Compare commits

...

198 Commits

Author SHA1 Message Date
Roope Astala
a05444845b Merge pull request #426 from rastala/master
version 1.0.43
2019-06-12 10:09:08 -04:00
Roope Astala
79c9f50c15 version 1.0.43 2019-06-12 10:08:35 -04:00
Roope Astala
67e10e0f6b Merge pull request #417 from lan-tang/patch-1
Create readme.md in data-drift
2019-06-11 13:47:55 -04:00
Roope Astala
1ef0331a0f Merge pull request #423 from rastala/master
add sklearn estimator
2019-06-11 11:30:37 -04:00
Roope Astala
5e91c836b9 add sklearn estimator 2019-06-11 11:29:56 -04:00
Roope Astala
ddbb3c45f6 Merge pull request #420 from rastala/master
mlflow integration preview
2019-06-10 15:12:36 -04:00
rastala
8eed4e39d0 mlflow integration preview 2019-06-10 15:10:57 -04:00
Lan Tang
b37c0297db Create readme.md 2019-06-07 12:32:32 -07:00
Roope Astala
968cc798d0 Update README.md 2019-06-05 12:15:33 -04:00
Roope Astala
5c9ca452fb Create README.md 2019-06-05 12:15:19 -04:00
Shané Winner
5e82680272 Update README.md 2019-05-31 10:58:39 -07:00
Roope Astala
41841fc8c0 Update README.md 2019-05-31 13:00:41 -04:00
Roope Astala
896bf63736 Merge pull request #397 from rastala/master
dockerfile
2019-05-29 11:05:18 -04:00
Roope Astala
d4751bf6ec dockerfile 2019-05-29 11:04:19 -04:00
Roope Astala
3531fe8a21 Merge pull request #396 from rastala/master
version 1.0.41
2019-05-29 11:01:15 -04:00
Roope Astala
db6ae67940 version 1.0.41 2019-05-29 10:59:59 -04:00
Shané Winner
2a479bb01e Merge pull request #395 from imatiach-msft/ilmat/fix-typo
fix typo
2019-05-28 14:02:33 -07:00
Ilya Matiach
d05eec92af fix typo 2019-05-28 16:59:59 -04:00
Josée Martens
70fdab0a28 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:45:04 -05:00
Josée Martens
7ce5a43b58 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:44:35 -05:00
Josée Martens
d2a9dbb582 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:43:38 -05:00
Roope Astala
a5d774683d Merge pull request #390 from rastala/master
fix default cluster creation in config notebook
2019-05-23 12:30:09 -04:00
Roope Astala
0e850f0917 fix default cluster creation in config notebook 2019-05-23 12:27:53 -04:00
Shané Winner
59f34b7179 Delete configtest.ipynb 2019-05-22 10:47:50 -07:00
Shané Winner
2a3cb69004 Create configtest.ipynb 2019-05-22 10:41:16 -07:00
Shané Winner
42894ff81a Delete LICENSE.txt 2019-05-22 10:22:05 -07:00
Shané Winner
2163cab50b Delete LICENSE.txt 2019-05-22 10:21:42 -07:00
Shané Winner
255edb04c0 Rename LICENSE.txt to LICENSE 2019-05-22 10:13:08 -07:00
Shané Winner
cfce079278 Rename LICENSES to LICENSE.txt 2019-05-22 10:06:31 -07:00
Shané Winner
ae6f067c81 Deleted index.html
cleaning up root directory
2019-05-22 10:04:23 -07:00
Shané Winner
1b7ff724f3 Deleted pr.md
Contents of this file moved to the README in the root directory.
2019-05-22 10:03:40 -07:00
Shané Winner
8bba850db1 moved the content in the pr.md file
moved the content in the pr.md file to under 'Projects using Azure Machine Learning'
2019-05-21 07:51:28 -07:00
Shané Winner
b9e35ea0cb Create LICENSE 2019-05-21 07:44:10 -07:00
Shané Winner
ffa28aa89c Delete sdk 2019-05-21 07:43:06 -07:00
Shané Winner
6ab85a20e3 Create LICENSES 2019-05-21 07:42:07 -07:00
Shané Winner
486c44d157 Create sdk 2019-05-21 07:39:43 -07:00
Shané Winner
cd80040dd8 Delete Licenses 2019-05-21 07:39:03 -07:00
Shané Winner
465a5b13b1 Create Licenses 2019-05-21 07:38:52 -07:00
Shané Winner
dcd2d58880 Added notice on the data/telemetry 2019-05-20 14:44:43 -07:00
Roope Astala
93bf4393f2 Merge pull request #381 from jeff-shepherd/master
Revert change to default amlcompute cluster
2019-05-16 15:35:43 -04:00
Jeff Shepherd
d6ebb484a6 Revert change to default amlcomputecluster to support existing resource
groups
2019-05-16 12:27:23 -07:00
Roope Astala
35afd43193 Merge pull request #372 from rogerhe/master
adding macOS specific yml. Install nomkl to workaround openmp issue
2019-05-14 19:07:42 -04:00
Roope Astala
2d68535de2 Merge pull request #376 from rastala/master
version 1.0.39
2019-05-14 16:04:09 -04:00
Roope Astala
0d448892a3 version check 2019-05-14 16:03:39 -04:00
Roope Astala
2d41c00488 version 1.0.39 2019-05-14 16:01:14 -04:00
Roger He
22597ac684 adding macOS specific yml. Install nomkl to workaround openmp issue 2019-05-09 16:51:51 -07:00
Josée Martens
8b1bffc200 Update README.md 2019-05-08 12:36:49 -05:00
Josée Martens
a240ac319f Update README.md 2019-05-08 12:27:57 -05:00
Josée Martens
83cfe3b9b3 Update README.md 2019-05-08 12:25:41 -05:00
Paula Ledgerwood
dcce6f227f Merge pull request #360 from Azure/paledger/update-readme
Update readme/cluster location from PM's instructions
2019-05-06 10:08:22 -07:00
Paula Ledgerwood
5328186d68 Update python kernel version 2019-05-06 09:45:20 -07:00
Paula Ledgerwood
7ccaa2cf57 Update readme from PM's instructions 2019-05-06 09:41:54 -07:00
Shané Winner
56b0664b6b Update img-classification-part1-training.ipynb 2019-05-05 17:47:31 -07:00
Shané Winner
4c1167edc4 Update img-classification-part1-training.ipynb 2019-05-05 17:45:48 -07:00
Shané Winner
eb643fe213 Update README.md 2019-05-05 17:26:29 -07:00
Shané Winner
5faa9d293c Update README.md 2019-05-05 15:34:27 -07:00
Shané Winner
32e2b5f647 Update train-hyperparameter-tune-deploy-with-tensorflow.ipynb 2019-05-05 15:32:19 -07:00
Shané Winner
ae25654882 Update train-hyperparameter-tune-deploy-with-pytorch.ipynb 2019-05-05 15:29:42 -07:00
Shané Winner
0ca05093bd Update train-hyperparameter-tune-deploy-with-keras.ipynb 2019-05-05 15:28:16 -07:00
Shané Winner
5e39582de3 Update train-hyperparameter-tune-deploy-with-chainer.ipynb 2019-05-05 15:24:14 -07:00
Shané Winner
6b6a6da9dc Update tensorboard.ipynb 2019-05-05 15:22:28 -07:00
Shané Winner
cba2c6b9e2 Update how-to-use-estimator.ipynb 2019-05-05 15:20:50 -07:00
Shané Winner
58557abd20 Update export-run-history-to-tensorboard.ipynb 2019-05-05 15:18:48 -07:00
Shané Winner
59452a3141 Update distributed-tensorflow-with-parameter-server.ipynb 2019-05-05 15:17:15 -07:00
Shané Winner
463718e26b Update distributed-tensorflow-with-horovod.ipynb 2019-05-05 15:15:13 -07:00
Shané Winner
9ea0ba5131 Update distributed-pytorch-with-horovod.ipynb 2019-05-05 15:13:28 -07:00
Shané Winner
2804a8d859 Update distributed-cntk-with-custom-docker.ipynb 2019-05-05 15:11:51 -07:00
Shané Winner
4761b668ff Update distributed-chainer.ipynb 2019-05-05 15:09:28 -07:00
Shané Winner
c4163017c2 Update using-environments.ipynb 2019-05-05 00:11:40 -07:00
Shané Winner
71e8e9bd23 Update train-within-notebook.ipynb 2019-05-05 00:09:26 -07:00
Shané Winner
6ff06dd137 Update train-on-remote-vm.ipynb 2019-05-05 00:06:23 -07:00
Shané Winner
73db8ae04d Update train-on-local.ipynb 2019-05-04 23:52:01 -07:00
Shané Winner
3637dce58a Update train-on-amlcompute.ipynb 2019-05-04 23:48:16 -07:00
Shané Winner
23771fc599 added tracking pixel and edited config text 2019-05-04 21:08:10 -07:00
Shané Winner
5f04a467b7 added tracking pixel 2019-05-04 21:03:08 -07:00
Shané Winner
532f65c998 added tracking pixel and edited config text 2019-05-04 20:59:50 -07:00
Shané Winner
f36dda0c2d added tracking pixel and edited the config text 2019-05-04 20:54:32 -07:00
Shané Winner
c7b56929bc added tracking pixel and edited config text 2019-05-04 20:50:57 -07:00
Shané Winner
5f19d75a42 added tracking pixel and edited the config text 2019-05-04 20:48:04 -07:00
Shané Winner
a1968aafa2 updated config text and added tracking pixel 2019-05-04 20:43:54 -07:00
Shané Winner
6b82991017 edited config text and added tracking pixel 2019-05-04 20:40:23 -07:00
Shané Winner
725013511e added tracking pixel 2019-05-04 20:34:58 -07:00
Shané Winner
6a20160173 added tracking pixel 2019-05-04 20:02:01 -07:00
Shané Winner
137db8aec0 added tracking pixel 2019-05-04 19:49:50 -07:00
Shané Winner
b7b10c394b added tracking pixel 2019-05-04 19:47:28 -07:00
Shané Winner
46206716a4 added tracking pixel 2019-05-04 19:44:23 -07:00
Shané Winner
92bb98ac62 added tracking pixel 2019-05-04 19:41:33 -07:00
Shané Winner
b398c24262 added tracking pixel 2019-05-04 19:38:28 -07:00
Shané Winner
e0618302e3 added tracking pixel 2019-05-04 19:35:57 -07:00
Shané Winner
b6cddafa3e edited config text and added the pixel tracker 2019-05-04 19:31:59 -07:00
Shané Winner
4188bd2474 updated the config text and added the tracking pixel 2019-05-04 19:25:26 -07:00
Shané Winner
69126edfcb update config text and added tracking pixel 2019-05-04 19:20:46 -07:00
Shané Winner
4e14c35b9b added pixel tracker 2019-05-04 16:31:07 -07:00
Shané Winner
1608c19aa6 updated tracking pixel and and config text 2019-05-04 15:12:53 -07:00
Shané Winner
46b8611b74 tracking pixel and edited config text 2019-05-04 15:08:57 -07:00
Shané Winner
fbb01bde70 update the config text and added pixel tracker server 2019-05-04 15:01:35 -07:00
Shané Winner
cefe2f0811 updated the config text and added the tracking pixel 2019-05-04 14:58:45 -07:00
Shané Winner
42e0a31f88 updated the config text and the tracking pixel 2019-05-04 14:54:37 -07:00
Shané Winner
8b0998ac9f updated the config text and the tracking pixel 2019-05-04 14:49:29 -07:00
Shané Winner
046c6051fb updated config text and added tracking pixel 2019-05-04 14:38:39 -07:00
Shané Winner
bdb7db15ef updated tracking pixel and the config text 2019-05-04 14:35:28 -07:00
Shané Winner
b13139f103 update the config text and the tracking pixel 2019-05-04 14:31:25 -07:00
Shané Winner
8adb206ae3 updated config text and pixel tracker 2019-05-04 13:56:09 -07:00
Shané Winner
484b6bbb7a updated the config text and pixel server 2019-05-04 13:51:12 -07:00
Shané Winner
55ef0bda6a updated config text 2019-05-04 13:46:43 -07:00
Shané Winner
1401cdef33 updated config text 2019-05-04 13:41:34 -07:00
Shané Winner
5d02206cbd updated with tracking pixel 2019-05-04 13:34:11 -07:00
Shané Winner
c24b65d4ae updated with tracking pixel 2019-05-04 13:32:14 -07:00
Shané Winner
57c5ef318f updated with pixel tracker 2019-05-04 13:25:11 -07:00
Shané Winner
ba033d72f8 Update train-in-spark.ipynb 2019-05-04 09:33:07 -07:00
Shané Winner
aa657ac528 Update manage-runs.ipynb 2019-05-04 09:29:00 -07:00
Shané Winner
7d8289679d added the tracking pixel and the edited the config text 2019-05-04 08:40:18 -07:00
Shané Winner
a7c3db0560 Update model-register-and-deploy.ipynb 2019-05-03 23:21:58 -07:00
Shané Winner
e548847881 pixel text and config text update 2019-05-03 23:20:57 -07:00
Shané Winner
08c6b1f4ed tracking pixel test 2019-05-03 23:15:28 -07:00
Shané Winner
78abb65f5e updated configuration text 2019-05-03 23:08:55 -07:00
Shané Winner
3c6c090732 Update README.md 2019-05-03 22:54:31 -07:00
Shané Winner
513e36d9b2 updated the config verbiage and tracking pixel 2019-05-03 22:54:02 -07:00
Ilya Matiach
9db91a7fb8 Merge pull request #351 from imatiach-msft/ilmat/update-raw-features-notebook
Update raw features explanation notebook
2019-05-03 12:47:28 -04:00
Roope Astala
d9b26b655b Merge pull request #356 from rastala/master
how to use environments
2019-05-03 10:27:33 -04:00
Roope Astala
cb8dc41766 how to use environments 2019-05-03 10:25:39 -04:00
Ilya Matiach
9c9b4bb122 Update raw features explanation notebook 2019-05-02 14:29:53 -04:00
Roope Astala
f5c896c70f Merge pull request #345 from csteegz/add-gpu-deploy
Create production-deploy-to-aks-gpu.ipynb
2019-05-02 14:13:50 -04:00
Colleen Forbes
3b572eddb2 Merge pull request #350 from MayMSFT/master
add dataset tutorial
2019-05-02 09:33:25 -07:00
May Hu
51523db294 add dataset tutorial 2019-05-02 09:07:11 -07:00
Ilya Matiach
3b4998941c Merge pull request #348 from imatiach-msft/ilmat/update-explain-model-nb
updating model explanation notebooks
2019-04-30 17:27:44 -04:00
Ilya Matiach
6cdbfb8722 updating model explanation notebooks 2019-04-30 17:12:54 -04:00
Colin Versteeg
c086bd69c7 Create production-deploy-to-aks-gpu.ipynb
Add deploy to aks GPU notebook
2019-04-29 16:26:42 -07:00
Shané Winner
279c9b8dc4 Pixel Tracker 2019-04-29 11:27:03 -07:00
Shané Winner
98589fe335 Testing Pixel Tracker 2019-04-29 11:16:08 -07:00
Shané Winner
77f21058a2 Testing Pixel Tracker 2019-04-29 11:04:05 -07:00
Roope Astala
baa65d0886 Merge pull request #343 from Azure/paledger/add-accel-models
Initial commit to add AccelModels notebooks from AzureMlCli repo
2019-04-29 13:56:06 -04:00
Paula Ledgerwood
0fffa11b2a Update links and code formatting 2019-04-29 10:20:55 -07:00
Paula Ledgerwood
20ec225343 Initial commit to add notebooks from AzureMlCli repo 2019-04-26 11:16:33 -07:00
Roope Astala
845e9d653e Merge pull request #342 from rastala/master
dockerfile 1.0.33
2019-04-26 14:01:55 -04:00
Roope Astala
639ef81636 dockerfile 1.0.33 2019-04-26 13:57:46 -04:00
Roope Astala
60158bf41a Merge pull request #341 from rastala/master
version 1.0.33
2019-04-26 13:45:47 -04:00
Roope Astala
8dbbb01b8a version 1.0.33 2019-04-26 13:44:15 -04:00
Roope Astala
6e6b2b0c48 Merge pull request #340 from rastala/master
add readme
2019-04-26 09:41:49 -04:00
Roope Astala
85f5721bf8 add readme 2019-04-26 09:40:24 -04:00
Shané Winner
6a7dd741e7 Pixel server added 2019-04-23 13:48:23 -07:00
Shané Winner
314218fc89 Added pixel server 2019-04-23 13:47:06 -07:00
Shané Winner
b50d2725c7 Added pixel server 2019-04-23 13:46:06 -07:00
Shané Winner
9a2f448792 Added pixel server 2019-04-23 13:45:05 -07:00
Shané Winner
dd620f19fd Pixel server added 2019-04-23 13:43:41 -07:00
Shané Winner
8116d31da4 Pixel Server added 2019-04-23 13:40:26 -07:00
Shané Winner
ef29dc1fa5 Added Pixel Server 2019-04-23 13:39:18 -07:00
Shané Winner
97b345cb33 Implemented Pixel Server 2019-04-23 13:37:41 -07:00
Shané Winner
282250e670 Implementing Pixel Server 2019-04-23 13:36:24 -07:00
Shané Winner
acef60c5b3 Testing pixel web app 2019-04-23 13:15:04 -07:00
Shané Winner
bfb444eb15 Testing Pixel Tracker 2019-04-23 13:07:48 -07:00
Shané Winner
6277659bf2 Testing Pixel Server 2019-04-23 11:48:55 -07:00
Shané Winner
1645e12712 Testing Tracking Pixel 2019-04-23 11:15:53 -07:00
Roope Astala
cc4a32e70b Merge pull request #337 from jeff-shepherd/master
Updated automl_setup scripts
2019-04-23 13:50:09 -04:00
Jeff Shepherd
997a35aed5 Updated automl_setup scripts 2019-04-23 10:40:33 -07:00
Roope Astala
dd6317a4a0 Merge pull request #336 from rastala/master
adding work-with-data
2019-04-23 10:05:08 -04:00
Roope Astala
82d8353d54 adding work-with-data 2019-04-23 10:04:32 -04:00
Shané Winner
59a01c17a0 Testing the pixel tracker 2019-04-22 14:45:09 -07:00
Shané Winner
e31e1d9af3 Implemented a test pixel tracker 2019-04-22 14:41:32 -07:00
Roope Astala
d38b9db255 Merge pull request #334 from rastala/master
docker update
2019-04-22 15:43:28 -04:00
Roope Astala
761ad88c93 docker update 2019-04-22 15:43:02 -04:00
Roope Astala
644729e5db Merge pull request #333 from rastala/master
version 1.0.30
2019-04-22 15:40:11 -04:00
Roope Astala
e2b1b3fcaa version 1.0.30 2019-04-22 15:39:18 -04:00
Roope Astala
dc692589a9 Merge pull request #326 from rastala/master
update aks notebook
2019-04-18 16:19:51 -04:00
Roope Astala
624b4595b5 update aks notebook 2019-04-18 16:18:33 -04:00
Roope Astala
0ed85c33c2 Delete release.json 2019-04-18 10:01:50 -04:00
Roope Astala
5b01de605f Merge pull request #318 from savitamittal1/hdinotebook
Sample HDI notebook
2019-04-18 10:01:26 -04:00
Savitam
c351ac988a Sample HDI notebook
sample HDI notebook
2019-04-15 12:35:34 -07:00
Josée Martens
759ec3934c Delete yt_cover.png 2019-04-15 12:06:25 -05:00
Josée Martens
b499b88a85 Delete python36.png 2019-04-15 12:06:16 -05:00
Josée Martens
5f4edac3c1 Update NBSETUP.md 2019-04-15 12:00:31 -05:00
Josée Martens
edfce0d936 Update README.md 2019-04-12 17:28:16 -05:00
Josée Martens
1516c7fc24 Update README.md
testing for search
2019-04-12 17:19:55 -05:00
Roope Astala
389fb668ce Add files via upload 2019-04-10 11:12:55 -04:00
Josée Martens
647d5e72a5 Merge pull request #307 from Azure/vizhur-patch-2
Create googled8147fb6c0788258.html
2019-04-09 15:21:51 -05:00
vizhur
43ac4c84bb Create googled8147fb6c0788258.html 2019-04-09 16:19:47 -04:00
Roope Astala
8a1a82b50a Merge pull request #303 from rastala/master
dockerfile and missing config update
2019-04-08 15:38:13 -04:00
Roope Astala
72f386298c dockerfile and missing config update 2019-04-08 15:37:48 -04:00
Roope Astala
41d697e298 Merge pull request #302 from rastala/master
version 1.0.23
2019-04-08 15:35:50 -04:00
Roope Astala
c3ce932029 version 1.0.23 2019-04-08 15:34:51 -04:00
Roope Astala
a956162114 Merge pull request #290 from rastala/master
update aks deployment notebook
2019-04-03 10:53:51 -04:00
Roope Astala
cb5a178e40 Merge branch 'master' of github.com:rastala/MachineLearningNotebooks 2019-04-03 10:52:40 -04:00
Roope Astala
d81c336c59 update production deploy to aks 2019-04-03 10:52:15 -04:00
Roope Astala
4244a24d81 Merge pull request #287 from jeff-shepherd/master
Fixed line termination on automl_setup_linux.sh
2019-04-03 09:21:35 -04:00
Jeff Shepherd
3b488555e5 Added back automl_setup_linux.sh with correct line termination 2019-04-02 16:24:05 -07:00
Jeff Shepherd
6abc478f33 Removed automl_setup_linux.sh 2019-04-02 16:23:11 -07:00
Roope Astala
666c2579eb Merge pull request #285 from jeff-shepherd/master
Corrected line termination for automl_setup_mac.sh
2019-04-02 09:19:53 -04:00
Jeff Shepherd
5af3aa4231 Fixed line termination 2019-04-01 16:19:00 -07:00
Jeff Shepherd
e48d828ab0 Removed automl_setup_mac.sh 2019-04-01 16:17:56 -07:00
Jeff Shepherd
44aa636c21 Merge branch 'master' of https://github.com/Azure/MachineLearningNotebooks 2019-04-01 16:07:11 -07:00
Jeff Shepherd
4678f9adc3 Merge branch 'master' of https://github.com/jeff-shepherd/MachineLearningNotebooks 2019-04-01 16:04:46 -07:00
Jeff Shepherd
5bf85edade Added automl_setup_mac.sh with correct line termination 2019-04-01 16:03:39 -07:00
Jeff Shepherd
94f381e884 Removed automl_setup_mac.sh 2019-04-01 16:02:53 -07:00
Roope Astala
ea1b7599c3 Merge pull request #267 from rastala/master
add automl files
2019-03-25 19:26:07 -04:00
Roope Astala
6b8a6befde add automl files 2019-03-25 19:25:38 -04:00
Roope Astala
c1511b7b74 Merge pull request #266 from rastala/master
1.0.21 dockerfile
2019-03-25 15:10:05 -04:00
Roope Astala
8f007a3333 1.0.21 dockerfile 2019-03-25 15:09:39 -04:00
Jeff Shepherd
18a11bbd8d Added model printing example 2019-03-18 16:31:48 -07:00
228 changed files with 45328 additions and 8108 deletions

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.21"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.21" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.23"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.23" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.30"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.30" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.33"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.33" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.41"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.41" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -1,3 +1,4 @@
This software is made available to you on the condition that you agree to
[your agreement][1] governing your use of Azure.
If you do not have an existing agreement governing your use of Azure, you agree that

View File

@@ -1,6 +1,4 @@
# Setting up environment
---
# Set up your notebook environment for Azure Machine Learning
To run the notebooks in this repository use one of following options.
@@ -12,9 +10,7 @@ Azure Notebooks is a hosted Jupyter-based notebook service in the Azure cloud. A
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
1. Open one of the sample notebooks
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook
![set kernel to Python 3.6](images/python36.png)
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook by choosing Kernel > Change Kernel > Python 3.6 from the menus.
## **Option 2: Use your own notebook server**
@@ -28,11 +24,8 @@ pip install azureml-sdk
git clone https://github.com/Azure/MachineLearningNotebooks.git
# below steps are optional
# install the base SDK and a Jupyter notebook server
pip install azureml-sdk[notebooks]
# install the data prep component
pip install azureml-dataprep
# install the base SDK, Jupyter notebook server and tensorboard
pip install azureml-sdk[notebooks,tensorboard]
# install model explainability component
pip install azureml-sdk[explain]
@@ -58,8 +51,7 @@ Please make sure you start with the [Configuration](configuration.ipynb) noteboo
### Video walkthrough:
[![Get Started video](images/yt_cover.png)](https://youtu.be/VIsXeTuW3FU)
[!VIDEO https://youtu.be/VIsXeTuW3FU]
## **Option 3: Use Docker**
@@ -90,9 +82,6 @@ Now you can point your browser to http://localhost:8887. We recommend that you s
If you need additional Azure ML SDK components, you can either modify the Docker files before you build the Docker images to add additional steps, or install them through command line in the live container after you build the Docker image. For example:
```sh
# install dataprep components
pip install azureml-dataprep
# install the core SDK and automated ml components
pip install azureml-sdk[automl]

View File

@@ -11,7 +11,7 @@ pip install azureml-sdk
Read more detailed instructions on [how to set up your environment](./NBSETUP.md) using Azure Notebook service, your own Jupyter notebook server, or Docker.
## How to navigate and use the example notebooks?
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you want to...
@@ -20,7 +20,7 @@ If you want to...
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
## Tutorials
@@ -52,5 +52,18 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
Visit following repos to see projects contributed by Azure ML users:
- [AMLSamples](https://github.com/Azure/AMLSamples) Number of end-to-end examples, including face recognition, predictive maintenance, customer churn and sentiment analysis.
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
## Data/Telemetry
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
```sh
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)"
```
This URL will be slightly different depending on the file.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/README.png)

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/configuration.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -32,7 +39,6 @@
" 1. Workspace parameters\n",
" 1. Access your workspace\n",
" 1. Create a new workspace\n",
" 1. Create compute resources\n",
"1. [Next steps](#Next%20steps)\n",
"\n",
"---\n",
@@ -96,7 +102,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.21 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.43 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -235,97 +241,6 @@
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create compute resources for your training experiments\n",
"\n",
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
"\n",
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
"\n",
"The cluster parameters are:\n",
"* vm_size - this describes the virtual machine type and size used in the cluster. All machines in the cluster are the same type. You can get the list of vm sizes available in your region by using the CLI command\n",
"\n",
"```shell\n",
"az vm list-skus -o tsv\n",
"```\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while note in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
"\n",
"\n",
"To create a **CPU** cluster now, run the cell below. The autoscale settings mean that the cluster will scale down to 0 nodes when inactive and up to 4 nodes when busy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cpucluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new cpucluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
"\n",
" # Create the cluster with the specified name and configuration\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
" \n",
" # Wait for the cluster to complete, show the output log\n",
" cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To create a **GPU** cluster, run the cell below. Note that your subscription must have sufficient quota for GPU VMs or the command will fail. To increase quota, see [these instructions](https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpucluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
" # Create the cluster with the specified name and configuration\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
"\n",
" # Wait for the cluster to complete, show the output log\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -287,6 +287,8 @@ Notice how the parameters are modified when using the CPU-only mode.
The outputs of the script can be observed in the master notebook as the script is executed
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/RAPIDS/README.png)

View File

@@ -1,8 +1,8 @@
# Table of Contents
1. [Automated ML Introduction](#introduction)
1. [Running samples in Azure Notebooks](#jupyter)
1. [Running samples in Azure Databricks](#databricks)
1. [Running samples in a Local Conda environment](#localconda)
1. [Setup using Azure Notebooks](#jupyter)
1. [Setup using Azure Databricks](#databricks)
1. [Setup using a Local Conda environment](#localconda)
1. [Automated ML SDK Sample Notebooks](#samples)
1. [Documentation](#documentation)
1. [Running using python command](#pythoncommand)
@@ -13,15 +13,15 @@
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
If you are new to Data Science, AutoML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are new to Data Science, automated ML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are an experienced data scientist, AutoML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. AutoML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
If you are an experienced data scientist, automated ML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. Automated ML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
Below are the three execution environments supported by AutoML.
Below are the three execution environments supported by automated ML.
<a name="jupyter"></a>
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
## Setup using Azure Notebooks - Jupyter based notebooks in the Azure cloud
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
@@ -29,7 +29,7 @@ Below are the three execution environments supported by AutoML.
1. Open one of the sample notebooks.
<a name="databricks"></a>
## Running samples in Azure Databricks
## Setup using Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
@@ -39,7 +39,7 @@ Below are the three execution environments supported by AutoML.
- Attach the notebook to the cluster.
<a name="localconda"></a>
## Running samples in a Local Conda environment
## Setup using a Local Conda environment
To run these notebook on your own notebook server, use these installation instructions.
The instructions below will install everything you need and then start a Jupyter notebook.
@@ -49,11 +49,15 @@ The instructions below will install everything you need and then start a Jupyter
There's no need to install mini-conda specifically.
### 2. Downloading the sample notebooks
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The AutoML sample notebooks are in the "automl" folder.
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The automated ML sample notebooks are in the "automated-machine-learning" folder.
### 3. Setup a new conda environment
The **automl/automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook.
It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
The **automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook. It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
Packages installed by the **automl_setup** script:
<ul><li>python</li><li>nb_conda</li><li>matplotlib</li><li>numpy</li><li>cython</li><li>urllib3</li><li>scipy</li><li>scikit-learn</li><li>pandas</li><li>tensorflow</li><li>py-xgboost</li><li>azureml-sdk</li><li>azureml-widgets</li><li>pandas-ml</li></ul>
For more details refer to the [automl_env.yml](./automl_env.yml)
## Windows
Start an **Anaconda Prompt** window, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
```
@@ -81,7 +85,7 @@ bash automl_setup_linux.sh
### 5. Running Samples
- Please make sure you use the Python [conda env:azure_automl] kernel when trying the sample Notebooks.
- Follow the instructions in the individual notebooks to explore various features in AutoML
- Follow the instructions in the individual notebooks to explore various features in automated ML.
### 6. Starting jupyter notebook manually
To start your Jupyter notebook manually, use:
@@ -103,22 +107,22 @@ jupyter notebook
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Simple example of using automated ML for classification
- Uses local compute for training
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
- Simple example of using Auto ML for regression
- Simple example of using automated ML for regression
- Uses local compute for training
- [auto-ml-remote-execution.ipynb](remote-execution/auto-ml-remote-execution.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using Auto ML for classification using a remote linux DSVM for training
- Example of using automated ML for classification using a remote linux DSVM for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- Specify automated ML settings as kwargs
- [auto-ml-remote-amlcompute.ipynb](remote-batchai/auto-ml-remote-amlcompute.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
@@ -127,7 +131,7 @@ jupyter notebook
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- Specify automated ML settings as kwargs
- [auto-ml-remote-attach.ipynb](remote-attach/auto-ml-remote-attach.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
@@ -148,8 +152,8 @@ jupyter notebook
- [auto-ml-exploring-previous-runs.ipynb](exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb)
- List all projects for the workspace
- List all AutoML Runs for a given project
- Get details for a AutoML Run. (Automl settings, run widget & all metrics)
- List all automated ML Runs for a given project
- Get details for a automated ML Run. (automated ML settings, run widget & all metrics)
- Download fitted pipeline for any iteration
- [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
@@ -158,7 +162,7 @@ jupyter notebook
- [auto-ml-classification-with-deployment.ipynb](classification-with-deployment/auto-ml-classification-with-deployment.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Simple example of using automated ML for classification
- Registering the model
- Creating Image and creating aci service
- Testing the aci service
@@ -178,16 +182,21 @@ jupyter notebook
- [auto-ml-classification-with-whitelisting.ipynb](classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification with whitelisting tensorflow models.
- Simple example of using automated ML for classification with whitelisting tensorflow models.
- Uses local compute for training
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
- Example of using AutoML for training a forecasting model
- Example of using automated ML for training a forecasting model
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
- Example of training an AutoML forecasting model on multiple time-series
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-classification-with-onnx.ipynb](classification-with-onnx/auto-ml-classification-with-onnx.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification with ONNX models
- Uses local compute for training
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
@@ -206,10 +215,18 @@ The main code of the file must be indented so that it is under this condition.
<a name="troubleshooting"></a>
# Troubleshooting
## automl_setup fails
1. On windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
1. On Windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
2. Check that you have conda 64-bit installed rather than 32-bit. You can check this with the command `conda info`. The `platform` should be `win-64` for Windows or `osx-64` for Mac.
3. Check that you have conda 4.4.10 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
4. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
4. On Linux, if the error is `gcc: error trying to exec 'cc1plus': execvp: No such file or directory`, install build essentials using the command `sudo apt-get install build-essential`.
5. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
## automl_setup_linux.sh fails
If automl_setup_linux.sh fails on Ubuntu Linux with the error: `unable to execute 'gcc': No such file or directory`
1. Make sure that outbound ports 53 and 80 are enabled. On an Azure VM, you can do this from the Azure Portal by selecting the VM and clicking on Networking.
2. Run the command: `sudo apt-get update`
3. Run the command: `sudo apt-get install build-essential --fix-missing`
4. Run `automl_setup_linux.sh` again.
## configuration.ipynb fails
1) For local conda, make sure that you have susccessfully run automl_setup first.
@@ -233,13 +250,20 @@ If a sample notebook fails with an error that property, method or library does n
## Numpy import fails on Windows
Some Windows environments see an error loading numpy with the latest Python version 3.6.8. If you see this issue, try with Python version 3.6.7.
## Numpy import fails
Check the tensorflow version in the automated ml conda environment. Supported versions are < 1.13. Uninstall tensorflow from the environment if version is >= 1.13
You may check the version of tensorflow and uninstall as follows
1) start a command shell, activate conda environment where automated ml packages are installed
2) enter `pip freeze` and look for `tensorflow` , if found, the version listed should be < 1.13
3) If the listed version is a not a supported version, `pip uninstall tensorflow` in the command shell and enter y for confirmation.
## Remote run: DsvmCompute.create fails
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.
2) `The requested VM size xxxxx is not available in the current region.` You can select a different region or vm_size.
## Remote run: Unable to establish SSH connection
AutoML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
Automated ML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
1) The DSVM is not ready for SSH connections. When DSVM creation completes, the DSVM might still not be ready to acceept SSH connections. The sample notebooks have a one minute delay to allow for this.
2) Your Azure Subscription may restrict the IP address ranges that can access the DSVM on port 22. You can check this in the Azure Portal by selecting the Virtual Machine and then clicking Networking. The Virtual Machine name is the name that you provided in the notebook plus 10 alpha numeric characters to make the name unique. The Inbound Port Rules define what can access the VM on specific ports. Note that there is a priority priority order. So, a Deny entry with a low priority number will override a Allow entry with a higher priority number.
@@ -250,13 +274,13 @@ This is often an issue with the `get_data` method.
3) You can get to the error log for the setup iteration by clicking the `Click here to see the run in Azure portal` link, click `Back to Experiment`, click on the highest run number and then click on Logs.
## Remote run: disk full
AutoML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
Automated ML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
You can delete the files under /tmp/azureml_runs or just delete the VM and create a new one.
If your get_data downloads files, make sure the delete them or they can use disk space as well.
When using DataStore, it is good to specify an absolute path for the files so that they are downloaded just once. If you specify a relative path, it will download a file for each iteration.
## Remote run: Iterations fail and the log contains "MemoryError"
This can be caused by insufficient memory on the DSVM. AutoML loads all training data into memory. So, the available memory should be more than the training data size.
This can be caused by insufficient memory on the DSVM. Automated ML loads all training data into memory. So, the available memory should be more than the training data size.
If you are using a remote DSVM, memory is needed for each concurrent iteration. The max_concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and max_concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
To resolve this issue, allocate a DSVM with more memory or reduce the value specified for max_concurrent_iterations.

