mirror of
https://github.com/apache/impala.git
synced 2025-12-30 21:02:41 -05:00
- Added execution summary to the beeswax client and QueryResult - Modified report-benchmark-results to handle JSON and perform execution summary comparison between runs - Added comments to the new workload runner Change-Id: I9c3c5f2fdc5d8d1e70022c4077334bc44e3a2d1d Reviewed-on: http://gerrit.ent.cloudera.com:8080/3598 Reviewed-by: Taras Bobrovytsky <tbobrovytsky@cloudera.com> Tested-by: jenkins (cherry picked from commit fd0b1406be2511c202e02fa63af94fbbe5e18eee) Reviewed-on: http://gerrit.ent.cloudera.com:8080/3618
141 lines
5.2 KiB
Python
Executable File
141 lines
5.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2012 Cloudera, Inc. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from tests.common.query import Query, QueryResult
|
|
from tests.common.query_executor import (BeeswaxQueryExecConfig, HiveQueryExecConfig,
|
|
JdbcQueryExecConfig, execute_using_impala_beeswax, execute_using_jdbc,
|
|
execute_using_hive, QueryExecutor)
|
|
from tests.common.test_dimensions import (TableFormatInfo, load_table_info_dimension,
|
|
get_dataset_from_workload)
|
|
from tests.common.scheduler import Scheduler
|
|
|
|
# Setup Logging
|
|
logging.basicConfig(level=logging.INFO, format='[%(name)s]: %(message)s')
|
|
LOG = logging.getLogger('workload_runner')
|
|
|
|
|
|
class WorkloadRunner(object):
|
|
"""Runs query files and captures results from the specified workload(s)
|
|
|
|
The usage is:
|
|
1) Initialize WorkloadRunner with desired execution parameters.
|
|
2) Call workload_runner.run()
|
|
|
|
Internally, for each workload, this module looks up and parses that workload's
|
|
query files and reads the workload's test vector to determine what combination(s)
|
|
of file format / compression to run with.
|
|
|
|
Args:
|
|
workload (Workload)
|
|
scale_factor (str): eg. "300gb"
|
|
config (WorkloadConfig)
|
|
|
|
Attributes:
|
|
workload (Workload)
|
|
scale_factor (str): eg. "300gb"
|
|
config (WorkloadConfig)
|
|
exit_on_error (boolean)
|
|
results (list of QueryResult)
|
|
__test_vectors (list of ?)
|
|
"""
|
|
def __init__(self, workload, scale_factor, config):
|
|
self.workload = workload
|
|
self.scale_factor = scale_factor
|
|
self.config = config
|
|
self.exit_on_error = not self.config.continue_on_query_error
|
|
if self.config.verbose: LOG.setLevel(level=logging.DEBUG)
|
|
self.__generate_test_vectors()
|
|
self.__results = list()
|
|
|
|
@property
|
|
def results(self):
|
|
return self.__results
|
|
|
|
def __generate_test_vectors(self):
|
|
"""Generate test vector objects
|
|
|
|
If the user has specified a set for table_formats, generate them, otherwise generate
|
|
vectors for all table formats within the specified exploration strategy.
|
|
"""
|
|
self.__test_vectors = []
|
|
if self.config.table_formats:
|
|
dataset = get_dataset_from_workload(self.workload.name)
|
|
for tf in self.config.table_formats:
|
|
self.__test_vectors.append(TableFormatInfo.create_from_string(dataset, tf))
|
|
else:
|
|
vectors = load_table_info_dimension(self.workload.name,
|
|
self.config.exploration_strategy)
|
|
self.__test_vectors = [vector.value for vector in vectors]
|
|
|
|
def __get_executor_name(self):
|
|
executor_name = self.config.client_type
|
|
# We want to indicate this is IMPALA beeswax.
|
|
# We currently don't support hive beeswax.
|
|
return 'impala_beeswax' if executor_name == 'beeswax' else executor_name
|
|
|
|
def __create_executor(self, executor_name):
|
|
query_options = {
|
|
'hive': lambda: (execute_using_hive,
|
|
HiveQueryExecConfig(self.config.query_iterations,
|
|
hive_cmd=self.config.hive_cmd,
|
|
plugin_runner=self.config.plugin_runner
|
|
)),
|
|
'impala_beeswax': lambda: (execute_using_impala_beeswax,
|
|
BeeswaxQueryExecConfig(plugin_runner=self.config.plugin_runner,
|
|
exec_options=self.config.exec_options,
|
|
use_kerberos=self.config.use_kerberos,
|
|
)),
|
|
'jdbc': lambda: (execute_using_jdbc,
|
|
JdbcQueryExecConfig(plugin_runner=self.config.plugin_runner)
|
|
)
|
|
} [executor_name]()
|
|
return query_options
|
|
|
|
def __execute_queries(self, queries):
|
|
"""Execute a set of queries.
|
|
|
|
Create query executors for each query, and pass them along with config information to
|
|
the scheduler, which then runs the queries.
|
|
"""
|
|
executor_name = self.__get_executor_name()
|
|
exec_func, exec_config = self.__create_executor(executor_name)
|
|
query_executors = []
|
|
# Build an executor for each query
|
|
for query in queries:
|
|
query_executor = QueryExecutor(executor_name, query, exec_func, exec_config,
|
|
self.exit_on_error)
|
|
query_executors.append(query_executor)
|
|
# Initialize the scheduler.
|
|
scheduler = Scheduler(query_executors=query_executors,
|
|
shuffle=self.config.shuffle_queries,
|
|
iterations=self.config.workload_iterations,
|
|
query_iterations=self.config.query_iterations,
|
|
impalads=self.config.impalads,
|
|
num_clients=self.config.num_clients)
|
|
|
|
scheduler.run()
|
|
self.__results.extend(scheduler.results)
|
|
|
|
def run(self):
|
|
"""
|
|
Runs the workload against all test vectors serially and stores the results.
|
|
"""
|
|
for test_vector in self.__test_vectors:
|
|
# Transform the query strings to Query objects for a combination of scale factor and
|
|
# the test vector.
|
|
queries = self.workload.construct_queries(test_vector, self.scale_factor)
|
|
self.__execute_queries(queries)
|