Files
impala/tests/common/workload_runner.py
Taras Bobrovytsky e94de02469 Added execution summary, modified benchmark to handle JSON
- Added execution summary to the beeswax client and QueryResult
- Modified report-benchmark-results to handle JSON and perform
  execution summary comparison between runs
- Added comments to the new workload runner

Change-Id: I9c3c5f2fdc5d8d1e70022c4077334bc44e3a2d1d
Reviewed-on: http://gerrit.ent.cloudera.com:8080/3598
Reviewed-by: Taras Bobrovytsky <tbobrovytsky@cloudera.com>
Tested-by: jenkins
(cherry picked from commit fd0b1406be2511c202e02fa63af94fbbe5e18eee)
Reviewed-on: http://gerrit.ent.cloudera.com:8080/3618
2014-07-25 21:06:00 -07:00

141 lines
5.2 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright (c) 2012 Cloudera, Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from tests.common.query import Query, QueryResult
from tests.common.query_executor import (BeeswaxQueryExecConfig, HiveQueryExecConfig,
JdbcQueryExecConfig, execute_using_impala_beeswax, execute_using_jdbc,
execute_using_hive, QueryExecutor)
from tests.common.test_dimensions import (TableFormatInfo, load_table_info_dimension,
get_dataset_from_workload)
from tests.common.scheduler import Scheduler
# Setup Logging
logging.basicConfig(level=logging.INFO, format='[%(name)s]: %(message)s')
LOG = logging.getLogger('workload_runner')
class WorkloadRunner(object):
"""Runs query files and captures results from the specified workload(s)
The usage is:
1) Initialize WorkloadRunner with desired execution parameters.
2) Call workload_runner.run()
Internally, for each workload, this module looks up and parses that workload's
query files and reads the workload's test vector to determine what combination(s)
of file format / compression to run with.
Args:
workload (Workload)
scale_factor (str): eg. "300gb"
config (WorkloadConfig)
Attributes:
workload (Workload)
scale_factor (str): eg. "300gb"
config (WorkloadConfig)
exit_on_error (boolean)
results (list of QueryResult)
__test_vectors (list of ?)
"""
def __init__(self, workload, scale_factor, config):
self.workload = workload
self.scale_factor = scale_factor
self.config = config
self.exit_on_error = not self.config.continue_on_query_error
if self.config.verbose: LOG.setLevel(level=logging.DEBUG)
self.__generate_test_vectors()
self.__results = list()
@property
def results(self):
return self.__results
def __generate_test_vectors(self):
"""Generate test vector objects
If the user has specified a set for table_formats, generate them, otherwise generate
vectors for all table formats within the specified exploration strategy.
"""
self.__test_vectors = []
if self.config.table_formats:
dataset = get_dataset_from_workload(self.workload.name)
for tf in self.config.table_formats:
self.__test_vectors.append(TableFormatInfo.create_from_string(dataset, tf))
else:
vectors = load_table_info_dimension(self.workload.name,
self.config.exploration_strategy)
self.__test_vectors = [vector.value for vector in vectors]
def __get_executor_name(self):
executor_name = self.config.client_type
# We want to indicate this is IMPALA beeswax.
# We currently don't support hive beeswax.
return 'impala_beeswax' if executor_name == 'beeswax' else executor_name
def __create_executor(self, executor_name):
query_options = {
'hive': lambda: (execute_using_hive,
HiveQueryExecConfig(self.config.query_iterations,
hive_cmd=self.config.hive_cmd,
plugin_runner=self.config.plugin_runner
)),
'impala_beeswax': lambda: (execute_using_impala_beeswax,
BeeswaxQueryExecConfig(plugin_runner=self.config.plugin_runner,
exec_options=self.config.exec_options,
use_kerberos=self.config.use_kerberos,
)),
'jdbc': lambda: (execute_using_jdbc,
JdbcQueryExecConfig(plugin_runner=self.config.plugin_runner)
)
} [executor_name]()
return query_options
def __execute_queries(self, queries):
"""Execute a set of queries.
Create query executors for each query, and pass them along with config information to
the scheduler, which then runs the queries.
"""
executor_name = self.__get_executor_name()
exec_func, exec_config = self.__create_executor(executor_name)
query_executors = []
# Build an executor for each query
for query in queries:
query_executor = QueryExecutor(executor_name, query, exec_func, exec_config,
self.exit_on_error)
query_executors.append(query_executor)
# Initialize the scheduler.
scheduler = Scheduler(query_executors=query_executors,
shuffle=self.config.shuffle_queries,
iterations=self.config.workload_iterations,
query_iterations=self.config.query_iterations,
impalads=self.config.impalads,
num_clients=self.config.num_clients)
scheduler.run()
self.__results.extend(scheduler.results)
def run(self):
"""
Runs the workload against all test vectors serially and stores the results.
"""
for test_vector in self.__test_vectors:
# Transform the query strings to Query objects for a combination of scale factor and
# the test vector.
queries = self.workload.construct_queries(test_vector, self.scale_factor)
self.__execute_queries(queries)