View File

@@ -0,0 +1,21 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.80
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -0,0 +1,22 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- nomkl
- python>=3.5.2,<3.6.8
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<0.23.0
- py-xgboost<=0.80
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,explain]
- azureml-widgets
- pandas_ml

View File

@@ -0,0 +1,51 @@
@echo off
set conda_env_name=%1
set automl_env_file=%2
set options=%3
set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing
call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 (
echo Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment %conda_env_name%
call pip install --upgrade azureml-sdk[automl,notebooks,explain]
if errorlevel 1 goto ErrorExit
) else (
call conda env create -f %automl_env_file% -n %conda_env_name%
)
call conda activate %conda_env_name% 2>nul:
if errorlevel 1 goto ErrorExit
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
REM azureml.widgets is now installed as part of the pip install under the conda env.
REM Removing the old user install so that the notebooks will use the latest widget.
call jupyter nbextension uninstall --user --py azureml.widgets
echo.
echo.
echo ***************************************
echo * AutoML setup completed successfully *
echo ***************************************
IF NOT "%options%"=="nolaunch" (
echo.
echo Starting jupyter notebook - please run the configuration notebook
echo.
jupyter notebook --log-level=50 --notebook-dir='..\..'
)
goto End
:YmlMissing
echo File %automl_env_file% not found.
:ErrorExit
echo Install failed
:End

View File

@@ -0,0 +1,52 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -0,0 +1,54 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env_mac.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
conda install lightgbm -c conda-forge -y &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -139,7 +146,6 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 20,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
@@ -263,7 +269,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. The following cells create a file, myenv.yml, which specifies the dependencies from the run."
]
},
{
@@ -303,7 +309,8 @@
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
" pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"

View File

@@ -0,0 +1,358 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-onnx/auto-ml-classification-with-onnx.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute with ONNX compatible config on.\n",
"4. Explore the results and save the ONNX model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig, constants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-classification-onnx'\n",
"project_folder = './sample_projects/automl-classification-onnx'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_iris](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iris = datasets.load_iris()\n",
"X_train, X_test, y_train, y_test = train_test_split(iris.data, \n",
" iris.target, \n",
" test_size=0.2, \n",
" random_state=0)\n",
"\n",
"# Convert the X_train and X_test to pandas DataFrame and set column names,\n",
"# This is needed for initializing the input variable names of ONNX model, \n",
"# and the prediction with the ONNX model using the inference helper.\n",
"X_train = pd.DataFrame(X_train, columns=['c1', 'c2', 'c3', 'c4'])\n",
"X_test = pd.DataFrame(X_test, columns=['c1', 'c2', 'c3', 'c4'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train with enable ONNX compatible models config on\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" verbosity = logging.INFO, \n",
" X = X_train, \n",
" y = y_train,\n",
" preprocess=True,\n",
" enable_onnx_compatible_models=True,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best ONNX Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.\n",
"\n",
"Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, onnx_mdl = local_run.get_output(return_onnx_model=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the best ONNX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core.onnx_convert import OnnxConverter\n",
"onnx_fl_path = \"./best_model.onnx\"\n",
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict with the ONNX model, using onnxruntime package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import json\n",
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
"\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" python_version_compatible = True\n",
"else:\n",
" python_version_compatible = False\n",
"\n",
"try:\n",
" import onnxruntime\n",
" from azureml.automl.core.onnx_convert import OnnxInferenceHelper \n",
" onnxrt_present = True\n",
"except ImportError:\n",
" onnxrt_present = False\n",
"\n",
"def get_onnx_res(run):\n",
" res_path = '_debug_y_trans_converter.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n",
" onnx_res = json.load(f)\n",
" return onnx_res\n",
"\n",
"if onnxrt_present and python_version_compatible: \n",
" mdl_bytes = onnx_mdl.SerializeToString()\n",
" onnx_res = get_onnx_res(best_run)\n",
"\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(X_test)\n",
"\n",
" print(pred_onnx)\n",
" print(pred_prob_onnx)\n",
"else:\n",
" if not python_version_compatible:\n",
" print('Please use Python version 3.6 to run the inference helper.') \n",
" if not onnxrt_present:\n",
" print('Please install the onnxruntime package to do the prediction with ONNX model.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-with-whitelisting/auto-ml-classification-with-whitelisting.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -71,11 +78,17 @@
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"try:\n",
" import tensorflow as tf1\n",
"except ImportError:\n",
" from pip._internal import main\n",
" main(['install', 'tensorflow>=1.10.0,<=1.12.0'])\n",
"import sys\n",
"whitelist_models=[\"LightGBM\"]\n",
"if \"3.7\" != sys.version[0:3]:\n",
" try:\n",
" import tensorflow as tf1\n",
" except ImportError:\n",
" from pip._internal import main\n",
" main(['install', 'tensorflow>=1.10.0,<=1.12.0'])\n",
" logging.getLogger().setLevel(logging.ERROR)\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"]\n",
"\n",
"from azureml.train.automl import AutoMLConfig"
]
},
@@ -160,12 +173,11 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_tf=True,\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"],\n",
" whitelist_models=whitelist_models,\n",
" path = project_folder)"
]
},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -72,6 +79,32 @@
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the `ws = Workspace.from_config()` line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see [aka.ms/aml-notebook-auth](http://aka.ms/aml-notebook-auth)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -133,12 +166,17 @@
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|\n",
"\n",
"Automated machine learning trains multiple machine learning pipelines. Each pipelines training is known as an iteration.\n",
"* You can specify a maximum number of iterations using the `iterations` parameter.\n",
"* You can specify a maximum time for the run using the `experiment_timeout_minutes` parameter.\n",
"* If you specify neither the `iterations` nor the `experiment_timeout_minutes`, automated ML keeps running iterations while it continues to see improvements in the scores.\n",
"\n",
"The following example doesn't specify `iterations` or `experiment_timeout_minutes` and so runs until the scores stop improving.\n"
]
},
{
@@ -148,15 +186,10 @@
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 25,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" n_cross_validations = 3)"
]
},
{
@@ -302,6 +335,12 @@
" print()\n",
" for estimator in step[1].estimators:\n",
" print_model(estimator[1], estimator[0]+ ' - ')\n",
" elif hasattr(step[1], '_base_learners') and hasattr(step[1], '_meta_learner'):\n",
" print(\"\\nMeta Learner\")\n",
" pprint(step[1]._meta_learner)\n",
" print()\n",
" for estimator in step[1]._base_learners:\n",
" print_model(estimator[1], estimator[0]+ ' - ')\n",
" else:\n",
" pprint(step[1].get_params())\n",
" print()\n",

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep-remote-execution/auto-ml-dataprep-remote-execution.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -117,21 +124,12 @@
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n",
"dflow.get_profile()"
]
},
{
@@ -140,7 +138,30 @@
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
"dflow = dflow.drop_nulls('Primary Type')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
]
},
{
@@ -162,9 +183,8 @@
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
" \"preprocess\" : True,\n",
" \"verbosity\" : logging.INFO\n",
"}"
]
},
@@ -172,7 +192,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach a Remote Linux DSVM"
"### Create or Attach an AmlCompute cluster"
]
},
{
@@ -181,21 +201,36 @@
"metadata": {},
"outputs": [],
"source": [
"dsvm_name = 'mydsvmc'\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"try:\n",
" while ws.compute_targets[dsvm_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found existing DVSM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpucluster\"\n",
"\n",
"found = False\n",
"\n",
"# Check if this compute target already exists in the workspace.\n",
"\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
@@ -207,9 +242,13 @@
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"conda_run_config.target = dsvm_compute\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
@@ -257,6 +296,44 @@
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -376,7 +453,8 @@
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
"#### Load Test Data\n",
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
]
},
{
@@ -385,12 +463,8 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
"dflow_test = dflow_test.drop_nulls('Primary Type')"
]
},
{
@@ -398,7 +472,7 @@
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
"We will use confusion matrix to see how our model works."
]
},
{
@@ -407,65 +481,19 @@
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
"\n",
"ypred = fitted_model.predict(X_test)\n",
"\n",
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
"\n",
"print(cm)\n",
"\n",
"cm.plot()"
]
}
],

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/dataprep/auto-ml-dataprep.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -115,23 +122,12 @@
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# The data referenced here was a 1MB simple random sample of the Chicago Crime data into a local temporary directory.\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
"example_data = 'https://dprepdata.blob.core.windows.net/demo/crime0-random.csv'\n",
"dflow = dprep.auto_read_file(example_data).skip(1) # Remove the header row.\n",
"dflow.get_profile()"
]
},
{
@@ -140,7 +136,30 @@
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
"# As `Primary Type` is our y data, we need to drop the values those are null in this column.\n",
"dflow = dflow.drop_nulls('Primary Type')\n",
"dflow.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets.\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = dflow.drop_columns(columns=['Primary Type', 'FBI Code'])\n",
"y = dflow.keep_columns(columns=['Primary Type'], validate_column_exists=True)"
]
},
{
@@ -162,9 +181,8 @@
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
" \"preprocess\" : True,\n",
" \"verbosity\" : logging.INFO\n",
"}"
]
},
@@ -327,7 +345,8 @@
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
"#### Load Test Data\n",
"For the test data, it should have the same preparation step as the train data. Otherwise it might get failed at the preprocessing step."
]
},
{
@@ -336,12 +355,8 @@
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
"dflow_test = dprep.auto_read_file(path='https://dprepdata.blob.core.windows.net/demo/crime0-test.csv').skip(1)\n",
"dflow_test = dflow_test.drop_nulls('Primary Type')"
]
},
{
@@ -349,7 +364,7 @@
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
"We will use confusion matrix to see how our model works."
]
},
{
@@ -358,65 +373,18 @@
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"y_test = dflow_test.keep_columns(columns=['Primary Type']).to_pandas_dataframe()\n",
"X_test = dflow_test.drop_columns(columns=['Primary Type', 'FBI Code']).to_pandas_dataframe()\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
"ypred = fitted_model.predict(X_test)\n",
"\n",
"cm = ConfusionMatrix(y_test['Primary Type'], ypred)\n",
"\n",
"print(cm)\n",
"\n",
"cm.plot()"
]
}
],

