select count(*) howmany, assertion from sample_data_adls group by assertion;
|
||||
+---------+-----------+
|
||||
| howmany | assertion |
|
||||
+---------+-----------+
|
||||
| 667149 | true |
|
||||
| 332851 | false |
|
||||
+---------+-----------+
|
||||
</codeblock>
|
||||
|
||||
</conbody>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="queries">
|
||||
|
||||
<title>Running and Tuning Impala Queries for Data Stored on ADLS</title>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
Once the appropriate <codeph>LOCATION</codeph> attributes are set up at the table or partition level, you
|
||||
query data stored in ADLS exactly the same as data stored on HDFS or in HBase:
|
||||
</p>
|
||||
|
||||
<ul>
|
||||
<li>
|
||||
Queries against ADLS data support all the same file formats as for HDFS data.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct paths in ADLS
|
||||
corresponding to the HDFS directories representing partition key values, or use <codeph>ALTER TABLE ...
|
||||
ADD PARTITION</codeph> to set up the appropriate paths in ADLS.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
HDFS, Kudu, and HBase tables can be joined to ADLS tables, or ADLS tables can be joined with each other.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
Authorization using the Sentry framework to control access to databases, tables, or columns works the
|
||||
same whether the data is in HDFS or in ADLS.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
The <cmdname>catalogd</cmdname> daemon caches metadata for both HDFS and ADLS tables. Use
|
||||
<codeph>REFRESH</codeph> and <codeph>INVALIDATE METADATA</codeph> for ADLS tables in the same situations
|
||||
where you would issue those statements for HDFS tables.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
Queries against ADLS tables are subject to the same kinds of admission control and resource management as
|
||||
HDFS tables.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
Metadata about ADLS tables is stored in the same metastore database as for HDFS tables.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
You can set up views referring to ADLS tables, the same as for HDFS tables.
|
||||
</li>
|
||||
|
||||
<li>
|
||||
The <codeph>COMPUTE STATS</codeph>, <codeph>SHOW TABLE STATS</codeph>, and <codeph>SHOW COLUMN
|
||||
STATS</codeph> statements work for ADLS tables also.
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
</conbody>
|
||||
|
||||
<concept id="performance">
|
||||
|
||||
<title>Understanding and Tuning Impala Query Performance for ADLS Data</title>
|
||||
<prolog>
|
||||
<metadata>
|
||||
<data name="Category" value="Performance"/>
|
||||
</metadata>
|
||||
</prolog>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
Although Impala queries for data stored in ADLS might be less performant than queries against the
|
||||
equivalent data stored in HDFS, you can still do some tuning. Here are techniques you can use to
|
||||
interpret explain plans and profiles for queries against ADLS data, and tips to achieve the best
|
||||
performance possible for such queries.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
All else being equal, performance is expected to be lower for queries running against data on ADLS rather
|
||||
than HDFS. The actual mechanics of the <codeph>SELECT</codeph> statement are somewhat different when the
|
||||
data is in ADLS. Although the work is still distributed across the datanodes of the cluster, Impala might
|
||||
parallelize the work for a distributed query differently for data on HDFS and ADLS. ADLS does not have the
|
||||
same block notion as HDFS, so Impala uses heuristics to determine how to split up large ADLS files for
|
||||
processing in parallel. Because all hosts can access any ADLS data file with equal efficiency, the
|
||||
distribution of work might be different than for HDFS data, where the data blocks are physically read
|
||||
using short-circuit local reads by hosts that contain the appropriate block replicas. Although the I/O to
|
||||
read the ADLS data might be spread evenly across the hosts of the cluster, the fact that all data is
|
||||
initially retrieved across the network means that the overall query performance is likely to be lower for
|
||||
ADLS data than for HDFS data.
|
||||
</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/adls_block_splitting"/>
|
||||
|
||||
<p>
|
||||
When optimizing aspects of for complex queries such as the join order, Impala treats tables on HDFS and
|
||||
ADLS the same way. Therefore, follow all the same tuning recommendations for ADLS tables as for HDFS ones,
|
||||
such as using the <codeph>COMPUTE STATS</codeph> statement to help Impala construct accurate estimates of
|
||||
row counts and cardinality. See <xref href="impala_performance.xml#performance"/> for details.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
In query profile reports, the numbers for <codeph>BytesReadLocal</codeph>,
|
||||
<codeph>BytesReadShortCircuit</codeph>, <codeph>BytesReadDataNodeCached</codeph>, and
|
||||
<codeph>BytesReadRemoteUnexpected</codeph> are blank because those metrics come from HDFS.
|
||||
If you do see any indications that a query against an ADLS table performed <q>remote read</q>
|
||||
operations, do not be alarmed. That is expected because, by definition, all the I/O for ADLS tables involves
|
||||
remote reads.
