Files
impala/tests/custom_cluster/test_stats_extrapolation.py
Abhishek Rawat fa525dfdf7 IMPALA-7876: COMPUTE STATS TABLESAMPLE is not updating number of estimated rows
'COMPUTE STATS TABLESAMPLE' uses a child query with following function
'ROUND(COUNT(*) / <effective_sample_perc>)' for computing the row count.
The 'ROUND()' fn returns the row count as a DECIMAL type. The
'CatalogOpExecutor' (CatalogOpExecutor::SetTableStats) expects the row
count as a BIGINT type. Due to this data type mismatch the table stats
(Extrap #Rows) doesn't get set.

Adding an explicit CAST to BIGINT for the ROUND function results in the
table stats (Extrap #Rows) getting set properly.

Fixed both 'custom_cluster/test_stats_extrapolation.py' and
'metadata/test_stats_extrapolation.py' so that they can catch issues
like this, where table stats are not set when using
'COMPUTE STATS TABLESAMPLE'.

Testing:
- Ran core tests.

Change-Id: I88a0a777c2be9cc18b3ff293cf1c06fb499ca052
Reviewed-on: http://gerrit.cloudera.org:8080/16712
Reviewed-by: Tim Armstrong <tarmstrong@cloudera.com>
Tested-by: Impala Public Jenkins <impala-public-jenkins@cloudera.com>
2020-11-13 09:07:29 +00:00

68 lines
3.2 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
from tests.common.custom_cluster_test_suite import CustomClusterTestSuite
from tests.common.test_dimensions import (
create_exec_option_dimension,
create_single_exec_option_dimension,
create_uncompressed_text_dimension)
class TestStatsExtrapolation(CustomClusterTestSuite):
"""Minimal end-to-end test for the --enable_stats_extrapolation impalad flag. This test
primarly checks that the flag is propagated to the FE. More testing is done in FE unit
tests and metadata/test_stats_extrapolation.py."""
@classmethod
def get_workload(self):
return 'functional-query'
@classmethod
def add_test_dimensions(cls):
super(TestStatsExtrapolation, cls).add_test_dimensions()
cls.ImpalaTestMatrix.add_dimension(create_single_exec_option_dimension())
cls.ImpalaTestMatrix.add_dimension(
create_uncompressed_text_dimension(cls.get_workload()))
@pytest.mark.execute_serially
@CustomClusterTestSuite.with_args(impalad_args="--enable_stats_extrapolation=true")
def test_stats_extrapolation(self, vector, unique_database):
# Test row count extrapolation
self.client.execute("set explain_level=2")
explain_result = self.client.execute("explain select * from functional.alltypes")
assert "extrapolated-rows=7.30K" in " ".join(explain_result.data)
# Test COMPUTE STATS TABLESAMPLE
part_test_tbl = unique_database + ".alltypes"
self.clone_table("functional.alltypes", part_test_tbl, True, vector)
# Since our test tables are small, set the minimum sample size to 0 to make sure
# we exercise the sampling code paths.
self.client.execute("set COMPUTE_STATS_MIN_SAMPLE_SIZE=0")
self.client.execute(
"compute stats {0} tablesample system (13)".format(part_test_tbl))
# Check that table stats were set.
table_stats = self.client.execute("show table stats {0}".format(part_test_tbl))
col_names = [fs.name.upper() for fs in table_stats.schema.fieldSchemas]
extrap_rows_idx = col_names.index("EXTRAP #ROWS")
for row in table_stats.data:
assert int(row.split("\t")[extrap_rows_idx]) >= 0
# Check that column stats were set.
col_stats = self.client.execute("show column stats {0}".format(part_test_tbl))
col_names = [fs.name.upper() for fs in col_stats.schema.fieldSchemas]
ndv_col_idx = col_names.index("#DISTINCT VALUES")
for row in col_stats.data:
assert int(row.split("\t")[ndv_col_idx]) >= 0