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/exploring-previous-runs/auto-ml-exploring-previous-runs.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -0,0 +1,500 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"**BikeShare Demand Forecasting**\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we show how AutoML can be used for bike share forecasting.\n",
"\n",
"The purpose is to demonstrate how to take advantage of the built-in holiday featurization, access the feature names, and further demonstrate how to work with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-bikeshareforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-bikeshareforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"Read bike share demand data from file, and preview data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('bike-no.csv', parse_dates=['date'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set up what we know abou the dataset. \n",
"\n",
"**Target column** is what we want to forecast.\n",
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Grain** is another word for an individual time series in your dataset. Grains are identified by values of the columns listed `grain_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_column_name = 'cnt'\n",
"time_column_name = 'date'\n",
"grain_column_names = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split the data\n",
"\n",
"The first split we make is into train and test sets. Note we are splitting on time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train = data[data[time_column_name] < '2012-09-01']\n",
"test = data[data[time_column_name] >= '2012-09-01']\n",
"\n",
"X_train = train.copy()\n",
"y_train = X_train.pop(target_column_name).values\n",
"\n",
"X_test = test.copy()\n",
"y_test = X_test.pop(target_column_name).values\n",
"\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_test.shape)\n",
"print(y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"Assuming your test data forms a full and regular time series(regular time intervals and no holes), \n",
"the maximum horizon you will need to forecast is the length of the longest grain in your test set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if len(grain_column_names) == 0:\n",
" max_horizon = len(X_test)\n",
"else:\n",
" max_horizon = X_test.groupby(grain_column_names)[time_column_name].count().max()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'date'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
" # these columns are a breakdown of the total and therefore a leak\n",
" \"drop_column_names\": ['casual', 'registered'],\n",
" # knowing the country/region allows Automated ML to bring in holidays\n",
" \"country_or_region\" : 'US',\n",
" \"max_horizon\" : max_horizon,\n",
" \"target_lags\": 1 \n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3, \n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. Experiment can be continued for more iterations if the results are not yet good. You will see the currently running iterations printing to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"\n",
"You can accees the engineered feature names generated in time-series featurization. Note that a number of named holiday periods are represented. We recommend that you have at least one year of data when using this feature to ensure that all yearly holidays are captured in the training featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the featurization summary\n",
"\n",
"You can also see what featurization steps were performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:\n",
"\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values.\n",
"\n",
"We always score on the original dataset whose schema matches the scheme of the training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.NaN)\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga@microsoft.com, tosingli@microsoft.com"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,732 @@
instant,date,season,yr,mnth,weekday,weathersit,temp,atemp,hum,windspeed,casual,registered,cnt
1,1/1/2011,1,0,1,6,2,0.344167,0.363625,0.805833,0.160446,331,654,985
2,1/2/2011,1,0,1,0,2,0.363478,0.353739,0.696087,0.248539,131,670,801
3,1/3/2011,1,0,1,1,1,0.196364,0.189405,0.437273,0.248309,120,1229,1349
4,1/4/2011,1,0,1,2,1,0.2,0.212122,0.590435,0.160296,108,1454,1562
5,1/5/2011,1,0,1,3,1,0.226957,0.22927,0.436957,0.1869,82,1518,1600
6,1/6/2011,1,0,1,4,1,0.204348,0.233209,0.518261,0.0895652,88,1518,1606
7,1/7/2011,1,0,1,5,2,0.196522,0.208839,0.498696,0.168726,148,1362,1510
8,1/8/2011,1,0,1,6,2,0.165,0.162254,0.535833,0.266804,68,891,959
9,1/9/2011,1,0,1,0,1,0.138333,0.116175,0.434167,0.36195,54,768,822
10,1/10/2011,1,0,1,1,1,0.150833,0.150888,0.482917,0.223267,41,1280,1321
11,1/11/2011,1,0,1,2,2,0.169091,0.191464,0.686364,0.122132,43,1220,1263
12,1/12/2011,1,0,1,3,1,0.172727,0.160473,0.599545,0.304627,25,1137,1162
13,1/13/2011,1,0,1,4,1,0.165,0.150883,0.470417,0.301,38,1368,1406
14,1/14/2011,1,0,1,5,1,0.16087,0.188413,0.537826,0.126548,54,1367,1421
15,1/15/2011,1,0,1,6,2,0.233333,0.248112,0.49875,0.157963,222,1026,1248
16,1/16/2011,1,0,1,0,1,0.231667,0.234217,0.48375,0.188433,251,953,1204
17,1/17/2011,1,0,1,1,2,0.175833,0.176771,0.5375,0.194017,117,883,1000
18,1/18/2011,1,0,1,2,2,0.216667,0.232333,0.861667,0.146775,9,674,683
19,1/19/2011,1,0,1,3,2,0.292174,0.298422,0.741739,0.208317,78,1572,1650
20,1/20/2011,1,0,1,4,2,0.261667,0.25505,0.538333,0.195904,83,1844,1927
21,1/21/2011,1,0,1,5,1,0.1775,0.157833,0.457083,0.353242,75,1468,1543
22,1/22/2011,1,0,1,6,1,0.0591304,0.0790696,0.4,0.17197,93,888,981
23,1/23/2011,1,0,1,0,1,0.0965217,0.0988391,0.436522,0.2466,150,836,986
24,1/24/2011,1,0,1,1,1,0.0973913,0.11793,0.491739,0.15833,86,1330,1416
25,1/25/2011,1,0,1,2,2,0.223478,0.234526,0.616957,0.129796,186,1799,1985
26,1/26/2011,1,0,1,3,3,0.2175,0.2036,0.8625,0.29385,34,472,506
27,1/27/2011,1,0,1,4,1,0.195,0.2197,0.6875,0.113837,15,416,431
28,1/28/2011,1,0,1,5,2,0.203478,0.223317,0.793043,0.1233,38,1129,1167
29,1/29/2011,1,0,1,6,1,0.196522,0.212126,0.651739,0.145365,123,975,1098
30,1/30/2011,1,0,1,0,1,0.216522,0.250322,0.722174,0.0739826,140,956,1096
31,1/31/2011,1,0,1,1,2,0.180833,0.18625,0.60375,0.187192,42,1459,1501
32,2/1/2011,1,0,2,2,2,0.192174,0.23453,0.829565,0.053213,47,1313,1360
33,2/2/2011,1,0,2,3,2,0.26,0.254417,0.775417,0.264308,72,1454,1526
34,2/3/2011,1,0,2,4,1,0.186957,0.177878,0.437826,0.277752,61,1489,1550
35,2/4/2011,1,0,2,5,2,0.211304,0.228587,0.585217,0.127839,88,1620,1708
36,2/5/2011,1,0,2,6,2,0.233333,0.243058,0.929167,0.161079,100,905,1005
37,2/6/2011,1,0,2,0,1,0.285833,0.291671,0.568333,0.1418,354,1269,1623
38,2/7/2011,1,0,2,1,1,0.271667,0.303658,0.738333,0.0454083,120,1592,1712
39,2/8/2011,1,0,2,2,1,0.220833,0.198246,0.537917,0.36195,64,1466,1530
40,2/9/2011,1,0,2,3,2,0.134783,0.144283,0.494783,0.188839,53,1552,1605
41,2/10/2011,1,0,2,4,1,0.144348,0.149548,0.437391,0.221935,47,1491,1538
42,2/11/2011,1,0,2,5,1,0.189091,0.213509,0.506364,0.10855,149,1597,1746
43,2/12/2011,1,0,2,6,1,0.2225,0.232954,0.544167,0.203367,288,1184,1472
44,2/13/2011,1,0,2,0,1,0.316522,0.324113,0.457391,0.260883,397,1192,1589
45,2/14/2011,1,0,2,1,1,0.415,0.39835,0.375833,0.417908,208,1705,1913
46,2/15/2011,1,0,2,2,1,0.266087,0.254274,0.314348,0.291374,140,1675,1815
47,2/16/2011,1,0,2,3,1,0.318261,0.3162,0.423478,0.251791,218,1897,2115
48,2/17/2011,1,0,2,4,1,0.435833,0.428658,0.505,0.230104,259,2216,2475
49,2/18/2011,1,0,2,5,1,0.521667,0.511983,0.516667,0.264925,579,2348,2927
50,2/19/2011,1,0,2,6,1,0.399167,0.391404,0.187917,0.507463,532,1103,1635
51,2/20/2011,1,0,2,0,1,0.285217,0.27733,0.407826,0.223235,639,1173,1812
52,2/21/2011,1,0,2,1,2,0.303333,0.284075,0.605,0.307846,195,912,1107
53,2/22/2011,1,0,2,2,1,0.182222,0.186033,0.577778,0.195683,74,1376,1450
54,2/23/2011,1,0,2,3,1,0.221739,0.245717,0.423043,0.094113,139,1778,1917
55,2/24/2011,1,0,2,4,2,0.295652,0.289191,0.697391,0.250496,100,1707,1807
56,2/25/2011,1,0,2,5,2,0.364348,0.350461,0.712174,0.346539,120,1341,1461
57,2/26/2011,1,0,2,6,1,0.2825,0.282192,0.537917,0.186571,424,1545,1969
58,2/27/2011,1,0,2,0,1,0.343478,0.351109,0.68,0.125248,694,1708,2402
59,2/28/2011,1,0,2,1,2,0.407273,0.400118,0.876364,0.289686,81,1365,1446
60,3/1/2011,1,0,3,2,1,0.266667,0.263879,0.535,0.216425,137,1714,1851
61,3/2/2011,1,0,3,3,1,0.335,0.320071,0.449583,0.307833,231,1903,2134
62,3/3/2011,1,0,3,4,1,0.198333,0.200133,0.318333,0.225754,123,1562,1685
63,3/4/2011,1,0,3,5,2,0.261667,0.255679,0.610417,0.203346,214,1730,1944
64,3/5/2011,1,0,3,6,2,0.384167,0.378779,0.789167,0.251871,640,1437,2077
65,3/6/2011,1,0,3,0,2,0.376522,0.366252,0.948261,0.343287,114,491,605
66,3/7/2011,1,0,3,1,1,0.261739,0.238461,0.551304,0.341352,244,1628,1872
67,3/8/2011,1,0,3,2,1,0.2925,0.3024,0.420833,0.12065,316,1817,2133
68,3/9/2011,1,0,3,3,2,0.295833,0.286608,0.775417,0.22015,191,1700,1891
69,3/10/2011,1,0,3,4,3,0.389091,0.385668,0,0.261877,46,577,623
70,3/11/2011,1,0,3,5,2,0.316522,0.305,0.649565,0.23297,247,1730,1977
71,3/12/2011,1,0,3,6,1,0.329167,0.32575,0.594583,0.220775,724,1408,2132
72,3/13/2011,1,0,3,0,1,0.384348,0.380091,0.527391,0.270604,982,1435,2417
73,3/14/2011,1,0,3,1,1,0.325217,0.332,0.496957,0.136926,359,1687,2046
74,3/15/2011,1,0,3,2,2,0.317391,0.318178,0.655652,0.184309,289,1767,2056
75,3/16/2011,1,0,3,3,2,0.365217,0.36693,0.776522,0.203117,321,1871,2192
76,3/17/2011,1,0,3,4,1,0.415,0.410333,0.602917,0.209579,424,2320,2744
77,3/18/2011,1,0,3,5,1,0.54,0.527009,0.525217,0.231017,884,2355,3239
78,3/19/2011,1,0,3,6,1,0.4725,0.466525,0.379167,0.368167,1424,1693,3117
79,3/20/2011,1,0,3,0,1,0.3325,0.32575,0.47375,0.207721,1047,1424,2471
80,3/21/2011,2,0,3,1,2,0.430435,0.409735,0.737391,0.288783,401,1676,2077
81,3/22/2011,2,0,3,2,1,0.441667,0.440642,0.624583,0.22575,460,2243,2703
82,3/23/2011,2,0,3,3,2,0.346957,0.337939,0.839565,0.234261,203,1918,2121
83,3/24/2011,2,0,3,4,2,0.285,0.270833,0.805833,0.243787,166,1699,1865
84,3/25/2011,2,0,3,5,1,0.264167,0.256312,0.495,0.230725,300,1910,2210
85,3/26/2011,2,0,3,6,1,0.265833,0.257571,0.394167,0.209571,981,1515,2496
86,3/27/2011,2,0,3,0,2,0.253043,0.250339,0.493913,0.1843,472,1221,1693
87,3/28/2011,2,0,3,1,1,0.264348,0.257574,0.302174,0.212204,222,1806,2028
88,3/29/2011,2,0,3,2,1,0.3025,0.292908,0.314167,0.226996,317,2108,2425
89,3/30/2011,2,0,3,3,2,0.3,0.29735,0.646667,0.172888,168,1368,1536
90,3/31/2011,2,0,3,4,3,0.268333,0.257575,0.918333,0.217646,179,1506,1685
91,4/1/2011,2,0,4,5,2,0.3,0.283454,0.68625,0.258708,307,1920,2227
92,4/2/2011,2,0,4,6,2,0.315,0.315637,0.65375,0.197146,898,1354,2252
93,4/3/2011,2,0,4,0,1,0.378333,0.378767,0.48,0.182213,1651,1598,3249
94,4/4/2011,2,0,4,1,1,0.573333,0.542929,0.42625,0.385571,734,2381,3115
95,4/5/2011,2,0,4,2,2,0.414167,0.39835,0.642083,0.388067,167,1628,1795
96,4/6/2011,2,0,4,3,1,0.390833,0.387608,0.470833,0.263063,413,2395,2808
97,4/7/2011,2,0,4,4,1,0.4375,0.433696,0.602917,0.162312,571,2570,3141
98,4/8/2011,2,0,4,5,2,0.335833,0.324479,0.83625,0.226992,172,1299,1471
99,4/9/2011,2,0,4,6,2,0.3425,0.341529,0.8775,0.133083,879,1576,2455
100,4/10/2011,2,0,4,0,2,0.426667,0.426737,0.8575,0.146767,1188,1707,2895
101,4/11/2011,2,0,4,1,2,0.595652,0.565217,0.716956,0.324474,855,2493,3348
102,4/12/2011,2,0,4,2,2,0.5025,0.493054,0.739167,0.274879,257,1777,2034
103,4/13/2011,2,0,4,3,2,0.4125,0.417283,0.819167,0.250617,209,1953,2162
104,4/14/2011,2,0,4,4,1,0.4675,0.462742,0.540417,0.1107,529,2738,3267
105,4/15/2011,2,0,4,5,1,0.446667,0.441913,0.67125,0.226375,642,2484,3126
106,4/16/2011,2,0,4,6,3,0.430833,0.425492,0.888333,0.340808,121,674,795
107,4/17/2011,2,0,4,0,1,0.456667,0.445696,0.479583,0.303496,1558,2186,3744
108,4/18/2011,2,0,4,1,1,0.5125,0.503146,0.5425,0.163567,669,2760,3429
109,4/19/2011,2,0,4,2,2,0.505833,0.489258,0.665833,0.157971,409,2795,3204
110,4/20/2011,2,0,4,3,1,0.595,0.564392,0.614167,0.241925,613,3331,3944
111,4/21/2011,2,0,4,4,1,0.459167,0.453892,0.407083,0.325258,745,3444,4189
112,4/22/2011,2,0,4,5,2,0.336667,0.321954,0.729583,0.219521,177,1506,1683
113,4/23/2011,2,0,4,6,2,0.46,0.450121,0.887917,0.230725,1462,2574,4036
114,4/24/2011,2,0,4,0,2,0.581667,0.551763,0.810833,0.192175,1710,2481,4191
115,4/25/2011,2,0,4,1,1,0.606667,0.5745,0.776667,0.185333,773,3300,4073
116,4/26/2011,2,0,4,2,1,0.631667,0.594083,0.729167,0.3265,678,3722,4400
117,4/27/2011,2,0,4,3,2,0.62,0.575142,0.835417,0.3122,547,3325,3872
118,4/28/2011,2,0,4,4,2,0.6175,0.578929,0.700833,0.320908,569,3489,4058
119,4/29/2011,2,0,4,5,1,0.51,0.497463,0.457083,0.240063,878,3717,4595
120,4/30/2011,2,0,4,6,1,0.4725,0.464021,0.503333,0.235075,1965,3347,5312
121,5/1/2011,2,0,5,0,2,0.451667,0.448204,0.762083,0.106354,1138,2213,3351
122,5/2/2011,2,0,5,1,2,0.549167,0.532833,0.73,0.183454,847,3554,4401
123,5/3/2011,2,0,5,2,2,0.616667,0.582079,0.697083,0.342667,603,3848,4451
124,5/4/2011,2,0,5,3,2,0.414167,0.40465,0.737083,0.328996,255,2378,2633
125,5/5/2011,2,0,5,4,1,0.459167,0.441917,0.444167,0.295392,614,3819,4433
126,5/6/2011,2,0,5,5,1,0.479167,0.474117,0.59,0.228246,894,3714,4608
127,5/7/2011,2,0,5,6,1,0.52,0.512621,0.54125,0.16045,1612,3102,4714
128,5/8/2011,2,0,5,0,1,0.528333,0.518933,0.631667,0.0746375,1401,2932,4333
129,5/9/2011,2,0,5,1,1,0.5325,0.525246,0.58875,0.176,664,3698,4362
130,5/10/2011,2,0,5,2,1,0.5325,0.522721,0.489167,0.115671,694,4109,4803
131,5/11/2011,2,0,5,3,1,0.5425,0.5284,0.632917,0.120642,550,3632,4182
132,5/12/2011,2,0,5,4,1,0.535,0.523363,0.7475,0.189667,695,4169,4864
133,5/13/2011,2,0,5,5,2,0.5125,0.4943,0.863333,0.179725,692,3413,4105
134,5/14/2011,2,0,5,6,2,0.520833,0.500629,0.9225,0.13495,902,2507,3409
135,5/15/2011,2,0,5,0,2,0.5625,0.536,0.867083,0.152979,1582,2971,4553
136,5/16/2011,2,0,5,1,1,0.5775,0.550512,0.787917,0.126871,773,3185,3958
137,5/17/2011,2,0,5,2,2,0.561667,0.538529,0.837917,0.277354,678,3445,4123
138,5/18/2011,2,0,5,3,2,0.55,0.527158,0.87,0.201492,536,3319,3855
139,5/19/2011,2,0,5,4,2,0.530833,0.510742,0.829583,0.108213,735,3840,4575
140,5/20/2011,2,0,5,5,1,0.536667,0.529042,0.719583,0.125013,909,4008,4917
141,5/21/2011,2,0,5,6,1,0.6025,0.571975,0.626667,0.12065,2258,3547,5805
142,5/22/2011,2,0,5,0,1,0.604167,0.5745,0.749583,0.148008,1576,3084,4660
143,5/23/2011,2,0,5,1,2,0.631667,0.590296,0.81,0.233842,836,3438,4274
144,5/24/2011,2,0,5,2,2,0.66,0.604813,0.740833,0.207092,659,3833,4492
145,5/25/2011,2,0,5,3,1,0.660833,0.615542,0.69625,0.154233,740,4238,4978
146,5/26/2011,2,0,5,4,1,0.708333,0.654688,0.6775,0.199642,758,3919,4677
147,5/27/2011,2,0,5,5,1,0.681667,0.637008,0.65375,0.240679,871,3808,4679
148,5/28/2011,2,0,5,6,1,0.655833,0.612379,0.729583,0.230092,2001,2757,4758
149,5/29/2011,2,0,5,0,1,0.6675,0.61555,0.81875,0.213938,2355,2433,4788
150,5/30/2011,2,0,5,1,1,0.733333,0.671092,0.685,0.131225,1549,2549,4098
151,5/31/2011,2,0,5,2,1,0.775,0.725383,0.636667,0.111329,673,3309,3982
152,6/1/2011,2,0,6,3,2,0.764167,0.720967,0.677083,0.207092,513,3461,3974
153,6/2/2011,2,0,6,4,1,0.715,0.643942,0.305,0.292287,736,4232,4968
154,6/3/2011,2,0,6,5,1,0.62,0.587133,0.354167,0.253121,898,4414,5312
155,6/4/2011,2,0,6,6,1,0.635,0.594696,0.45625,0.123142,1869,3473,5342
156,6/5/2011,2,0,6,0,2,0.648333,0.616804,0.6525,0.138692,1685,3221,4906
157,6/6/2011,2,0,6,1,1,0.678333,0.621858,0.6,0.121896,673,3875,4548
158,6/7/2011,2,0,6,2,1,0.7075,0.65595,0.597917,0.187808,763,4070,4833
159,6/8/2011,2,0,6,3,1,0.775833,0.727279,0.622083,0.136817,676,3725,4401
160,6/9/2011,2,0,6,4,2,0.808333,0.757579,0.568333,0.149883,563,3352,3915
161,6/10/2011,2,0,6,5,1,0.755,0.703292,0.605,0.140554,815,3771,4586
162,6/11/2011,2,0,6,6,1,0.725,0.678038,0.654583,0.15485,1729,3237,4966
163,6/12/2011,2,0,6,0,1,0.6925,0.643325,0.747917,0.163567,1467,2993,4460
164,6/13/2011,2,0,6,1,1,0.635,0.601654,0.494583,0.30535,863,4157,5020
165,6/14/2011,2,0,6,2,1,0.604167,0.591546,0.507083,0.269283,727,4164,4891
166,6/15/2011,2,0,6,3,1,0.626667,0.587754,0.471667,0.167912,769,4411,5180
167,6/16/2011,2,0,6,4,2,0.628333,0.595346,0.688333,0.206471,545,3222,3767
168,6/17/2011,2,0,6,5,1,0.649167,0.600383,0.735833,0.143029,863,3981,4844
169,6/18/2011,2,0,6,6,1,0.696667,0.643954,0.670417,0.119408,1807,3312,5119
170,6/19/2011,2,0,6,0,2,0.699167,0.645846,0.666667,0.102,1639,3105,4744
171,6/20/2011,2,0,6,1,2,0.635,0.595346,0.74625,0.155475,699,3311,4010
172,6/21/2011,3,0,6,2,2,0.680833,0.637646,0.770417,0.171025,774,4061,4835
173,6/22/2011,3,0,6,3,1,0.733333,0.693829,0.7075,0.172262,661,3846,4507
174,6/23/2011,3,0,6,4,2,0.728333,0.693833,0.703333,0.238804,746,4044,4790
175,6/24/2011,3,0,6,5,1,0.724167,0.656583,0.573333,0.222025,969,4022,4991
176,6/25/2011,3,0,6,6,1,0.695,0.643313,0.483333,0.209571,1782,3420,5202
177,6/26/2011,3,0,6,0,1,0.68,0.637629,0.513333,0.0945333,1920,3385,5305
178,6/27/2011,3,0,6,1,2,0.6825,0.637004,0.658333,0.107588,854,3854,4708
179,6/28/2011,3,0,6,2,1,0.744167,0.692558,0.634167,0.144283,732,3916,4648
180,6/29/2011,3,0,6,3,1,0.728333,0.654688,0.497917,0.261821,848,4377,5225
181,6/30/2011,3,0,6,4,1,0.696667,0.637008,0.434167,0.185312,1027,4488,5515
182,7/1/2011,3,0,7,5,1,0.7225,0.652162,0.39625,0.102608,1246,4116,5362
183,7/2/2011,3,0,7,6,1,0.738333,0.667308,0.444583,0.115062,2204,2915,5119
184,7/3/2011,3,0,7,0,2,0.716667,0.668575,0.6825,0.228858,2282,2367,4649
185,7/4/2011,3,0,7,1,2,0.726667,0.665417,0.637917,0.0814792,3065,2978,6043
186,7/5/2011,3,0,7,2,1,0.746667,0.696338,0.590417,0.126258,1031,3634,4665
187,7/6/2011,3,0,7,3,1,0.72,0.685633,0.743333,0.149883,784,3845,4629
188,7/7/2011,3,0,7,4,1,0.75,0.686871,0.65125,0.1592,754,3838,4592
189,7/8/2011,3,0,7,5,2,0.709167,0.670483,0.757917,0.225129,692,3348,4040
190,7/9/2011,3,0,7,6,1,0.733333,0.664158,0.609167,0.167912,1988,3348,5336
191,7/10/2011,3,0,7,0,1,0.7475,0.690025,0.578333,0.183471,1743,3138,4881
192,7/11/2011,3,0,7,1,1,0.7625,0.729804,0.635833,0.282337,723,3363,4086
193,7/12/2011,3,0,7,2,1,0.794167,0.739275,0.559167,0.200254,662,3596,4258
194,7/13/2011,3,0,7,3,1,0.746667,0.689404,0.631667,0.146133,748,3594,4342
195,7/14/2011,3,0,7,4,1,0.680833,0.635104,0.47625,0.240667,888,4196,5084
196,7/15/2011,3,0,7,5,1,0.663333,0.624371,0.59125,0.182833,1318,4220,5538
197,7/16/2011,3,0,7,6,1,0.686667,0.638263,0.585,0.208342,2418,3505,5923
198,7/17/2011,3,0,7,0,1,0.719167,0.669833,0.604167,0.245033,2006,3296,5302
199,7/18/2011,3,0,7,1,1,0.746667,0.703925,0.65125,0.215804,841,3617,4458
200,7/19/2011,3,0,7,2,1,0.776667,0.747479,0.650417,0.1306,752,3789,4541
201,7/20/2011,3,0,7,3,1,0.768333,0.74685,0.707083,0.113817,644,3688,4332
202,7/21/2011,3,0,7,4,2,0.815,0.826371,0.69125,0.222021,632,3152,3784
203,7/22/2011,3,0,7,5,1,0.848333,0.840896,0.580417,0.1331,562,2825,3387
204,7/23/2011,3,0,7,6,1,0.849167,0.804287,0.5,0.131221,987,2298,3285
205,7/24/2011,3,0,7,0,1,0.83,0.794829,0.550833,0.169171,1050,2556,3606
206,7/25/2011,3,0,7,1,1,0.743333,0.720958,0.757083,0.0908083,568,3272,3840
207,7/26/2011,3,0,7,2,1,0.771667,0.696979,0.540833,0.200258,750,3840,4590
208,7/27/2011,3,0,7,3,1,0.775,0.690667,0.402917,0.183463,755,3901,4656
209,7/28/2011,3,0,7,4,1,0.779167,0.7399,0.583333,0.178479,606,3784,4390
210,7/29/2011,3,0,7,5,1,0.838333,0.785967,0.5425,0.174138,670,3176,3846
211,7/30/2011,3,0,7,6,1,0.804167,0.728537,0.465833,0.168537,1559,2916,4475
212,7/31/2011,3,0,7,0,1,0.805833,0.729796,0.480833,0.164813,1524,2778,4302
213,8/1/2011,3,0,8,1,1,0.771667,0.703292,0.550833,0.156717,729,3537,4266
214,8/2/2011,3,0,8,2,1,0.783333,0.707071,0.49125,0.20585,801,4044,4845
215,8/3/2011,3,0,8,3,2,0.731667,0.679937,0.6575,0.135583,467,3107,3574
216,8/4/2011,3,0,8,4,2,0.71,0.664788,0.7575,0.19715,799,3777,4576
217,8/5/2011,3,0,8,5,1,0.710833,0.656567,0.630833,0.184696,1023,3843,4866
218,8/6/2011,3,0,8,6,2,0.716667,0.676154,0.755,0.22825,1521,2773,4294
219,8/7/2011,3,0,8,0,1,0.7425,0.715292,0.752917,0.201487,1298,2487,3785
220,8/8/2011,3,0,8,1,1,0.765,0.703283,0.592083,0.192175,846,3480,4326
221,8/9/2011,3,0,8,2,1,0.775,0.724121,0.570417,0.151121,907,3695,4602
222,8/10/2011,3,0,8,3,1,0.766667,0.684983,0.424167,0.200258,884,3896,4780
223,8/11/2011,3,0,8,4,1,0.7175,0.651521,0.42375,0.164796,812,3980,4792
224,8/12/2011,3,0,8,5,1,0.708333,0.654042,0.415,0.125621,1051,3854,4905
225,8/13/2011,3,0,8,6,2,0.685833,0.645858,0.729583,0.211454,1504,2646,4150
226,8/14/2011,3,0,8,0,2,0.676667,0.624388,0.8175,0.222633,1338,2482,3820
227,8/15/2011,3,0,8,1,1,0.665833,0.616167,0.712083,0.208954,775,3563,4338
228,8/16/2011,3,0,8,2,1,0.700833,0.645837,0.578333,0.236329,721,4004,4725
229,8/17/2011,3,0,8,3,1,0.723333,0.666671,0.575417,0.143667,668,4026,4694
230,8/18/2011,3,0,8,4,1,0.711667,0.662258,0.654583,0.233208,639,3166,3805
231,8/19/2011,3,0,8,5,2,0.685,0.633221,0.722917,0.139308,797,3356,4153
232,8/20/2011,3,0,8,6,1,0.6975,0.648996,0.674167,0.104467,1914,3277,5191
233,8/21/2011,3,0,8,0,1,0.710833,0.675525,0.77,0.248754,1249,2624,3873
234,8/22/2011,3,0,8,1,1,0.691667,0.638254,0.47,0.27675,833,3925,4758
235,8/23/2011,3,0,8,2,1,0.640833,0.606067,0.455417,0.146763,1281,4614,5895
236,8/24/2011,3,0,8,3,1,0.673333,0.630692,0.605,0.253108,949,4181,5130
237,8/25/2011,3,0,8,4,2,0.684167,0.645854,0.771667,0.210833,435,3107,3542
238,8/26/2011,3,0,8,5,1,0.7,0.659733,0.76125,0.0839625,768,3893,4661
239,8/27/2011,3,0,8,6,2,0.68,0.635556,0.85,0.375617,226,889,1115
240,8/28/2011,3,0,8,0,1,0.707059,0.647959,0.561765,0.304659,1415,2919,4334
241,8/29/2011,3,0,8,1,1,0.636667,0.607958,0.554583,0.159825,729,3905,4634
242,8/30/2011,3,0,8,2,1,0.639167,0.594704,0.548333,0.125008,775,4429,5204
243,8/31/2011,3,0,8,3,1,0.656667,0.611121,0.597917,0.0833333,688,4370,5058
244,9/1/2011,3,0,9,4,1,0.655,0.614921,0.639167,0.141796,783,4332,5115
245,9/2/2011,3,0,9,5,2,0.643333,0.604808,0.727083,0.139929,875,3852,4727
246,9/3/2011,3,0,9,6,1,0.669167,0.633213,0.716667,0.185325,1935,2549,4484
247,9/4/2011,3,0,9,0,1,0.709167,0.665429,0.742083,0.206467,2521,2419,4940
248,9/5/2011,3,0,9,1,2,0.673333,0.625646,0.790417,0.212696,1236,2115,3351
249,9/6/2011,3,0,9,2,3,0.54,0.5152,0.886957,0.343943,204,2506,2710
250,9/7/2011,3,0,9,3,3,0.599167,0.544229,0.917083,0.0970208,118,1878,1996
251,9/8/2011,3,0,9,4,3,0.633913,0.555361,0.939565,0.192748,153,1689,1842
252,9/9/2011,3,0,9,5,2,0.65,0.578946,0.897917,0.124379,417,3127,3544
253,9/10/2011,3,0,9,6,1,0.66,0.607962,0.75375,0.153608,1750,3595,5345
254,9/11/2011,3,0,9,0,1,0.653333,0.609229,0.71375,0.115054,1633,3413,5046
255,9/12/2011,3,0,9,1,1,0.644348,0.60213,0.692174,0.088913,690,4023,4713
256,9/13/2011,3,0,9,2,1,0.650833,0.603554,0.7125,0.141804,701,4062,4763
257,9/14/2011,3,0,9,3,1,0.673333,0.6269,0.697083,0.1673,647,4138,4785
258,9/15/2011,3,0,9,4,2,0.5775,0.553671,0.709167,0.271146,428,3231,3659
259,9/16/2011,3,0,9,5,2,0.469167,0.461475,0.590417,0.164183,742,4018,4760
260,9/17/2011,3,0,9,6,2,0.491667,0.478512,0.718333,0.189675,1434,3077,4511
261,9/18/2011,3,0,9,0,1,0.5075,0.490537,0.695,0.178483,1353,2921,4274
262,9/19/2011,3,0,9,1,2,0.549167,0.529675,0.69,0.151742,691,3848,4539
263,9/20/2011,3,0,9,2,2,0.561667,0.532217,0.88125,0.134954,438,3203,3641
264,9/21/2011,3,0,9,3,2,0.595,0.550533,0.9,0.0964042,539,3813,4352
265,9/22/2011,3,0,9,4,2,0.628333,0.554963,0.902083,0.128125,555,4240,4795
266,9/23/2011,4,0,9,5,2,0.609167,0.522125,0.9725,0.0783667,258,2137,2395
267,9/24/2011,4,0,9,6,2,0.606667,0.564412,0.8625,0.0783833,1776,3647,5423
268,9/25/2011,4,0,9,0,2,0.634167,0.572637,0.845,0.0503792,1544,3466,5010
269,9/26/2011,4,0,9,1,2,0.649167,0.589042,0.848333,0.1107,684,3946,4630
270,9/27/2011,4,0,9,2,2,0.636667,0.574525,0.885417,0.118171,477,3643,4120
271,9/28/2011,4,0,9,3,2,0.635,0.575158,0.84875,0.148629,480,3427,3907
272,9/29/2011,4,0,9,4,1,0.616667,0.574512,0.699167,0.172883,653,4186,4839
273,9/30/2011,4,0,9,5,1,0.564167,0.544829,0.6475,0.206475,830,4372,5202
274,10/1/2011,4,0,10,6,2,0.41,0.412863,0.75375,0.292296,480,1949,2429
275,10/2/2011,4,0,10,0,2,0.356667,0.345317,0.791667,0.222013,616,2302,2918
276,10/3/2011,4,0,10,1,2,0.384167,0.392046,0.760833,0.0833458,330,3240,3570
277,10/4/2011,4,0,10,2,1,0.484167,0.472858,0.71,0.205854,486,3970,4456
278,10/5/2011,4,0,10,3,1,0.538333,0.527138,0.647917,0.17725,559,4267,4826
279,10/6/2011,4,0,10,4,1,0.494167,0.480425,0.620833,0.134954,639,4126,4765
280,10/7/2011,4,0,10,5,1,0.510833,0.504404,0.684167,0.0223917,949,4036,4985
281,10/8/2011,4,0,10,6,1,0.521667,0.513242,0.70125,0.0454042,2235,3174,5409
282,10/9/2011,4,0,10,0,1,0.540833,0.523983,0.7275,0.06345,2397,3114,5511
283,10/10/2011,4,0,10,1,1,0.570833,0.542925,0.73375,0.0423042,1514,3603,5117
284,10/11/2011,4,0,10,2,2,0.566667,0.546096,0.80875,0.143042,667,3896,4563
285,10/12/2011,4,0,10,3,3,0.543333,0.517717,0.90625,0.24815,217,2199,2416
286,10/13/2011,4,0,10,4,2,0.589167,0.551804,0.896667,0.141787,290,2623,2913
287,10/14/2011,4,0,10,5,2,0.550833,0.529675,0.71625,0.223883,529,3115,3644
288,10/15/2011,4,0,10,6,1,0.506667,0.498725,0.483333,0.258083,1899,3318,5217
289,10/16/2011,4,0,10,0,1,0.511667,0.503154,0.486667,0.281717,1748,3293,5041
290,10/17/2011,4,0,10,1,1,0.534167,0.510725,0.579583,0.175379,713,3857,4570
291,10/18/2011,4,0,10,2,2,0.5325,0.522721,0.701667,0.110087,637,4111,4748
292,10/19/2011,4,0,10,3,3,0.541739,0.513848,0.895217,0.243339,254,2170,2424
293,10/20/2011,4,0,10,4,1,0.475833,0.466525,0.63625,0.422275,471,3724,4195
294,10/21/2011,4,0,10,5,1,0.4275,0.423596,0.574167,0.221396,676,3628,4304
295,10/22/2011,4,0,10,6,1,0.4225,0.425492,0.629167,0.0926667,1499,2809,4308
296,10/23/2011,4,0,10,0,1,0.421667,0.422333,0.74125,0.0995125,1619,2762,4381
297,10/24/2011,4,0,10,1,1,0.463333,0.457067,0.772083,0.118792,699,3488,4187
298,10/25/2011,4,0,10,2,1,0.471667,0.463375,0.622917,0.166658,695,3992,4687
299,10/26/2011,4,0,10,3,2,0.484167,0.472846,0.720417,0.148642,404,3490,3894
300,10/27/2011,4,0,10,4,2,0.47,0.457046,0.812917,0.197763,240,2419,2659
301,10/28/2011,4,0,10,5,2,0.330833,0.318812,0.585833,0.229479,456,3291,3747
302,10/29/2011,4,0,10,6,3,0.254167,0.227913,0.8825,0.351371,57,570,627
303,10/30/2011,4,0,10,0,1,0.319167,0.321329,0.62375,0.176617,885,2446,3331
304,10/31/2011,4,0,10,1,1,0.34,0.356063,0.703333,0.10635,362,3307,3669
305,11/1/2011,4,0,11,2,1,0.400833,0.397088,0.68375,0.135571,410,3658,4068
306,11/2/2011,4,0,11,3,1,0.3775,0.390133,0.71875,0.0820917,370,3816,4186
307,11/3/2011,4,0,11,4,1,0.408333,0.405921,0.702083,0.136817,318,3656,3974
308,11/4/2011,4,0,11,5,2,0.403333,0.403392,0.6225,0.271779,470,3576,4046
309,11/5/2011,4,0,11,6,1,0.326667,0.323854,0.519167,0.189062,1156,2770,3926
310,11/6/2011,4,0,11,0,1,0.348333,0.362358,0.734583,0.0920542,952,2697,3649
311,11/7/2011,4,0,11,1,1,0.395,0.400871,0.75875,0.057225,373,3662,4035
312,11/8/2011,4,0,11,2,1,0.408333,0.412246,0.721667,0.0690375,376,3829,4205
313,11/9/2011,4,0,11,3,1,0.4,0.409079,0.758333,0.0621958,305,3804,4109
314,11/10/2011,4,0,11,4,2,0.38,0.373721,0.813333,0.189067,190,2743,2933
315,11/11/2011,4,0,11,5,1,0.324167,0.306817,0.44625,0.314675,440,2928,3368
316,11/12/2011,4,0,11,6,1,0.356667,0.357942,0.552917,0.212062,1275,2792,4067
317,11/13/2011,4,0,11,0,1,0.440833,0.43055,0.458333,0.281721,1004,2713,3717
318,11/14/2011,4,0,11,1,1,0.53,0.524612,0.587083,0.306596,595,3891,4486
319,11/15/2011,4,0,11,2,2,0.53,0.507579,0.68875,0.199633,449,3746,4195
320,11/16/2011,4,0,11,3,3,0.456667,0.451988,0.93,0.136829,145,1672,1817
321,11/17/2011,4,0,11,4,2,0.341667,0.323221,0.575833,0.305362,139,2914,3053
322,11/18/2011,4,0,11,5,1,0.274167,0.272721,0.41,0.168533,245,3147,3392
323,11/19/2011,4,0,11,6,1,0.329167,0.324483,0.502083,0.224496,943,2720,3663
324,11/20/2011,4,0,11,0,2,0.463333,0.457058,0.684583,0.18595,787,2733,3520
325,11/21/2011,4,0,11,1,3,0.4475,0.445062,0.91,0.138054,220,2545,2765
326,11/22/2011,4,0,11,2,3,0.416667,0.421696,0.9625,0.118792,69,1538,1607
327,11/23/2011,4,0,11,3,2,0.440833,0.430537,0.757917,0.335825,112,2454,2566
328,11/24/2011,4,0,11,4,1,0.373333,0.372471,0.549167,0.167304,560,935,1495
329,11/25/2011,4,0,11,5,1,0.375,0.380671,0.64375,0.0988958,1095,1697,2792
330,11/26/2011,4,0,11,6,1,0.375833,0.385087,0.681667,0.0684208,1249,1819,3068
331,11/27/2011,4,0,11,0,1,0.459167,0.4558,0.698333,0.208954,810,2261,3071
332,11/28/2011,4,0,11,1,1,0.503478,0.490122,0.743043,0.142122,253,3614,3867
333,11/29/2011,4,0,11,2,2,0.458333,0.451375,0.830833,0.258092,96,2818,2914
334,11/30/2011,4,0,11,3,1,0.325,0.311221,0.613333,0.271158,188,3425,3613
335,12/1/2011,4,0,12,4,1,0.3125,0.305554,0.524583,0.220158,182,3545,3727
336,12/2/2011,4,0,12,5,1,0.314167,0.331433,0.625833,0.100754,268,3672,3940
337,12/3/2011,4,0,12,6,1,0.299167,0.310604,0.612917,0.0957833,706,2908,3614
338,12/4/2011,4,0,12,0,1,0.330833,0.3491,0.775833,0.0839583,634,2851,3485
339,12/5/2011,4,0,12,1,2,0.385833,0.393925,0.827083,0.0622083,233,3578,3811
340,12/6/2011,4,0,12,2,3,0.4625,0.4564,0.949583,0.232583,126,2468,2594
341,12/7/2011,4,0,12,3,3,0.41,0.400246,0.970417,0.266175,50,655,705
342,12/8/2011,4,0,12,4,1,0.265833,0.256938,0.58,0.240058,150,3172,3322
343,12/9/2011,4,0,12,5,1,0.290833,0.317542,0.695833,0.0827167,261,3359,3620
344,12/10/2011,4,0,12,6,1,0.275,0.266412,0.5075,0.233221,502,2688,3190
345,12/11/2011,4,0,12,0,1,0.220833,0.253154,0.49,0.0665417,377,2366,2743
346,12/12/2011,4,0,12,1,1,0.238333,0.270196,0.670833,0.06345,143,3167,3310
347,12/13/2011,4,0,12,2,1,0.2825,0.301138,0.59,0.14055,155,3368,3523
348,12/14/2011,4,0,12,3,2,0.3175,0.338362,0.66375,0.0609583,178,3562,3740
349,12/15/2011,4,0,12,4,2,0.4225,0.412237,0.634167,0.268042,181,3528,3709
350,12/16/2011,4,0,12,5,2,0.375,0.359825,0.500417,0.260575,178,3399,3577
351,12/17/2011,4,0,12,6,2,0.258333,0.249371,0.560833,0.243167,275,2464,2739
352,12/18/2011,4,0,12,0,1,0.238333,0.245579,0.58625,0.169779,220,2211,2431
353,12/19/2011,4,0,12,1,1,0.276667,0.280933,0.6375,0.172896,260,3143,3403
354,12/20/2011,4,0,12,2,2,0.385833,0.396454,0.595417,0.0615708,216,3534,3750
355,12/21/2011,1,0,12,3,2,0.428333,0.428017,0.858333,0.2214,107,2553,2660
356,12/22/2011,1,0,12,4,2,0.423333,0.426121,0.7575,0.047275,227,2841,3068
357,12/23/2011,1,0,12,5,1,0.373333,0.377513,0.68625,0.274246,163,2046,2209
358,12/24/2011,1,0,12,6,1,0.3025,0.299242,0.5425,0.190304,155,856,1011
359,12/25/2011,1,0,12,0,1,0.274783,0.279961,0.681304,0.155091,303,451,754
360,12/26/2011,1,0,12,1,1,0.321739,0.315535,0.506957,0.239465,430,887,1317
361,12/27/2011,1,0,12,2,2,0.325,0.327633,0.7625,0.18845,103,1059,1162
362,12/28/2011,1,0,12,3,1,0.29913,0.279974,0.503913,0.293961,255,2047,2302
363,12/29/2011,1,0,12,4,1,0.248333,0.263892,0.574167,0.119412,254,2169,2423
364,12/30/2011,1,0,12,5,1,0.311667,0.318812,0.636667,0.134337,491,2508,2999
365,12/31/2011,1,0,12,6,1,0.41,0.414121,0.615833,0.220154,665,1820,2485
366,1/1/2012,1,1,1,0,1,0.37,0.375621,0.6925,0.192167,686,1608,2294
367,1/2/2012,1,1,1,1,1,0.273043,0.252304,0.381304,0.329665,244,1707,1951
368,1/3/2012,1,1,1,2,1,0.15,0.126275,0.44125,0.365671,89,2147,2236
369,1/4/2012,1,1,1,3,2,0.1075,0.119337,0.414583,0.1847,95,2273,2368
370,1/5/2012,1,1,1,4,1,0.265833,0.278412,0.524167,0.129987,140,3132,3272
371,1/6/2012,1,1,1,5,1,0.334167,0.340267,0.542083,0.167908,307,3791,4098
372,1/7/2012,1,1,1,6,1,0.393333,0.390779,0.531667,0.174758,1070,3451,4521
373,1/8/2012,1,1,1,0,1,0.3375,0.340258,0.465,0.191542,599,2826,3425
374,1/9/2012,1,1,1,1,2,0.224167,0.247479,0.701667,0.0989,106,2270,2376
375,1/10/2012,1,1,1,2,1,0.308696,0.318826,0.646522,0.187552,173,3425,3598
376,1/11/2012,1,1,1,3,2,0.274167,0.282821,0.8475,0.131221,92,2085,2177
377,1/12/2012,1,1,1,4,2,0.3825,0.381938,0.802917,0.180967,269,3828,4097
378,1/13/2012,1,1,1,5,1,0.274167,0.249362,0.5075,0.378108,174,3040,3214
379,1/14/2012,1,1,1,6,1,0.18,0.183087,0.4575,0.187183,333,2160,2493
380,1/15/2012,1,1,1,0,1,0.166667,0.161625,0.419167,0.251258,284,2027,2311
381,1/16/2012,1,1,1,1,1,0.19,0.190663,0.5225,0.231358,217,2081,2298
382,1/17/2012,1,1,1,2,2,0.373043,0.364278,0.716087,0.34913,127,2808,2935
383,1/18/2012,1,1,1,3,1,0.303333,0.275254,0.443333,0.415429,109,3267,3376
384,1/19/2012,1,1,1,4,1,0.19,0.190038,0.4975,0.220158,130,3162,3292
385,1/20/2012,1,1,1,5,2,0.2175,0.220958,0.45,0.20275,115,3048,3163
386,1/21/2012,1,1,1,6,2,0.173333,0.174875,0.83125,0.222642,67,1234,1301
387,1/22/2012,1,1,1,0,2,0.1625,0.16225,0.79625,0.199638,196,1781,1977
388,1/23/2012,1,1,1,1,2,0.218333,0.243058,0.91125,0.110708,145,2287,2432
389,1/24/2012,1,1,1,2,1,0.3425,0.349108,0.835833,0.123767,439,3900,4339
390,1/25/2012,1,1,1,3,1,0.294167,0.294821,0.64375,0.161071,467,3803,4270
391,1/26/2012,1,1,1,4,2,0.341667,0.35605,0.769583,0.0733958,244,3831,4075
392,1/27/2012,1,1,1,5,2,0.425,0.415383,0.74125,0.342667,269,3187,3456
393,1/28/2012,1,1,1,6,1,0.315833,0.326379,0.543333,0.210829,775,3248,4023
394,1/29/2012,1,1,1,0,1,0.2825,0.272721,0.31125,0.24005,558,2685,3243
395,1/30/2012,1,1,1,1,1,0.269167,0.262625,0.400833,0.215792,126,3498,3624
396,1/31/2012,1,1,1,2,1,0.39,0.381317,0.416667,0.261817,324,4185,4509
397,2/1/2012,1,1,2,3,1,0.469167,0.466538,0.507917,0.189067,304,4275,4579
398,2/2/2012,1,1,2,4,2,0.399167,0.398971,0.672917,0.187187,190,3571,3761
399,2/3/2012,1,1,2,5,1,0.313333,0.309346,0.526667,0.178496,310,3841,4151
400,2/4/2012,1,1,2,6,2,0.264167,0.272725,0.779583,0.121896,384,2448,2832
401,2/5/2012,1,1,2,0,2,0.265833,0.264521,0.687917,0.175996,318,2629,2947
402,2/6/2012,1,1,2,1,1,0.282609,0.296426,0.622174,0.1538,206,3578,3784
403,2/7/2012,1,1,2,2,1,0.354167,0.361104,0.49625,0.147379,199,4176,4375
404,2/8/2012,1,1,2,3,2,0.256667,0.266421,0.722917,0.133721,109,2693,2802
405,2/9/2012,1,1,2,4,1,0.265,0.261988,0.562083,0.194037,163,3667,3830
406,2/10/2012,1,1,2,5,2,0.280833,0.293558,0.54,0.116929,227,3604,3831
407,2/11/2012,1,1,2,6,3,0.224167,0.210867,0.73125,0.289796,192,1977,2169
408,2/12/2012,1,1,2,0,1,0.1275,0.101658,0.464583,0.409212,73,1456,1529
409,2/13/2012,1,1,2,1,1,0.2225,0.227913,0.41125,0.167283,94,3328,3422
410,2/14/2012,1,1,2,2,2,0.319167,0.333946,0.50875,0.141179,135,3787,3922
411,2/15/2012,1,1,2,3,1,0.348333,0.351629,0.53125,0.1816,141,4028,4169
412,2/16/2012,1,1,2,4,2,0.316667,0.330162,0.752917,0.091425,74,2931,3005
413,2/17/2012,1,1,2,5,1,0.343333,0.351629,0.634583,0.205846,349,3805,4154
414,2/18/2012,1,1,2,6,1,0.346667,0.355425,0.534583,0.190929,1435,2883,4318
415,2/19/2012,1,1,2,0,2,0.28,0.265788,0.515833,0.253112,618,2071,2689
416,2/20/2012,1,1,2,1,1,0.28,0.273391,0.507826,0.229083,502,2627,3129
417,2/21/2012,1,1,2,2,1,0.287826,0.295113,0.594348,0.205717,163,3614,3777
418,2/22/2012,1,1,2,3,1,0.395833,0.392667,0.567917,0.234471,394,4379,4773
419,2/23/2012,1,1,2,4,1,0.454167,0.444446,0.554583,0.190913,516,4546,5062
420,2/24/2012,1,1,2,5,2,0.4075,0.410971,0.7375,0.237567,246,3241,3487
421,2/25/2012,1,1,2,6,1,0.290833,0.255675,0.395833,0.421642,317,2415,2732
422,2/26/2012,1,1,2,0,1,0.279167,0.268308,0.41,0.205229,515,2874,3389
423,2/27/2012,1,1,2,1,1,0.366667,0.357954,0.490833,0.268033,253,4069,4322
424,2/28/2012,1,1,2,2,1,0.359167,0.353525,0.395833,0.193417,229,4134,4363
425,2/29/2012,1,1,2,3,2,0.344348,0.34847,0.804783,0.179117,65,1769,1834
426,3/1/2012,1,1,3,4,1,0.485833,0.475371,0.615417,0.226987,325,4665,4990
427,3/2/2012,1,1,3,5,2,0.353333,0.359842,0.657083,0.144904,246,2948,3194
428,3/3/2012,1,1,3,6,2,0.414167,0.413492,0.62125,0.161079,956,3110,4066
429,3/4/2012,1,1,3,0,1,0.325833,0.303021,0.403333,0.334571,710,2713,3423
430,3/5/2012,1,1,3,1,1,0.243333,0.241171,0.50625,0.228858,203,3130,3333
431,3/6/2012,1,1,3,2,1,0.258333,0.255042,0.456667,0.200875,221,3735,3956
432,3/7/2012,1,1,3,3,1,0.404167,0.3851,0.513333,0.345779,432,4484,4916
433,3/8/2012,1,1,3,4,1,0.5275,0.524604,0.5675,0.441563,486,4896,5382
434,3/9/2012,1,1,3,5,2,0.410833,0.397083,0.407083,0.4148,447,4122,4569
435,3/10/2012,1,1,3,6,1,0.2875,0.277767,0.350417,0.22575,968,3150,4118
436,3/11/2012,1,1,3,0,1,0.361739,0.35967,0.476957,0.222587,1658,3253,4911
437,3/12/2012,1,1,3,1,1,0.466667,0.459592,0.489167,0.207713,838,4460,5298
438,3/13/2012,1,1,3,2,1,0.565,0.542929,0.6175,0.23695,762,5085,5847
439,3/14/2012,1,1,3,3,1,0.5725,0.548617,0.507083,0.115062,997,5315,6312
440,3/15/2012,1,1,3,4,1,0.5575,0.532825,0.579583,0.149883,1005,5187,6192
441,3/16/2012,1,1,3,5,2,0.435833,0.436229,0.842083,0.113192,548,3830,4378
442,3/17/2012,1,1,3,6,2,0.514167,0.505046,0.755833,0.110704,3155,4681,7836
443,3/18/2012,1,1,3,0,2,0.4725,0.464,0.81,0.126883,2207,3685,5892
444,3/19/2012,1,1,3,1,1,0.545,0.532821,0.72875,0.162317,982,5171,6153
445,3/20/2012,1,1,3,2,1,0.560833,0.538533,0.807917,0.121271,1051,5042,6093
446,3/21/2012,2,1,3,3,2,0.531667,0.513258,0.82125,0.0895583,1122,5108,6230
447,3/22/2012,2,1,3,4,1,0.554167,0.531567,0.83125,0.117562,1334,5537,6871
448,3/23/2012,2,1,3,5,2,0.601667,0.570067,0.694167,0.1163,2469,5893,8362
449,3/24/2012,2,1,3,6,2,0.5025,0.486733,0.885417,0.192783,1033,2339,3372
450,3/25/2012,2,1,3,0,2,0.4375,0.437488,0.880833,0.220775,1532,3464,4996
451,3/26/2012,2,1,3,1,1,0.445833,0.43875,0.477917,0.386821,795,4763,5558
452,3/27/2012,2,1,3,2,1,0.323333,0.315654,0.29,0.187192,531,4571,5102
453,3/28/2012,2,1,3,3,1,0.484167,0.47095,0.48125,0.291671,674,5024,5698
454,3/29/2012,2,1,3,4,1,0.494167,0.482304,0.439167,0.31965,834,5299,6133
455,3/30/2012,2,1,3,5,2,0.37,0.375621,0.580833,0.138067,796,4663,5459
456,3/31/2012,2,1,3,6,2,0.424167,0.421708,0.738333,0.250617,2301,3934,6235
457,4/1/2012,2,1,4,0,2,0.425833,0.417287,0.67625,0.172267,2347,3694,6041
458,4/2/2012,2,1,4,1,1,0.433913,0.427513,0.504348,0.312139,1208,4728,5936
459,4/3/2012,2,1,4,2,1,0.466667,0.461483,0.396667,0.100133,1348,5424,6772
460,4/4/2012,2,1,4,3,1,0.541667,0.53345,0.469583,0.180975,1058,5378,6436
461,4/5/2012,2,1,4,4,1,0.435,0.431163,0.374167,0.219529,1192,5265,6457
462,4/6/2012,2,1,4,5,1,0.403333,0.390767,0.377083,0.300388,1807,4653,6460
463,4/7/2012,2,1,4,6,1,0.4375,0.426129,0.254167,0.274871,3252,3605,6857
464,4/8/2012,2,1,4,0,1,0.5,0.492425,0.275833,0.232596,2230,2939,5169
465,4/9/2012,2,1,4,1,1,0.489167,0.476638,0.3175,0.358196,905,4680,5585
466,4/10/2012,2,1,4,2,1,0.446667,0.436233,0.435,0.249375,819,5099,5918
467,4/11/2012,2,1,4,3,1,0.348696,0.337274,0.469565,0.295274,482,4380,4862
468,4/12/2012,2,1,4,4,1,0.3975,0.387604,0.46625,0.290429,663,4746,5409
469,4/13/2012,2,1,4,5,1,0.4425,0.431808,0.408333,0.155471,1252,5146,6398
470,4/14/2012,2,1,4,6,1,0.495,0.487996,0.502917,0.190917,2795,4665,7460
471,4/15/2012,2,1,4,0,1,0.606667,0.573875,0.507917,0.225129,2846,4286,7132
472,4/16/2012,2,1,4,1,1,0.664167,0.614925,0.561667,0.284829,1198,5172,6370
473,4/17/2012,2,1,4,2,1,0.608333,0.598487,0.390417,0.273629,989,5702,6691
474,4/18/2012,2,1,4,3,2,0.463333,0.457038,0.569167,0.167912,347,4020,4367
475,4/19/2012,2,1,4,4,1,0.498333,0.493046,0.6125,0.0659292,846,5719,6565
476,4/20/2012,2,1,4,5,1,0.526667,0.515775,0.694583,0.149871,1340,5950,7290
477,4/21/2012,2,1,4,6,1,0.57,0.542921,0.682917,0.283587,2541,4083,6624
478,4/22/2012,2,1,4,0,3,0.396667,0.389504,0.835417,0.344546,120,907,1027
479,4/23/2012,2,1,4,1,2,0.321667,0.301125,0.766667,0.303496,195,3019,3214
480,4/24/2012,2,1,4,2,1,0.413333,0.405283,0.454167,0.249383,518,5115,5633
481,4/25/2012,2,1,4,3,1,0.476667,0.470317,0.427917,0.118792,655,5541,6196
482,4/26/2012,2,1,4,4,2,0.498333,0.483583,0.756667,0.176625,475,4551,5026
483,4/27/2012,2,1,4,5,1,0.4575,0.452637,0.400833,0.347633,1014,5219,6233
484,4/28/2012,2,1,4,6,2,0.376667,0.377504,0.489583,0.129975,1120,3100,4220
485,4/29/2012,2,1,4,0,1,0.458333,0.450121,0.587083,0.116908,2229,4075,6304
486,4/30/2012,2,1,4,1,2,0.464167,0.457696,0.57,0.171638,665,4907,5572
487,5/1/2012,2,1,5,2,2,0.613333,0.577021,0.659583,0.156096,653,5087,5740
488,5/2/2012,2,1,5,3,1,0.564167,0.537896,0.797083,0.138058,667,5502,6169
489,5/3/2012,2,1,5,4,2,0.56,0.537242,0.768333,0.133696,764,5657,6421
490,5/4/2012,2,1,5,5,1,0.6275,0.590917,0.735417,0.162938,1069,5227,6296
491,5/5/2012,2,1,5,6,2,0.621667,0.584608,0.756667,0.152992,2496,4387,6883
492,5/6/2012,2,1,5,0,2,0.5625,0.546737,0.74,0.149879,2135,4224,6359
493,5/7/2012,2,1,5,1,2,0.5375,0.527142,0.664167,0.230721,1008,5265,6273
494,5/8/2012,2,1,5,2,2,0.581667,0.557471,0.685833,0.296029,738,4990,5728
495,5/9/2012,2,1,5,3,2,0.575,0.553025,0.744167,0.216412,620,4097,4717
496,5/10/2012,2,1,5,4,1,0.505833,0.491783,0.552083,0.314063,1026,5546,6572
497,5/11/2012,2,1,5,5,1,0.533333,0.520833,0.360417,0.236937,1319,5711,7030
498,5/12/2012,2,1,5,6,1,0.564167,0.544817,0.480417,0.123133,2622,4807,7429
499,5/13/2012,2,1,5,0,1,0.6125,0.585238,0.57625,0.225117,2172,3946,6118
500,5/14/2012,2,1,5,1,2,0.573333,0.5499,0.789583,0.212692,342,2501,2843
501,5/15/2012,2,1,5,2,2,0.611667,0.576404,0.794583,0.147392,625,4490,5115
502,5/16/2012,2,1,5,3,1,0.636667,0.595975,0.697917,0.122512,991,6433,7424
503,5/17/2012,2,1,5,4,1,0.593333,0.572613,0.52,0.229475,1242,6142,7384
504,5/18/2012,2,1,5,5,1,0.564167,0.551121,0.523333,0.136817,1521,6118,7639
505,5/19/2012,2,1,5,6,1,0.6,0.566908,0.45625,0.083975,3410,4884,8294
506,5/20/2012,2,1,5,0,1,0.620833,0.583967,0.530417,0.254367,2704,4425,7129
507,5/21/2012,2,1,5,1,2,0.598333,0.565667,0.81125,0.233204,630,3729,4359
508,5/22/2012,2,1,5,2,2,0.615,0.580825,0.765833,0.118167,819,5254,6073
509,5/23/2012,2,1,5,3,2,0.621667,0.584612,0.774583,0.102,766,4494,5260
510,5/24/2012,2,1,5,4,1,0.655,0.6067,0.716667,0.172896,1059,5711,6770
511,5/25/2012,2,1,5,5,1,0.68,0.627529,0.747083,0.14055,1417,5317,6734
512,5/26/2012,2,1,5,6,1,0.6925,0.642696,0.7325,0.198992,2855,3681,6536
513,5/27/2012,2,1,5,0,1,0.69,0.641425,0.697083,0.215171,3283,3308,6591
514,5/28/2012,2,1,5,1,1,0.7125,0.6793,0.67625,0.196521,2557,3486,6043
515,5/29/2012,2,1,5,2,1,0.7225,0.672992,0.684583,0.2954,880,4863,5743
516,5/30/2012,2,1,5,3,2,0.656667,0.611129,0.67,0.134329,745,6110,6855
517,5/31/2012,2,1,5,4,1,0.68,0.631329,0.492917,0.195279,1100,6238,7338
518,6/1/2012,2,1,6,5,2,0.654167,0.607962,0.755417,0.237563,533,3594,4127
519,6/2/2012,2,1,6,6,1,0.583333,0.566288,0.549167,0.186562,2795,5325,8120
520,6/3/2012,2,1,6,0,1,0.6025,0.575133,0.493333,0.184087,2494,5147,7641
521,6/4/2012,2,1,6,1,1,0.5975,0.578283,0.487083,0.284833,1071,5927,6998
522,6/5/2012,2,1,6,2,2,0.540833,0.525892,0.613333,0.209575,968,6033,7001
523,6/6/2012,2,1,6,3,1,0.554167,0.542292,0.61125,0.077125,1027,6028,7055
524,6/7/2012,2,1,6,4,1,0.6025,0.569442,0.567083,0.15735,1038,6456,7494
525,6/8/2012,2,1,6,5,1,0.649167,0.597862,0.467917,0.175383,1488,6248,7736
526,6/9/2012,2,1,6,6,1,0.710833,0.648367,0.437083,0.144287,2708,4790,7498
527,6/10/2012,2,1,6,0,1,0.726667,0.663517,0.538333,0.133721,2224,4374,6598
528,6/11/2012,2,1,6,1,2,0.720833,0.659721,0.587917,0.207713,1017,5647,6664
529,6/12/2012,2,1,6,2,2,0.653333,0.597875,0.833333,0.214546,477,4495,4972
530,6/13/2012,2,1,6,3,1,0.655833,0.611117,0.582083,0.343279,1173,6248,7421
531,6/14/2012,2,1,6,4,1,0.648333,0.624383,0.569583,0.253733,1180,6183,7363
532,6/15/2012,2,1,6,5,1,0.639167,0.599754,0.589583,0.176617,1563,6102,7665
533,6/16/2012,2,1,6,6,1,0.631667,0.594708,0.504167,0.166667,2963,4739,7702
534,6/17/2012,2,1,6,0,1,0.5925,0.571975,0.59875,0.144904,2634,4344,6978
535,6/18/2012,2,1,6,1,2,0.568333,0.544842,0.777917,0.174746,653,4446,5099
536,6/19/2012,2,1,6,2,1,0.688333,0.654692,0.69,0.148017,968,5857,6825
537,6/20/2012,2,1,6,3,1,0.7825,0.720975,0.592083,0.113812,872,5339,6211
538,6/21/2012,3,1,6,4,1,0.805833,0.752542,0.567917,0.118787,778,5127,5905
539,6/22/2012,3,1,6,5,1,0.7775,0.724121,0.57375,0.182842,964,4859,5823
540,6/23/2012,3,1,6,6,1,0.731667,0.652792,0.534583,0.179721,2657,4801,7458
541,6/24/2012,3,1,6,0,1,0.743333,0.674254,0.479167,0.145525,2551,4340,6891
542,6/25/2012,3,1,6,1,1,0.715833,0.654042,0.504167,0.300383,1139,5640,6779
543,6/26/2012,3,1,6,2,1,0.630833,0.594704,0.373333,0.347642,1077,6365,7442
544,6/27/2012,3,1,6,3,1,0.6975,0.640792,0.36,0.271775,1077,6258,7335
545,6/28/2012,3,1,6,4,1,0.749167,0.675512,0.4225,0.17165,921,5958,6879
546,6/29/2012,3,1,6,5,1,0.834167,0.786613,0.48875,0.165417,829,4634,5463
547,6/30/2012,3,1,6,6,1,0.765,0.687508,0.60125,0.161071,1455,4232,5687
548,7/1/2012,3,1,7,0,1,0.815833,0.750629,0.51875,0.168529,1421,4110,5531
549,7/2/2012,3,1,7,1,1,0.781667,0.702038,0.447083,0.195267,904,5323,6227
550,7/3/2012,3,1,7,2,1,0.780833,0.70265,0.492083,0.126237,1052,5608,6660
551,7/4/2012,3,1,7,3,1,0.789167,0.732337,0.53875,0.13495,2562,4841,7403
552,7/5/2012,3,1,7,4,1,0.8275,0.761367,0.457917,0.194029,1405,4836,6241
553,7/6/2012,3,1,7,5,1,0.828333,0.752533,0.450833,0.146142,1366,4841,6207
554,7/7/2012,3,1,7,6,1,0.861667,0.804913,0.492083,0.163554,1448,3392,4840
555,7/8/2012,3,1,7,0,1,0.8225,0.790396,0.57375,0.125629,1203,3469,4672
556,7/9/2012,3,1,7,1,2,0.710833,0.654054,0.683333,0.180975,998,5571,6569
557,7/10/2012,3,1,7,2,2,0.720833,0.664796,0.6675,0.151737,954,5336,6290
558,7/11/2012,3,1,7,3,1,0.716667,0.650271,0.633333,0.151733,975,6289,7264
559,7/12/2012,3,1,7,4,1,0.715833,0.654683,0.529583,0.146775,1032,6414,7446
560,7/13/2012,3,1,7,5,2,0.731667,0.667933,0.485833,0.08085,1511,5988,7499
561,7/14/2012,3,1,7,6,2,0.703333,0.666042,0.699167,0.143679,2355,4614,6969
562,7/15/2012,3,1,7,0,1,0.745833,0.705196,0.717917,0.166667,1920,4111,6031
563,7/16/2012,3,1,7,1,1,0.763333,0.724125,0.645,0.164187,1088,5742,6830
564,7/17/2012,3,1,7,2,1,0.818333,0.755683,0.505833,0.114429,921,5865,6786
565,7/18/2012,3,1,7,3,1,0.793333,0.745583,0.577083,0.137442,799,4914,5713
566,7/19/2012,3,1,7,4,1,0.77,0.714642,0.600417,0.165429,888,5703,6591
567,7/20/2012,3,1,7,5,2,0.665833,0.613025,0.844167,0.208967,747,5123,5870
568,7/21/2012,3,1,7,6,3,0.595833,0.549912,0.865417,0.2133,1264,3195,4459
569,7/22/2012,3,1,7,0,2,0.6675,0.623125,0.7625,0.0939208,2544,4866,7410
570,7/23/2012,3,1,7,1,1,0.741667,0.690017,0.694167,0.138683,1135,5831,6966
571,7/24/2012,3,1,7,2,1,0.750833,0.70645,0.655,0.211454,1140,6452,7592
572,7/25/2012,3,1,7,3,1,0.724167,0.654054,0.45,0.1648,1383,6790,8173
573,7/26/2012,3,1,7,4,1,0.776667,0.739263,0.596667,0.284813,1036,5825,6861
574,7/27/2012,3,1,7,5,1,0.781667,0.734217,0.594583,0.152992,1259,5645,6904
575,7/28/2012,3,1,7,6,1,0.755833,0.697604,0.613333,0.15735,2234,4451,6685
576,7/29/2012,3,1,7,0,1,0.721667,0.667933,0.62375,0.170396,2153,4444,6597
577,7/30/2012,3,1,7,1,1,0.730833,0.684987,0.66875,0.153617,1040,6065,7105
578,7/31/2012,3,1,7,2,1,0.713333,0.662896,0.704167,0.165425,968,6248,7216
579,8/1/2012,3,1,8,3,1,0.7175,0.667308,0.6775,0.141179,1074,6506,7580
580,8/2/2012,3,1,8,4,1,0.7525,0.707088,0.659583,0.129354,983,6278,7261
581,8/3/2012,3,1,8,5,2,0.765833,0.722867,0.6425,0.215792,1328,5847,7175
582,8/4/2012,3,1,8,6,1,0.793333,0.751267,0.613333,0.257458,2345,4479,6824
583,8/5/2012,3,1,8,0,1,0.769167,0.731079,0.6525,0.290421,1707,3757,5464
584,8/6/2012,3,1,8,1,2,0.7525,0.710246,0.654167,0.129354,1233,5780,7013
585,8/7/2012,3,1,8,2,2,0.735833,0.697621,0.70375,0.116908,1278,5995,7273
586,8/8/2012,3,1,8,3,2,0.75,0.707717,0.672917,0.1107,1263,6271,7534
587,8/9/2012,3,1,8,4,1,0.755833,0.699508,0.620417,0.1561,1196,6090,7286
588,8/10/2012,3,1,8,5,2,0.715833,0.667942,0.715833,0.238813,1065,4721,5786
589,8/11/2012,3,1,8,6,2,0.6925,0.638267,0.732917,0.206479,2247,4052,6299
590,8/12/2012,3,1,8,0,1,0.700833,0.644579,0.530417,0.122512,2182,4362,6544
591,8/13/2012,3,1,8,1,1,0.720833,0.662254,0.545417,0.136212,1207,5676,6883
592,8/14/2012,3,1,8,2,1,0.726667,0.676779,0.686667,0.169158,1128,5656,6784
593,8/15/2012,3,1,8,3,1,0.706667,0.654037,0.619583,0.169771,1198,6149,7347
594,8/16/2012,3,1,8,4,1,0.719167,0.654688,0.519167,0.141796,1338,6267,7605
595,8/17/2012,3,1,8,5,1,0.723333,0.2424,0.570833,0.231354,1483,5665,7148
596,8/18/2012,3,1,8,6,1,0.678333,0.618071,0.603333,0.177867,2827,5038,7865
597,8/19/2012,3,1,8,0,2,0.635833,0.603554,0.711667,0.08645,1208,3341,4549
598,8/20/2012,3,1,8,1,2,0.635833,0.595967,0.734167,0.129979,1026,5504,6530
599,8/21/2012,3,1,8,2,1,0.649167,0.601025,0.67375,0.0727708,1081,5925,7006
600,8/22/2012,3,1,8,3,1,0.6675,0.621854,0.677083,0.0702833,1094,6281,7375
601,8/23/2012,3,1,8,4,1,0.695833,0.637008,0.635833,0.0845958,1363,6402,7765
602,8/24/2012,3,1,8,5,2,0.7025,0.6471,0.615,0.0721458,1325,6257,7582
603,8/25/2012,3,1,8,6,2,0.661667,0.618696,0.712917,0.244408,1829,4224,6053
604,8/26/2012,3,1,8,0,2,0.653333,0.595996,0.845833,0.228858,1483,3772,5255
605,8/27/2012,3,1,8,1,1,0.703333,0.654688,0.730417,0.128733,989,5928,6917
606,8/28/2012,3,1,8,2,1,0.728333,0.66605,0.62,0.190925,935,6105,7040
607,8/29/2012,3,1,8,3,1,0.685,0.635733,0.552083,0.112562,1177,6520,7697
608,8/30/2012,3,1,8,4,1,0.706667,0.652779,0.590417,0.0771167,1172,6541,7713
609,8/31/2012,3,1,8,5,1,0.764167,0.6894,0.5875,0.168533,1433,5917,7350
610,9/1/2012,3,1,9,6,2,0.753333,0.702654,0.638333,0.113187,2352,3788,6140
611,9/2/2012,3,1,9,0,2,0.696667,0.649,0.815,0.0640708,2613,3197,5810
612,9/3/2012,3,1,9,1,1,0.7075,0.661629,0.790833,0.151121,1965,4069,6034
613,9/4/2012,3,1,9,2,1,0.725833,0.686888,0.755,0.236321,867,5997,6864
614,9/5/2012,3,1,9,3,1,0.736667,0.708983,0.74125,0.187808,832,6280,7112
615,9/6/2012,3,1,9,4,2,0.696667,0.655329,0.810417,0.142421,611,5592,6203
616,9/7/2012,3,1,9,5,1,0.703333,0.657204,0.73625,0.171646,1045,6459,7504
617,9/8/2012,3,1,9,6,2,0.659167,0.611121,0.799167,0.281104,1557,4419,5976
618,9/9/2012,3,1,9,0,1,0.61,0.578925,0.5475,0.224496,2570,5657,8227
619,9/10/2012,3,1,9,1,1,0.583333,0.565654,0.50375,0.258713,1118,6407,7525
620,9/11/2012,3,1,9,2,1,0.5775,0.554292,0.52,0.0920542,1070,6697,7767
621,9/12/2012,3,1,9,3,1,0.599167,0.570075,0.577083,0.131846,1050,6820,7870
622,9/13/2012,3,1,9,4,1,0.6125,0.579558,0.637083,0.0827208,1054,6750,7804
623,9/14/2012,3,1,9,5,1,0.633333,0.594083,0.6725,0.103863,1379,6630,8009
624,9/15/2012,3,1,9,6,1,0.608333,0.585867,0.501667,0.247521,3160,5554,8714
625,9/16/2012,3,1,9,0,1,0.58,0.563125,0.57,0.0901833,2166,5167,7333
626,9/17/2012,3,1,9,1,2,0.580833,0.55305,0.734583,0.151742,1022,5847,6869
627,9/18/2012,3,1,9,2,2,0.623333,0.565067,0.8725,0.357587,371,3702,4073
628,9/19/2012,3,1,9,3,1,0.5525,0.540404,0.536667,0.215175,788,6803,7591
629,9/20/2012,3,1,9,4,1,0.546667,0.532192,0.618333,0.118167,939,6781,7720
630,9/21/2012,3,1,9,5,1,0.599167,0.571971,0.66875,0.154229,1250,6917,8167
631,9/22/2012,3,1,9,6,1,0.65,0.610488,0.646667,0.283583,2512,5883,8395
632,9/23/2012,4,1,9,0,1,0.529167,0.518933,0.467083,0.223258,2454,5453,7907
633,9/24/2012,4,1,9,1,1,0.514167,0.502513,0.492917,0.142404,1001,6435,7436
634,9/25/2012,4,1,9,2,1,0.55,0.544179,0.57,0.236321,845,6693,7538
635,9/26/2012,4,1,9,3,1,0.635,0.596613,0.630833,0.2444,787,6946,7733
636,9/27/2012,4,1,9,4,2,0.65,0.607975,0.690833,0.134342,751,6642,7393
637,9/28/2012,4,1,9,5,2,0.619167,0.585863,0.69,0.164179,1045,6370,7415
638,9/29/2012,4,1,9,6,1,0.5425,0.530296,0.542917,0.227604,2589,5966,8555
639,9/30/2012,4,1,9,0,1,0.526667,0.517663,0.583333,0.134958,2015,4874,6889
640,10/1/2012,4,1,10,1,2,0.520833,0.512,0.649167,0.0908042,763,6015,6778
641,10/2/2012,4,1,10,2,3,0.590833,0.542333,0.871667,0.104475,315,4324,4639
642,10/3/2012,4,1,10,3,2,0.6575,0.599133,0.79375,0.0665458,728,6844,7572
643,10/4/2012,4,1,10,4,2,0.6575,0.607975,0.722917,0.117546,891,6437,7328
644,10/5/2012,4,1,10,5,1,0.615,0.580187,0.6275,0.10635,1516,6640,8156
645,10/6/2012,4,1,10,6,1,0.554167,0.538521,0.664167,0.268025,3031,4934,7965
646,10/7/2012,4,1,10,0,2,0.415833,0.419813,0.708333,0.141162,781,2729,3510
647,10/8/2012,4,1,10,1,2,0.383333,0.387608,0.709583,0.189679,874,4604,5478
648,10/9/2012,4,1,10,2,2,0.446667,0.438112,0.761667,0.1903,601,5791,6392
649,10/10/2012,4,1,10,3,1,0.514167,0.503142,0.630833,0.187821,780,6911,7691
650,10/11/2012,4,1,10,4,1,0.435,0.431167,0.463333,0.181596,834,6736,7570
651,10/12/2012,4,1,10,5,1,0.4375,0.433071,0.539167,0.235092,1060,6222,7282
652,10/13/2012,4,1,10,6,1,0.393333,0.391396,0.494583,0.146142,2252,4857,7109
653,10/14/2012,4,1,10,0,1,0.521667,0.508204,0.640417,0.278612,2080,4559,6639
654,10/15/2012,4,1,10,1,2,0.561667,0.53915,0.7075,0.296037,760,5115,5875
655,10/16/2012,4,1,10,2,1,0.468333,0.460846,0.558333,0.182221,922,6612,7534
656,10/17/2012,4,1,10,3,1,0.455833,0.450108,0.692917,0.101371,979,6482,7461
657,10/18/2012,4,1,10,4,2,0.5225,0.512625,0.728333,0.236937,1008,6501,7509
658,10/19/2012,4,1,10,5,2,0.563333,0.537896,0.815,0.134954,753,4671,5424
659,10/20/2012,4,1,10,6,1,0.484167,0.472842,0.572917,0.117537,2806,5284,8090
660,10/21/2012,4,1,10,0,1,0.464167,0.456429,0.51,0.166054,2132,4692,6824
661,10/22/2012,4,1,10,1,1,0.4875,0.482942,0.568333,0.0814833,830,6228,7058
662,10/23/2012,4,1,10,2,1,0.544167,0.530304,0.641667,0.0945458,841,6625,7466
663,10/24/2012,4,1,10,3,1,0.5875,0.558721,0.63625,0.0727792,795,6898,7693
664,10/25/2012,4,1,10,4,2,0.55,0.529688,0.800417,0.124375,875,6484,7359
665,10/26/2012,4,1,10,5,2,0.545833,0.52275,0.807083,0.132467,1182,6262,7444
666,10/27/2012,4,1,10,6,2,0.53,0.515133,0.72,0.235692,2643,5209,7852
667,10/28/2012,4,1,10,0,2,0.4775,0.467771,0.694583,0.398008,998,3461,4459
668,10/29/2012,4,1,10,1,3,0.44,0.4394,0.88,0.3582,2,20,22
669,10/30/2012,4,1,10,2,2,0.318182,0.309909,0.825455,0.213009,87,1009,1096
670,10/31/2012,4,1,10,3,2,0.3575,0.3611,0.666667,0.166667,419,5147,5566
671,11/1/2012,4,1,11,4,2,0.365833,0.369942,0.581667,0.157346,466,5520,5986
672,11/2/2012,4,1,11,5,1,0.355,0.356042,0.522083,0.266175,618,5229,5847
673,11/3/2012,4,1,11,6,2,0.343333,0.323846,0.49125,0.270529,1029,4109,5138
674,11/4/2012,4,1,11,0,1,0.325833,0.329538,0.532917,0.179108,1201,3906,5107
675,11/5/2012,4,1,11,1,1,0.319167,0.308075,0.494167,0.236325,378,4881,5259
676,11/6/2012,4,1,11,2,1,0.280833,0.281567,0.567083,0.173513,466,5220,5686
677,11/7/2012,4,1,11,3,2,0.295833,0.274621,0.5475,0.304108,326,4709,5035
678,11/8/2012,4,1,11,4,1,0.352174,0.341891,0.333478,0.347835,340,4975,5315
679,11/9/2012,4,1,11,5,1,0.361667,0.355413,0.540833,0.214558,709,5283,5992
680,11/10/2012,4,1,11,6,1,0.389167,0.393937,0.645417,0.0578458,2090,4446,6536
681,11/11/2012,4,1,11,0,1,0.420833,0.421713,0.659167,0.1275,2290,4562,6852
682,11/12/2012,4,1,11,1,1,0.485,0.475383,0.741667,0.173517,1097,5172,6269
683,11/13/2012,4,1,11,2,2,0.343333,0.323225,0.662917,0.342046,327,3767,4094
684,11/14/2012,4,1,11,3,1,0.289167,0.281563,0.552083,0.199625,373,5122,5495
685,11/15/2012,4,1,11,4,2,0.321667,0.324492,0.620417,0.152987,320,5125,5445
686,11/16/2012,4,1,11,5,1,0.345,0.347204,0.524583,0.171025,484,5214,5698
687,11/17/2012,4,1,11,6,1,0.325,0.326383,0.545417,0.179729,1313,4316,5629
688,11/18/2012,4,1,11,0,1,0.3425,0.337746,0.692917,0.227612,922,3747,4669
689,11/19/2012,4,1,11,1,2,0.380833,0.375621,0.623333,0.235067,449,5050,5499
690,11/20/2012,4,1,11,2,2,0.374167,0.380667,0.685,0.082725,534,5100,5634
691,11/21/2012,4,1,11,3,1,0.353333,0.364892,0.61375,0.103246,615,4531,5146
692,11/22/2012,4,1,11,4,1,0.34,0.350371,0.580417,0.0528708,955,1470,2425
693,11/23/2012,4,1,11,5,1,0.368333,0.378779,0.56875,0.148021,1603,2307,3910
694,11/24/2012,4,1,11,6,1,0.278333,0.248742,0.404583,0.376871,532,1745,2277
695,11/25/2012,4,1,11,0,1,0.245833,0.257583,0.468333,0.1505,309,2115,2424
696,11/26/2012,4,1,11,1,1,0.313333,0.339004,0.535417,0.04665,337,4750,5087
697,11/27/2012,4,1,11,2,2,0.291667,0.281558,0.786667,0.237562,123,3836,3959
698,11/28/2012,4,1,11,3,1,0.296667,0.289762,0.50625,0.210821,198,5062,5260
699,11/29/2012,4,1,11,4,1,0.28087,0.298422,0.555652,0.115522,243,5080,5323
700,11/30/2012,4,1,11,5,1,0.298333,0.323867,0.649583,0.0584708,362,5306,5668
701,12/1/2012,4,1,12,6,2,0.298333,0.316904,0.806667,0.0597042,951,4240,5191
702,12/2/2012,4,1,12,0,2,0.3475,0.359208,0.823333,0.124379,892,3757,4649
703,12/3/2012,4,1,12,1,1,0.4525,0.455796,0.7675,0.0827208,555,5679,6234
704,12/4/2012,4,1,12,2,1,0.475833,0.469054,0.73375,0.174129,551,6055,6606
705,12/5/2012,4,1,12,3,1,0.438333,0.428012,0.485,0.324021,331,5398,5729
706,12/6/2012,4,1,12,4,1,0.255833,0.258204,0.50875,0.174754,340,5035,5375
707,12/7/2012,4,1,12,5,2,0.320833,0.321958,0.764167,0.1306,349,4659,5008
708,12/8/2012,4,1,12,6,2,0.381667,0.389508,0.91125,0.101379,1153,4429,5582
709,12/9/2012,4,1,12,0,2,0.384167,0.390146,0.905417,0.157975,441,2787,3228
710,12/10/2012,4,1,12,1,2,0.435833,0.435575,0.925,0.190308,329,4841,5170
711,12/11/2012,4,1,12,2,2,0.353333,0.338363,0.596667,0.296037,282,5219,5501
712,12/12/2012,4,1,12,3,2,0.2975,0.297338,0.538333,0.162937,310,5009,5319
713,12/13/2012,4,1,12,4,1,0.295833,0.294188,0.485833,0.174129,425,5107,5532
714,12/14/2012,4,1,12,5,1,0.281667,0.294192,0.642917,0.131229,429,5182,5611
715,12/15/2012,4,1,12,6,1,0.324167,0.338383,0.650417,0.10635,767,4280,5047
716,12/16/2012,4,1,12,0,2,0.3625,0.369938,0.83875,0.100742,538,3248,3786
717,12/17/2012,4,1,12,1,2,0.393333,0.4015,0.907083,0.0982583,212,4373,4585
718,12/18/2012,4,1,12,2,1,0.410833,0.409708,0.66625,0.221404,433,5124,5557
719,12/19/2012,4,1,12,3,1,0.3325,0.342162,0.625417,0.184092,333,4934,5267
720,12/20/2012,4,1,12,4,2,0.33,0.335217,0.667917,0.132463,314,3814,4128
721,12/21/2012,1,1,12,5,2,0.326667,0.301767,0.556667,0.374383,221,3402,3623
722,12/22/2012,1,1,12,6,1,0.265833,0.236113,0.44125,0.407346,205,1544,1749
723,12/23/2012,1,1,12,0,1,0.245833,0.259471,0.515417,0.133083,408,1379,1787
724,12/24/2012,1,1,12,1,2,0.231304,0.2589,0.791304,0.0772304,174,746,920
725,12/25/2012,1,1,12,2,2,0.291304,0.294465,0.734783,0.168726,440,573,1013
726,12/26/2012,1,1,12,3,3,0.243333,0.220333,0.823333,0.316546,9,432,441
727,12/27/2012,1,1,12,4,2,0.254167,0.226642,0.652917,0.350133,247,1867,2114
728,12/28/2012,1,1,12,5,2,0.253333,0.255046,0.59,0.155471,644,2451,3095
729,12/29/2012,1,1,12,6,2,0.253333,0.2424,0.752917,0.124383,159,1182,1341
730,12/30/2012,1,1,12,0,1,0.255833,0.2317,0.483333,0.350754,364,1432,1796
731,12/31/2012,1,1,12,1,2,0.215833,0.223487,0.5775,0.154846,439,2290,2729
1 instant date season yr mnth weekday weathersit temp atemp hum windspeed casual registered cnt
2 1 1/1/2011 1 0 1 6 2 0.344167 0.363625 0.805833 0.160446 331 654 985
3 2 1/2/2011 1 0 1 0 2 0.363478 0.353739 0.696087 0.248539 131 670 801
4 3 1/3/2011 1 0 1 1 1 0.196364 0.189405 0.437273 0.248309 120 1229 1349
5 4 1/4/2011 1 0 1 2 1 0.2 0.212122 0.590435 0.160296 108 1454 1562
6 5 1/5/2011 1 0 1 3 1 0.226957 0.22927 0.436957 0.1869 82 1518 1600
7 6 1/6/2011 1 0 1 4 1 0.204348 0.233209 0.518261 0.0895652 88 1518 1606
8 7 1/7/2011 1 0 1 5 2 0.196522 0.208839 0.498696 0.168726 148 1362 1510
9 8 1/8/2011 1 0 1 6 2 0.165 0.162254 0.535833 0.266804 68 891 959
10 9 1/9/2011 1 0 1 0 1 0.138333 0.116175 0.434167 0.36195 54 768 822
11 10 1/10/2011 1 0 1 1 1 0.150833 0.150888 0.482917 0.223267 41 1280 1321
12 11 1/11/2011 1 0 1 2 2 0.169091 0.191464 0.686364 0.122132 43 1220 1263
13 12 1/12/2011 1 0 1 3 1 0.172727 0.160473 0.599545 0.304627 25 1137 1162
14 13 1/13/2011 1 0 1 4 1 0.165 0.150883 0.470417 0.301 38 1368 1406
15 14 1/14/2011 1 0 1 5 1 0.16087 0.188413 0.537826 0.126548 54 1367 1421
16 15 1/15/2011 1 0 1 6 2 0.233333 0.248112 0.49875 0.157963 222 1026 1248
17 16 1/16/2011 1 0 1 0 1 0.231667 0.234217 0.48375 0.188433 251 953 1204
18 17 1/17/2011 1 0 1 1 2 0.175833 0.176771 0.5375 0.194017 117 883 1000
19 18 1/18/2011 1 0 1 2 2 0.216667 0.232333 0.861667 0.146775 9 674 683
20 19 1/19/2011 1 0 1 3 2 0.292174 0.298422 0.741739 0.208317 78 1572 1650
21 20 1/20/2011 1 0 1 4 2 0.261667 0.25505 0.538333 0.195904 83 1844 1927
22 21 1/21/2011 1 0 1 5 1 0.1775 0.157833 0.457083 0.353242 75 1468 1543
23 22 1/22/2011 1 0 1 6 1 0.0591304 0.0790696 0.4 0.17197 93 888 981
24 23 1/23/2011 1 0 1 0 1 0.0965217 0.0988391 0.436522 0.2466 150 836 986
25 24 1/24/2011 1 0 1 1 1 0.0973913 0.11793 0.491739 0.15833 86 1330 1416
26 25 1/25/2011 1 0 1 2 2 0.223478 0.234526 0.616957 0.129796 186 1799 1985
27 26 1/26/2011 1 0 1 3 3 0.2175 0.2036 0.8625 0.29385 34 472 506
28 27 1/27/2011 1 0 1 4 1 0.195 0.2197 0.6875 0.113837 15 416 431
29 28 1/28/2011 1 0 1 5 2 0.203478 0.223317 0.793043 0.1233 38 1129 1167
30 29 1/29/2011 1 0 1 6 1 0.196522 0.212126 0.651739 0.145365 123 975 1098
31 30 1/30/2011 1 0 1 0 1 0.216522 0.250322 0.722174 0.0739826 140 956 1096
32 31 1/31/2011 1 0 1 1 2 0.180833 0.18625 0.60375 0.187192 42 1459 1501
33 32 2/1/2011 1 0 2 2 2 0.192174 0.23453 0.829565 0.053213 47 1313 1360
34 33 2/2/2011 1 0 2 3 2 0.26 0.254417 0.775417 0.264308 72 1454 1526
35 34 2/3/2011 1 0 2 4 1 0.186957 0.177878 0.437826 0.277752 61 1489 1550
36 35 2/4/2011 1 0 2 5 2 0.211304 0.228587 0.585217 0.127839 88 1620 1708
37 36 2/5/2011 1 0 2 6 2 0.233333 0.243058 0.929167 0.161079 100 905 1005
38 37 2/6/2011 1 0 2 0 1 0.285833 0.291671 0.568333 0.1418 354 1269 1623
39 38 2/7/2011 1 0 2 1 1 0.271667 0.303658 0.738333 0.0454083 120 1592 1712
40 39 2/8/2011 1 0 2 2 1 0.220833 0.198246 0.537917 0.36195 64 1466 1530
41 40 2/9/2011 1 0 2 3 2 0.134783 0.144283 0.494783 0.188839 53 1552 1605
42 41 2/10/2011 1 0 2 4 1 0.144348 0.149548 0.437391 0.221935 47 1491 1538
43 42 2/11/2011 1 0 2 5 1 0.189091 0.213509 0.506364 0.10855 149 1597 1746
44 43 2/12/2011 1 0 2 6 1 0.2225 0.232954 0.544167 0.203367 288 1184 1472
45 44 2/13/2011 1 0 2 0 1 0.316522 0.324113 0.457391 0.260883 397 1192 1589
46 45 2/14/2011 1 0 2 1 1 0.415 0.39835 0.375833 0.417908 208 1705 1913
47 46 2/15/2011 1 0 2 2 1 0.266087 0.254274 0.314348 0.291374 140 1675 1815
48 47 2/16/2011 1 0 2 3 1 0.318261 0.3162 0.423478 0.251791 218 1897 2115
49 48 2/17/2011 1 0 2 4 1 0.435833 0.428658 0.505 0.230104 259 2216 2475
50 49 2/18/2011 1 0 2 5 1 0.521667 0.511983 0.516667 0.264925 579 2348 2927
51 50 2/19/2011 1 0 2 6 1 0.399167 0.391404 0.187917 0.507463 532 1103 1635
52 51 2/20/2011 1 0 2 0 1 0.285217 0.27733 0.407826 0.223235 639 1173 1812
53 52 2/21/2011 1 0 2 1 2 0.303333 0.284075 0.605 0.307846 195 912 1107
54 53 2/22/2011 1 0 2 2 1 0.182222 0.186033 0.577778 0.195683 74 1376 1450
55 54 2/23/2011 1 0 2 3 1 0.221739 0.245717 0.423043 0.094113 139 1778 1917
56 55 2/24/2011 1 0 2 4 2 0.295652 0.289191 0.697391 0.250496 100 1707 1807
57 56 2/25/2011 1 0 2 5 2 0.364348 0.350461 0.712174 0.346539 120 1341 1461
58 57 2/26/2011 1 0 2 6 1 0.2825 0.282192 0.537917 0.186571 424 1545 1969
59 58 2/27/2011 1 0 2 0 1 0.343478 0.351109 0.68 0.125248 694 1708 2402
60 59 2/28/2011 1 0 2 1 2 0.407273 0.400118 0.876364 0.289686 81 1365 1446
61 60 3/1/2011 1 0 3 2 1 0.266667 0.263879 0.535 0.216425 137 1714 1851
62 61 3/2/2011 1 0 3 3 1 0.335 0.320071 0.449583 0.307833 231 1903 2134
63 62 3/3/2011 1 0 3 4 1 0.198333 0.200133 0.318333 0.225754 123 1562 1685
64 63 3/4/2011 1 0 3 5 2 0.261667 0.255679 0.610417 0.203346 214 1730 1944
65 64 3/5/2011 1 0 3 6 2 0.384167 0.378779 0.789167 0.251871 640 1437 2077
66 65 3/6/2011 1 0 3 0 2 0.376522 0.366252 0.948261 0.343287 114 491 605
67 66 3/7/2011 1 0 3 1 1 0.261739 0.238461 0.551304 0.341352 244 1628 1872
68 67 3/8/2011 1 0 3 2 1 0.2925 0.3024 0.420833 0.12065 316 1817 2133
69 68 3/9/2011 1 0 3 3 2 0.295833 0.286608 0.775417 0.22015 191 1700 1891
70 69 3/10/2011 1 0 3 4 3 0.389091 0.385668 0 0.261877 46 577 623
71 70 3/11/2011 1 0 3 5 2 0.316522 0.305 0.649565 0.23297 247 1730 1977
72 71 3/12/2011 1 0 3 6 1 0.329167 0.32575 0.594583 0.220775 724 1408 2132
73 72 3/13/2011 1 0 3 0 1 0.384348 0.380091 0.527391 0.270604 982 1435 2417
74 73 3/14/2011 1 0 3 1 1 0.325217 0.332 0.496957 0.136926 359 1687 2046
75 74 3/15/2011 1 0 3 2 2 0.317391 0.318178 0.655652 0.184309 289 1767 2056
76 75 3/16/2011 1 0 3 3 2 0.365217 0.36693 0.776522 0.203117 321 1871 2192
77 76 3/17/2011 1 0 3 4 1 0.415 0.410333 0.602917 0.209579 424 2320 2744
78 77 3/18/2011 1 0 3 5 1 0.54 0.527009 0.525217 0.231017 884 2355 3239
79 78 3/19/2011 1 0 3 6 1 0.4725 0.466525 0.379167 0.368167 1424 1693 3117
80 79 3/20/2011 1 0 3 0 1 0.3325 0.32575 0.47375 0.207721 1047 1424 2471
81 80 3/21/2011 2 0 3 1 2 0.430435 0.409735 0.737391 0.288783 401 1676 2077
82 81 3/22/2011 2 0 3 2 1 0.441667 0.440642 0.624583 0.22575 460 2243 2703
83 82 3/23/2011 2 0 3 3 2 0.346957 0.337939 0.839565 0.234261 203 1918 2121
84 83 3/24/2011 2 0 3 4 2 0.285 0.270833 0.805833 0.243787 166 1699 1865
85 84 3/25/2011 2 0 3 5 1 0.264167 0.256312 0.495 0.230725 300 1910 2210
86 85 3/26/2011 2 0 3 6 1 0.265833 0.257571 0.394167 0.209571 981 1515 2496
87 86 3/27/2011 2 0 3 0 2 0.253043 0.250339 0.493913 0.1843 472 1221 1693
88 87 3/28/2011 2 0 3 1 1 0.264348 0.257574 0.302174 0.212204 222 1806 2028
89 88 3/29/2011 2 0 3 2 1 0.3025 0.292908 0.314167 0.226996 317 2108 2425
90 89 3/30/2011 2 0 3 3 2 0.3 0.29735 0.646667 0.172888 168 1368 1536
91 90 3/31/2011 2 0 3 4 3 0.268333 0.257575 0.918333 0.217646 179 1506 1685
92 91 4/1/2011 2 0 4 5 2 0.3 0.283454 0.68625 0.258708 307 1920 2227
93 92 4/2/2011 2 0 4 6 2 0.315 0.315637 0.65375 0.197146 898 1354 2252
94 93 4/3/2011 2 0 4 0 1 0.378333 0.378767 0.48 0.182213 1651 1598 3249
95 94 4/4/2011 2 0 4 1 1 0.573333 0.542929 0.42625 0.385571 734 2381 3115
96 95 4/5/2011 2 0 4 2 2 0.414167 0.39835 0.642083 0.388067 167 1628 1795
97 96 4/6/2011 2 0 4 3 1 0.390833 0.387608 0.470833 0.263063 413 2395 2808
98 97 4/7/2011 2 0 4 4 1 0.4375 0.433696 0.602917 0.162312 571 2570 3141
99 98 4/8/2011 2 0 4 5 2 0.335833 0.324479 0.83625 0.226992 172 1299 1471
100 99 4/9/2011 2 0 4 6 2 0.3425 0.341529 0.8775 0.133083 879 1576 2455
101 100 4/10/2011 2 0 4 0 2 0.426667 0.426737 0.8575 0.146767 1188 1707 2895
102 101 4/11/2011 2 0 4 1 2 0.595652 0.565217 0.716956 0.324474 855 2493 3348
103 102 4/12/2011 2 0 4 2 2 0.5025 0.493054 0.739167 0.274879 257 1777 2034
104 103 4/13/2011 2 0 4 3 2 0.4125 0.417283 0.819167 0.250617 209 1953 2162
105 104 4/14/2011 2 0 4 4 1 0.4675 0.462742 0.540417 0.1107 529 2738 3267
106 105 4/15/2011 2 0 4 5 1 0.446667 0.441913 0.67125 0.226375 642 2484 3126
107 106 4/16/2011 2 0 4 6 3 0.430833 0.425492 0.888333 0.340808 121 674 795
108 107 4/17/2011 2 0 4 0 1 0.456667 0.445696 0.479583 0.303496 1558 2186 3744
109 108 4/18/2011 2 0 4 1 1 0.5125 0.503146 0.5425 0.163567 669 2760 3429
110 109 4/19/2011 2 0 4 2 2 0.505833 0.489258 0.665833 0.157971 409 2795 3204
111 110 4/20/2011 2 0 4 3 1 0.595 0.564392 0.614167 0.241925 613 3331 3944
112 111 4/21/2011 2 0 4 4 1 0.459167 0.453892 0.407083 0.325258 745 3444 4189
113 112 4/22/2011 2 0 4 5 2 0.336667 0.321954 0.729583 0.219521 177 1506 1683
114 113 4/23/2011 2 0 4 6 2 0.46 0.450121 0.887917 0.230725 1462 2574 4036
115 114 4/24/2011 2 0 4 0 2 0.581667 0.551763 0.810833 0.192175 1710 2481 4191
116 115 4/25/2011 2 0 4 1 1 0.606667 0.5745 0.776667 0.185333 773 3300 4073
117 116 4/26/2011 2 0 4 2 1 0.631667 0.594083 0.729167 0.3265 678 3722 4400
118 117 4/27/2011 2 0 4 3 2 0.62 0.575142 0.835417 0.3122 547 3325 3872
119 118 4/28/2011 2 0 4 4 2 0.6175 0.578929 0.700833 0.320908 569 3489 4058
120 119 4/29/2011 2 0 4 5 1 0.51 0.497463 0.457083 0.240063 878 3717 4595
121 120 4/30/2011 2 0 4 6 1 0.4725 0.464021 0.503333 0.235075 1965 3347 5312
122 121 5/1/2011 2 0 5 0 2 0.451667 0.448204 0.762083 0.106354 1138 2213 3351
123 122 5/2/2011 2 0 5 1 2 0.549167 0.532833 0.73 0.183454 847 3554 4401
124 123 5/3/2011 2 0 5 2 2 0.616667 0.582079 0.697083 0.342667 603 3848 4451
125 124 5/4/2011 2 0 5 3 2 0.414167 0.40465 0.737083 0.328996 255 2378 2633
126 125 5/5/2011 2 0 5 4 1 0.459167 0.441917 0.444167 0.295392 614 3819 4433
127 126 5/6/2011 2 0 5 5 1 0.479167 0.474117 0.59 0.228246 894 3714 4608
128 127 5/7/2011 2 0 5 6 1 0.52 0.512621 0.54125 0.16045 1612 3102 4714
129 128 5/8/2011 2 0 5 0 1 0.528333 0.518933 0.631667 0.0746375 1401 2932 4333
130 129 5/9/2011 2 0 5 1 1 0.5325 0.525246 0.58875 0.176 664 3698 4362
131 130 5/10/2011 2 0 5 2 1 0.5325 0.522721 0.489167 0.115671 694 4109 4803
132 131 5/11/2011 2 0 5 3 1 0.5425 0.5284 0.632917 0.120642 550 3632 4182
133 132 5/12/2011 2 0 5 4 1 0.535 0.523363 0.7475 0.189667 695 4169 4864
134 133 5/13/2011 2 0 5 5 2 0.5125 0.4943 0.863333 0.179725 692 3413 4105
135 134 5/14/2011 2 0 5 6 2 0.520833 0.500629 0.9225 0.13495 902 2507 3409
136 135 5/15/2011 2 0 5 0 2 0.5625 0.536 0.867083 0.152979 1582 2971 4553
137 136 5/16/2011 2 0 5 1 1 0.5775 0.550512 0.787917 0.126871 773 3185 3958
138 137 5/17/2011 2 0 5 2 2 0.561667 0.538529 0.837917 0.277354 678 3445 4123
139 138 5/18/2011 2 0 5 3 2 0.55 0.527158 0.87 0.201492 536 3319 3855
140 139 5/19/2011 2 0 5 4 2 0.530833 0.510742 0.829583 0.108213 735 3840 4575
141 140 5/20/2011 2 0 5 5 1 0.536667 0.529042 0.719583 0.125013 909 4008 4917
142 141 5/21/2011 2 0 5 6 1 0.6025 0.571975 0.626667 0.12065 2258 3547 5805
143 142 5/22/2011 2 0 5 0 1 0.604167 0.5745 0.749583 0.148008 1576 3084 4660
144 143 5/23/2011 2 0 5 1 2 0.631667 0.590296 0.81 0.233842 836 3438 4274
145 144 5/24/2011 2 0 5 2 2 0.66 0.604813 0.740833 0.207092 659 3833 4492
146 145 5/25/2011 2 0 5 3 1 0.660833 0.615542 0.69625 0.154233 740 4238 4978
147 146 5/26/2011 2 0 5 4 1 0.708333 0.654688 0.6775 0.199642 758 3919 4677
148 147 5/27/2011 2 0 5 5 1 0.681667 0.637008 0.65375 0.240679 871 3808 4679
149 148 5/28/2011 2 0 5 6 1 0.655833 0.612379 0.729583 0.230092 2001 2757 4758
150 149 5/29/2011 2 0 5 0 1 0.6675 0.61555 0.81875 0.213938 2355 2433 4788
151 150 5/30/2011 2 0 5 1 1 0.733333 0.671092 0.685 0.131225 1549 2549 4098
152 151 5/31/2011 2 0 5 2 1 0.775 0.725383 0.636667 0.111329 673 3309 3982
153 152 6/1/2011 2 0 6 3 2 0.764167 0.720967 0.677083 0.207092 513 3461 3974
154 153 6/2/2011 2 0 6 4 1 0.715 0.643942 0.305 0.292287 736 4232 4968
155 154 6/3/2011 2 0 6 5 1 0.62 0.587133 0.354167 0.253121 898 4414 5312
156 155 6/4/2011 2 0 6 6 1 0.635 0.594696 0.45625 0.123142 1869 3473 5342
157 156 6/5/2011 2 0 6 0 2 0.648333 0.616804 0.6525 0.138692 1685 3221 4906
158 157 6/6/2011 2 0 6 1 1 0.678333 0.621858 0.6 0.121896 673 3875 4548
159 158 6/7/2011 2 0 6 2 1 0.7075 0.65595 0.597917 0.187808 763 4070 4833
160 159 6/8/2011 2 0 6 3 1 0.775833 0.727279 0.622083 0.136817 676 3725 4401
161 160 6/9/2011 2 0 6 4 2 0.808333 0.757579 0.568333 0.149883 563 3352 3915
162 161 6/10/2011 2 0 6 5 1 0.755 0.703292 0.605 0.140554 815 3771 4586
163 162 6/11/2011 2 0 6 6 1 0.725 0.678038 0.654583 0.15485 1729 3237 4966
164 163 6/12/2011 2 0 6 0 1 0.6925 0.643325 0.747917 0.163567 1467 2993 4460
165 164 6/13/2011 2 0 6 1 1 0.635 0.601654 0.494583 0.30535 863 4157 5020
166 165 6/14/2011 2 0 6 2 1 0.604167 0.591546 0.507083 0.269283 727 4164 4891
167 166 6/15/2011 2 0 6 3 1 0.626667 0.587754 0.471667 0.167912 769 4411 5180
168 167 6/16/2011 2 0 6 4 2 0.628333 0.595346 0.688333 0.206471 545 3222 3767
169 168 6/17/2011 2 0 6 5 1 0.649167 0.600383 0.735833 0.143029 863 3981 4844
170 169 6/18/2011 2 0 6 6 1 0.696667 0.643954 0.670417 0.119408 1807 3312 5119
171 170 6/19/2011 2 0 6 0 2 0.699167 0.645846 0.666667 0.102 1639 3105 4744
172 171 6/20/2011 2 0 6 1 2 0.635 0.595346 0.74625 0.155475 699 3311 4010
173 172 6/21/2011 3 0 6 2 2 0.680833 0.637646 0.770417 0.171025 774 4061 4835
174 173 6/22/2011 3 0 6 3 1 0.733333 0.693829 0.7075 0.172262 661 3846 4507
175 174 6/23/2011 3 0 6 4 2 0.728333 0.693833 0.703333 0.238804 746 4044 4790
176 175 6/24/2011 3 0 6 5 1 0.724167 0.656583 0.573333 0.222025 969 4022 4991
177 176 6/25/2011 3 0 6 6 1 0.695 0.643313 0.483333 0.209571 1782 3420 5202
178 177 6/26/2011 3 0 6 0 1 0.68 0.637629 0.513333 0.0945333 1920 3385 5305
179 178 6/27/2011 3 0 6 1 2 0.6825 0.637004 0.658333 0.107588 854 3854 4708
180 179 6/28/2011 3 0 6 2 1 0.744167 0.692558 0.634167 0.144283 732 3916 4648
181 180 6/29/2011 3 0 6 3 1 0.728333 0.654688 0.497917 0.261821 848 4377 5225
182 181 6/30/2011 3 0 6 4 1 0.696667 0.637008 0.434167 0.185312 1027 4488 5515
183 182 7/1/2011 3 0 7 5 1 0.7225 0.652162 0.39625 0.102608 1246 4116 5362
184 183 7/2/2011 3 0 7 6 1 0.738333 0.667308 0.444583 0.115062 2204 2915 5119
185 184 7/3/2011 3 0 7 0 2 0.716667 0.668575 0.6825 0.228858 2282 2367 4649
186 185 7/4/2011 3 0 7 1 2 0.726667 0.665417 0.637917 0.0814792 3065 2978 6043
187 186 7/5/2011 3 0 7 2 1 0.746667 0.696338 0.590417 0.126258 1031 3634 4665
188 187 7/6/2011 3 0 7 3 1 0.72 0.685633 0.743333 0.149883 784 3845 4629
189 188 7/7/2011 3 0 7 4 1 0.75 0.686871 0.65125 0.1592 754 3838 4592
190 189 7/8/2011 3 0 7 5 2 0.709167 0.670483 0.757917 0.225129 692 3348 4040
191 190 7/9/2011 3 0 7 6 1 0.733333 0.664158 0.609167 0.167912 1988 3348 5336
192 191 7/10/2011 3 0 7 0 1 0.7475 0.690025 0.578333 0.183471 1743 3138 4881
193 192 7/11/2011 3 0 7 1 1 0.7625 0.729804 0.635833 0.282337 723 3363 4086
194 193 7/12/2011 3 0 7 2 1 0.794167 0.739275 0.559167 0.200254 662 3596 4258
195 194 7/13/2011 3 0 7 3 1 0.746667 0.689404 0.631667 0.146133 748 3594 4342
196 195 7/14/2011 3 0 7 4 1 0.680833 0.635104 0.47625 0.240667 888 4196 5084
197 196 7/15/2011 3 0 7 5 1 0.663333 0.624371 0.59125 0.182833 1318 4220 5538
198 197 7/16/2011 3 0 7 6 1 0.686667 0.638263 0.585 0.208342 2418 3505 5923
199 198 7/17/2011 3 0 7 0 1 0.719167 0.669833 0.604167 0.245033 2006 3296 5302
200 199 7/18/2011 3 0 7 1 1 0.746667 0.703925 0.65125 0.215804 841 3617 4458
201 200 7/19/2011 3 0 7 2 1 0.776667 0.747479 0.650417 0.1306 752 3789 4541
202 201 7/20/2011 3 0 7 3 1 0.768333 0.74685 0.707083 0.113817 644 3688 4332
203 202 7/21/2011 3 0 7 4 2 0.815 0.826371 0.69125 0.222021 632 3152 3784
204 203 7/22/2011 3 0 7 5 1 0.848333 0.840896 0.580417 0.1331 562 2825 3387
205 204 7/23/2011 3 0 7 6 1 0.849167 0.804287 0.5 0.131221 987 2298 3285
206 205 7/24/2011 3 0 7 0 1 0.83 0.794829 0.550833 0.169171 1050 2556 3606
207 206 7/25/2011 3 0 7 1 1 0.743333 0.720958 0.757083 0.0908083 568 3272 3840
208 207 7/26/2011 3 0 7 2 1 0.771667 0.696979 0.540833 0.200258 750 3840 4590
209 208 7/27/2011 3 0 7 3 1 0.775 0.690667 0.402917 0.183463 755 3901 4656
210 209 7/28/2011 3 0 7 4 1 0.779167 0.7399 0.583333 0.178479 606 3784 4390
211 210 7/29/2011 3 0 7 5 1 0.838333 0.785967 0.5425 0.174138 670 3176 3846
212 211 7/30/2011 3 0 7 6 1 0.804167 0.728537 0.465833 0.168537 1559 2916 4475
213 212 7/31/2011 3 0 7 0 1 0.805833 0.729796 0.480833 0.164813 1524 2778 4302
214 213 8/1/2011 3 0 8 1 1 0.771667 0.703292 0.550833 0.156717 729 3537 4266
215 214 8/2/2011 3 0 8 2 1 0.783333 0.707071 0.49125 0.20585 801 4044 4845
216 215 8/3/2011 3 0 8 3 2 0.731667 0.679937 0.6575 0.135583 467 3107 3574
217 216 8/4/2011 3 0 8 4 2 0.71 0.664788 0.7575 0.19715 799 3777 4576
218 217 8/5/2011 3 0 8 5 1 0.710833 0.656567 0.630833 0.184696 1023 3843 4866
219 218 8/6/2011 3 0 8 6 2 0.716667 0.676154 0.755 0.22825 1521 2773 4294
220 219 8/7/2011 3 0 8 0 1 0.7425 0.715292 0.752917 0.201487 1298 2487 3785
221 220 8/8/2011 3 0 8 1 1 0.765 0.703283 0.592083 0.192175 846 3480 4326
222 221 8/9/2011 3 0 8 2 1 0.775 0.724121 0.570417 0.151121 907 3695 4602
223 222 8/10/2011 3 0 8 3 1 0.766667 0.684983 0.424167 0.200258 884 3896 4780
224 223 8/11/2011 3 0 8 4 1 0.7175 0.651521 0.42375 0.164796 812 3980 4792
225 224 8/12/2011 3 0 8 5 1 0.708333 0.654042 0.415 0.125621 1051 3854 4905
226 225 8/13/2011 3 0 8 6 2 0.685833 0.645858 0.729583 0.211454 1504 2646 4150
227 226 8/14/2011 3 0 8 0 2 0.676667 0.624388 0.8175 0.222633 1338 2482 3820
228 227 8/15/2011 3 0 8 1 1 0.665833 0.616167 0.712083 0.208954 775 3563 4338
229 228 8/16/2011 3 0 8 2 1 0.700833 0.645837 0.578333 0.236329 721 4004 4725
230 229 8/17/2011 3 0 8 3 1 0.723333 0.666671 0.575417 0.143667 668 4026 4694
231 230 8/18/2011 3 0 8 4 1 0.711667 0.662258 0.654583 0.233208 639 3166 3805
232 231 8/19/2011 3 0 8 5 2 0.685 0.633221 0.722917 0.139308 797 3356 4153
233 232 8/20/2011 3 0 8 6 1 0.6975 0.648996 0.674167 0.104467 1914 3277 5191
234 233 8/21/2011 3 0 8 0 1 0.710833 0.675525 0.77 0.248754 1249 2624 3873
235 234 8/22/2011 3 0 8 1 1 0.691667 0.638254 0.47 0.27675 833 3925 4758
236 235 8/23/2011 3 0 8 2 1 0.640833 0.606067 0.455417 0.146763 1281 4614 5895
237 236 8/24/2011 3 0 8 3 1 0.673333 0.630692 0.605 0.253108 949 4181 5130
238 237 8/25/2011 3 0 8 4 2 0.684167 0.645854 0.771667 0.210833 435 3107 3542
239 238 8/26/2011 3 0 8 5 1 0.7 0.659733 0.76125 0.0839625 768 3893 4661
240 239 8/27/2011 3 0 8 6 2 0.68 0.635556 0.85 0.375617 226 889 1115
241 240 8/28/2011 3 0 8 0 1 0.707059 0.647959 0.561765 0.304659 1415 2919 4334
242 241 8/29/2011 3 0 8 1 1 0.636667 0.607958 0.554583 0.159825 729 3905 4634
243 242 8/30/2011 3 0 8 2 1 0.639167 0.594704 0.548333 0.125008 775 4429 5204
244 243 8/31/2011 3 0 8 3 1 0.656667 0.611121 0.597917 0.0833333 688 4370 5058
245 244 9/1/2011 3 0 9 4 1 0.655 0.614921 0.639167 0.141796 783 4332 5115
246 245 9/2/2011 3 0 9 5 2 0.643333 0.604808 0.727083 0.139929 875 3852 4727
247 246 9/3/2011 3 0 9 6 1 0.669167 0.633213 0.716667 0.185325 1935 2549 4484
248 247 9/4/2011 3 0 9 0 1 0.709167 0.665429 0.742083 0.206467 2521 2419 4940
249 248 9/5/2011 3 0 9 1 2 0.673333 0.625646 0.790417 0.212696 1236 2115 3351
250 249 9/6/2011 3 0 9 2 3 0.54 0.5152 0.886957 0.343943 204 2506 2710
251 250 9/7/2011 3 0 9 3 3 0.599167 0.544229 0.917083 0.0970208 118 1878 1996
252 251 9/8/2011 3 0 9 4 3 0.633913 0.555361 0.939565 0.192748 153 1689 1842
253 252 9/9/2011 3 0 9 5 2 0.65 0.578946 0.897917 0.124379 417 3127 3544
254 253 9/10/2011 3 0 9 6 1 0.66 0.607962 0.75375 0.153608 1750 3595 5345
255 254 9/11/2011 3 0 9 0 1 0.653333 0.609229 0.71375 0.115054 1633 3413 5046
256 255 9/12/2011 3 0 9 1 1 0.644348 0.60213 0.692174 0.088913 690 4023 4713
257 256 9/13/2011 3 0 9 2 1 0.650833 0.603554 0.7125 0.141804 701 4062 4763
258 257 9/14/2011 3 0 9 3 1 0.673333 0.6269 0.697083 0.1673 647 4138 4785
259 258 9/15/2011 3 0 9 4 2 0.5775 0.553671 0.709167 0.271146 428 3231 3659
260 259 9/16/2011 3 0 9 5 2 0.469167 0.461475 0.590417 0.164183 742 4018 4760
261 260 9/17/2011 3 0 9 6 2 0.491667 0.478512 0.718333 0.189675 1434 3077 4511
262 261 9/18/2011 3 0 9 0 1 0.5075 0.490537 0.695 0.178483 1353 2921 4274
263 262 9/19/2011 3 0 9 1 2 0.549167 0.529675 0.69 0.151742 691 3848 4539
264 263 9/20/2011 3 0 9 2 2 0.561667 0.532217 0.88125 0.134954 438 3203 3641
265 264 9/21/2011 3 0 9 3 2 0.595 0.550533 0.9 0.0964042 539 3813 4352
266 265 9/22/2011 3 0 9 4 2 0.628333 0.554963 0.902083 0.128125 555 4240 4795
267 266 9/23/2011 4 0 9 5 2 0.609167 0.522125 0.9725 0.0783667 258 2137 2395
268 267 9/24/2011 4 0 9 6 2 0.606667 0.564412 0.8625 0.0783833 1776 3647 5423
269 268 9/25/2011 4 0 9 0 2 0.634167 0.572637 0.845 0.0503792 1544 3466 5010
270 269 9/26/2011 4 0 9 1 2 0.649167 0.589042 0.848333 0.1107 684 3946 4630
271 270 9/27/2011 4 0 9 2 2 0.636667 0.574525 0.885417 0.118171 477 3643 4120
272 271 9/28/2011 4 0 9 3 2 0.635 0.575158 0.84875 0.148629 480 3427 3907
273 272 9/29/2011 4 0 9 4 1 0.616667 0.574512 0.699167 0.172883 653 4186 4839
274 273 9/30/2011 4 0 9 5 1 0.564167 0.544829 0.6475 0.206475 830 4372 5202
275 274 10/1/2011 4 0 10 6 2 0.41 0.412863 0.75375 0.292296 480 1949 2429
276 275 10/2/2011 4 0 10 0 2 0.356667 0.345317 0.791667 0.222013 616 2302 2918
277 276 10/3/2011 4 0 10 1 2 0.384167 0.392046 0.760833 0.0833458 330 3240 3570
278 277 10/4/2011 4 0 10 2 1 0.484167 0.472858 0.71 0.205854 486 3970 4456
279 278 10/5/2011 4 0 10 3 1 0.538333 0.527138 0.647917 0.17725 559 4267 4826
280 279 10/6/2011 4 0 10 4 1 0.494167 0.480425 0.620833 0.134954 639 4126 4765
281 280 10/7/2011 4 0 10 5 1 0.510833 0.504404 0.684167 0.0223917 949 4036 4985
282 281 10/8/2011 4 0 10 6 1 0.521667 0.513242 0.70125 0.0454042 2235 3174 5409
283 282 10/9/2011 4 0 10 0 1 0.540833 0.523983 0.7275 0.06345 2397 3114 5511
284 283 10/10/2011 4 0 10 1 1 0.570833 0.542925 0.73375 0.0423042 1514 3603 5117
285 284 10/11/2011 4 0 10 2 2 0.566667 0.546096 0.80875 0.143042 667 3896 4563
286 285 10/12/2011 4 0 10 3 3 0.543333 0.517717 0.90625 0.24815 217 2199 2416
287 286 10/13/2011 4 0 10 4 2 0.589167 0.551804 0.896667 0.141787 290 2623 2913
288 287 10/14/2011 4 0 10 5 2 0.550833 0.529675 0.71625 0.223883 529 3115 3644
289 288 10/15/2011 4 0 10 6 1 0.506667 0.498725 0.483333 0.258083 1899 3318 5217
290 289 10/16/2011 4 0 10 0 1 0.511667 0.503154 0.486667 0.281717 1748 3293 5041
291 290 10/17/2011 4 0 10 1 1 0.534167 0.510725 0.579583 0.175379 713 3857 4570
292 291 10/18/2011 4 0 10 2 2 0.5325 0.522721 0.701667 0.110087 637 4111 4748
293 292 10/19/2011 4 0 10 3 3 0.541739 0.513848 0.895217 0.243339 254 2170 2424
294 293 10/20/2011 4 0 10 4 1 0.475833 0.466525 0.63625 0.422275 471 3724 4195
295 294 10/21/2011 4 0 10 5 1 0.4275 0.423596 0.574167 0.221396 676 3628 4304
296 295 10/22/2011 4 0 10 6 1 0.4225 0.425492 0.629167 0.0926667 1499 2809 4308
297 296 10/23/2011 4 0 10 0 1 0.421667 0.422333 0.74125 0.0995125 1619 2762 4381
298 297 10/24/2011 4 0 10 1 1 0.463333 0.457067 0.772083 0.118792 699 3488 4187
299 298 10/25/2011 4 0 10 2 1 0.471667 0.463375 0.622917 0.166658 695 3992 4687
300 299 10/26/2011 4 0 10 3 2 0.484167 0.472846 0.720417 0.148642 404 3490 3894
301 300 10/27/2011 4 0 10 4 2 0.47 0.457046 0.812917 0.197763 240 2419 2659
302 301 10/28/2011 4 0 10 5 2 0.330833 0.318812 0.585833 0.229479 456 3291 3747
303 302 10/29/2011 4 0 10 6 3 0.254167 0.227913 0.8825 0.351371 57 570 627
304 303 10/30/2011 4 0 10 0 1 0.319167 0.321329 0.62375 0.176617 885 2446 3331
305 304 10/31/2011 4 0 10 1 1 0.34 0.356063 0.703333 0.10635 362 3307 3669
306 305 11/1/2011 4 0 11 2 1 0.400833 0.397088 0.68375 0.135571 410 3658 4068
307 306 11/2/2011 4 0 11 3 1 0.3775 0.390133 0.71875 0.0820917 370 3816 4186
308 307 11/3/2011 4 0 11 4 1 0.408333 0.405921 0.702083 0.136817 318 3656 3974
309 308 11/4/2011 4 0 11 5 2 0.403333 0.403392 0.6225 0.271779 470 3576 4046
310 309 11/5/2011 4 0 11 6 1 0.326667 0.323854 0.519167 0.189062 1156 2770 3926
311 310 11/6/2011 4 0 11 0 1 0.348333 0.362358 0.734583 0.0920542 952 2697 3649
312 311 11/7/2011 4 0 11 1 1 0.395 0.400871 0.75875 0.057225 373 3662 4035
313 312 11/8/2011 4 0 11 2 1 0.408333 0.412246 0.721667 0.0690375 376 3829 4205
314 313 11/9/2011 4 0 11 3 1 0.4 0.409079 0.758333 0.0621958 305 3804 4109
315 314 11/10/2011 4 0 11 4 2 0.38 0.373721 0.813333 0.189067 190 2743 2933
316 315 11/11/2011 4 0 11 5 1 0.324167 0.306817 0.44625 0.314675 440 2928 3368
317 316 11/12/2011 4 0 11 6 1 0.356667 0.357942 0.552917 0.212062 1275 2792 4067
318 317 11/13/2011 4 0 11 0 1 0.440833 0.43055 0.458333 0.281721 1004 2713 3717
319 318 11/14/2011 4 0 11 1 1 0.53 0.524612 0.587083 0.306596 595 3891 4486
320 319 11/15/2011 4 0 11 2 2 0.53 0.507579 0.68875 0.199633 449 3746 4195
321 320 11/16/2011 4 0 11 3 3 0.456667 0.451988 0.93 0.136829 145 1672 1817
322 321 11/17/2011 4 0 11 4 2 0.341667 0.323221 0.575833 0.305362 139 2914 3053
323 322 11/18/2011 4 0 11 5 1 0.274167 0.272721 0.41 0.168533 245 3147 3392
324 323 11/19/2011 4 0 11 6 1 0.329167 0.324483 0.502083 0.224496 943 2720 3663
325 324 11/20/2011 4 0 11 0 2 0.463333 0.457058 0.684583 0.18595 787 2733 3520
326 325 11/21/2011 4 0 11 1 3 0.4475 0.445062 0.91 0.138054 220 2545 2765
327 326 11/22/2011 4 0 11 2 3 0.416667 0.421696 0.9625 0.118792 69 1538 1607
328 327 11/23/2011 4 0 11 3 2 0.440833 0.430537 0.757917 0.335825 112 2454 2566
329 328 11/24/2011 4 0 11 4 1 0.373333 0.372471 0.549167 0.167304 560 935 1495
330 329 11/25/2011 4 0 11 5 1 0.375 0.380671 0.64375 0.0988958 1095 1697 2792
331 330 11/26/2011 4 0 11 6 1 0.375833 0.385087 0.681667 0.0684208 1249 1819 3068
332 331 11/27/2011 4 0 11 0 1 0.459167 0.4558 0.698333 0.208954 810 2261 3071
333 332 11/28/2011 4 0 11 1 1 0.503478 0.490122 0.743043 0.142122 253 3614 3867
334 333 11/29/2011 4 0 11 2 2 0.458333 0.451375 0.830833 0.258092 96 2818 2914
335 334 11/30/2011 4 0 11 3 1 0.325 0.311221 0.613333 0.271158 188 3425 3613
336 335 12/1/2011 4 0 12 4 1 0.3125 0.305554 0.524583 0.220158 182 3545 3727
337 336 12/2/2011 4 0 12 5 1 0.314167 0.331433 0.625833 0.100754 268 3672 3940
338 337 12/3/2011 4 0 12 6 1 0.299167 0.310604 0.612917 0.0957833 706 2908 3614
339 338 12/4/2011 4 0 12 0 1 0.330833 0.3491 0.775833 0.0839583 634 2851 3485
340 339 12/5/2011 4 0 12 1 2 0.385833 0.393925 0.827083 0.0622083 233 3578 3811
341 340 12/6/2011 4 0 12 2 3 0.4625 0.4564 0.949583 0.232583 126 2468 2594
342 341 12/7/2011 4 0 12 3 3 0.41 0.400246 0.970417 0.266175 50 655 705
343 342 12/8/2011 4 0 12 4 1 0.265833 0.256938 0.58 0.240058 150 3172 3322
344 343 12/9/2011 4 0 12 5 1 0.290833 0.317542 0.695833 0.0827167 261 3359 3620
345 344 12/10/2011 4 0 12 6 1 0.275 0.266412 0.5075 0.233221 502 2688 3190
346 345 12/11/2011 4 0 12 0 1 0.220833 0.253154 0.49 0.0665417 377 2366 2743
347 346 12/12/2011 4 0 12 1 1 0.238333 0.270196 0.670833 0.06345 143 3167 3310
348 347 12/13/2011 4 0 12 2 1 0.2825 0.301138 0.59 0.14055 155 3368 3523
349 348 12/14/2011 4 0 12 3 2 0.3175 0.338362 0.66375 0.0609583 178 3562 3740
350 349 12/15/2011 4 0 12 4 2 0.4225 0.412237 0.634167 0.268042 181 3528 3709
351 350 12/16/2011 4 0 12 5 2 0.375 0.359825 0.500417 0.260575 178 3399 3577
352 351 12/17/2011 4 0 12 6 2 0.258333 0.249371 0.560833 0.243167 275 2464 2739
353 352 12/18/2011 4 0 12 0 1 0.238333 0.245579 0.58625 0.169779 220 2211 2431
354 353 12/19/2011 4 0 12 1 1 0.276667 0.280933 0.6375 0.172896 260 3143 3403
355 354 12/20/2011 4 0 12 2 2 0.385833 0.396454 0.595417 0.0615708 216 3534 3750
356 355 12/21/2011 1 0 12 3 2 0.428333 0.428017 0.858333 0.2214 107 2553 2660
357 356 12/22/2011 1 0 12 4 2 0.423333 0.426121 0.7575 0.047275 227 2841 3068
358 357 12/23/2011 1 0 12 5 1 0.373333 0.377513 0.68625 0.274246 163 2046 2209
359 358 12/24/2011 1 0 12 6 1 0.3025 0.299242 0.5425 0.190304 155 856 1011
360 359 12/25/2011 1 0 12 0 1 0.274783 0.279961 0.681304 0.155091 303 451 754
361 360 12/26/2011 1 0 12 1 1 0.321739 0.315535 0.506957 0.239465 430 887 1317
362 361 12/27/2011 1 0 12 2 2 0.325 0.327633 0.7625 0.18845 103 1059 1162
363 362 12/28/2011 1 0 12 3 1 0.29913 0.279974 0.503913 0.293961 255 2047 2302
364 363 12/29/2011 1 0 12 4 1 0.248333 0.263892 0.574167 0.119412 254 2169 2423
365 364 12/30/2011 1 0 12 5 1 0.311667 0.318812 0.636667 0.134337 491 2508 2999
366 365 12/31/2011 1 0 12 6 1 0.41 0.414121 0.615833 0.220154 665 1820 2485
367 366 1/1/2012 1 1 1 0 1 0.37 0.375621 0.6925 0.192167 686 1608 2294
368 367 1/2/2012 1 1 1 1 1 0.273043 0.252304 0.381304 0.329665 244 1707 1951
369 368 1/3/2012 1 1 1 2 1 0.15 0.126275 0.44125 0.365671 89 2147 2236
370 369 1/4/2012 1 1 1 3 2 0.1075 0.119337 0.414583 0.1847 95 2273 2368
371 370 1/5/2012 1 1 1 4 1 0.265833 0.278412 0.524167 0.129987 140 3132 3272
372 371 1/6/2012 1 1 1 5 1 0.334167 0.340267 0.542083 0.167908 307 3791 4098
373 372 1/7/2012 1 1 1 6 1 0.393333 0.390779 0.531667 0.174758 1070 3451 4521
374 373 1/8/2012 1 1 1 0 1 0.3375 0.340258 0.465 0.191542 599 2826 3425
375 374 1/9/2012 1 1 1 1 2 0.224167 0.247479 0.701667 0.0989 106 2270 2376
376 375 1/10/2012 1 1 1 2 1 0.308696 0.318826 0.646522 0.187552 173 3425 3598
377 376 1/11/2012 1 1 1 3 2 0.274167 0.282821 0.8475 0.131221 92 2085 2177
378 377 1/12/2012 1 1 1 4 2 0.3825 0.381938 0.802917 0.180967 269 3828 4097
379 378 1/13/2012 1 1 1 5 1 0.274167 0.249362 0.5075 0.378108 174 3040 3214
380 379 1/14/2012 1 1 1 6 1 0.18 0.183087 0.4575 0.187183 333 2160 2493
381 380 1/15/2012 1 1 1 0 1 0.166667 0.161625 0.419167 0.251258 284 2027 2311
382 381 1/16/2012 1 1 1 1 1 0.19 0.190663 0.5225 0.231358 217 2081 2298
383 382 1/17/2012 1 1 1 2 2 0.373043 0.364278 0.716087 0.34913 127 2808 2935
384 383 1/18/2012 1 1 1 3 1 0.303333 0.275254 0.443333 0.415429 109 3267 3376
385 384 1/19/2012 1 1 1 4 1 0.19 0.190038 0.4975 0.220158 130 3162 3292
386 385 1/20/2012 1 1 1 5 2 0.2175 0.220958 0.45 0.20275 115 3048 3163
387 386 1/21/2012 1 1 1 6 2 0.173333 0.174875 0.83125 0.222642 67 1234 1301
388 387 1/22/2012 1 1 1 0 2 0.1625 0.16225 0.79625 0.199638 196 1781 1977
389 388 1/23/2012 1 1 1 1 2 0.218333 0.243058 0.91125 0.110708 145 2287 2432
390 389 1/24/2012 1 1 1 2 1 0.3425 0.349108 0.835833 0.123767 439 3900 4339
391 390 1/25/2012 1 1 1 3 1 0.294167 0.294821 0.64375 0.161071 467 3803 4270
392 391 1/26/2012 1 1 1 4 2 0.341667 0.35605 0.769583 0.0733958 244 3831 4075
393 392 1/27/2012 1 1 1 5 2 0.425 0.415383 0.74125 0.342667 269 3187 3456
394 393 1/28/2012 1 1 1 6 1 0.315833 0.326379 0.543333 0.210829 775 3248 4023
395 394 1/29/2012 1 1 1 0 1 0.2825 0.272721 0.31125 0.24005 558 2685 3243
396 395 1/30/2012 1 1 1 1 1 0.269167 0.262625 0.400833 0.215792 126 3498 3624
397 396 1/31/2012 1 1 1 2 1 0.39 0.381317 0.416667 0.261817 324 4185 4509
398 397 2/1/2012 1 1 2 3 1 0.469167 0.466538 0.507917 0.189067 304 4275 4579
399 398 2/2/2012 1 1 2 4 2 0.399167 0.398971 0.672917 0.187187 190 3571 3761
400 399 2/3/2012 1 1 2 5 1 0.313333 0.309346 0.526667 0.178496 310 3841 4151
401 400 2/4/2012 1 1 2 6 2 0.264167 0.272725 0.779583 0.121896 384 2448 2832
402 401 2/5/2012 1 1 2 0 2 0.265833 0.264521 0.687917 0.175996 318 2629 2947
403 402 2/6/2012 1 1 2 1 1 0.282609 0.296426 0.622174 0.1538 206 3578 3784
404 403 2/7/2012 1 1 2 2 1 0.354167 0.361104 0.49625 0.147379 199 4176 4375
405 404 2/8/2012 1 1 2 3 2 0.256667 0.266421 0.722917 0.133721 109 2693 2802
406 405 2/9/2012 1 1 2 4 1 0.265 0.261988 0.562083 0.194037 163 3667 3830
407 406 2/10/2012 1 1 2 5 2 0.280833 0.293558 0.54 0.116929 227 3604 3831
408 407 2/11/2012 1 1 2 6 3 0.224167 0.210867 0.73125 0.289796 192 1977 2169
409 408 2/12/2012 1 1 2 0 1 0.1275 0.101658 0.464583 0.409212 73 1456 1529
410 409 2/13/2012 1 1 2 1 1 0.2225 0.227913 0.41125 0.167283 94 3328 3422
411 410 2/14/2012 1 1 2 2 2 0.319167 0.333946 0.50875 0.141179 135 3787 3922
412 411 2/15/2012 1 1 2 3 1 0.348333 0.351629 0.53125 0.1816 141 4028 4169
413 412 2/16/2012 1 1 2 4 2 0.316667 0.330162 0.752917 0.091425 74 2931 3005
414 413 2/17/2012 1 1 2 5 1 0.343333 0.351629 0.634583 0.205846 349 3805 4154
415 414 2/18/2012 1 1 2 6 1 0.346667 0.355425 0.534583 0.190929 1435 2883 4318
416 415 2/19/2012 1 1 2 0 2 0.28 0.265788 0.515833 0.253112 618 2071 2689
417 416 2/20/2012 1 1 2 1 1 0.28 0.273391 0.507826 0.229083 502 2627 3129
418 417 2/21/2012 1 1 2 2 1 0.287826 0.295113 0.594348 0.205717 163 3614 3777
419 418 2/22/2012 1 1 2 3 1 0.395833 0.392667 0.567917 0.234471 394 4379 4773
420 419 2/23/2012 1 1 2 4 1 0.454167 0.444446 0.554583 0.190913 516 4546 5062
421 420 2/24/2012 1 1 2 5 2 0.4075 0.410971 0.7375 0.237567 246 3241 3487
422 421 2/25/2012 1 1 2 6 1 0.290833 0.255675 0.395833 0.421642 317 2415 2732
423 422 2/26/2012 1 1 2 0 1 0.279167 0.268308 0.41 0.205229 515 2874 3389
424 423 2/27/2012 1 1 2 1 1 0.366667 0.357954 0.490833 0.268033 253 4069 4322
425 424 2/28/2012 1 1 2 2 1 0.359167 0.353525 0.395833 0.193417 229 4134 4363
426 425 2/29/2012 1 1 2 3 2 0.344348 0.34847 0.804783 0.179117 65 1769 1834
427 426 3/1/2012 1 1 3 4 1 0.485833 0.475371 0.615417 0.226987 325 4665 4990
428 427 3/2/2012 1 1 3 5 2 0.353333 0.359842 0.657083 0.144904 246 2948 3194
429 428 3/3/2012 1 1 3 6 2 0.414167 0.413492 0.62125 0.161079 956 3110 4066
430 429 3/4/2012 1 1 3 0 1 0.325833 0.303021 0.403333 0.334571 710 2713 3423
431 430 3/5/2012 1 1 3 1 1 0.243333 0.241171 0.50625 0.228858 203 3130 3333
432 431 3/6/2012 1 1 3 2 1 0.258333 0.255042 0.456667 0.200875 221 3735 3956
433 432 3/7/2012 1 1 3 3 1 0.404167 0.3851 0.513333 0.345779 432 4484 4916
434 433 3/8/2012 1 1 3 4 1 0.5275 0.524604 0.5675 0.441563 486 4896 5382
435 434 3/9/2012 1 1 3 5 2 0.410833 0.397083 0.407083 0.4148 447 4122 4569
436 435 3/10/2012 1 1 3 6 1 0.2875 0.277767 0.350417 0.22575 968 3150 4118
437 436 3/11/2012 1 1 3 0 1 0.361739 0.35967 0.476957 0.222587 1658 3253 4911
438 437 3/12/2012 1 1 3 1 1 0.466667 0.459592 0.489167 0.207713 838 4460 5298
439 438 3/13/2012 1 1 3 2 1 0.565 0.542929 0.6175 0.23695 762 5085 5847
440 439 3/14/2012 1 1 3 3 1 0.5725 0.548617 0.507083 0.115062 997 5315 6312
441 440 3/15/2012 1 1 3 4 1 0.5575 0.532825 0.579583 0.149883 1005 5187 6192
442 441 3/16/2012 1 1 3 5 2 0.435833 0.436229 0.842083 0.113192 548 3830 4378
443 442 3/17/2012 1 1 3 6 2 0.514167 0.505046 0.755833 0.110704 3155 4681 7836
444 443 3/18/2012 1 1 3 0 2 0.4725 0.464 0.81 0.126883 2207 3685 5892
445 444 3/19/2012 1 1 3 1 1 0.545 0.532821 0.72875 0.162317 982 5171 6153
446 445 3/20/2012 1 1 3 2 1 0.560833 0.538533 0.807917 0.121271 1051 5042 6093
447 446 3/21/2012 2 1 3 3 2 0.531667 0.513258 0.82125 0.0895583 1122 5108 6230
448 447 3/22/2012 2 1 3 4 1 0.554167 0.531567 0.83125 0.117562 1334 5537 6871
449 448 3/23/2012 2 1 3 5 2 0.601667 0.570067 0.694167 0.1163 2469 5893 8362
450 449 3/24/2012 2 1 3 6 2 0.5025 0.486733 0.885417 0.192783 1033 2339 3372
451 450 3/25/2012 2 1 3 0 2 0.4375 0.437488 0.880833 0.220775 1532 3464 4996
452 451 3/26/2012 2 1 3 1 1 0.445833 0.43875 0.477917 0.386821 795 4763 5558
453 452 3/27/2012 2 1 3 2 1 0.323333 0.315654 0.29 0.187192 531 4571 5102
454 453 3/28/2012 2 1 3 3 1 0.484167 0.47095 0.48125 0.291671 674 5024 5698
455 454 3/29/2012 2 1 3 4 1 0.494167 0.482304 0.439167 0.31965 834 5299 6133
456 455 3/30/2012 2 1 3 5 2 0.37 0.375621 0.580833 0.138067 796 4663 5459
457 456 3/31/2012 2 1 3 6 2 0.424167 0.421708 0.738333 0.250617 2301 3934 6235
458 457 4/1/2012 2 1 4 0 2 0.425833 0.417287 0.67625 0.172267 2347 3694 6041
459 458 4/2/2012 2 1 4 1 1 0.433913 0.427513 0.504348 0.312139 1208 4728 5936
460 459 4/3/2012 2 1 4 2 1 0.466667 0.461483 0.396667 0.100133 1348 5424 6772
461 460 4/4/2012 2 1 4 3 1 0.541667 0.53345 0.469583 0.180975 1058 5378 6436
462 461 4/5/2012 2 1 4 4 1 0.435 0.431163 0.374167 0.219529 1192 5265 6457
463 462 4/6/2012 2 1 4 5 1 0.403333 0.390767 0.377083 0.300388 1807 4653 6460
464 463 4/7/2012 2 1 4 6 1 0.4375 0.426129 0.254167 0.274871 3252 3605 6857
465 464 4/8/2012 2 1 4 0 1 0.5 0.492425 0.275833 0.232596 2230 2939 5169
466 465 4/9/2012 2 1 4 1 1 0.489167 0.476638 0.3175 0.358196 905 4680 5585
467 466 4/10/2012 2 1 4 2 1 0.446667 0.436233 0.435 0.249375 819 5099 5918
468 467 4/11/2012 2 1 4 3 1 0.348696 0.337274 0.469565 0.295274 482 4380 4862
469 468 4/12/2012 2 1 4 4 1 0.3975 0.387604 0.46625 0.290429 663 4746 5409
470 469 4/13/2012 2 1 4 5 1 0.4425 0.431808 0.408333 0.155471 1252 5146 6398
471 470 4/14/2012 2 1 4 6 1 0.495 0.487996 0.502917 0.190917 2795 4665 7460
472 471 4/15/2012 2 1 4 0 1 0.606667 0.573875 0.507917 0.225129 2846 4286 7132
473 472 4/16/2012 2 1 4 1 1 0.664167 0.614925 0.561667 0.284829 1198 5172 6370
474 473 4/17/2012 2 1 4 2 1 0.608333 0.598487 0.390417 0.273629 989 5702 6691
475 474 4/18/2012 2 1 4 3 2 0.463333 0.457038 0.569167 0.167912 347 4020 4367
476 475 4/19/2012 2 1 4 4 1 0.498333 0.493046 0.6125 0.0659292 846 5719 6565
477 476 4/20/2012 2 1 4 5 1 0.526667 0.515775 0.694583 0.149871 1340 5950 7290
478 477 4/21/2012 2 1 4 6 1 0.57 0.542921 0.682917 0.283587 2541 4083 6624
479 478 4/22/2012 2 1 4 0 3 0.396667 0.389504 0.835417 0.344546 120 907 1027
480 479 4/23/2012 2 1 4 1 2 0.321667 0.301125 0.766667 0.303496 195 3019 3214
481 480 4/24/2012 2 1 4 2 1 0.413333 0.405283 0.454167 0.249383 518 5115 5633
482 481 4/25/2012 2 1 4 3 1 0.476667 0.470317 0.427917 0.118792 655 5541 6196
483 482 4/26/2012 2 1 4 4 2 0.498333 0.483583 0.756667 0.176625 475 4551 5026
484 483 4/27/2012 2 1 4 5 1 0.4575 0.452637 0.400833 0.347633 1014 5219 6233
485 484 4/28/2012 2 1 4 6 2 0.376667 0.377504 0.489583 0.129975 1120 3100 4220
486 485 4/29/2012 2 1 4 0 1 0.458333 0.450121 0.587083 0.116908 2229 4075 6304
487 486 4/30/2012 2 1 4 1 2 0.464167 0.457696 0.57 0.171638 665 4907 5572
488 487 5/1/2012 2 1 5 2 2 0.613333 0.577021 0.659583 0.156096 653 5087 5740
489 488 5/2/2012 2 1 5 3 1 0.564167 0.537896 0.797083 0.138058 667 5502 6169
490 489 5/3/2012 2 1 5 4 2 0.56 0.537242 0.768333 0.133696 764 5657 6421
491 490 5/4/2012 2 1 5 5 1 0.6275 0.590917 0.735417 0.162938 1069 5227 6296
492 491 5/5/2012 2 1 5 6 2 0.621667 0.584608 0.756667 0.152992 2496 4387 6883
493 492 5/6/2012 2 1 5 0 2 0.5625 0.546737 0.74 0.149879 2135 4224 6359
494 493 5/7/2012 2 1 5 1 2 0.5375 0.527142 0.664167 0.230721 1008 5265 6273
495 494 5/8/2012 2 1 5 2 2 0.581667 0.557471 0.685833 0.296029 738 4990 5728
496 495 5/9/2012 2 1 5 3 2 0.575 0.553025 0.744167 0.216412 620 4097 4717
497 496 5/10/2012 2 1 5 4 1 0.505833 0.491783 0.552083 0.314063 1026 5546 6572
498 497 5/11/2012 2 1 5 5 1 0.533333 0.520833 0.360417 0.236937 1319 5711 7030
499 498 5/12/2012 2 1 5 6 1 0.564167 0.544817 0.480417 0.123133 2622 4807 7429
500 499 5/13/2012 2 1 5 0 1 0.6125 0.585238 0.57625 0.225117 2172 3946 6118
501 500 5/14/2012 2 1 5 1 2 0.573333 0.5499 0.789583 0.212692 342 2501 2843
502 501 5/15/2012 2 1 5 2 2 0.611667 0.576404 0.794583 0.147392 625 4490 5115
503 502 5/16/2012 2 1 5 3 1 0.636667 0.595975 0.697917 0.122512 991 6433 7424
504 503 5/17/2012 2 1 5 4 1 0.593333 0.572613 0.52 0.229475 1242 6142 7384
505 504 5/18/2012 2 1 5 5 1 0.564167 0.551121 0.523333 0.136817 1521 6118 7639
506 505 5/19/2012 2 1 5 6 1 0.6 0.566908 0.45625 0.083975 3410 4884 8294
507 506 5/20/2012 2 1 5 0 1 0.620833 0.583967 0.530417 0.254367 2704 4425 7129
508 507 5/21/2012 2 1 5 1 2 0.598333 0.565667 0.81125 0.233204 630 3729 4359
509 508 5/22/2012 2 1 5 2 2 0.615 0.580825 0.765833 0.118167 819 5254 6073
510 509 5/23/2012 2 1 5 3 2 0.621667 0.584612 0.774583 0.102 766 4494 5260
511 510 5/24/2012 2 1 5 4 1 0.655 0.6067 0.716667 0.172896 1059 5711 6770
512 511 5/25/2012 2 1 5 5 1 0.68 0.627529 0.747083 0.14055 1417 5317 6734
513 512 5/26/2012 2 1 5 6 1 0.6925 0.642696 0.7325 0.198992 2855 3681 6536
514 513 5/27/2012 2 1 5 0 1 0.69 0.641425 0.697083 0.215171 3283 3308 6591
515 514 5/28/2012 2 1 5 1 1 0.7125 0.6793 0.67625 0.196521 2557 3486 6043
516 515 5/29/2012 2 1 5 2 1 0.7225 0.672992 0.684583 0.2954 880 4863 5743
517 516 5/30/2012 2 1 5 3 2 0.656667 0.611129 0.67 0.134329 745 6110 6855
518 517 5/31/2012 2 1 5 4 1 0.68 0.631329 0.492917 0.195279 1100 6238 7338
519 518 6/1/2012 2 1 6 5 2 0.654167 0.607962 0.755417 0.237563 533 3594 4127
520 519 6/2/2012 2 1 6 6 1 0.583333 0.566288 0.549167 0.186562 2795 5325 8120
521 520 6/3/2012 2 1 6 0 1 0.6025 0.575133 0.493333 0.184087 2494 5147 7641
522 521 6/4/2012 2 1 6 1 1 0.5975 0.578283 0.487083 0.284833 1071 5927 6998
523 522 6/5/2012 2 1 6 2 2 0.540833 0.525892 0.613333 0.209575 968 6033 7001
524 523 6/6/2012 2 1 6 3 1 0.554167 0.542292 0.61125 0.077125 1027 6028 7055
525 524 6/7/2012 2 1 6 4 1 0.6025 0.569442 0.567083 0.15735 1038 6456 7494
526 525 6/8/2012 2 1 6 5 1 0.649167 0.597862 0.467917 0.175383 1488 6248 7736
527 526 6/9/2012 2 1 6 6 1 0.710833 0.648367 0.437083 0.144287 2708 4790 7498
528 527 6/10/2012 2 1 6 0 1 0.726667 0.663517 0.538333 0.133721 2224 4374 6598
529 528 6/11/2012 2 1 6 1 2 0.720833 0.659721 0.587917 0.207713 1017 5647 6664
530 529 6/12/2012 2 1 6 2 2 0.653333 0.597875 0.833333 0.214546 477 4495 4972
531 530 6/13/2012 2 1 6 3 1 0.655833 0.611117 0.582083 0.343279 1173 6248 7421
532 531 6/14/2012 2 1 6 4 1 0.648333 0.624383 0.569583 0.253733 1180 6183 7363
533 532 6/15/2012 2 1 6 5 1 0.639167 0.599754 0.589583 0.176617 1563 6102 7665
534 533 6/16/2012 2 1 6 6 1 0.631667 0.594708 0.504167 0.166667 2963 4739 7702
535 534 6/17/2012 2 1 6 0 1 0.5925 0.571975 0.59875 0.144904 2634 4344 6978
536 535 6/18/2012 2 1 6 1 2 0.568333 0.544842 0.777917 0.174746 653 4446 5099
537 536 6/19/2012 2 1 6 2 1 0.688333 0.654692 0.69 0.148017 968 5857 6825
538 537 6/20/2012 2 1 6 3 1 0.7825 0.720975 0.592083 0.113812 872 5339 6211
539 538 6/21/2012 3 1 6 4 1 0.805833 0.752542 0.567917 0.118787 778 5127 5905
540 539 6/22/2012 3 1 6 5 1 0.7775 0.724121 0.57375 0.182842 964 4859 5823
541 540 6/23/2012 3 1 6 6 1 0.731667 0.652792 0.534583 0.179721 2657 4801 7458
542 541 6/24/2012 3 1 6 0 1 0.743333 0.674254 0.479167 0.145525 2551 4340 6891
543 542 6/25/2012 3 1 6 1 1 0.715833 0.654042 0.504167 0.300383 1139 5640 6779
544 543 6/26/2012 3 1 6 2 1 0.630833 0.594704 0.373333 0.347642 1077 6365 7442
545 544 6/27/2012 3 1 6 3 1 0.6975 0.640792 0.36 0.271775 1077 6258 7335
546 545 6/28/2012 3 1 6 4 1 0.749167 0.675512 0.4225 0.17165 921 5958 6879
547 546 6/29/2012 3 1 6 5 1 0.834167 0.786613 0.48875 0.165417 829 4634 5463
548 547 6/30/2012 3 1 6 6 1 0.765 0.687508 0.60125 0.161071 1455 4232 5687
549 548 7/1/2012 3 1 7 0 1 0.815833 0.750629 0.51875 0.168529 1421 4110 5531
550 549 7/2/2012 3 1 7 1 1 0.781667 0.702038 0.447083 0.195267 904 5323 6227
551 550 7/3/2012 3 1 7 2 1 0.780833 0.70265 0.492083 0.126237 1052 5608 6660
552 551 7/4/2012 3 1 7 3 1 0.789167 0.732337 0.53875 0.13495 2562 4841 7403
553 552 7/5/2012 3 1 7 4 1 0.8275 0.761367 0.457917 0.194029 1405 4836 6241
554 553 7/6/2012 3 1 7 5 1 0.828333 0.752533 0.450833 0.146142 1366 4841 6207
555 554 7/7/2012 3 1 7 6 1 0.861667 0.804913 0.492083 0.163554 1448 3392 4840
556 555 7/8/2012 3 1 7 0 1 0.8225 0.790396 0.57375 0.125629 1203 3469 4672
557 556 7/9/2012 3 1 7 1 2 0.710833 0.654054 0.683333 0.180975 998 5571 6569
558 557 7/10/2012 3 1 7 2 2 0.720833 0.664796 0.6675 0.151737 954 5336 6290
559 558 7/11/2012 3 1 7 3 1 0.716667 0.650271 0.633333 0.151733 975 6289 7264
560 559 7/12/2012 3 1 7 4 1 0.715833 0.654683 0.529583 0.146775 1032 6414 7446
561 560 7/13/2012 3 1 7 5 2 0.731667 0.667933 0.485833 0.08085 1511 5988 7499
562 561 7/14/2012 3 1 7 6 2 0.703333 0.666042 0.699167 0.143679 2355 4614 6969
563 562 7/15/2012 3 1 7 0 1 0.745833 0.705196 0.717917 0.166667 1920 4111 6031
564 563 7/16/2012 3 1 7 1 1 0.763333 0.724125 0.645 0.164187 1088 5742 6830
565 564 7/17/2012 3 1 7 2 1 0.818333 0.755683 0.505833 0.114429 921 5865 6786
566 565 7/18/2012 3 1 7 3 1 0.793333 0.745583 0.577083 0.137442 799 4914 5713
567 566 7/19/2012 3 1 7 4 1 0.77 0.714642 0.600417 0.165429 888 5703 6591
568 567 7/20/2012 3 1 7 5 2 0.665833 0.613025 0.844167 0.208967 747 5123 5870
569 568 7/21/2012 3 1 7 6 3 0.595833 0.549912 0.865417 0.2133 1264 3195 4459
570 569 7/22/2012 3 1 7 0 2 0.6675 0.623125 0.7625 0.0939208 2544 4866 7410
571 570 7/23/2012 3 1 7 1 1 0.741667 0.690017 0.694167 0.138683 1135 5831 6966
572 571 7/24/2012 3 1 7 2 1 0.750833 0.70645 0.655 0.211454 1140 6452 7592
573 572 7/25/2012 3 1 7 3 1 0.724167 0.654054 0.45 0.1648 1383 6790 8173
574 573 7/26/2012 3 1 7 4 1 0.776667 0.739263 0.596667 0.284813 1036 5825 6861
575 574 7/27/2012 3 1 7 5 1 0.781667 0.734217 0.594583 0.152992 1259 5645 6904
576 575 7/28/2012 3 1 7 6 1 0.755833 0.697604 0.613333 0.15735 2234 4451 6685
577 576 7/29/2012 3 1 7 0 1 0.721667 0.667933 0.62375 0.170396 2153 4444 6597
578 577 7/30/2012 3 1 7 1 1 0.730833 0.684987 0.66875 0.153617 1040 6065 7105
579 578 7/31/2012 3 1 7 2 1 0.713333 0.662896 0.704167 0.165425 968 6248 7216
580 579 8/1/2012 3 1 8 3 1 0.7175 0.667308 0.6775 0.141179 1074 6506 7580
581 580 8/2/2012 3 1 8 4 1 0.7525 0.707088 0.659583 0.129354 983 6278 7261
582 581 8/3/2012 3 1 8 5 2 0.765833 0.722867 0.6425 0.215792 1328 5847 7175
583 582 8/4/2012 3 1 8 6 1 0.793333 0.751267 0.613333 0.257458 2345 4479 6824
584 583 8/5/2012 3 1 8 0 1 0.769167 0.731079 0.6525 0.290421 1707 3757 5464
585 584 8/6/2012 3 1 8 1 2 0.7525 0.710246 0.654167 0.129354 1233 5780 7013
586 585 8/7/2012 3 1 8 2 2 0.735833 0.697621 0.70375 0.116908 1278 5995 7273
587 586 8/8/2012 3 1 8 3 2 0.75 0.707717 0.672917 0.1107 1263 6271 7534
588 587 8/9/2012 3 1 8 4 1 0.755833 0.699508 0.620417 0.1561 1196 6090 7286
589 588 8/10/2012 3 1 8 5 2 0.715833 0.667942 0.715833 0.238813 1065 4721 5786
590 589 8/11/2012 3 1 8 6 2 0.6925 0.638267 0.732917 0.206479 2247 4052 6299
591 590 8/12/2012 3 1 8 0 1 0.700833 0.644579 0.530417 0.122512 2182 4362 6544
592 591 8/13/2012 3 1 8 1 1 0.720833 0.662254 0.545417 0.136212 1207 5676 6883
593 592 8/14/2012 3 1 8 2 1 0.726667 0.676779 0.686667 0.169158 1128 5656 6784
594 593 8/15/2012 3 1 8 3 1 0.706667 0.654037 0.619583 0.169771 1198 6149 7347
595 594 8/16/2012 3 1 8 4 1 0.719167 0.654688 0.519167 0.141796 1338 6267 7605
596 595 8/17/2012 3 1 8 5 1 0.723333 0.2424 0.570833 0.231354 1483 5665 7148
597 596 8/18/2012 3 1 8 6 1 0.678333 0.618071 0.603333 0.177867 2827 5038 7865
598 597 8/19/2012 3 1 8 0 2 0.635833 0.603554 0.711667 0.08645 1208 3341 4549
599 598 8/20/2012 3 1 8 1 2 0.635833 0.595967 0.734167 0.129979 1026 5504 6530
600 599 8/21/2012 3 1 8 2 1 0.649167 0.601025 0.67375 0.0727708 1081 5925 7006
601 600 8/22/2012 3 1 8 3 1 0.6675 0.621854 0.677083 0.0702833 1094 6281 7375
602 601 8/23/2012 3 1 8 4 1 0.695833 0.637008 0.635833 0.0845958 1363 6402 7765
603 602 8/24/2012 3 1 8 5 2 0.7025 0.6471 0.615 0.0721458 1325 6257 7582
604 603 8/25/2012 3 1 8 6 2 0.661667 0.618696 0.712917 0.244408 1829 4224 6053
605 604 8/26/2012 3 1 8 0 2 0.653333 0.595996 0.845833 0.228858 1483 3772 5255
606 605 8/27/2012 3 1 8 1 1 0.703333 0.654688 0.730417 0.128733 989 5928 6917
607 606 8/28/2012 3 1 8 2 1 0.728333 0.66605 0.62 0.190925 935 6105 7040
608 607 8/29/2012 3 1 8 3 1 0.685 0.635733 0.552083 0.112562 1177 6520 7697
609 608 8/30/2012 3 1 8 4 1 0.706667 0.652779 0.590417 0.0771167 1172 6541 7713
610 609 8/31/2012 3 1 8 5 1 0.764167 0.6894 0.5875 0.168533 1433 5917 7350
611 610 9/1/2012 3 1 9 6 2 0.753333 0.702654 0.638333 0.113187 2352 3788 6140
612 611 9/2/2012 3 1 9 0 2 0.696667 0.649 0.815 0.0640708 2613 3197 5810
613 612 9/3/2012 3 1 9 1 1 0.7075 0.661629 0.790833 0.151121 1965 4069 6034
614 613 9/4/2012 3 1 9 2 1 0.725833 0.686888 0.755 0.236321 867 5997 6864
615 614 9/5/2012 3 1 9 3 1 0.736667 0.708983 0.74125 0.187808 832 6280 7112
616 615 9/6/2012 3 1 9 4 2 0.696667 0.655329 0.810417 0.142421 611 5592 6203
617 616 9/7/2012 3 1 9 5 1 0.703333 0.657204 0.73625 0.171646 1045 6459 7504
618 617 9/8/2012 3 1 9 6 2 0.659167 0.611121 0.799167 0.281104 1557 4419 5976
619 618 9/9/2012 3 1 9 0 1 0.61 0.578925 0.5475 0.224496 2570 5657 8227
620 619 9/10/2012 3 1 9 1 1 0.583333 0.565654 0.50375 0.258713 1118 6407 7525
621 620 9/11/2012 3 1 9 2 1 0.5775 0.554292 0.52 0.0920542 1070 6697 7767
622 621 9/12/2012 3 1 9 3 1 0.599167 0.570075 0.577083 0.131846 1050 6820 7870
623 622 9/13/2012 3 1 9 4 1 0.6125 0.579558 0.637083 0.0827208 1054 6750 7804
624 623 9/14/2012 3 1 9 5 1 0.633333 0.594083 0.6725 0.103863 1379 6630 8009
625 624 9/15/2012 3 1 9 6 1 0.608333 0.585867 0.501667 0.247521 3160 5554 8714
626 625 9/16/2012 3 1 9 0 1 0.58 0.563125 0.57 0.0901833 2166 5167 7333
627 626 9/17/2012 3 1 9 1 2 0.580833 0.55305 0.734583 0.151742 1022 5847 6869
628 627 9/18/2012 3 1 9 2 2 0.623333 0.565067 0.8725 0.357587 371 3702 4073
629 628 9/19/2012 3 1 9 3 1 0.5525 0.540404 0.536667 0.215175 788 6803 7591
630 629 9/20/2012 3 1 9 4 1 0.546667 0.532192 0.618333 0.118167 939 6781 7720
631 630 9/21/2012 3 1 9 5 1 0.599167 0.571971 0.66875 0.154229 1250 6917 8167
632 631 9/22/2012 3 1 9 6 1 0.65 0.610488 0.646667 0.283583 2512 5883 8395
633 632 9/23/2012 4 1 9 0 1 0.529167 0.518933 0.467083 0.223258 2454 5453 7907
634 633 9/24/2012 4 1 9 1 1 0.514167 0.502513 0.492917 0.142404 1001 6435 7436
635 634 9/25/2012 4 1 9 2 1 0.55 0.544179 0.57 0.236321 845 6693 7538
636 635 9/26/2012 4 1 9 3 1 0.635 0.596613 0.630833 0.2444 787 6946 7733
637 636 9/27/2012 4 1 9 4 2 0.65 0.607975 0.690833 0.134342 751 6642 7393
638 637 9/28/2012 4 1 9 5 2 0.619167 0.585863 0.69 0.164179 1045 6370 7415
639 638 9/29/2012 4 1 9 6 1 0.5425 0.530296 0.542917 0.227604 2589 5966 8555
640 639 9/30/2012 4 1 9 0 1 0.526667 0.517663 0.583333 0.134958 2015 4874 6889
641 640 10/1/2012 4 1 10 1 2 0.520833 0.512 0.649167 0.0908042 763 6015 6778
642 641 10/2/2012 4 1 10 2 3 0.590833 0.542333 0.871667 0.104475 315 4324 4639
643 642 10/3/2012 4 1 10 3 2 0.6575 0.599133 0.79375 0.0665458 728 6844 7572
644 643 10/4/2012 4 1 10 4 2 0.6575 0.607975 0.722917 0.117546 891 6437 7328
645 644 10/5/2012 4 1 10 5 1 0.615 0.580187 0.6275 0.10635 1516 6640 8156
646 645 10/6/2012 4 1 10 6 1 0.554167 0.538521 0.664167 0.268025 3031 4934 7965
647 646 10/7/2012 4 1 10 0 2 0.415833 0.419813 0.708333 0.141162 781 2729 3510
648 647 10/8/2012 4 1 10 1 2 0.383333 0.387608 0.709583 0.189679 874 4604 5478
649 648 10/9/2012 4 1 10 2 2 0.446667 0.438112 0.761667 0.1903 601 5791 6392
650 649 10/10/2012 4 1 10 3 1 0.514167 0.503142 0.630833 0.187821 780 6911 7691
651 650 10/11/2012 4 1 10 4 1 0.435 0.431167 0.463333 0.181596 834 6736 7570
652 651 10/12/2012 4 1 10 5 1 0.4375 0.433071 0.539167 0.235092 1060 6222 7282
653 652 10/13/2012 4 1 10 6 1 0.393333 0.391396 0.494583 0.146142 2252 4857 7109
654 653 10/14/2012 4 1 10 0 1 0.521667 0.508204 0.640417 0.278612 2080 4559 6639
655 654 10/15/2012 4 1 10 1 2 0.561667 0.53915 0.7075 0.296037 760 5115 5875
656 655 10/16/2012 4 1 10 2 1 0.468333 0.460846 0.558333 0.182221 922 6612 7534
657 656 10/17/2012 4 1 10 3 1 0.455833 0.450108 0.692917 0.101371 979 6482 7461
658 657 10/18/2012 4 1 10 4 2 0.5225 0.512625 0.728333 0.236937 1008 6501 7509
659 658 10/19/2012 4 1 10 5 2 0.563333 0.537896 0.815 0.134954 753 4671 5424
660 659 10/20/2012 4 1 10 6 1 0.484167 0.472842 0.572917 0.117537 2806 5284 8090
661 660 10/21/2012 4 1 10 0 1 0.464167 0.456429 0.51 0.166054 2132 4692 6824
662 661 10/22/2012 4 1 10 1 1 0.4875 0.482942 0.568333 0.0814833 830 6228 7058
663 662 10/23/2012 4 1 10 2 1 0.544167 0.530304 0.641667 0.0945458 841 6625 7466
664 663 10/24/2012 4 1 10 3 1 0.5875 0.558721 0.63625 0.0727792 795 6898 7693
665 664 10/25/2012 4 1 10 4 2 0.55 0.529688 0.800417 0.124375 875 6484 7359
666 665 10/26/2012 4 1 10 5 2 0.545833 0.52275 0.807083 0.132467 1182 6262 7444
667 666 10/27/2012 4 1 10 6 2 0.53 0.515133 0.72 0.235692 2643 5209 7852
668 667 10/28/2012 4 1 10 0 2 0.4775 0.467771 0.694583 0.398008 998 3461 4459
669 668 10/29/2012 4 1 10 1 3 0.44 0.4394 0.88 0.3582 2 20 22
670 669 10/30/2012 4 1 10 2 2 0.318182 0.309909 0.825455 0.213009 87 1009 1096
671 670 10/31/2012 4 1 10 3 2 0.3575 0.3611 0.666667 0.166667 419 5147 5566
672 671 11/1/2012 4 1 11 4 2 0.365833 0.369942 0.581667 0.157346 466 5520 5986
673 672 11/2/2012 4 1 11 5 1 0.355 0.356042 0.522083 0.266175 618 5229 5847
674 673 11/3/2012 4 1 11 6 2 0.343333 0.323846 0.49125 0.270529 1029 4109 5138
675 674 11/4/2012 4 1 11 0 1 0.325833 0.329538 0.532917 0.179108 1201 3906 5107
676 675 11/5/2012 4 1 11 1 1 0.319167 0.308075 0.494167 0.236325 378 4881 5259
677 676 11/6/2012 4 1 11 2 1 0.280833 0.281567 0.567083 0.173513 466 5220 5686
678 677 11/7/2012 4 1 11 3 2 0.295833 0.274621 0.5475 0.304108 326 4709 5035
679 678 11/8/2012 4 1 11 4 1 0.352174 0.341891 0.333478 0.347835 340 4975 5315
680 679 11/9/2012 4 1 11 5 1 0.361667 0.355413 0.540833 0.214558 709 5283 5992
681 680 11/10/2012 4 1 11 6 1 0.389167 0.393937 0.645417 0.0578458 2090 4446 6536
682 681 11/11/2012 4 1 11 0 1 0.420833 0.421713 0.659167 0.1275 2290 4562 6852
683 682 11/12/2012 4 1 11 1 1 0.485 0.475383 0.741667 0.173517 1097 5172 6269
684 683 11/13/2012 4 1 11 2 2 0.343333 0.323225 0.662917 0.342046 327 3767 4094
685 684 11/14/2012 4 1 11 3 1 0.289167 0.281563 0.552083 0.199625 373 5122 5495
686 685 11/15/2012 4 1 11 4 2 0.321667 0.324492 0.620417 0.152987 320 5125 5445
687 686 11/16/2012 4 1 11 5 1 0.345 0.347204 0.524583 0.171025 484 5214 5698
688 687 11/17/2012 4 1 11 6 1 0.325 0.326383 0.545417 0.179729 1313 4316 5629
689 688 11/18/2012 4 1 11 0 1 0.3425 0.337746 0.692917 0.227612 922 3747 4669
690 689 11/19/2012 4 1 11 1 2 0.380833 0.375621 0.623333 0.235067 449 5050 5499
691 690 11/20/2012 4 1 11 2 2 0.374167 0.380667 0.685 0.082725 534 5100 5634
692 691 11/21/2012 4 1 11 3 1 0.353333 0.364892 0.61375 0.103246 615 4531 5146
693 692 11/22/2012 4 1 11 4 1 0.34 0.350371 0.580417 0.0528708 955 1470 2425
694 693 11/23/2012 4 1 11 5 1 0.368333 0.378779 0.56875 0.148021 1603 2307 3910
695 694 11/24/2012 4 1 11 6 1 0.278333 0.248742 0.404583 0.376871 532 1745 2277
696 695 11/25/2012 4 1 11 0 1 0.245833 0.257583 0.468333 0.1505 309 2115 2424
697 696 11/26/2012 4 1 11 1 1 0.313333 0.339004 0.535417 0.04665 337 4750 5087
698 697 11/27/2012 4 1 11 2 2 0.291667 0.281558 0.786667 0.237562 123 3836 3959
699 698 11/28/2012 4 1 11 3 1 0.296667 0.289762 0.50625 0.210821 198 5062 5260
700 699 11/29/2012 4 1 11 4 1 0.28087 0.298422 0.555652 0.115522 243 5080 5323
701 700 11/30/2012 4 1 11 5 1 0.298333 0.323867 0.649583 0.0584708 362 5306 5668
702 701 12/1/2012 4 1 12 6 2 0.298333 0.316904 0.806667 0.0597042 951 4240 5191
703 702 12/2/2012 4 1 12 0 2 0.3475 0.359208 0.823333 0.124379 892 3757 4649
704 703 12/3/2012 4 1 12 1 1 0.4525 0.455796 0.7675 0.0827208 555 5679 6234
705 704 12/4/2012 4 1 12 2 1 0.475833 0.469054 0.73375 0.174129 551 6055 6606
706 705 12/5/2012 4 1 12 3 1 0.438333 0.428012 0.485 0.324021 331 5398 5729
707 706 12/6/2012 4 1 12 4 1 0.255833 0.258204 0.50875 0.174754 340 5035 5375
708 707 12/7/2012 4 1 12 5 2 0.320833 0.321958 0.764167 0.1306 349 4659 5008
709 708 12/8/2012 4 1 12 6 2 0.381667 0.389508 0.91125 0.101379 1153 4429 5582
710 709 12/9/2012 4 1 12 0 2 0.384167 0.390146 0.905417 0.157975 441 2787 3228
711 710 12/10/2012 4 1 12 1 2 0.435833 0.435575 0.925 0.190308 329 4841 5170
712 711 12/11/2012 4 1 12 2 2 0.353333 0.338363 0.596667 0.296037 282 5219 5501
713 712 12/12/2012 4 1 12 3 2 0.2975 0.297338 0.538333 0.162937 310 5009 5319
714 713 12/13/2012 4 1 12 4 1 0.295833 0.294188 0.485833 0.174129 425 5107 5532
715 714 12/14/2012 4 1 12 5 1 0.281667 0.294192 0.642917 0.131229 429 5182 5611
716 715 12/15/2012 4 1 12 6 1 0.324167 0.338383 0.650417 0.10635 767 4280 5047
717 716 12/16/2012 4 1 12 0 2 0.3625 0.369938 0.83875 0.100742 538 3248 3786
718 717 12/17/2012 4 1 12 1 2 0.393333 0.4015 0.907083 0.0982583 212 4373 4585
719 718 12/18/2012 4 1 12 2 1 0.410833 0.409708 0.66625 0.221404 433 5124 5557
720 719 12/19/2012 4 1 12 3 1 0.3325 0.342162 0.625417 0.184092 333 4934 5267
721 720 12/20/2012 4 1 12 4 2 0.33 0.335217 0.667917 0.132463 314 3814 4128
722 721 12/21/2012 1 1 12 5 2 0.326667 0.301767 0.556667 0.374383 221 3402 3623
723 722 12/22/2012 1 1 12 6 1 0.265833 0.236113 0.44125 0.407346 205 1544 1749
724 723 12/23/2012 1 1 12 0 1 0.245833 0.259471 0.515417 0.133083 408 1379 1787
725 724 12/24/2012 1 1 12 1 2 0.231304 0.2589 0.791304 0.0772304 174 746 920
726 725 12/25/2012 1 1 12 2 2 0.291304 0.294465 0.734783 0.168726 440 573 1013
727 726 12/26/2012 1 1 12 3 3 0.243333 0.220333 0.823333 0.316546 9 432 441
728 727 12/27/2012 1 1 12 4 2 0.254167 0.226642 0.652917 0.350133 247 1867 2114
729 728 12/28/2012 1 1 12 5 2 0.253333 0.255046 0.59 0.155471 644 2451 3095
730 729 12/29/2012 1 1 12 6 2 0.253333 0.2424 0.752917 0.124383 159 1182 1341
731 730 12/30/2012 1 1 12 0 1 0.255833 0.2317 0.483333 0.350754 364 1432 1796
732 731 12/31/2012 1 1 12 1 2 0.215833 0.223487 0.5775 0.154846 439 2290 2729