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
|
||||
</concept>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="restrictions">
|
||||
|
||||
<title>Restrictions on Impala Support for ADLS</title>
|
||||
|
||||
<conbody>
|
||||
|
||||
<p>
|
||||
Impala requires that the default filesystem for the cluster be HDFS. You cannot use ADLS as the only
|
||||
filesystem in the cluster.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Although ADLS is often used to store JSON-formatted data, the current Impala support for ADLS does not include
|
||||
directly querying JSON data. For Impala queries, use data files in one of the file formats listed in
|
||||
<xref href="impala_file_formats.xml#file_formats"/>. If you have data in JSON format, you can prepare a
|
||||
flattened version of that data for querying by Impala as part of your ETL cycle.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
You cannot use the <codeph>ALTER TABLE ... SET CACHED</codeph> statement for tables or partitions that are
|
||||
located in ADLS.
|
||||
</p>
|
||||
|
||||
</conbody>
|
||||
|
||||
</concept>
|
||||
|
||||
<concept id="best_practices">
|
||||
<title>Best Practices for Using Impala with ADLS</title>
|
||||
<prolog>
|
||||
<metadata>
|
||||
<data name="Category" value="Guidelines"/>
|
||||
<data name="Category" value="Best Practices"/>
|
||||
</metadata>
|
||||
</prolog>
|
||||
<conbody>
|
||||
<p>
|
||||
The following guidelines represent best practices derived from testing and real-world experience with Impala on ADLS:
|
||||
</p>
|
||||
<ul>
|
||||
<li>
|
||||
<p>
|
||||
Any reference to an ADLS location must be fully qualified. (This rule applies when
|
||||
ADLS is not designated as the default filesystem.)
|
||||
</p>
|
||||
</li>
|
||||
<li>
|
||||
<p>
|
||||
Set any appropriate configuration settings for <cmdname>impalad</cmdname>.
|
||||
</p>
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
</conbody>
|
||||
</concept>
|
||||
|
||||
</concept>
|
||||
@@ -708,6 +708,10 @@ Inserted 2 rows in 0.16s
|
||||
<p conref="../shared/impala_common.xml#common/s3_dml_performance"/>
|
||||
<p>See <xref href="../topics/impala_s3.xml#s3"/> for details about reading and writing S3 data with Impala.</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/adls_blurb"/>
|
||||
<p conref="../shared/impala_common.xml#common/adls_dml"/>
|
||||
<p>See <xref href="../topics/impala_adls.xml#adls"/> for details about reading and writing ADLS data with Impala.</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/security_blurb"/>
|
||||
<p conref="../shared/impala_common.xml#common/redaction_yes"/>
|
||||
|
||||
|
||||
@@ -239,6 +239,10 @@ Returned 1 row(s) in 0.62s</codeblock>
|
||||
<p conref="../shared/impala_common.xml#common/s3_dml_performance"/>
|
||||
<p>See <xref href="../topics/impala_s3.xml#s3"/> for details about reading and writing S3 data with Impala.</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/adls_blurb"/>
|
||||
<p conref="../shared/impala_common.xml#common/adls_dml"/>
|
||||
<p>See <xref href="../topics/impala_adls.xml#adls"/> for details about reading and writing ADLS data with Impala.</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/cancel_blurb_no"/>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/permissions_blurb"/>
|
||||
|
||||
@@ -88,6 +88,8 @@ INSERT OVERWRITE parquet_table SELECT * FROM text_table;
|
||||
<b>Default:</b> 0 (produces files with a target size of 256 MB; files might be larger for very wide tables)
|
||||
</p>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/adls_block_splitting"/>
|
||||
|
||||
<p conref="../shared/impala_common.xml#common/isilon_blurb"/>
|
||||
<p conref="../shared/impala_common.xml#common/isilon_block_size_caveat"/>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user