Files
impala/tests/common/test_vector.py
Riza Suminto 134de01a59 IMPALA-13642: Fix unused test vector in test_scanners.py
Several test vectors were ignored in test_scanners.py. This cause
repetition of the same test without actually varying the test
exec_option nor debug_action.

This patch fix it by:
- Use execute_query() instead of client.execute()
- Passing vector.get_value('exec_option') when executing test query.

Repurpose ImpalaTestMatrix.embed_independent_exec_options to deepcopy
'exec_option' dimension during vector generation. Therefore, each test
execution will have unique copy of 'exec_option' for them self.

This patch also adds flake8-unused-arguments plugin into
critique-gerrit-review.py and py3-requirements.txt so we can catch this
issue during code review. impala-flake8 is also updated to use
impala-python3-common.sh. Adds flake8==3.9.2 in py3-requirements.txt,
which is the highest version that has compatible dependencies with
pylint==2.10.2.

Drop unused 'dryrun' parameter in get_catalog_compatibility_comments
method of critique-gerrit-review.py.

Testing:
- Run impala-flake8 against test_scanners.py and confirm there is no
  more unused variable.
- Run and pass test_scanners.py in core exploration.

Change-Id: I3b78736327c71323d10bcd432e162400b7ed1d9d
Reviewed-on: http://gerrit.cloudera.org:8080/22301
Reviewed-by: Michael Smith <michael.smith@cloudera.com>
Reviewed-by: Joe McDonnell <joemcdonnell@cloudera.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2025-01-09 06:17:51 +00:00