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -37,7 +44,8 @@
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Testing the fitted model"
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
]
},
{
@@ -122,12 +130,22 @@
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# let's take note of what columns means what in the data\n",
"time_column_name = 'timeStamp'\n",
"target_column_name = 'demand'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the data to train and test\n",
"\n"
"### Split the data into train and test sets\n"
]
},
{
@@ -136,50 +154,10 @@
"metadata": {},
"outputs": [],
"source": [
"train = data[data['timeStamp'] < '2017-02-01']\n",
"test = data[data['timeStamp'] >= '2017-02-01']\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare the test data, we will feed X_test to the fitted model and get prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_test = test.pop('demand').values\n",
"X_test = test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the train data to train and valid\n",
"\n",
"Use one month's data as valid data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = train[train['timeStamp'] < '2017-01-01']\n",
"X_valid = train[train['timeStamp'] >= '2017-01-01']\n",
"y_train = X_train.pop('demand').values\n",
"y_valid = X_valid.pop('demand').values\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_valid.shape)\n",
"print(y_valid.shape)"
"X_train = data[data[time_column_name] < '2017-02-01']\n",
"X_test = data[data[time_column_name] >= '2017-02-01']\n",
"y_train = X_train.pop(target_column_name).values\n",
"y_test = X_test.pop(target_column_name).values"
]
},
{
@@ -198,8 +176,7 @@
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**X_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
@@ -209,9 +186,8 @@
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'timeStamp'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
" \"time_column_name\": time_column_name \n",
"}\n",
"\n",
"\n",
@@ -222,8 +198,7 @@
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" X_valid = X_valid,\n",
" y_valid = y_valid,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
@@ -233,7 +208,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
"Submitting the configuration will start a new run in this experiment. For local runs, the execution is synchronous. Depending on the data and number of iterations, this can run for a while. Parameters controlling concurrency may speed up the process, depending on your hardware.\n",
"\n",
"You will see the currently running iterations printing to the console."
]
},
@@ -273,13 +249,34 @@
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the time-series featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values."
"For forecasting, we will use the `forecast` function instead of the `predict` function. There are two reasons for this.\n",
"\n",
"We need to pass the recent values of the target variable `y`, whereas the scikit-compatible `predict` function only takes the non-target variables `X`. In our case, the test data immediately follows the training data, and we fill the `y` variable with `NaN`. The `NaN` serves as a question mark for the forecaster to fill with the actuals. Using the forecast function will produce forecasts using the shortest possible forecast horizon. The last time at which a definite (non-NaN) value is seen is the _forecast origin_ - the last time when the value of the target is known. \n",
"\n",
"Using the `predict` method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use."
]
},
{
@@ -288,15 +285,64 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"y_pred"
"# Replace ALL values in y_pred by NaN. \n",
"# The forecast origin will be at the beginning of the first forecast period\n",
"# (which is the same time as the end of the last training period).\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# limit the evaluation to data where y_test has actuals\n",
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n",
"df_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use the Check Data Function to remove the nan values from y_test to avoid error when calculate metrics "
"Looking at `X_trans` is also useful to see what featurization happened to the data."
]
},
{
@@ -305,29 +351,14 @@
"metadata": {},
"outputs": [],
"source": [
"if len(y_test) != len(y_pred):\n",
" raise ValueError(\n",
" 'the true values and prediction values do not have equal length.')\n",
"elif len(y_test) == 0:\n",
" raise ValueError(\n",
" 'y_true and y_pred are empty.')\n",
"\n",
"# if there is any non-numeric element in the y_true or y_pred,\n",
"# the ValueError exception will be thrown.\n",
"y_test_f = np.array(y_test).astype(float)\n",
"y_pred_f = np.array(y_pred).astype(float)\n",
"\n",
"# remove entries both in y_true and y_pred where at least\n",
"# one element in y_true or y_pred is missing\n",
"y_test = y_test_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]\n",
"y_pred = y_pred_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]"
"X_trans"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n"
"### Calculate accuracy metrics\n"
]
},
{
@@ -336,26 +367,180 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"# Explained variance score: 1 is perfect prediction\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('R2 score: %.2f' % r2_score(y_test, y_pred))\n",
"\n",
"\n",
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred, color='b')\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The distribution looks a little heavy tailed: we underestimate the excursions of the extremes. A normal-quantile transform of the target might help, but let's first try using some past data with the lags and rolling window transforms.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using lags and rolling window features to improve the forecast"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data.\n",
"\n",
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings_lags = {\n",
" 'time_column_name': time_column_name,\n",
" 'target_lags': 1,\n",
" 'target_rolling_window_size': 5,\n",
" # you MUST set the max_horizon when using lags and rolling windows\n",
" # it is optional when looking-back features are not used \n",
" 'max_horizon': len(y_test), # only one grain\n",
"}\n",
"\n",
"\n",
"automl_config_lags = AutoMLConfig(task = 'forecasting',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings_lags)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run_lags = experiment.submit(automl_config_lags, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run_lags, fitted_model_lags = local_run_lags.get_output()\n",
"y_fcst_lags, X_trans_lags = fitted_model_lags.forecast(X_test, y_query)\n",
"df_lags = align_outputs(y_fcst_lags, X_trans_lags, X_test, y_test)\n",
"df_lags.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_trans_lags"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Forecasting model with lags\")\n",
"rmse = np.sqrt(mean_squared_error(df_lags[target_column_name], df_lags['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_lags[target_column_name], df_lags['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_lags[target_column_name], df_lags['predicted']))\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_lags[target_column_name], df_lags['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What features matter for the forecast?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"# feature names are everything in the transformed data except the target\n",
"features = X_trans.columns[:-1]\n",
"expl = explain_model(fitted_model, X_train, X_test, features = features, best_run=best_run_lags, y_train = y_train)\n",
"# unpack the tuple\n",
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
"best_run_lags"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please go to the Azure Portal's best run to see the top features chart.\n",
"\n",
"The informative features make all sorts of intuitive sense. Temperature is a strong driver of heating and cooling demand in NYC. Apart from that, the daily life cycle, expressed by `hour`, and the weekly cycle, expressed by `wday` drives people's energy use habits."
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga"
"name": "xiaga, tosingli"
}
],
"kernelspec": {
@@ -373,7 +558,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.7"
}
},
"nbformat": 4,

