mirror of
https://github.com/apache/impala.git
synced 2025-12-20 10:29:58 -05:00
This patch adds support for COS(Cloud Object Storage). Using the hadoop-cos, the implementation is similar to other remote FileSystems. New flags for COS: - num_cos_io_threads: Number of COS I/O threads. Defaults to be 16. Follow-up: - Support for caching COS file handles will be addressed in IMPALA-10772. - test_concurrent_inserts and test_failing_inserts in test_acid_stress.py are skipped due to slow file listing on COS (IMPALA-10773). Tests: - Upload hdfs test data to a COS bucket. Modify all locations in HMS DB to point to the COS bucket. Remove some hdfs caching params. Run CORE tests. Change-Id: Idce135a7591d1b4c74425e365525be3086a39821 Reviewed-on: http://gerrit.cloudera.org:8080/17503 Reviewed-by: Joe McDonnell <joemcdonnell@cloudera.com> Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
114 lines
5.1 KiB
Python
114 lines
5.1 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
#
|
|
# Tests for Hive-IMPALA parquet compression codec interoperability
|
|
|
|
import pytest
|
|
|
|
from tests.common.custom_cluster_test_suite import CustomClusterTestSuite
|
|
from tests.util.event_processor_utils import EventProcessorUtils
|
|
from tests.common.environ import HIVE_MAJOR_VERSION
|
|
from tests.common.skip import SkipIfS3, SkipIfGCS, SkipIfCOS
|
|
from tests.common.test_dimensions import create_exec_option_dimension
|
|
from tests.common.test_result_verifier import verify_query_result_is_equal
|
|
from tests.util.filesystem_utils import get_fs_path
|
|
|
|
PARQUET_CODECS = ['none', 'snappy', 'gzip', 'zstd', 'zstd:7', 'lz4']
|
|
|
|
|
|
class TestParquetInterop(CustomClusterTestSuite):
|
|
|
|
@classmethod
|
|
def get_workload(self):
|
|
return 'functional-query'
|
|
|
|
@classmethod
|
|
def setup_class(cls):
|
|
if cls.exploration_strategy() != 'exhaustive':
|
|
pytest.skip('runs only in exhaustive')
|
|
super(TestParquetInterop, cls).setup_class()
|
|
|
|
@classmethod
|
|
def add_test_dimensions(cls):
|
|
super(CustomClusterTestSuite, cls).add_test_dimensions()
|
|
# Fix the exec_option vector to have a single value.
|
|
cls.ImpalaTestMatrix.add_dimension(create_exec_option_dimension(
|
|
cluster_sizes=[0], disable_codegen_options=[False], batch_sizes=[0],
|
|
sync_ddl=[1]))
|
|
cls.ImpalaTestMatrix.add_constraint(
|
|
lambda v: v.get_value('table_format').file_format == 'parquet')
|
|
|
|
@SkipIfS3.hive
|
|
@SkipIfGCS.hive
|
|
@SkipIfCOS.hive
|
|
@pytest.mark.execute_serially
|
|
@CustomClusterTestSuite.with_args("-convert_legacy_hive_parquet_utc_timestamps=true "
|
|
"-hdfs_zone_info_zip=%s" % get_fs_path("/test-warehouse/tzdb/2017c.zip"))
|
|
def test_hive_impala_interop(self, vector, unique_database, cluster_properties):
|
|
# Setup source table.
|
|
source_table = "{0}.{1}".format(unique_database, "t1_source")
|
|
self.execute_query_expect_success(self.client,
|
|
"create table {0} as select * from functional_parquet.alltypes"
|
|
.format(source_table))
|
|
self.execute_query_expect_success(self.client,
|
|
"insert into {0}(id) values (7777), (8888), (9999), (11111), (22222), (33333)"
|
|
.format(source_table))
|
|
|
|
# Loop through the compression codecs and run interop tests.
|
|
for codec in PARQUET_CODECS:
|
|
# Write data in Impala.
|
|
vector.get_value('exec_option')['compression_codec'] = codec
|
|
impala_table = "{0}.{1}".format(unique_database, "t1_impala")
|
|
self.execute_query_expect_success(self.client,
|
|
"drop table if exists {0}".format(impala_table))
|
|
self.execute_query_expect_success(self.client,
|
|
"create table {0} stored as parquet as select * from {1}"
|
|
.format(impala_table, source_table), vector.get_value('exec_option'))
|
|
|
|
# Read data from Impala and write in Hive
|
|
if (codec == 'none'): codec = 'uncompressed'
|
|
elif (codec == 'zstd:7'): codec = 'zstd'
|
|
hive_table = "{0}.{1}".format(unique_database, "t1_hive")
|
|
self.run_stmt_in_hive("drop table if exists {0}".format(hive_table))
|
|
# For Hive 3+, workaround for HIVE-22371 (CTAS puts files in the wrong place) by
|
|
# explicitly creating an external table so that files are in the external warehouse
|
|
# directory. Use external.table.purge=true so that it is equivalent to a Hive 2
|
|
# managed table. Hive 2 stays the same.
|
|
external = ""
|
|
tblproperties = ""
|
|
if HIVE_MAJOR_VERSION >= 3:
|
|
external = "external"
|
|
tblproperties = "TBLPROPERTIES('external.table.purge'='TRUE')"
|
|
self.run_stmt_in_hive("set parquet.compression={0};\
|
|
create {1} table {2} stored as parquet {3} as select * from {4}"
|
|
.format(codec, external, hive_table, tblproperties, impala_table))
|
|
|
|
# Make sure Impala's metadata is in sync.
|
|
if cluster_properties.is_event_polling_enabled():
|
|
assert EventProcessorUtils.get_event_processor_status() == "ACTIVE"
|
|
EventProcessorUtils.wait_for_event_processing(self)
|
|
self.confirm_table_exists(unique_database, "t1_hive")
|
|
else:
|
|
self.client.execute("invalidate metadata {0}".format(hive_table))
|
|
|
|
# Read Hive data in Impala and verify results.
|
|
base_result = self.execute_query_expect_success(self.client,
|
|
"select * from {0} order by id".format(source_table))
|
|
test_result = self.execute_query_expect_success(self.client,
|
|
"select * from {0} order by id".format(hive_table))
|
|
verify_query_result_is_equal(test_result.data, base_result.data)
|