261 lines
10 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# A TextMatrix is used to generate a set of ImpalaTestVectors. The vectors that are
# generated are based on one or more ImpalaTestDimensions inputs. These lists define
# the set of values that are interesting to a test. For example, for file_format
# these might be 'seq', 'text', etc
#
# The ImpalaTestMatrix is then used to generate a set of ImpalaTestVectors. Each
# ImpalaTestVector contains a single value from each of the input ImpalaTestDimensions.
# An example:
#
# ImpalaTestMatrix.add_dimension('file_format', 'seq', 'text')
# ImpalaTestMatrix.add_dimension('agg_func', 'min', 'max', 'sum')
# ImpalaTestMatrix.add_dimension('col_type', 'int', 'bool')
# test_vectors = ImpalaTestMatrix.generate_test_vectors(...)
#
# Would return a collection of ImpalaTestVectors, with each one containing a
# combination of file_format, agg_func, and col_type:
# seq, min, int
# text, max, bool
# ...
#
# A ImpalaTestVector is an object itself, and the 'get_value' function is used to
# extract the actual value from the ImpalaTestVector for this particular combination:
# test_vector = test_vectors[0]
# print test_vector.get_value('file_format')
#
# The combinations of ImpalaTestVectors generated can be done in two ways: pairwise
# and exhaustive. Pairwise provides a way to get good coverage and reduce the total
# number of combinations generated where exhaustive will generate all valid
# combinations.
#
# Finally, the ImpalaTestMatrix also provides a way to add constraints to the vectors
# that are generated. This is useful to filter out invalid combinations. These can
# be added before calling 'generate_test_vectors'. The constraint is a function that
# accepts a ImpalaTestVector object and returns true if the vector is valid, false
# otherwise. For example, if we want to make sure 'bool' columns are not used with 'sum':
#
# ImpalaTestMatrix.add_constraint(lambda v:\
# not (v.get_value('col_type') == 'bool' and v.get_value('agg_func') == 'sum'))
#
# Additional examples of usage can be found within the test suites.
from __future__ import absolute_import, division, print_function
from itertools import product
from copy import deepcopy
import logging
LOG = logging.getLogger(__name__)
EXEC_OPTION_KEY = 'exec_option'
def assert_exec_option_key(key):
assert key.islower(), "Exec option " + key + " is not in lower case"
# A list of test dimension values.
class ImpalaTestDimension(list):
def __init__(self, name, *args):
self.name = name
self.extend([ImpalaTestVector.Value(name, arg) for arg in args])
# A test vector that passed to test method. The ImpalaTestVector can be used to
# extract values for the specified dimension(s)
class ImpalaTestVector(object):
def __init__(self, vector_values):
self.vector_values = vector_values
def get_value_with_default(self, name, default_value):
for vector_value in self.vector_values:
if vector_value.name == name:
return vector_value.value
return default_value
def get_value(self, name):
for vector_value in self.vector_values:
if vector_value.name == name:
return vector_value.value
raise ValueError("Test vector does not contain value '%s'" % name)
def get_exec_option_dict(self):
return self.get_value(EXEC_OPTION_KEY)
def get_exec_option(self, option_name):
return self.get_value(EXEC_OPTION_KEY)[option_name]
def set_exec_option(self, option_name, option_value):
self.get_value(EXEC_OPTION_KEY)[option_name] = option_value
def unset_exec_option(self, option_name):
del self.get_value(EXEC_OPTION_KEY)[option_name]
def __str__(self):
return ' | '.join(['%s' % vector_value for vector_value in self.vector_values])
# Each value in a test vector is wrapped in the Value object. This wrapping is
# done internally so this object should never need to be created by the user.
class Value(object):
def __init__(self, name, value):
self.name = name
self.value = value
def __str__(self):
return '%s: %s' % (self.name, self.value)
# Matrix -> Collection of vectors
# Vector -> Call to get specific values
class ImpalaTestMatrix(object):
def __init__(self, *args):
self.dimensions = dict((arg.name, arg) for arg in args)
self.constraint_list = list()
self.independent_exec_option_names = set()
def add_dimension(self, dimension):
self.dimensions[dimension.name] = dimension
if dimension.name == EXEC_OPTION_KEY:
for name in list(self.independent_exec_option_names):
LOG.warn("Reassigning {} dimension will remove exec option {}={} that was "
"independently declared through add_exec_option_dimension.".format(
EXEC_OPTION_KEY, name, [v.value for v in self.dimensions[name]]))
self.clear_dimension(name)
def assert_unique_exec_option_key(self, key):
"""Assert that 'exec_option' dimension exist and 'key' is not exist yet
in self.dimension['exec_option']."""
assert_exec_option_key(key)
assert EXEC_OPTION_KEY in self.dimensions, (
"Must have '" + EXEC_OPTION_KEY + "' dimension previously declared!")
for vector in self.dimensions[EXEC_OPTION_KEY]:
assert key not in vector.value, (
"'{}' is already exist in '{}' dimension!".format(key, EXEC_OPTION_KEY))
# 'key' must not previously declared with add_exec_option_dimension().
assert key not in self.independent_exec_option_names, (
"['{}']['{}'] was previously declared with non-unique value: {}".format(
EXEC_OPTION_KEY, key, [dim.value for dim in self.dimensions[key]]))
def add_mandatory_exec_option(self, key, value):
"""Append key=value pair into 'exec_option' dimension."""
self.assert_unique_exec_option_key(key)
for vector in self.dimensions[EXEC_OPTION_KEY]:
vector.value[key] = value
def add_exec_option_dimension(self, dimension):
"""
Add 'dimension' into 'self.dimensions' and memorize the name.
During vector generation, all dimensions registered through this method will be
embedded into 'exec_option' dimension. This is intended to maintain pairwise and
exhaustive combination correct while eliminating the need for individual test method
to append the custom exec options into 'exec_option' dimension themself.
"""
self.assert_unique_exec_option_key(dimension.name)
assert len(dimension) > 1, (
"Dimension " + dimension.name + " must have more than 1 possible value! "
"Use add_mandatory_exec_option() instead.")
self.add_dimension(dimension)
self.independent_exec_option_names.add(dimension.name)
def clear(self):
self.dimensions.clear()
self.independent_exec_option_names = set()
def clear_dimension(self, dimension_name):
del self.dimensions[dimension_name]
self.independent_exec_option_names.discard(dimension_name)
def has_dimension(self, dimension_name):
return dimension_name in self.dimensions
def generate_test_vectors(self, exploration_strategy):
if not self.dimensions:
return list()
# TODO: Check valid exploration strategies, provide more options for exploration
if exploration_strategy == 'exhaustive':
return self.__generate_exhaustive_combinations()
elif exploration_strategy in ['core', 'pairwise']:
return self.__generate_pairwise_combinations()
else:
raise ValueError('Unknown exploration strategy: %s' % exploration_strategy)
def __deepcopy_vector_values(self, vector_values):
"""Return a deepcopy of vector_values and merge exec options declared through
add_exec_option_dimension() into 'exec_option' dimension."""
values = []
exec_values = []
exec_option = None
for val in vector_values:
if val.name == EXEC_OPTION_KEY:
# 'exec_option' is a map. We need to deepcopy the value for each vector.
exec_option = deepcopy(val.value)
elif val.name in self.independent_exec_option_names:
# save this to merge into exec_option later.
exec_values.append(val)
else:
values.append(val)
if self.independent_exec_option_names:
assert exec_option is not None, (
"Must have '" + EXEC_OPTION_KEY + "' dimension previously declared!")
for val in exec_values:
exec_option[val.name] = val.value
if exec_option:
values.append(ImpalaTestVector.Value(EXEC_OPTION_KEY, exec_option))
return values
def __generate_exhaustive_combinations(self):
return [ImpalaTestVector(self.__deepcopy_vector_values(vec))
for vec in product(*self.__extract_vector_values()) if self.is_valid(vec)]
def __generate_pairwise_combinations(self):
from allpairspy import AllPairs
all_pairs = AllPairs
# Pairwise fails if the number of inputs == 1. Use exhaustive in this case the
# results will be the same.
if len(self.dimensions) == 1:
return self.__generate_exhaustive_combinations()
return [ImpalaTestVector(self.__deepcopy_vector_values(vec))
for vec in all_pairs(self.__extract_vector_values(), filter_func=self.is_valid)]
def add_constraint(self, constraint_func):
self.constraint_list.append(constraint_func)
def clear_constraints(self):
self.constraint_list = list()
def __extract_vector_values(self):
# The data is stored as a tuple of (name, [val1, val2, val3]). So extract the
# actual values from this
return [v[1] for v in self.dimensions.items()]
def is_valid(self, vector):
for constraint in self.constraint_list:
if (isinstance(vector, list) or isinstance(vector, tuple)) and\
len(vector) == len(self.dimensions):
valid = constraint(ImpalaTestVector(vector))
if valid:
continue
return False
return True