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -20,7 +27,9 @@
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)"
"1. [Train](#Train)\n",
"1. [Predict](#Predict)\n",
"1. [Operationalize](#Operationalize)"
]
},
{
@@ -85,9 +94,9 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-ojsalesforecasting'\n",
"experiment_name = 'automl-ojforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-ojsalesforecasting'\n",
"project_folder = './sample_projects/automl-local-ojforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -260,12 +269,12 @@
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity'],\n",
" 'max_horizon': n_test_periods\n",
" 'max_horizon': n_test_periods # optional\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" primary_metric='normalized_mean_absolute_error',\n",
" iterations=10,\n",
" X=X_train,\n",
" y=y_train,\n",
@@ -293,15 +302,6 @@
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -324,7 +324,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make Predictions from the Best Fitted Model\n",
"# Predict\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
]
},
@@ -352,7 +352,7 @@
"source": [
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data. \n",
"\n",
"The target predictions can be retrieved by calling the `predict` method on the best model:"
"We will first create a query `y_query`, which is aligned index-for-index to `X_test`. This is a vector of target values where each `NaN` serves the function of the question mark to be replaced by forecast. Passing definite values in the `y` argument allows the `forecast` function to make predictions on data that does not immediately follow the train data which contains `y`. In each grain, the last time point where the model sees a definite value of `y` is that grain's _forecast origin_."
]
},
{
@@ -361,15 +361,76 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_pipeline.predict(X_test)"
"# Replace ALL values in y_pred by NaN.\n",
"# The forecast origin will be at the beginning of the first forecast period.\n",
"# (Which is the same time as the end of the last training period.)\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_pred, X_trans = fitted_pipeline.forecast(X_test, y_query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate evaluation metrics for the prediction\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE)."
"If you are used to scikit pipelines, perhaps you expected `predict(X_test)`. However, forecasting requires a more general interface that also supplies the past target `y` values. Please use `forecast(X,y)` as `predict(X)` is reserved for internal purposes on forecasting models.\n",
"\n",
"The [energy demand forecasting notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) demonstrates the use of the forecast function in more detail in the context of using lags and rolling window features. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate\n",
"\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE). \n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods in y\n",
" \"\"\"\n",
" \n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_pred, X_trans, X_test, y_test)"
]
},
{
@@ -388,18 +449,392 @@
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('MAPE: %.2f' % MAPE(y_test, y_pred))"
"# Plot outputs\n",
"import matplotlib.pyplot as plt\n",
"\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Operationalize"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_Operationalization_ means getting the model into the cloud so that other can run it after you close the notebook. We will create a docker running on Azure Container Instances with the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML OJ forecaster'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"\n",
"print(local_run.model_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Develop the scoring script\n",
"\n",
"Serializing and deserializing complex data frames may be tricky. We first develop the `run()` function of the scoring script locally, then write it into a scoring script. It is much easier to debug any quirks of the scoring function without crossing two compute environments. For this exercise, we handle a common quirk of how pandas dataframes serialize time stamp values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this is where we test the run function of the scoring script interactively\n",
"# before putting it in the scoring script\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# test the run function here before putting in the scoring script\n",
"import json\n",
"\n",
"test_sample = json.dumps({'X': X_test.to_json(), 'y' : y_query.tolist()})\n",
"response = run(test_sample, fitted_pipeline)\n",
"\n",
"# unpack the response, dealing with the timestamp serialization again\n",
"res_dict = json.loads(response)\n",
"y_fcst_all = pd.read_json(res_dict['index'])\n",
"y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
"y_fcst_all['forecast'] = res_dict['forecast']\n",
"y_fcst_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that the function works locally in the notebook, let's write it down into the scoring script. The scoring script is authored by the data scientist. Adjust it to taste, adding inputs, outputs and processing as needed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score_fcast.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"import pandas as pd\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" # prepare to send over wire as json\n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the model\n",
"from azureml.train.automl.run import AutoMLRun\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)\n",
"best_iteration = int(str.split(best_run.id,'_')[-1]) # the iteration number is a postfix of the run ID."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the best model's dependencies and write them into this file\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_env_file_name = 'fcast_env.yml'\n",
"\n",
"dependencies = ml_run.get_run_sdk_dependencies(iteration = best_iteration)\n",
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this is the script file name we wrote a few cells above\n",
"script_file_name = 'score_fcast.py'\n",
"\n",
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', local_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Image for automl forecasting sample\")\n",
"\n",
"image = Image.create(name = \"automl-fcast-image\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 2, \n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Automl forecasting sample service\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-forecast-01'\n",
"print(aci_service_name)\n",
"\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Call the service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# we send the data to the service serialized into a json string\n",
"test_sample = json.dumps({'X':X_test.to_json(), 'y' : y_query.tolist()})\n",
"response = aci_service.run(input_data = test_sample)\n",
"\n",
"# translate from networkese to datascientese\n",
"try: \n",
" res_dict = json.loads(response)\n",
" y_fcst_all = pd.read_json(res_dict['index'])\n",
" y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
" y_fcst_all['forecast'] = res_dict['forecast'] \n",
"except:\n",
" print(res_dict)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_fcst_all.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete the web service if desired"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"serv = Webservice(ws, 'automl-forecast-01')\n",
"# serv.delete() # don't do it accidentally"
]
}
],
"metadata": {
"authors": [
{
"name": "erwright"
"name": "erwright, tosingli"
}
],
"kernelspec": {
@@ -417,7 +852,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.6.7"
}
},
"nbformat": 4,

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -37,8 +44,9 @@
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model.\n",
"5. Explore the results.\n",
"3. Train the model.\n",
"4. Explore the results.\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
@@ -154,7 +162,6 @@
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
@@ -174,7 +181,6 @@
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 20,\n",
" n_cross_validations = 5,\n",
" preprocess = True,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
@@ -318,6 +324,45 @@
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/model-explanation/auto-ml-model-explanation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -254,7 +261,9 @@
"3.\toverall_summary: The model level feature importance values sorted in descending order\n",
"4.\toverall_imp: The feature names sorted in the same order as in overall_summary\n",
"5.\tper_class_summary: The class level feature importance values sorted in descending order. Only available for the classification case\n",
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case"
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case\n",
"\n",
"Note:- The **retrieve_model_explanation()** API only works in case AutoML has been configured with **'model_explainability'** flag set to **True**. "
]
},
{
@@ -305,7 +314,7 @@
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" explain_model(fitted_model, X_train, X_test)"
" explain_model(fitted_model, X_train, X_test, features=features)"
]
},
{

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/remote-amlcompute/auto-ml-remote-amlcompute.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -112,9 +119,7 @@
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create an AmlCompute as your training compute resource.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
@@ -129,39 +134,34 @@
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"amlcompute_cluster_name = \"cpucluster\"\n",
"\n",
"found = False\n",
"\n",
"# Check if this compute target already exists in the workspace.\n",
"\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"\n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
"\n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -1,515 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using attach**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML to handle text data with remote attach.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`\n",
"- Handling **text** data using the `preprocess` flag"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-attach'\n",
"project_folder = './sample_projects/automl-remote-attach'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Attach a Remote Linux DSVM\n",
"To use a remote Docker compute target:\n",
"1. Create a Linux DSVM in Azure, following these [quick instructions](https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/how-to-create-dsvm-hdi). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
"2. Enter the IP address, user name and password below.\n",
"\n",
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on changing SSH ports for security reasons."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
"import time\n",
"\n",
"# Add your VM information below\n",
"# If a compute with the specified compute_name already exists, it will be used and the dsvm_ip_addr, dsvm_ssh_port, \n",
"# dsvm_username and dsvm_password will be ignored.\n",
"compute_name = 'mydsvmb'\n",
"dsvm_ip_addr = '<<ip_addr>>'\n",
"dsvm_ssh_port = 22\n",
"dsvm_username = '<<username>>'\n",
"dsvm_password = '<<password>>'\n",
"\n",
"if compute_name in ws.compute_targets:\n",
" print('Using existing compute.')\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
"else:\n",
" attach_config = RemoteCompute.attach_configuration(address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
" ComputeTarget.attach(workspace=ws, name=compute_name, attach_configuration=attach_config)\n",
"\n",
" while ws.compute_targets[compute_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
"\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
" \n",
" if dsvm_compute.provisioning_state == 'Failed':\n",
" print('Attached failed.')\n",
" print(dsvm_compute.provisioning_errors)\n",
" dsvm_compute.detach()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns a [dictionary](README.md#getdata)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import numpy as np\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"def get_data():\n",
" remove = ('headers', 'footers', 'quotes')\n",
" categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
" data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
" X_train = np.array(data_train.data).reshape((len(data_train.data),1))\n",
" y_train = np.array(data_train.target)\n",
" \n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.\n",
"|**max_cores_per_iteration**|Indicates how many cores on the compute target would be used to train a single pipeline.<br>Default is *1*; you can set it to *-1* to use all cores.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 2\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"zero_run, zero_model = remote_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,583 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution with DataStore**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
"1. DataStore secures the access details.\n",
"2. DataStore supports read, write to blob and file store\n",
"3. AutoML natively supports copying data from DataStore to DSVM\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Storing data in DataStore.\n",
"2. get_data returning data from DataStore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-remote-datastore-file'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-remote-datastore-file'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
"\n",
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on this."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[compute_target_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(workspace=ws, name=compute_target_name)\n",
" print('found existing:', dsvm_compute.name)\n",
"except:\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size=\"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output=True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"### Copy data file to local\n",
"\n",
"Download the data file.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"import csv\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to the cloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The datastore is a convenient construct associated with your workspace for you to upload/download data, and interact with it from your remote compute targets. It is backed by Azure blob storage account.\n",
"\n",
"The data.tsv files are uploaded into a directory named data at the root of the datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#blob_datastore = Datastore(ws, blob_datastore_name)\n",
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ds.upload_files(\"data.tsv\")\n",
"ds.upload(src_dir='./data', target_path='data', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run\n",
"\n",
"First let's create a DataReferenceConfigruation object to inform the system what data folder to download to the compute target.\n",
"The path_on_compute should be an absolute path to ensure that the data files are downloaded only once. The get_data method should use this same path to access the data files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Get Data File\n",
"For remote executions you should author a get_data.py file containing a get_data() function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"\n",
"The *get_data()* function returns a [dictionary](README.md#getdata).\n",
"\n",
"The read_csv uses the path_on_compute value specified in the DataReferenceConfiguration call plus the path_on_datastore folder and then the actual file name."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
"\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to AutoMLConfig.</i>\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains a specific pipeline with the data|\n",
"|**n_cross_validations**|Number of cross validation splits|\n",
"|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM\n",
"|**preprocess**| *True/False* <br>Setting this to *True* enables Auto ML to perform preprocessing <br>on the input to handle *missing data*, and perform some common *feature extraction*|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.|\n",
"|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> Default is *1*, you can set it to *-1* to use all cores|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 1,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path=project_folder,\n",
" run_configuration=conda_run_config,\n",
" #compute_target = dsvm_compute,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under /tmp/azureml_run/{iterationid}/azureml-logs\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use sdk methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Canceling Runs\n",
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method returns the best run and the fitted model. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model based on any other metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric=lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a specific iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 1\n",
"# best_run, fitted_model = remote_run.get_output(iteration=iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,527 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using DSVM (Ubuntu)**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you wiil learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition, this notebook showcases the following features:\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-dsvm'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"**Note:** If creation fails with a message about Marketplace purchase eligibilty, start creation of a DSVM through the [Azure portal](https://portal.azure.com), and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled this setting, you can exit the portal without actually creating the DSVM, and creation of the DSVM through the notebook should work.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import DsvmCompute\n",
"\n",
"dsvm_name = 'mydsvma'\n",
"try:\n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found an existing DSVM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2s_v3\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='re_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='re_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/re_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/re_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 2,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder, \n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** The first run on a new DSVM may take several minutes to prepare the environment."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading Executed Runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment=experiment, run_id = 'AutoML_480d3ed6-fc94-44aa-8f4e-0b945db9d3ef')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sample-weight/auto-ml-sample-weight.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/subsampling/auto-ml-subsampling-local.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -26,4 +26,8 @@ You can use Azure Databricks as a compute target from [Azure Machine Learning Pi
For more on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
**Please let us know your feedback.**
**Please let us know your feedback.**
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/README.png)

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/build-model-run-history-03.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -333,6 +340,13 @@
"source": [
"dbutils.notebook.exit(\"success\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/build-model-run-history-03.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/deploy-to-aci-04.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -277,6 +284,13 @@
"#comment to not delete the web service\n",
"myservice.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aci-04.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -203,6 +210,13 @@
"#model.delete()\n",
"aks_target.delete() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/deploy-to-aks-existingimage-05.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/ingest-data-02.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -139,6 +146,13 @@
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/ingest-data-02.png)"
]
}
],
"metadata": {

View File

@@ -11,6 +11,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/azure-databricks/amlsdk/installation-and-configuration-01.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -143,6 +150,13 @@
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/amlsdk/installation-and-configuration-01.png)"
]
}
],
"metadata": {

View File

@@ -23,7 +23,8 @@
"3. Configure Automated ML using `AutoMLConfig`.\n",
"4. Train the model using Azure Databricks.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"6. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"7. Test the best fitted model.\n",
"\n",
"Before running this notebook, please follow the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks\" target=\"_blank\">readme for using Automated ML on Azure Databricks</a> for installing necessary libraries to your cluster."
]
@@ -556,6 +557,45 @@
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -620,6 +660,13 @@
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-01.png)"
]
}
],
"metadata": {

View File

@@ -207,6 +207,7 @@
"import os\n",
"import random\n",
"import time\n",
"import json\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
@@ -295,7 +296,7 @@
" datastore_name = datastore_name, \n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
" overwrite = True\n",
")"
]
},
@@ -427,7 +428,7 @@
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 30,\n",
" iterations = 5,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
@@ -591,22 +592,21 @@
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import numpy as np\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"import pandas as pd\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" model_path = Model.get_model_path(model_name = '<<model_id>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" data = (pd.DataFrame(np.array(json.loads(raw_data)['data']), columns=[str(i) for i in range(0,64)]))\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
@@ -614,6 +614,22 @@
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Replace <<model_id>>\n",
"content = \"\"\n",
"with open(\"score.py\", \"r\") as fo:\n",
" content = fo.read()\n",
"\n",
"new_content = content.replace(\"<<model_id>>\", local_run.model_id)\n",
"with open(\"score.py\", \"w\") as fw:\n",
" fw.write(new_content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -672,16 +688,19 @@
"metadata": {},
"outputs": [],
"source": [
"\n",
"# this will take 10-15 minutes to finish\n",
"\n",
"service_name = \"<<servicename>>\"\n",
"import uuid\n",
"from azureml.core.image import ContainerImage\n",
"\n",
"guid = str(uuid.uuid4()).split(\"-\")[0]\n",
"service_name = \"myservice-{}\".format(guid)\n",
"print(\"Creating service with name: {}\".format(service_name))\n",
"runtime = \"spark-py\" \n",
"driver_file = \"score.py\"\n",
"my_conda_file = \"mydeployenv.yml\"\n",
"\n",
"# image creation\n",
"from azureml.core.image import ContainerImage\n",
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
" runtime = runtime, \n",
" conda_file = 'mydeployenv.yml')\n",
@@ -744,18 +763,46 @@
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" test_sample = json.dumps({'data':X_test[index:index + 1].values.tolist()})\n",
" predicted = myservice.run(input_data = test_sample)\n",
" label = y_test.values[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" predictedDict = json.loads(predicted)\n",
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0]) \n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Delete the service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"myservice.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/automl/automl-databricks-local-with-deployment.png)"
]
}
],
"metadata": {

View File

@@ -677,6 +677,13 @@
"# Next: ADLA as a Compute Target\n",
"To use ADLA as a compute target from Azure Machine Learning Pipeline, a AdlaStep is used. This [notebook](./aml-pipelines-use-adla-as-compute-target.ipynb) demonstrates the use of AdlaStep in Azure Machine Learning Pipeline."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-databricks/databricks-as-remote-compute-target/aml-pipelines-use-databricks-as-compute-target.png)"
]
}
],
"metadata": {

View File

@@ -0,0 +1,55 @@
**Azure HDInsight**
Azure HDInsight is a fully managed cloud Hadoop & Spark offering the gives
optimized open-source analytic clusters for Spark, Hive, MapReduce, HBase,
Storm, and Kafka. HDInsight Spark clusters provide kernels that you can use with
the Jupyter notebook on [Apache Spark](https://spark.apache.org/) for testing
your applications. 
How Azure HDInsight works with Azure Machine Learning service
- You can train a model using Spark clusters and deploy the model to ACI/AKS
from within Azure HDInsight.
- You can also use [automated machine
learning](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-automated-ml) capabilities
integrated within Azure HDInsight.
You can use Azure HDInsight as a compute target from an [Azure Machine Learning
pipeline](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-ml-pipelines).
**Set up your HDInsight cluster**
Create [HDInsight
cluster](https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters)
**Quick create: Basic cluster setup**
This article walks you through setup in the [Azure
portal](https://portal.azure.com/), where you can create an HDInsight cluster
using *Quick create* or *Custom*.
![hdinsight create options custom quick create](media/0a235b34c0b881117e51dc31a232dbe1.png)
Follow instructions on the screen to do a basic cluster setup. Details are
provided below for:
- [Resource group
name](https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#resource-group-name)
- [Cluster types and
configuration](https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#cluster-types)
(Cluster must be Spark 2.3 (HDI 3.6) or greater)
- Cluster login and SSH username
- [Location](https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#location)
**Import the sample HDI notebook in Jupyter**
**Important links:**
Create HDI cluster:
<https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters>
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-hdi/README.png)

View File

@@ -0,0 +1,631 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/azure-hdi/automl_hdi_local_classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated ML on Azure HDInsight\n",
"\n",
"In this example we use the scikit-learn's <a href=\"http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset\" target=\"_blank\">digit dataset</a> to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
"2. Create an `Experiment` in an existing `Workspace`.\n",
"3. Configure Automated ML using `AutoMLConfig`.\n",
"4. Train the model using Azure HDInsight.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"Before running this notebook, please follow the readme for using Automated ML on Azure HDI for installing necessary libraries to your cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check the Azure ML Core SDK Version to Validate Your Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun\n",
"import logging\n",
"\n",
"print(\"SDK Version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize an Azure ML Workspace\n",
"### What is an Azure ML Workspace and Why Do I Need One?\n",
"\n",
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
"\n",
"\n",
"### What do I Need?\n",
"\n",
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
"* A name for your workspace. You can choose one.\n",
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun\n",
"import logging\n",
"\n",
"subscription_id = \"<Your SubscriptionId>\" #you should be owner or contributor\n",
"resource_group = \"<Resource group - new or existing>\" #you should be owner or contributor\n",
"workspace_name = \"<workspace to be created>\" #your workspace name\n",
"workspace_region = \"<azureregion>\" #your region\n",
"\n",
"\n",
"tenant_id = \"<tenant_id>\"\n",
"app_id = \"<app_id>\"\n",
"app_key = \"<app_key>\"\n",
"\n",
"auth_sp = ServicePrincipalAuthentication(tenant_id = tenant_id,\n",
" service_principal_id = app_id,\n",
" service_principal_password = app_key)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a Workspace\n",
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
"\n",
"This will fail when:\n",
"1. The workspace already exists.\n",
"2. You do not have permission to create a workspace in the resource group.\n",
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
"\n",
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
"\n",
"**Note:** Creation of a new workspace can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##TESTONLY\n",
"# Import the Workspace class and check the Azure ML SDK version.\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" auth = auth_sp,\n",
" exist_ok=True)\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuring Your Local Environment\n",
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group,\n",
" auth = auth_sp)\n",
"\n",
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Folder to Host Sample Projects\n",
"Finally, create a folder where all the sample projects will be hosted."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sample_projects_folder = './sample_projects'\n",
"\n",
"if not os.path.isdir(sample_projects_folder):\n",
" os.mkdir(sample_projects_folder)\n",
" \n",
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Experiment\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import random\n",
"import time\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification-hdi'\n",
"project_folder = './sample_projects/automl-local-classification-hdi'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Registering Datastore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Datastore is the way to save connection information to a storage service (e.g. Azure Blob, Azure Data Lake, Azure SQL) information to your workspace so you can access them without exposing credentials in your code. The first thing you will need to do is register a datastore, you can refer to our [python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) on how to register datastores. __Note: for best security practices, please do not check in code that contains registering datastores with secrets into your source control__\n",
"\n",
"The code below registers a datastore pointing to a publicly readable blob container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"\n",
"datastore_name = 'demo_training'\n",
"container_name = 'digits' \n",
"account_name = 'automlpublicdatasets'\n",
"Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = datastore_name, \n",
" container_name = container_name, \n",
" account_name = account_name,\n",
" overwrite = True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example on how to register a private blob container\n",
"```python\n",
"datastore = Datastore.register_azure_blob_container(\n",
" workspace = ws, \n",
" datastore_name = 'example_datastore', \n",
" container_name = 'example-container', \n",
" account_name = 'storageaccount',\n",
" account_key = 'accountkey'\n",
")\n",
"```\n",
"The example below shows how to register an Azure Data Lake store. Please make sure you have granted the necessary permissions for the service principal to access the data lake.\n",
"```python\n",
"datastore = Datastore.register_azure_data_lake(\n",
" workspace = ws,\n",
" datastore_name = 'example_datastore',\n",
" store_name = 'adlsstore',\n",
" tenant_id = 'tenant-id-of-service-principal',\n",
" client_id = 'client-id-of-service-principal',\n",
" client_secret = 'client-secret-of-service-principal'\n",
")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Training Data Using DataPrep"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Automated ML takes a Dataflow as input.\n",
"\n",
"If you are familiar with Pandas and have done your data preparation work in Pandas already, you can use the `read_pandas_dataframe` method in dprep to convert the DataFrame to a Dataflow.\n",
"```python\n",
"df = pd.read_csv(...)\n",
"# apply some transforms\n",
"dprep.read_pandas_dataframe(df, temp_folder='/path/accessible/by/both/driver/and/worker')\n",
"```\n",
"\n",
"If you just need to ingest data without doing any preparation, you can directly use AzureML Data Prep (Data Prep) to do so. The code below demonstrates this scenario. Data Prep also has data preparation capabilities, we have many [sample notebooks](https://github.com/Microsoft/AMLDataPrepDocs) demonstrating the capabilities.\n",
"\n",
"You will get the datastore you registered previously and pass it to Data Prep for reading. The data comes from the digits dataset: `sklearn.datasets.load_digits()`. `DataPath` points to a specific location within a datastore. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.dataprep as dprep\n",
"from azureml.data.datapath import DataPath\n",
"\n",
"datastore = Datastore.get(workspace = ws, datastore_name = datastore_name)\n",
"\n",
"X_train = dprep.read_csv(datastore.path('X.csv'))\n",
"y_train = dprep.read_csv(datastore.path('y.csv')).to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Review the Data Preparation Result\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train.get_profile()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train.get_profile()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure AutoML\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**spark_context**|Spark Context object. for HDInsight, use spark_context=sc|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure HDInsight cluster.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 3,\n",
" preprocess = True,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #HDI /spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train the Models\n",
"\n",
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore the Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following will show the child runs and waits for the parent run to complete."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model after the above run is complete \n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"#### Load Test Data - you can split the dataset beforehand & pass Train dataset to AutoML and use Test dataset to evaluate the best model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"blob_location = \"https://{}.blob.core.windows.net/{}\".format(account_name, container_name)\n",
"X_test = pd.read_csv(\"{}./X_valid.csv\".format(blob_location), header=0)\n",
"y_test = pd.read_csv(\"{}/y_valid.csv\".format(blob_location), header=0)\n",
"images = pd.read_csv(\"{}/images.csv\".format(blob_location), header=None)\n",
"images = np.reshape(images.values, (100,8,8))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict digits and see how our model works. This is just an example to show you."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test.values[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(3, figsize = (5,5))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When deploying an automated ML trained model, please specify _pippackages=['azureml-sdk[automl]']_ in your CondaDependencies.\n",
"\n",
"Please refer to only the **Deploy** section in this notebook - <a href=\"https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment\" target=\"_blank\">Deployment of Automated ML trained model</a>"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
},
{
"name": "sasum"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "Python",
"name": "Python36"
},
"language_info": {
"codemirror_mode": {
"name": "python",
"version": 3
},
"mimetype": "text/x-python",
"name": "pyspark3",
"pygments_lexer": "python3"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 587284549713154
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -0,0 +1 @@
Under contruction...please visit again soon!

View File

@@ -0,0 +1,12 @@
# Model Deployment with Azure ML service
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization).
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
## Get Started
To begin, you will need an ML workspace.
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
## Deploy to the cloud
You can deploy to the cloud using the Azure ML CLI or the Azure ML SDK.
- CLI example: https://aka.ms/azmlcli
- Notebook example: [model-register-and-deploy](./model-register-and-deploy.ipynb).

View File

@@ -0,0 +1 @@
RUN echo "this is test"

View File

@@ -0,0 +1,289 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/deploy-to-cloud/model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deploy-to-cloud/model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register Model and deploy as Webservice\n",
"\n",
"This example shows how to deploy a Webservice in step-by-step fashion:\n",
"\n",
" 1. Register Model\n",
" 2. Deploy Model as Webservice"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your Models. Note you need to have a `sklearn_regression_model.pkl` file in the current directory. This file is generated by the 01 notebook. The below call registers that file as a Model with the same name `sklearn_regression_model.pkl` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration\n",
"\n",
"There is now support for a source directory, you can upload an entire folder from your local machine as dependencies for the Webservice.\n",
"Note: in that case, your entry_script, conda_file, and extra_docker_file_steps paths are relative paths to the source_directory path.\n",
"\n",
"Sample code for using a source directory:\n",
"\n",
"```python\n",
"inference_config = InferenceConfig(source_directory=\"C:/abc\",\n",
" runtime= \"python\", \n",
" entry_script=\"x/y/score.py\",\n",
" conda_file=\"env/myenv.yml\", \n",
" extra_docker_file_steps=\"helloworld.txt\")\n",
"```\n",
"\n",
" - source_directory = holds source path as string, this entire folder gets added in image so its really easy to access any files within this folder or subfolder\n",
" - runtime = Which runtime to use for the image. Current supported runtimes are 'spark-py' and 'python\n",
" - entry_script = contains logic specific to initializing your model and running predictions\n",
" - conda_file = manages conda and python package dependencies.\n",
" - extra_docker_file_steps = optional: any extra steps you want to inject into docker file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create image"
]
},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(runtime= \"python\", \n",
" entry_script=\"score.py\",\n",
" conda_file=\"myenv.yml\", \n",
" extra_docker_file_steps=\"helloworld.txt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy Model as Webservice on Azure Container Instance\n",
"\n",
"Note that the service creation can take few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice, Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1)\n",
"aci_service_name = 'aciservice1'\n",
"\n",
"try:\n",
" # if you want to get existing service below is the command\n",
" # since aci name needs to be unique in subscription deleting existing aci if any\n",
" # we use aci_service_name to create azure aci\n",
" service = Webservice(ws, name=aci_service_name)\n",
" if service:\n",
" service.delete()\n",
"except WebserviceException as e:\n",
" print()\n",
"\n",
"service = Model.deploy(ws, aci_service_name, [model], inference_config, deployment_config)\n",
"\n",
"service.wait_for_deployment(True)\n",
"print(service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test web service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"\n",
"test_sample_encoded = bytes(test_sample,encoding = 'utf8')\n",
"prediction = service.run(input_data=test_sample_encoded)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Delete ACI to clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Profiling\n",
"\n",
"you can also take advantage of profiling feature for model\n",
"\n",
"```python\n",
"\n",
"profile = model.profile(ws, \"profilename\", [model], inference_config, test_sample)\n",
"profile.wait_for_profiling(True)\n",
"profiling_results = profile.get_results()\n",
"print(profiling_results)\n",
"\n",
"```"
]
}
],
"metadata": {
"authors": [
{
"name": "aashishb"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: project_environment
dependencies:
- python=3.6.2
- pip:
- azureml-defaults
- scikit-learn
- numpy
- inference-schema[numpy-support]

View File

@@ -0,0 +1,34 @@
import pickle
import json
import numpy as np
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
def init():
global model
# note here "sklearn_regression_model.pkl" is the name of the model registered under
# this is a different behavior than before when the code is run locally, even though the code is the same.
model_path = Model.get_model_path('sklearn_regression_model.pkl')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
output_sample = np.array([3726.995])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
try:
result = model.predict(data)
# you can return any datatype as long as it is JSON-serializable
return result.tolist()
except Exception as e:
error = str(e)
return error

View File

@@ -0,0 +1,12 @@
# Model Deployment with Azure ML service
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization).
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
## Get Started
To begin, you will need an ML workspace.
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
## Deploy locally
You can deploy a model locally for testing & debugging using the Azure ML CLI or the Azure ML SDK.
- CLI example: https://aka.ms/azmlcli
- Notebook example: [register-model-deploy-local](./register-model-deploy-local.ipynb).

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -0,0 +1 @@
RUN echo "this is test"

View File

@@ -0,0 +1,8 @@
name: project_environment
dependencies:
- python=3.6.2
- pip:
- azureml-defaults
- scikit-learn
- numpy
- inference-schema[numpy-support]

View File

@@ -0,0 +1,494 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deploy-to-local/register-model-deploy-local-advanced.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register model and deploy locally with advanced usages\n",
"\n",
"This example shows how to deploy a web service in step-by-step fashion:\n",
"\n",
" 1. Register model\n",
" 2. Deploy the image as a web service in a local Docker container.\n",
" 3. Quickly test changes to your entry script by reloading the local service.\n",
" 4. Optionally, you can also make changes to model, conda or extra_docker_file_steps and update local service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the same name `sklearn_regression_model.pkl` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Manage your dependencies in a folder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"source_directory = \"C:/abc\"\n",
"\n",
"os.makedirs(source_directory, exist_ok = True)\n",
"os.makedirs(\"C:/abc/x/y\", exist_ok = True)\n",
"os.makedirs(\"C:/abc/env\", exist_ok = True)\n",
"os.makedirs(\"C:/abc/dockerstep\", exist_ok = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show `score.py`. Note that the `sklearn_regression_model.pkl` in the `get_model_path` call is referring to a model named `sklearn_regression_model.pkl` registered under the workspace. It is NOT referencing the local file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile C:/abc/x/y/score.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under\n",
" # this is a different behavior than before when the code is run locally, even though the code is the same.\n",
" model_path = Model.get_model_path('sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
" global name\n",
" # note here, entire source directory on inference config gets added into image\n",
" # bellow is the example how you can use any extra files in image\n",
" with open('./abc/extradata.json') as json_file: \n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return \"Hello \" + name + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile C:/abc/env/myenv.yml\n",
"name: project_environment\n",
"dependencies:\n",
" - python=3.6.2\n",
" - pip:\n",
" - azureml-defaults\n",
" - scikit-learn\n",
" - numpy\n",
" - inference-schema[numpy-support]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile C:/abc/dockerstep/customDockerStep.txt\n",
"RUN echo \"this is test\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile C:/abc/extradata.json\n",
"{\n",
" \"people\": [\n",
" {\n",
" \"website\": \"microsoft.com\", \n",
" \"from\": \"Seattle\", \n",
" \"name\": \"Mrudula\"\n",
" }\n",
" ]\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration\n",
"\n",
" - source_directory = holds source path as string, this entire folder gets added in image so its really easy to access any files within this folder or subfolder\n",
" - runtime = Which runtime to use for the image. Current supported runtimes are 'spark-py' and 'python\n",
" - entry_script = contains logic specific to initializing your model and running predictions\n",
" - conda_file = manages conda and python package dependencies.\n",
" - extra_docker_file_steps = optional: any extra steps you want to inject into docker file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(source_directory=\"C:/abc\",\n",
" runtime= \"python\", \n",
" entry_script=\"x/y/score.py\",\n",
" conda_file=\"env/myenv.yml\", \n",
" extra_docker_file_steps=\"dockerstep/customDockerStep.txt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Model as a Local Docker Web Service\n",
"\n",
"*Make sure you have Docker installed and running.*\n",
"\n",
"Note that the service creation can take few minutes.\n",
"\n",
"NOTE:\n",
"\n",
"we require docker running with linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running\n",
"\n",
" powershell command to switch to linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine\n",
"\n",
"and c drive is shared https://docs.docker.com/docker-for-windows/#shared-drives\n",
"sometimes you have to reshare c drive as docker \n",
"\n",
"<img src=\"./dockerSharedDrive.JPG\" align=\"left\"/>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import LocalWebservice\n",
"\n",
"#this is optional, if not provided we choose random port\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
"\n",
"local_service.wait_for_deployment()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Local service port: {}'.format(local_service.port))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Check Status and Get Container Logs\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(local_service.get_logs())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Web Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the web service with some input data to get a prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': [\n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n",
" ]\n",
"})\n",
"\n",
"sample_input = bytes(sample_input, encoding='utf-8')\n",
"\n",
"print(local_service.run(input_data=sample_input))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reload Service\n",
"\n",
"You can update your score.py file and then call `reload()` to quickly restart the service. This will only reload your execution script and dependency files, it will not rebuild the underlying Docker image. As a result, `reload()` is fast, but if you do need to rebuild the image -- to add a new Conda or pip package, for instance -- you will have to call `update()`, instead (see below)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile C:/abc/x/y/score.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under\n",
" # this is a different behavior than before when the code is run locally, even though the code is the same.\n",
" model_path = Model.get_model_path('sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
" global name, from_location\n",
" # note here, entire source directory on inference config gets added into image\n",
" # bellow is the example how you can use any extra files in image\n",
" with open('./abc/extradata.json') as json_file: \n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
" from_location = data[\"people\"][0][\"from\"]\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return \"Hello \" + name + \" from \" + from_location + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# after reload now if you call run this will return updated return message\n",
"\n",
"print(local_service.run(input_data=sample_input))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update Service\n",
"\n",
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
"\n",
"```python\n",
"\n",
"local_service.update(models = [SomeOtherModelObject],\n",
" deployment_config = local_config,\n",
" inference_config = inference_config)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Delete Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "raymondl"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,349 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deploy-to-local/register-model-deploy-local.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register model and deploy locally\n",
"\n",
"This example shows how to deploy a web service in step-by-step fashion:\n",
"\n",
" 1. Register model\n",
" 2. Deploy the image as a web service in a local Docker container.\n",
" 3. Quickly test changes to your entry script by reloading the local service.\n",
" 4. Optionally, you can also make changes to model, conda or extra_docker_file_steps and update local service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the same name `sklearn_regression_model.pkl` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(runtime= \"python\", \n",
" entry_script=\"score.py\",\n",
" conda_file=\"myenv.yml\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Model as a Local Docker Web Service\n",
"\n",
"*Make sure you have Docker installed and running.*\n",
"\n",
"Note that the service creation can take few minutes.\n",
"\n",
"NOTE:\n",
"\n",
"we require docker running with linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running\n",
"\n",
" powershell command to switch to linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine\n",
"\n",
"and c drive is shared https://docs.docker.com/docker-for-windows/#shared-drives\n",
"sometimes you have to reshare c drive as docker \n",
"\n",
"<img src=\"./dockerSharedDrive.JPG\" align=\"left\"/>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import LocalWebservice\n",
"\n",
"#this is optional, if not provided we choose random port\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
"\n",
"local_service.wait_for_deployment()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Local service port: {}'.format(local_service.port))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Check Status and Get Container Logs\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(local_service.get_logs())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Web Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the web service with some input data to get a prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': [\n",
" [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]\n",
" ]\n",
"})\n",
"\n",
"sample_input = bytes(sample_input, encoding='utf-8')\n",
"\n",
"print(local_service.run(input_data=sample_input))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reload Service\n",
"\n",
"You can update your score.py file and then call `reload()` to quickly restart the service. This will only reload your execution script and dependency files, it will not rebuild the underlying Docker image. As a result, `reload()` is fast, but if you do need to rebuild the image -- to add a new Conda or pip package, for instance -- you will have to call `update()`, instead (see below)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under\n",
" # this is a different behavior than before when the code is run locally, even though the code is the same.\n",
" model_path = Model.get_model_path('sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"input_sample = np.array([[10,9,8,7,6,5,4,3,2,1]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return 'hello from updated score.py'\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# after reload now if you call run this will return updated return message\n",
"\n",
"print(local_service.run(input_data=sample_input))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update Service\n",
"\n",
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
"\n",
"```python\n",
"\n",
"local_service.update(models = [SomeOtherModelObject],\n",
" deployment_config = local_config,\n",
" inference_config = inference_config)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Delete Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "raymondl"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,34 @@
import pickle
import json
import numpy as np
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
def init():
global model
# note here "sklearn_regression_model.pkl" is the name of the model registered under
# this is a different behavior than before when the code is run locally, even though the code is the same.
model_path = Model.get_model_path('sklearn_regression_model.pkl')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
output_sample = np.array([3726.995])
@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
try:
result = model.predict(data)
# you can return any datatype as long as it is JSON-serializable
return result.tolist()
except Exception as e:
error = str(e)
return error

View File

@@ -0,0 +1,102 @@
# Notebooks for Microsoft Azure Machine Learning Hardware Accelerated Models SDK
Easily create and train a model using various deep neural networks (DNNs) as a featurizer for deployment to Azure or a Data Box Edge device for ultra-low latency inferencing using FPGA's. These models are currently available:
* ResNet 50
* ResNet 152
* DenseNet-121
* VGG-16
* SSD-VGG
To learn more about the azureml-accel-model classes, see the section [Model Classes](#model-classes) below or the [Azure ML Accel Models SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py).
### Step 1: Create an Azure ML workspace
Follow [these instructions](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python) to install the Azure ML SDK on your local machine, create an Azure ML workspace, and set up your notebook environment, which is required for the next step.
### Step 2: Check your FPGA quota
Use the Azure CLI to check whether you have quota.
```shell
az vm list-usage --location "eastus" -o table
```
The other locations are ``southeastasia``, ``westeurope``, and ``westus2``.
Under the "Name" column, look for "Standard PBS Family vCPUs" and ensure you have at least 6 vCPUs under "CurrentValue."
If you do not have quota, then submit a request form [here](https://aka.ms/accelerateAI).
### Step 3: Install the Azure ML Accelerated Models SDK
Once you have set up your environment, install the Azure ML Accel Models SDK. This package requires tensorflow >= 1.6,<2.0 to be installed.
If you already have tensorflow >= 1.6,<2.0 installed in your development environment, you can install the SDK package using:
```
pip install azureml-accel-models
```
If you do not have tensorflow >= 1.6,<2.0 and are using a CPU-only development environment, our SDK with tensorflow can be installed using:
```
pip install azureml-accel-models[cpu]
```
If your machine supports GPU (for example, on an [Azure DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/overview)), then you can leverage the tensorflow-gpu functionality using:
```
pip install azureml-accel-models[gpu]
```
### Step 4: Follow our notebooks
The notebooks in this repo walk through the following scenarios:
* [Quickstart](accelerated-models-quickstart.ipynb), deploy and inference a ResNet50 model trained on ImageNet
* [Object Detection](accelerated-models-object-detection.ipynb), deploy and inference an SSD-VGG model that can do object detection
* [Training models](accelerated-models-training.ipynb), train one of our accelerated models on the Kaggle Cats and Dogs dataset to see how to improve accuracy on custom datasets
<a name="model-classes"></a>
## Model Classes
As stated above, we support 5 Accelerated Models. Here's more information on their input and output tensors.
**Available models and output tensors**
The available models and the corresponding default classifier output tensors are below. This is the value that you would use during inferencing if you used the default classifier.
* Resnet50, QuantizedResnet50
``
output_tensors = "classifier_1/resnet_v1_50/predictions/Softmax:0"
``
* Resnet152, QuantizedResnet152
``
output_tensors = "classifier/resnet_v1_152/predictions/Softmax:0"
``
* Densenet121, QuantizedDensenet121
``
output_tensors = "classifier/densenet121/predictions/Softmax:0"
``
* Vgg16, QuantizedVgg16
``
output_tensors = "classifier/vgg_16/fc8/squeezed:0"
``
* SsdVgg, QuantizedSsdVgg
``
output_tensors = ['ssd_300_vgg/block4_box/Reshape_1:0', 'ssd_300_vgg/block7_box/Reshape_1:0', 'ssd_300_vgg/block8_box/Reshape_1:0', 'ssd_300_vgg/block9_box/Reshape_1:0', 'ssd_300_vgg/block10_box/Reshape_1:0', 'ssd_300_vgg/block11_box/Reshape_1:0', 'ssd_300_vgg/block4_box/Reshape:0', 'ssd_300_vgg/block7_box/Reshape:0', 'ssd_300_vgg/block8_box/Reshape:0', 'ssd_300_vgg/block9_box/Reshape:0', 'ssd_300_vgg/block10_box/Reshape:0', 'ssd_300_vgg/block11_box/Reshape:0']
``
For more information, please reference the azureml.accel.models package in the [Azure ML Python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models?view=azure-ml-py).
**Input tensors**
The input_tensors value defaults to "Placeholder:0" and is created in the [Image Preprocessing](#construct-model) step in the line:
``
in_images = tf.placeholder(tf.string)
``
You can change the input_tensors name by doing this:
``
in_images = tf.placeholder(tf.string, name="images")
``
## Resources
* [Read more about FPGAs](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas)

View File

@@ -0,0 +1,492 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure ML Hardware Accelerated Object Detection"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial will show you how to deploy an object detection service based on the SSD-VGG model in just a few minutes using the Azure Machine Learning Accelerated AI service.\n",
"\n",
"We will use the SSD-VGG model accelerated on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
"\n",
"The steps in this notebook are: \n",
"1. [Setup Environment](#set-up-environment)\n",
"* [Construct Model](#construct-model)\n",
" * Image Preprocessing\n",
" * Featurizer\n",
" * Save Model\n",
" * Save input and output tensor names\n",
"* [Create Image](#create-image)\n",
"* [Deploy Image](#deploy-image)\n",
"* [Test the Service](#test-service)\n",
" * Create Client\n",
" * Serve the model\n",
"* [Cleanup](#cleanup)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"set-up-environment\"></a>\n",
"## 1. Set up Environment\n",
"### 1.a. Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import tensorflow as tf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.b. Retrieve Workspace\n",
"If you haven't created a Workspace, please follow [this notebook](\"../../../configuration.ipynb\") to do so. If you have, run the codeblock below to retrieve it. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"construct-model\"></a>\n",
"## 2. Construct model\n",
"### 2.a. Image preprocessing\n",
"We'd like our service to accept JPEG images as input. However the input to SSD-VGG is a float tensor of shape \\[1, 300, 300, 3\\]. The first dimension is batch, then height, width, and channels (i.e. NHWC). To bridge this gap, we need code that decodes JPEG images and resizes them appropriately for input to SSD-VGG. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as TensorFlow strings) and produces a tensor that is ready to be featurized by SSD-VGG.\n",
"\n",
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
"import azureml.accel.models.utils as utils\n",
"tf.reset_default_graph()\n",
"\n",
"in_images = tf.placeholder(tf.string)\n",
"image_tensors = utils.preprocess_array(in_images, output_width=300, output_height=300, preserve_aspect_ratio=False)\n",
"print(image_tensors.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.b. Featurizer\n",
"The SSD-VGG model is different from our other models in that it generates 12 tensor outputs. These corresponds to x,y displacements of the anchor boxes and the detection confidence (for 21 classes). Because these outputs are not convenient to work with, we will later use a pre-defined post-processing utility to transform the outputs into a simplified list of bounding boxes with their respective class and confidence.\n",
"\n",
"For more information about the output tensors, take this example: the output tensor 'ssd_300_vgg/block4_box/Reshape_1:0' has a shape of [None, 37, 37, 4, 21]. This gives the pre-softmax confidence for 4 anchor boxes situated at each site of a 37 x 37 grid imposed on the image, one confidence score for each of the 21 classes. The first dimension is the batch dimension. Likewise, 'ssd_300_vgg/block4_box/Reshape:0' has shape [None, 37, 37, 4, 4] and encodes the (cx, cy) center shift and rescaling (sw, sh) relative to each anchor box. Refer to the [SSD-VGG paper](https://arxiv.org/abs/1512.02325) to understand how these are computed. The other 10 tensors are defined similarly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.accel.models import SsdVgg\n",
"\n",
"saved_model_dir = os.path.join(os.path.expanduser('~'), 'models')\n",
"model_graph = SsdVgg(saved_model_dir, is_frozen = True)\n",
"\n",
"print('SSD-VGG Input Tensors:')\n",
"for idx, input_name in enumerate(model_graph.input_tensor_list):\n",
" print('{}, {}'.format(input_name, model_graph.get_input_dims(idx)))\n",
" \n",
"print('SSD-VGG Output Tensors:')\n",
"for idx, output_name in enumerate(model_graph.output_tensor_list):\n",
" print('{}, {}'.format(output_name, model_graph.get_output_dims(idx)))\n",
"\n",
"ssd_outputs = model_graph.import_graph_def(image_tensors, is_training=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.c. Save Model\n",
"Now that we loaded both parts of the tensorflow graph (preprocessor and SSD-VGG featurizer), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_name = \"ssdvgg\"\n",
"model_save_path = os.path.join(saved_model_dir, model_name, \"saved_model\")\n",
"print(\"Saving model in {}\".format(model_save_path))\n",
"\n",
"output_map = {}\n",
"for i, output in enumerate(ssd_outputs):\n",
" output_map['out_{}'.format(i)] = output\n",
"\n",
"with tf.Session() as sess:\n",
" model_graph.restore_weights(sess)\n",
" tf.saved_model.simple_save(sess, \n",
" model_save_path, \n",
" inputs={'images': in_images}, \n",
" outputs=output_map)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.d. Important! Save names of input and output tensors\n",
"\n",
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"input_tensors = in_images.name\n",
"# We will use the list of output tensors during inferencing\n",
"output_tensors = [output.name for output in ssd_outputs]\n",
"# However, for multiple output tensors, our AccelOnnxConverter will \n",
"# accept comma-delimited strings (lists will cause error)\n",
"output_tensors_str = \",\".join(output_tensors)\n",
"\n",
"print(input_tensors)\n",
"print(output_tensors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"create-image\"></a>\n",
"## 3. Create AccelContainerImage\n",
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.model import Model\n",
"from azureml.core.image import Image\n",
"from azureml.accel import AccelOnnxConverter\n",
"from azureml.accel import AccelContainerImage\n",
"\n",
"# Retrieve workspace\n",
"ws = Workspace.from_config()\n",
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
"\n",
"# Register model\n",
"registered_model = Model.register(workspace = ws,\n",
" model_path = model_save_path,\n",
" model_name = model_name)\n",
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
"\n",
"# Convert model\n",
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors_str)\n",
"# If it fails, you can run wait_for_completion again with show_output=True.\n",
"convert_request.wait_for_completion(show_output=False)\n",
"converted_model = convert_request.result\n",
"print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
" converted_model.id, converted_model.created_time, '\\n')\n",
"\n",
"# Package into AccelContainerImage\n",
"image_config = AccelContainerImage.image_configuration()\n",
"# Image name must be lowercase\n",
"image_name = \"{}-image\".format(model_name)\n",
"image = Image.create(name = image_name,\n",
" models = [converted_model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"image.wait_for_creation()\n",
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"deploy-image\"></a>\n",
"## 4. Deploy image\n",
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
"\n",
"### 4.a. Deploy to Databox Edge Machine using IoT Hub\n",
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
"\n",
"### 4.b. Deploy to AKS Cluster\n",
"Same as in the [Quickstart section on image deployment](./accelerated-models-quickstart.ipynb#deploy-image), we are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it.\n",
"#### Create AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"\n",
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
" agent_count = 1, \n",
" location = \"eastus\")\n",
"\n",
"aks_name = 'aks-pb6-obj'\n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deploy AccelContainerImage to AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice, AksWebservice\n",
"\n",
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
"# Authentication is enabled by default, but for testing we specify False\n",
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
" num_replicas=1,\n",
" auth_enabled = False)\n",
"\n",
"aks_service_name ='my-aks-service'\n",
"\n",
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"test-service\"></a>\n",
"## 5. Test the service\n",
"<a id=\"create-client\"></a>\n",
"### 5.a. Create Client\n",
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We have a client that can call into the docker image to get predictions. \n",
"\n",
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Using the grpc client in AzureML Accelerated Models SDK\n",
"from azureml.accel.client import PredictionClient\n",
"\n",
"address = aks_service.scoring_uri\n",
"ssl_enabled = address.startswith(\"https\")\n",
"address = address[address.find('/')+2:].strip('/')\n",
"port = 443 if ssl_enabled else 80\n",
"\n",
"# Initialize AzureML Accelerated Models client\n",
"client = PredictionClient(address=address,\n",
" port=port,\n",
" use_ssl=ssl_enabled,\n",
" service_name=aks_service.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
"\n",
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"serve-model\"></a>\n",
"### 5.b. Serve the model\n",
"The SSD-VGG model returns the confidence and bounding boxes for all possible anchor boxes. As mentioned earlier, we will use a post-processing routine to transform this into a list of bounding boxes (y1, x1, y2, x2) where x, y are fractional coordinates measured from left and top respectively. A respective list of classes and scores is also returned to tag each bounding box. Below we make use of this information to draw the bounding boxes on top the original image. Note that in the post-processing routine we select a confidence threshold of 0.5."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"from matplotlib import pyplot as plt\n",
"\n",
"colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),\n",
" (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),\n",
" (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),\n",
" (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),\n",
" (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]\n",
"\n",
"\n",
"def draw_boxes_on_img(img, classes, scores, bboxes, thickness=2):\n",
" shape = img.shape\n",
" for i in range(bboxes.shape[0]):\n",
" bbox = bboxes[i]\n",
" color = colors_tableau[classes[i]]\n",
" # Draw bounding box...\n",
" p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))\n",
" p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))\n",
" cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)\n",
" # Draw text...\n",
" s = '%s/%.3f' % (classes[i], scores[i])\n",
" p1 = (p1[0]-5, p1[1])\n",
" cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, color, 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.accel._external.ssdvgg_utils as ssdvgg_utils\n",
"\n",
"result = client.score_file(path=\"meeting.jpg\", input_name=input_tensors, outputs=output_tensors)\n",
"classes, scores, bboxes = ssdvgg_utils.postprocess(result, select_threshold=0.5)\n",
"\n",
"img = cv2.imread('meeting.jpg', 1)\n",
"img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
"draw_boxes_on_img(img, classes, scores, bboxes)\n",
"plt.imshow(img)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"cleanup\"></a>\n",
"## 6. Cleanup\n",
"It's important to clean up your resources, so that you won't incur unnecessary costs. In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.delete()\n",
"aks_target.delete()\n",
"image.delete()\n",
"registered_model.delete()\n",
"converted_model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "coverste"
},
{
"name": "paledger"
},
{
"name": "sukha"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,546 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Azure ML Hardware Accelerated Models Quickstart"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial will show you how to deploy an image recognition service based on the ResNet 50 classifier using the Azure Machine Learning Accelerated Models service. Get more information about our service from our [documentation](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas), [API reference](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py), or [forum](https://aka.ms/aml-forum).\n",
"\n",
"We will use an accelerated ResNet50 featurizer running on an FPGA. Our Accelerated Models Service handles translating deep neural networks (DNN) into an FPGA program.\n",
"\n",
"For more information about using other models besides Resnet50, see the [README](./README.md).\n",
"\n",
"The steps covered in this notebook are: \n",
"1. [Set up environment](#set-up-environment)\n",
"* [Construct model](#construct-model)\n",
" * Image Preprocessing\n",
" * Featurizer (Resnet50)\n",
" * Classifier\n",
" * Save Model\n",
"* [Register Model](#register-model)\n",
"* [Convert into Accelerated Model](#convert-model)\n",
"* [Create Image](#create-image)\n",
"* [Deploy](#deploy-image)\n",
"* [Test service](#test-service)\n",
"* [Clean-up](#clean-up)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"set-up-environment\"></a>\n",
"## 1. Set up environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import tensorflow as tf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve Workspace\n",
"If you haven't created a Workspace, please follow [this notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb) to do so. If you have, run the codeblock below to retrieve it. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"construct-model\"></a>\n",
"## 2. Construct model\n",
"\n",
"There are three parts to the model we are deploying: pre-processing, featurizer with ResNet50, and classifier with ImageNet dataset. Then we will save this complete Tensorflow model graph locally before registering it to your Azure ML Workspace.\n",
"\n",
"### 2.a. Image preprocessing\n",
"We'd like our service to accept JPEG images as input. However the input to ResNet50 is a tensor. So we need code that decodes JPEG images and does the preprocessing required by ResNet50. The Accelerated AI service can execute TensorFlow graphs as part of the service and we'll use that ability to do the image preprocessing. This code defines a TensorFlow graph that preprocesses an array of JPEG images (as strings) and produces a tensor that is ready to be featurized by ResNet50.\n",
"\n",
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings\n",
"import azureml.accel.models.utils as utils\n",
"tf.reset_default_graph()\n",
"\n",
"in_images = tf.placeholder(tf.string)\n",
"image_tensors = utils.preprocess_array(in_images)\n",
"print(image_tensors.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.b. Featurizer\n",
"We use ResNet50 as a featurizer. In this step we initialize the model. This downloads a TensorFlow checkpoint of the quantized ResNet50."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.accel.models import QuantizedResnet50\n",
"save_path = os.path.expanduser('~/models')\n",
"model_graph = QuantizedResnet50(save_path, is_frozen = True)\n",
"feature_tensor = model_graph.import_graph_def(image_tensors)\n",
"print(model_graph.version)\n",
"print(feature_tensor.name)\n",
"print(feature_tensor.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.c. Classifier\n",
"The model we downloaded includes a classifier which takes the output of the ResNet50 and identifies an image. This classifier is trained on the ImageNet dataset. We are going to use this classifier for our service. The next [notebook](./accelerated-models-training.ipynb) shows how to train a classifier for a different data set. The input to the classifier is a tensor matching the output of our ResNet50 featurizer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"classifier_output = model_graph.get_default_classifier(feature_tensor)\n",
"print(classifier_output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.d. Save Model\n",
"Now that we loaded all three parts of the tensorflow graph (preprocessor, resnet50 featurizer, and the classifier), we can save the graph and associated variables to a directory which we can register as an Azure ML Model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# model_name must be lowercase\n",
"model_name = \"resnet50\"\n",
"model_save_path = os.path.join(save_path, model_name)\n",
"print(\"Saving model in {}\".format(model_save_path))\n",
"\n",
"with tf.Session() as sess:\n",
" model_graph.restore_weights(sess)\n",
" tf.saved_model.simple_save(sess, model_save_path,\n",
" inputs={'images': in_images},\n",
" outputs={'output_alias': classifier_output})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.e. Important! Save names of input and output tensors\n",
"\n",
"These input and output tensors that were created during the preprocessing and classifier steps are also going to be used when **converting the model** to an Accelerated Model that can run on FPGA's and for **making an inferencing request**. It is very important to save this information! You can see our defaults for all the models in the [README](./README.md).\n",
"\n",
"By default for Resnet50, these are the values you should see when running the cell below: \n",
"* input_tensors = \"Placeholder:0\"\n",
"* output_tensors = \"classifier/resnet_v1_50/predictions/Softmax:0\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"input_tensors = in_images.name\n",
"output_tensors = classifier_output.name\n",
"\n",
"print(input_tensors)\n",
"print(output_tensors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"register-model\"></a>\n",
"## 3. Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"registered_model = Model.register(workspace = ws,\n",
" model_path = model_save_path,\n",
" model_name = model_name)\n",
"\n",
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, sep = '\\t')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"convert-model\"></a>\n",
"## 4. Convert Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For conversion you need to provide names of input and output tensors. This information can be found from the model_graph you saved in step 2.e. above.\n",
"\n",
"**Note**: Conversion may take a while and on average for FPGA model it is about 1-3 minutes and it depends on model type."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.accel import AccelOnnxConverter\n",
"\n",
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
"# If it fails, you can run wait_for_completion again with show_output=True.\n",
"convert_request.wait_for_completion(show_output = False)\n",
"# If the above call succeeded, get the converted model\n",
"converted_model = convert_request.result\n",
"print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
" converted_model.id, converted_model.created_time, '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"create-image\"></a>\n",
"## 5. Package the model into an Image"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to image. Also, for FPGA model an image can only contain **single** model.\n",
"\n",
"**Note**: The following command can take few minutes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image\n",
"from azureml.accel import AccelContainerImage\n",
"\n",
"image_config = AccelContainerImage.image_configuration()\n",
"# Image name must be lowercase\n",
"image_name = \"{}-image\".format(model_name)\n",
"\n",
"image = Image.create(name = image_name,\n",
" models = [converted_model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"image.wait_for_creation(show_output = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"deploy-image\"></a>\n",
"## 6. Deploy\n",
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
"\n",
"### 6.a. Databox Edge Machine using IoT Hub\n",
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
"\n",
"### 6.b. Azure Kubernetes Service (AKS) using Azure ML Service\n",
"We are going to create an AKS cluster with FPGA-enabled machines, then deploy our service to it. For more information, see [AKS official docs](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#aks).\n",
"\n",
"#### Create AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"\n",
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
" agent_count = 1, \n",
" location = \"eastus\")\n",
"\n",
"aks_name = 'my-aks-pb6'\n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can also check the status in your Workspace under Compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deploy AccelContainerImage to AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice, AksWebservice\n",
"\n",
"#Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
"# Authentication is enabled by default, but for testing we specify False\n",
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
" num_replicas=1,\n",
" auth_enabled = False)\n",
"\n",
"aks_service_name ='my-aks-service'\n",
"\n",
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"test-service\"></a>\n",
"## 7. Test the service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.a. Create Client\n",
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We have a client that can call into the docker image to get predictions.\n",
"\n",
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice, see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Using the grpc client in AzureML Accelerated Models SDK\n",
"from azureml.accel.client import PredictionClient\n",
"\n",
"address = aks_service.scoring_uri\n",
"ssl_enabled = address.startswith(\"https\")\n",
"address = address[address.find('/')+2:].strip('/')\n",
"port = 443 if ssl_enabled else 80\n",
"\n",
"# Initialize AzureML Accelerated Models client\n",
"client = PredictionClient(address=address,\n",
" port=port,\n",
" use_ssl=ssl_enabled,\n",
" service_name=aks_service.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can adapt the client [code](https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C# [client](https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp).\n",
"\n",
"The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.b. Serve the model\n",
"To understand the results we need a mapping to the human readable imagenet classes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"classes_entries = requests.get(\"https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt\").text.splitlines()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Score image with input and output tensor names\n",
"results = client.score_file(path=\"./snowleopardgaze.jpg\", \n",
" input_name=input_tensors, \n",
" outputs=output_tensors)\n",
"\n",
"# map results [class_id] => [confidence]\n",
"results = enumerate(results)\n",
"# sort results by confidence\n",
"sorted_results = sorted(results, key=lambda x: x[1], reverse=True)\n",
"# print top 5 results\n",
"for top in sorted_results[:5]:\n",
" print(classes_entries[top[0]], 'confidence:', top[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"clean-up\"></a>\n",
"## 8. Clean-up\n",
"Run the cell below to delete your webservice, image, and model (must be done in that order). In the [next notebook](./accelerated-models-training.ipynb) you will learn how to train a classfier on a new dataset using transfer learning and finetune the weights."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.delete()\n",
"aks_target.delete()\n",
"image.delete()\n",
"registered_model.delete()\n",
"converted_model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "coverste"
},
{
"name": "paledger"
},
{
"name": "aibhalla"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,860 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training with the Azure Machine Learning Accelerated Models Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook will introduce how to apply common machine learning techniques, like transfer learning, custom weights, and unquantized vs. quantized models, when working with our Azure Machine Learning Accelerated Models Service (Azure ML Accel Models).\n",
"\n",
"We will use Tensorflow for the preprocessing steps, ResNet50 for the featurizer, and the Keras API (built on Tensorflow backend) to build the classifier layers instead of the default ImageNet classifier used in Quickstart. Then we will train the model, evaluate it, and deploy it to run on an FPGA.\n",
"\n",
"#### Transfer Learning and Custom weights\n",
"We will walk you through two ways to build and train a ResNet50 model on the Kaggle Cats and Dogs dataset: transfer learning only and then transfer learning with custom weights.\n",
"\n",
"In using transfer learning, our goal is to re-purpose the ResNet50 model already trained on the [ImageNet image dataset](http://www.image-net.org/) as a basis for our training of the Kaggle Cats and Dogs dataset. The ResNet50 featurizer will be imported as frozen, so only the Keras classifier will be trained.\n",
"\n",
"With the addition of custom weights, we will build the model so that the ResNet50 featurizer weights as not frozen. This will let us retrain starting with custom weights trained with ImageNet on ResNet50 and then use the Kaggle Cats and Dogs dataset to retrain and fine-tune the quantized version of the model.\n",
"\n",
"#### Unquantized vs. Quantized models\n",
"The unquantized version of our models (ie. Resnet50, Resnet152, Densenet121, Vgg16, SsdVgg) uses native float precision (32-bit floats), which will be faster at training. We will use this for our first run through, then fine-tune the weights with the quantized version. The quantized version of our models (i.e. QuantizedResnet50, QuantizedResnet152, QuantizedDensenet121, QuantizedVgg16, QuantizedSsdVgg) will have the same node names as the unquantized version, but use quantized operations and will match the performance of the model when running on an FPGA.\n",
"\n",
"#### Contents\n",
"1. [Setup Environment](#setup)\n",
"* [Prepare Data](#prepare-data)\n",
"* [Construct Model](#construct-model)\n",
" * Preprocessor\n",
" * Classifier\n",
" * Model construction\n",
"* [Train Model](#train-model)\n",
"* [Test Model](#test-model)\n",
"* [Execution](#execution)\n",
" * [Transfer Learning](#transfer-learning)\n",
" * [Transfer Learning with Custom Weights](#custom-weights)\n",
"* [Create Image](#create-image)\n",
"* [Deploy Image](#deploy-image)\n",
"* [Test the service](#test-service)\n",
"* [Clean-up](#cleanup)\n",
"* [Appendix](#appendix)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"setup\"></a>\n",
"## 1. Setup Environment\n",
"#### 1.a. Please set up your environment as described in the [Quickstart](./accelerated-models-quickstart.ipynb), meaning:\n",
"* Make sure your Workspace config.json exists and has the correct info\n",
"* Install Tensorflow\n",
"\n",
"#### 1.b. Download dataset into ~/catsanddogs \n",
"The dataset we will be using for training can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory (\"~/catsanddogs\"). \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.c. Import packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import tensorflow as tf\n",
"import numpy as np\n",
"from keras import backend as K\n",
"import sklearn\n",
"import tqdm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.d. Create directories for later use\n",
"After you train your model in float32, you'll write the weights to a place on disk. We also need a location to store the models that get downloaded."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_weights_dir = os.path.expanduser(\"~/custom-weights\")\n",
"saved_model_dir = os.path.expanduser(\"~/models\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"prepare-data\"></a>\n",
"## 2. Prepare Data\n",
"Load the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run relatively quickly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"import imghdr\n",
"datadir = os.path.expanduser(\"~/catsanddogs\")\n",
"\n",
"cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg'))\n",
"dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg'))\n",
"\n",
"# Limit the data set to make the notebook execute quickly.\n",
"cat_files = cat_files[:64]\n",
"dog_files = dog_files[:64]\n",
"\n",
"# The data set has a few images that are not jpeg. Remove them.\n",
"cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg']\n",
"dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg']\n",
"\n",
"if(not len(cat_files) or not len(dog_files)):\n",
" print(\"Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to \" + datadir) \n",
" raise ValueError(\"Data not found\")\n",
"else:\n",
" print(cat_files[0])\n",
" print(dog_files[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Construct a numpy array as labels\n",
"image_paths = cat_files + dog_files\n",
"total_files = len(cat_files) + len(dog_files)\n",
"labels = np.zeros(total_files)\n",
"labels[len(cat_files):] = 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split images data as training data and test data\n",
"from sklearn.model_selection import train_test_split\n",
"onehot_labels = np.array([[0,1] if i else [1,0] for i in labels])\n",
"img_train, img_test, label_train, label_test = train_test_split(image_paths, onehot_labels, random_state=42, shuffle=True)\n",
"\n",
"print(len(img_train), len(img_test), label_train.shape, label_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"construct-model\"></a>\n",
"## 3. Construct Model\n",
"We will define the functions to handle creating the preprocessor and the classifier first, and then run them together to actually construct the model with the Resnet50 featurizer in a single Tensorflow session in a separate cell.\n",
"\n",
"We use ResNet50 for the featurizer and build our own classifier using Keras layers. We train the featurizer and the classifier as one model. We will provide parameters to determine whether we are using the quantized version and whether we are using custom weights in training or not."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.a. Define image preprocessing step\n",
"Same as in the Quickstart, before passing image dataset to the ResNet50 featurizer, we need to preprocess the input file to get it into the form expected by ResNet50. ResNet50 expects float tensors representing the images in BGR, channel last order. We've provided a default implementation of the preprocessing that you can use.\n",
"\n",
"**Note:** Expect to see TF deprecation warnings until we port our SDK over to use Tensorflow 2.0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.accel.models.utils as utils\n",
"\n",
"def preprocess_images(scaling_factor=1.0):\n",
" # Convert images to 3D tensors [width,height,channel] - channels are in BGR order.\n",
" in_images = tf.placeholder(tf.string)\n",
" image_tensors = utils.preprocess_array(in_images, 'RGB', scaling_factor)\n",
" return in_images, image_tensors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.b. Define classifier\n",
"We use Keras layer APIs to construct the classifier. Because we're using the tensorflow backend, we can train this classifier in one session with our Resnet50 model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def construct_classifier(in_tensor, seed=None):\n",
" from keras.layers import Dropout, Dense, Flatten\n",
" from keras.initializers import glorot_uniform\n",
" K.set_session(tf.get_default_session())\n",
"\n",
" FC_SIZE = 1024\n",
" NUM_CLASSES = 2\n",
"\n",
" x = Dropout(0.2, input_shape=(1, 1, int(in_tensor.shape[3]),), seed=seed)(in_tensor)\n",
" x = Dense(FC_SIZE, activation='relu', input_dim=(1, 1, int(in_tensor.shape[3]),),\n",
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
" x = Flatten()(x)\n",
" preds = Dense(NUM_CLASSES, activation='softmax', input_dim=FC_SIZE, name='classifier_output',\n",
" kernel_initializer=glorot_uniform(seed=seed), bias_initializer='zeros')(x)\n",
" return preds"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3.c. Define model construction\n",
"Now that the preprocessor and classifier for the model are defined, we can define how we want to construct the model. \n",
"\n",
"Constructing the model has these steps: \n",
"1. Get preprocessing steps\n",
"* Get featurizer using the Azure ML Accel Models SDK:\n",
" * import the graph definition\n",
" * restore the weights of the model into a Tensorflow session\n",
"* Get classifier\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def construct_model(quantized, starting_weights_directory = None):\n",
" from azureml.accel.models import Resnet50, QuantizedResnet50\n",
" \n",
" # Convert images to 3D tensors [width,height,channel]\n",
" in_images, image_tensors = preprocess_images(1.0)\n",
"\n",
" # Construct featurizer using quantized or unquantized ResNet50 model\n",
" if not quantized:\n",
" featurizer = Resnet50(saved_model_dir)\n",
" else:\n",
" featurizer = QuantizedResnet50(saved_model_dir, custom_weights_directory = starting_weights_directory)\n",
"\n",
" features = featurizer.import_graph_def(input_tensor=image_tensors)\n",
" \n",
" # Construct classifier\n",
" preds = construct_classifier(features)\n",
" \n",
" # Initialize weights\n",
" sess = tf.get_default_session()\n",
" tf.global_variables_initializer().run()\n",
"\n",
" featurizer.restore_weights(sess)\n",
"\n",
" return in_images, image_tensors, features, preds, featurizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"train-model\"></a>\n",
"## 4. Train Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def read_files(files):\n",
" \"\"\" Read files to array\"\"\"\n",
" contents = []\n",
" for path in files:\n",
" with open(path, 'rb') as f:\n",
" contents.append(f.read())\n",
" return contents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train_model(preds, in_images, img_train, label_train, is_retrain = False, train_epoch = 10, learning_rate=None):\n",
" \"\"\" training model \"\"\"\n",
" from keras.objectives import binary_crossentropy\n",
" from tqdm import tqdm\n",
" \n",
" learning_rate = learning_rate if learning_rate else 0.001 if is_retrain else 0.01\n",
" \n",
" # Specify the loss function\n",
" in_labels = tf.placeholder(tf.float32, shape=(None, 2)) \n",
" cross_entropy = tf.reduce_mean(binary_crossentropy(in_labels, preds))\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)\n",
"\n",
" def chunks(a, b, n):\n",
" \"\"\"Yield successive n-sized chunks from a and b.\"\"\"\n",
" if (len(a) != len(b)):\n",
" print(\"a and b are not equal in chunks(a,b,n)\")\n",
" raise ValueError(\"Parameter error\")\n",
"\n",
" for i in range(0, len(a), n):\n",
" yield a[i:i + n], b[i:i + n]\n",
"\n",
" chunk_size = 16\n",
" chunk_num = len(label_train) / chunk_size\n",
"\n",
" sess = tf.get_default_session()\n",
" for epoch in range(train_epoch):\n",
" avg_loss = 0\n",
" for img_chunk, label_chunk in tqdm(chunks(img_train, label_train, chunk_size)):\n",
" contents = read_files(img_chunk)\n",
" _, loss = sess.run([optimizer, cross_entropy],\n",
" feed_dict={in_images: contents,\n",
" in_labels: label_chunk,\n",
" K.learning_phase(): 1})\n",
" avg_loss += loss / chunk_num\n",
" print(\"Epoch:\", (epoch + 1), \"loss = \", \"{:.3f}\".format(avg_loss))\n",
" \n",
" # Reach desired performance\n",
" if (avg_loss < 0.001):\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"test-model\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"test-model\"></a>\n",
"## 5. Test Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def test_model(preds, in_images, img_test, label_test):\n",
" \"\"\"Test the model\"\"\"\n",
" from keras.metrics import categorical_accuracy\n",
"\n",
" in_labels = tf.placeholder(tf.float32, shape=(None, 2))\n",
" accuracy = tf.reduce_mean(categorical_accuracy(in_labels, preds))\n",
" contents = read_files(img_test)\n",
"\n",
" accuracy = accuracy.eval(feed_dict={in_images: contents,\n",
" in_labels: label_test,\n",
" K.learning_phase(): 0})\n",
" return accuracy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"execution\"></a>\n",
"## 6. Execute steps\n",
"You can run through the Transfer Learning section, then skip to Create AccelContainerImage. By default, because the custom weights section takes much longer for training twice, it is not saved as executable cells. You can copy the code or change cell type to 'Code'.\n",
"\n",
"<a id=\"transfer-learning\"></a>\n",
"### 6.a. Training using Transfer Learning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Launch the training\n",
"tf.reset_default_graph()\n",
"sess = tf.Session(graph=tf.get_default_graph())\n",
"\n",
"with sess.as_default():\n",
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=True)\n",
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10, learning_rate=0.01) \n",
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
" print(\"Accuracy:\", accuracy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Save Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_name = 'resnet50-catsanddogs-tl'\n",
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
"\n",
"tf.saved_model.simple_save(sess, model_save_path,\n",
" inputs={'images': in_images},\n",
" outputs={'output_alias': preds})\n",
"\n",
"input_tensors = in_images.name\n",
"output_tensors = preds.name\n",
"\n",
"print(input_tensors)\n",
"print(output_tensors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"custom-weights\"></a>\n",
"### 6.b. Traning using Custom Weights\n",
"\n",
"Because the quantized graph defintion and the float32 graph defintion share the same node names in the graph definitions, we can initally train the weights in float32, and then reload them with the quantized operations (which take longer) to fine-tune the model.\n",
"\n",
"First we train the model with custom weights but without quantization. Training is done with native float precision (32-bit floats). We load the training data set and batch the training with 10 epochs. When the performance reaches desired level or starts decredation, we stop the training iteration and save the weights as tensorflow checkpoint files. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Launch the training\n",
"```\n",
"tf.reset_default_graph()\n",
"sess = tf.Session(graph=tf.get_default_graph())\n",
"\n",
"with sess.as_default():\n",
" in_images, image_tensors, features, preds, featurizer = construct_model(quantized=False)\n",
" train_model(preds, in_images, img_train, label_train, is_retrain=False, train_epoch=10) \n",
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
" print(\"Accuracy:\", accuracy)\n",
" featurizer.save_weights(custom_weights_dir + \"/rn50\", tf.get_default_session())\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test Model\n",
"After training, we evaluate the trained model's accuracy on test dataset with quantization. So that we know the model's performance if it is deployed on the FPGA."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"tf.reset_default_graph()\n",
"sess = tf.Session(graph=tf.get_default_graph())\n",
"\n",
"with sess.as_default():\n",
" print(\"Testing trained model with quantization\")\n",
" in_images, image_tensors, features, preds, quantized_featurizer = construct_model(quantized=True, starting_weights_directory=custom_weights_dir)\n",
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
" print(\"Accuracy:\", accuracy)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Fine-Tune Model\n",
"Sometimes, the model's accuracy can drop significantly after quantization. In those cases, we need to retrain the model enabled with quantization to get better model accuracy."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"if (accuracy < 0.93):\n",
" with sess.as_default():\n",
" print(\"Fine-tuning model with quantization\")\n",
" train_model(preds, in_images, img_train, label_train, is_retrain=True, train_epoch=10)\n",
" accuracy = test_model(preds, in_images, img_test, label_test) \n",
" print(\"Accuracy:\", accuracy)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Save Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"model_name = 'resnet50-catsanddogs-cw'\n",
"model_save_path = os.path.join(saved_model_dir, model_name)\n",
"\n",
"tf.saved_model.simple_save(sess, model_save_path,\n",
" inputs={'images': in_images},\n",
" outputs={'output_alias': preds})\n",
"\n",
"input_tensors = in_images.name\n",
"output_tensors = preds.name\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"create-image\"></a>\n",
"## 7. Create AccelContainerImage\n",
"\n",
"Below we will execute all the same steps as in the [Quickstart](./accelerated-models-quickstart.ipynb#create-image) to package the model we have saved locally into an accelerated Docker image saved in our workspace. To complete all the steps, it may take a few minutes. For more details on each step, check out the [Quickstart section on model registration](./accelerated-models-quickstart.ipynb#register-model)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.model import Model\n",
"from azureml.core.image import Image\n",
"from azureml.accel import AccelOnnxConverter\n",
"from azureml.accel import AccelContainerImage\n",
"\n",
"# Retrieve workspace\n",
"ws = Workspace.from_config()\n",
"print(\"Successfully retrieved workspace:\", ws.name, ws.resource_group, ws.location, ws.subscription_id, '\\n')\n",
"\n",
"# Register model\n",
"registered_model = Model.register(workspace = ws,\n",
" model_path = model_save_path,\n",
" model_name = model_name)\n",
"print(\"Successfully registered: \", registered_model.name, registered_model.description, registered_model.version, '\\n', sep = '\\t')\n",
"\n",
"# Convert model\n",
"convert_request = AccelOnnxConverter.convert_tf_model(ws, registered_model, input_tensors, output_tensors)\n",
"# If it fails, you can run wait_for_completion again with show_output=True.\n",
"convert_request.wait_for_completion(show_output=False)\n",
"converted_model = convert_request.result\n",
"print(\"\\nSuccessfully converted: \", converted_model.name, converted_model.url, converted_model.version, \n",
" converted_model.id, converted_model.created_time, '\\n')\n",
"\n",
"# Package into AccelContainerImage\n",
"image_config = AccelContainerImage.image_configuration()\n",
"# Image name must be lowercase\n",
"image_name = \"{}-image\".format(model_name)\n",
"image = Image.create(name = image_name,\n",
" models = [converted_model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"image.wait_for_creation()\n",
"print(\"Created AccelContainerImage: {} {} {}\\n\".format(image.name, image.creation_state, image.image_location))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"deploy-image\"></a>\n",
"## 8. Deploy image\n",
"Once you have an Azure ML Accelerated Image in your Workspace, you can deploy it to two destinations, to a Databox Edge machine or to an AKS cluster. \n",
"\n",
"### 8.a. Deploy to Databox Edge Machine using IoT Hub\n",
"See the sample [here](https://github.com/Azure-Samples/aml-real-time-ai/) for using the Azure IoT CLI extension for deploying your Docker image to your Databox Edge Machine.\n",
"\n",
"### 8.b. Deploy to AKS Cluster"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"\n",
"# Uses the specific FPGA enabled VM (sku: Standard_PB6s)\n",
"# Standard_PB6s are available in: eastus, westus2, westeurope, southeastasia\n",
"prov_config = AksCompute.provisioning_configuration(vm_size = \"Standard_PB6s\",\n",
" agent_count = 1,\n",
" location = \"eastus\")\n",
"\n",
"aks_name = 'aks-pb6-tl'\n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provisioning an AKS cluster might take awhile (15 or so minutes), and we want to wait until it's successfully provisioned before we can deploy a service to it. If you interrupt this cell, provisioning of the cluster will continue. You can re-run it or check the status in your Workspace under Compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deploy AccelContainerImage to AKS ComputeTarget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice, AksWebservice\n",
"\n",
"# Set the web service configuration (for creating a test service, we don't want autoscale enabled)\n",
"# Authentication is enabled by default, but for testing we specify False\n",
"aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,\n",
" num_replicas=1,\n",
" auth_enabled = False)\n",
"\n",
"aks_service_name ='my-aks-service'\n",
"\n",
"aks_service = Webservice.deploy_from_image(workspace = ws,\n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"test-service\"></a>\n",
"## 9. Test the service\n",
"\n",
"<a id=\"create-client\"></a>\n",
"### 9.a. Create Client\n",
"The image supports gRPC and the TensorFlow Serving \"predict\" API. We have a client that can call into the docker image to get predictions. \n",
"\n",
"**Note:** If you chose to use auth_enabled=True when creating your AksWebservice.deploy_configuration(), see documentation [here](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#get-keys--) on how to retrieve your keys and use either key as an argument to PredictionClient(...,access_token=key)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Using the grpc client in AzureML Accelerated Models SDK\n",
"from azureml.accel.client import PredictionClient\n",
"\n",
"address = aks_service.scoring_uri\n",
"ssl_enabled = address.startswith(\"https\")\n",
"address = address[address.find('/')+2:].strip('/')\n",
"port = 443 if ssl_enabled else 80\n",
"\n",
"# Initialize AzureML Accelerated Models client\n",
"client = PredictionClient(address=address,\n",
" port=port,\n",
" use_ssl=ssl_enabled,\n",
" service_name=aks_service.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"serve-model\"></a>\n",
"### 9.b. Serve the model\n",
"Let's see how our service does on a few images. It may get a few wrong."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Specify an image to classify\n",
"print('CATS')\n",
"for image_file in cat_files[:8]:\n",
" results = client.score_file(path=image_file, \n",
" input_name=input_tensors, \n",
" outputs=output_tensors)\n",
" result = 'CORRECT ' if results[0] > results[1] else 'WRONG '\n",
" print(result + str(results))\n",
"print('DOGS')\n",
"for image_file in dog_files[:8]:\n",
" results = client.score_file(path=image_file, \n",
" input_name=input_tensors, \n",
" outputs=output_tensors)\n",
" result = 'CORRECT ' if results[1] > results[0] else 'WRONG '\n",
" print(result + str(results))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"cleanup\"></a>\n",
"## 10. Cleanup\n",
"It's important to clean up your resources, so that you won't incur unnecessary costs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.delete()\n",
"aks_target.delete()\n",
"image.delete()\n",
"registered_model.delete()\n",
"converted_model.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a id=\"appendix\"></a>\n",
"## 11. Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"License for plot_confusion_matrix:\n",
"\n",
"New BSD License\n",
"\n",
"Copyright (c) 2007-2018 The scikit-learn developers.\n",
"All rights reserved.\n",
"\n",
"\n",
"Redistribution and use in source and binary forms, with or without\n",
"modification, are permitted provided that the following conditions are met:\n",
"\n",
" a. Redistributions of source code must retain the above copyright notice,\n",
" this list of conditions and the following disclaimer.\n",
" b. Redistributions in binary form must reproduce the above copyright\n",
" notice, this list of conditions and the following disclaimer in the\n",
" documentation and/or other materials provided with the distribution.\n",
" c. Neither the name of the Scikit-learn Developers nor the names of\n",
" its contributors may be used to endorse or promote products\n",
" derived from this software without specific prior written\n",
" permission. \n",
"\n",
"\n",
"THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n",
"AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n",
"IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n",
"ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR\n",
"ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n",
"DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n",
"SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n",
"CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT\n",
"LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY\n",
"OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH\n",
"DAMAGE.\n"
]
}
],
"metadata": {
"authors": [
{
"name": "coverste"
},
{
"name": "paledger"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

View File

@@ -25,6 +25,13 @@
"3. Build new image and deploy it. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -1,5 +1,12 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},

View File

@@ -4,17 +4,20 @@ These tutorials show how to create and deploy Open Neural Network eXchange ([ONN
## Tutorials
0. [Configure your Azure Machine Learning Workspace](../../../configuration.ipynb)
0. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, [Configure your Azure Machine Learning Workspace](../../../configuration.ipynb)
#### Obtain models from the [ONNX Model Zoo](https://github.com/onnx/models) and deploy with ONNX Runtime Inference
1. [Handwritten Digit Classification (MNIST)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb)
2. [Facial Expression Recognition (Emotion FER+)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb)
#### Obtain pretrained models from the [ONNX Model Zoo](https://github.com/onnx/models) and deploy with ONNX Runtime
1. [MNIST - Handwritten Digit Classification with ONNX Runtime](onnx-inference-mnist-deploy.ipynb)
2. [Emotion FER+ - Facial Expression Recognition with ONNX Runtime](onnx-inference-facial-expression-recognition-deploy.ipynb)
#### Train model on Azure ML, convert to ONNX, and deploy with ONNX Runtime
3. [MNIST - Train using PyTorch and deploy with ONNX Runtime](onnx-train-pytorch-aml-deploy-mnist.ipynb)
#### Demo Notebooks from Microsoft Ignite 2018
Note that the following notebooks do not have evaluation sections for the models since they were deployed as part of a live demo. You can find the respective pre-processing and post-processing code linked from the ONNX Model Zoo Github pages ([ResNet](https://github.com/onnx/models/tree/master/models/image_classification/resnet), [TinyYoloV2](https://github.com/onnx/models/tree/master/tiny_yolov2)), or experiment with the ONNX models by [running them in the browser](https://microsoft.github.io/onnxjs-demo/#/).
3. [Image Recognition (ResNet50)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb)
4. [Convert Core ML Model to ONNX and deploy - Real Time Object Detection (TinyYOLO)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb)
4. [ResNet50 - Image Recognition with ONNX Runtime](onnx-modelzoo-aml-deploy-resnet50.ipynb)
5. [TinyYoloV2 - Convert from CoreML and deploy with ONNX Runtime](onnx-convert-aml-deploy-tinyyolo.ipynb)
## Documentation
- [ONNX Runtime Python API Documentation](http://aka.ms/onnxruntime-python)
@@ -22,7 +25,7 @@ Note that the following notebooks do not have evaluation sections for the models
## Related Articles
- [Building and Deploying ONNX Runtime Models](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-build-deploy-onnx)
- [Azure AI Making AI Real for Business](https://aka.ms/aml-blog-overview)
- [Azure AI Making AI Real for Business](https://aka.ms/aml-blog-overview)
- [Whats new in Azure Machine Learning](https://aka.ms/aml-blog-whats-new)
## License
@@ -31,3 +34,6 @@ Licensed under the MIT License.
## Acknowledgements
These tutorials were developed by Vinitra Swamy and Prasanth Pulavarthi of the Microsoft AI Frameworks team and adapted for presentation at Microsoft Ignite 2018.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/README.png)

View File

@@ -0,0 +1,124 @@
# This is a modified version of https://github.com/pytorch/examples/blob/master/mnist/main.py which is
# licensed under BSD 3-Clause (https://github.com/pytorch/examples/blob/master/LICENSE)
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import os
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch, output_dir):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False, reduce=True).item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=5, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--output-dir', type=str, default='outputs')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, output_dir)
test(args, model, device, test_loader)
# save model
dummy_input = torch.randn(1, 1, 28, 28, device=device)
model_path = os.path.join(output_dir, 'mnist.onnx')
torch.onnx.export(model, dummy_input, model_path)
if __name__ == '__main__':
main()

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -33,7 +40,7 @@
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* Go through the [configuration](../../../configuration.ipynb) notebook to:\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]
@@ -248,7 +255,7 @@
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\",\"onnxruntime\",\"azureml-core\"])\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\",\"onnxruntime==0.4.0\",\"azureml-core\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -34,7 +41,7 @@
"## Prerequisites\n",
"\n",
"### 1. Install Azure ML SDK and create a new workspace\n",
"Please follow [Azure ML configuration notebook](../../../configuration.ipynb) to set up your environment.\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, please follow [Azure ML configuration notebook](../../../configuration.ipynb) to set up your environment.\n",
"\n",
"### 2. Install additional packages needed for this Notebook\n",
"You need to install the popular plotting library `matplotlib`, the image manipulation library `opencv`, and the `onnx` library in the conda environment where Azure Maching Learning SDK is installed.\n",

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -34,7 +41,7 @@
"## Prerequisites\n",
"\n",
"### 1. Install Azure ML SDK and create a new workspace\n",
"Please follow [Azure ML configuration notebook](../../../configuration.ipynb) to set up your environment.\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, please follow [Azure ML configuration notebook](../../../configuration.ipynb) to set up your environment.\n",
"\n",
"### 2. Install additional packages needed for this tutorial notebook\n",
"You need to install the popular plotting library `matplotlib`, the image manipulation library `opencv`, and the `onnx` library in the conda environment where Azure Maching Learning SDK is installed. \n",

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -33,7 +40,7 @@
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,407 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import Image\n",
"from azureml.core.model import Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add descirption and tags. Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. You can download a [pretrained resnet50](https://github.com/tensorflow/models/tree/master/official/resnet#pre-trained-model) and unpack it to that directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"resnet50\", # this points to a local file\n",
" model_name = \"resnet50\", # this is the name the model is registered as\n",
" tags = {'area': \"Image classification\", 'type': \"classification\"},\n",
" description = \"Image classification trained on Imagenet Dataset\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create an image\n",
"Create an image using the registered model the script that will load and run the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import tensorflow as tf\n",
"import numpy as np\n",
"import ujson\n",
"from azureml.core.model import Model\n",
"from azureml.contrib.services.aml_request import AMLRequest, rawhttp\n",
"from azureml.contrib.services.aml_response import AMLResponse\n",
"\n",
"def init():\n",
" global session\n",
" global input_name\n",
" global output_name\n",
" \n",
" session = tf.Session()\n",
"\n",
" model_path = Model.get_model_path('resnet50')\n",
" model = tf.saved_model.loader.load(session, ['serve'], model_path)\n",
" if len(model.signature_def['serving_default'].inputs) > 1:\n",
" raise ValueError(\"This score.py only supports one input\")\n",
" if len(model.signature_def['serving_default'].outputs) > 1:\n",
" raise ValueError(\"This score.py only supports one input\")\n",
" input_name = [tensor.name for tensor in model.signature_def['serving_default'].inputs.values()][0]\n",
" output_name = [tensor.name for tensor in model.signature_def['serving_default'].outputs.values()][0]\n",
" \n",
"\n",
"@rawhttp\n",
"def run(request):\n",
" if request.method == 'POST':\n",
" reqBody = request.get_data(False)\n",
" resp = score(reqBody)\n",
" return AMLResponse(resp, 200)\n",
" if request.method == 'GET':\n",
" respBody = str.encode(\"GET is not supported\")\n",
" return AMLResponse(respBody, 405)\n",
" return AMLResponse(\"bad request\", 500)\n",
"\n",
"def score(data):\n",
" result = session.run(output_name, {input_name: [data]})\n",
" return ujson.dumps(result[0])\n",
"\n",
"if __name__ == \"__main__\":\n",
" init()\n",
" with open(\"test_image.jpg\", 'rb') as f:\n",
" content = f.read()\n",
" print(score(content))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['tensorflow-gpu==1.12.0','numpy','ujson','azureml-contrib-services'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" gpu_enabled = True\n",
" )\n",
"\n",
"image = ContainerImage.create(name = \"GpuImage\",\n",
" # this is the model object\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\")\n",
"\n",
"aks_name = 'my-aks-9' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"\n",
"# Create the compute configuration and set virtual network information\n",
"config = AksCompute.provisioning_configuration(vm_size=\"Standard_NC6\", location=\"eastus2\")\n",
"config.vnet_resourcegroup_name = \"mygroup\"\n",
"config.vnet_name = \"mynetwork\"\n",
"config.subnet_name = \"default\"\n",
"config.service_cidr = \"10.0.0.0/16\"\n",
"config.dns_service_ip = \"10.0.0.10\"\n",
"config.docker_bridge_cidr = \"172.17.0.1/16\"\n",
"\n",
"# Create the compute target\n",
"aks_target = ComputeTarget.create(workspace = ws,\n",
" name = \"myaks\",\n",
" provisioning_configuration = config)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optional step: Attach existing AKS cluster\n",
"\n",
"If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"# Use the default configuration (can also provide parameters to customize)\n",
"resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01'\n",
"\n",
"create_name='my-existing-aks' \n",
"# Create the cluster\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n",
"# Wait for the operation to complete\n",
"aks_target.wait_for_completion(True)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='aks-service-1'\n",
"\n",
"aks_service = Webservice.deploy_from_image(workspace = ws, \n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service\n",
"We test the web sevice by passing the test images content."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import requests\n",
"key1, key2 = aks_service.get_keys()\n",
"\n",
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"test_sampe = open('test_image.jpg', 'rb').read()\n",
"resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image, model and compute target"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"image.delete()\n",
"model.delete()\n",
"aks_target.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "aashishb"
}
],
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -167,6 +174,31 @@
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use a custom Docker image\n",
"\n",
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
"\n",
"Only Supported for `ContainerImage`(from azureml.core.image) with `python` runtime.\n",
"```python\n",
"# use an image available in public Container Registry without authentication\n",
"image_config.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
"\n",
"# or, use an image available in a private Container Registry\n",
"image_config.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
"image_config.base_image_registry.address = \"myregistry.azurecr.io\"\n",
"image_config.base_image_registry.username = \"username\"\n",
"image_config.base_image_registry.password = \"password\"\n",
"\n",
"# or, use an image built during training.\n",
"image_config.base_image = run.properties[\"AzureML.DerivedImageName\"]\n",
"```\n",
"You can get the address of training image from the properties of a Run object. Only new runs submitted with azureml-sdk>=1.0.22 to AMLCompute targets will have the 'AzureML.DerivedImageName' property. Instructions on how to get a Run can be found in [manage-runs](../../training/manage-runs/manage-runs.ipynb). \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -191,6 +223,56 @@
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"\n",
"# Create the compute configuration and set virtual network information\n",
"config = AksCompute.provisioning_configuration(location=\"eastus2\")\n",
"config.vnet_resourcegroup_name = \"mygroup\"\n",
"config.vnet_name = \"mynetwork\"\n",
"config.subnet_name = \"default\"\n",
"config.service_cidr = \"10.0.0.0/16\"\n",
"config.dns_service_ip = \"10.0.0.10\"\n",
"config.docker_bridge_cidr = \"172.17.0.1/16\"\n",
"\n",
"# Create the compute target\n",
"aks_target = ComputeTarget.create(workspace = ws,\n",
" name = \"myaks\",\n",
" provisioning_configuration = config)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -270,8 +352,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service\n",
"We test the web sevice by passing data."
"# Test the web service using run method\n",
"We test the web sevice by passing data.\n",
"Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
@@ -293,6 +376,57 @@
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service using raw HTTP request (optional)\n",
"Alternatively you can construct a raw HTTP request and send it to the service. In this case you need to explicitly pass the HTTP header. This process is shown in the next 2 cells."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# retreive the API keys. AML generates two keys.\n",
"'''\n",
"key1, Key2 = aks_service.get_keys()\n",
"print(key1)\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# construct raw HTTP request and send to the service\n",
"'''\n",
"%%time\n",
"\n",
"import requests\n",
"\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"# Don't forget to add key to the HTTP header.\n",
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"\n",
"resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)\n",
"\n",
"\n",
"print(\"prediction:\", resp.text)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -317,7 +451,7 @@
"metadata": {
"authors": [
{
"name": "raymondl"
"name": "aashishb"
}
],
"kernelspec": {

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -34,7 +41,7 @@
"metadata": {},
"source": [
"## Prerequisites\n",
"Make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
@@ -261,6 +268,31 @@
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use a custom Docker image\n",
"\n",
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
"\n",
"Only Supported for `ContainerImage`(from azureml.core.image) with `python` runtime.\n",
"```python\n",
"# use an image available in public Container Registry without authentication\n",
"image_config.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
"\n",
"# or, use an image available in a private Container Registry\n",
"image_config.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
"image_config.base_image_registry.address = \"myregistry.azurecr.io\"\n",
"image_config.base_image_registry.username = \"username\"\n",
"image_config.base_image_registry.password = \"password\"\n",
"\n",
"# or, use an image built during training.\n",
"image_config.base_image = run.properties[\"AzureML.DerivedImageName\"]\n",
"```\n",
"You can get the address of training image from the properties of a Run object. Only new runs submitted with azureml-sdk>=1.0.22 to AMLCompute targets will have the 'AzureML.DerivedImageName' property. Instructions on how to get a Run can be found in [manage-runs](../../training/manage-runs/manage-runs.ipynb). \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -395,7 +427,7 @@
"metadata": {
"authors": [
{
"name": "raymondl"
"name": "aashishb"
}
],
"kernelspec": {

View File

@@ -2,10 +2,7 @@
Follow these sample notebooks to learn:
1. [Explain tabular data](explain-tabular-data): Basic example of explaining model trained on tabular data.
2. [Explain local classification](explain-local-sklearn-classification): Explain a scikit-learn classification model.
3. [Explain local regression](explain-local-sklearn-regression): Explain a scikit-learn regression model.
1. [Explain tabular data locally](explain-tabular-data-local): Basic example of explaining model trained on tabular data.
4. [Explain on remote AMLCompute](explain-on-amlcompute): Explain a model on a remote AMLCompute target.
5. [Explain classification using Run History](explain-run-history-sklearn-classification): Explain a scikit-learn classification model with Run History.
6. [Explain regression using Run History](explain-run-history-sklearn-regression): Explain a scikit-learn regression model with Run History.
7. [Explain scikit-learn raw features](explain-sklearn-raw-features): Explain the raw features of a trained scikit-learn model.
5. [Explain tabular data with Run History](explain-tabular-data-run-history): Explain a model with Run History.
7. [Explain raw features](explain-tabular-data-raw-features): Explain the raw features of a trained model.

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-on-amlcompute/regression-sklearn-on-amlcompute.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -32,7 +39,7 @@
"metadata": {},
"source": [
"## Prerequisites\n",
"Make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't."
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't."
]
},
{
@@ -196,9 +203,6 @@
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"run_config.environment.python.user_managed_dependencies = False\n",
"\n",
"# auto-prepare the Docker image when used for execution (if it is not already prepared)\n",
"run_config.auto_prepare_environment = True\n",
"\n",
"azureml_pip_packages = [\n",
" 'azureml-defaults', 'azureml-contrib-explain-model', 'azureml-core', 'azureml-telemetry',\n",
" 'azureml-explain-model'\n",
@@ -576,7 +580,7 @@
"metadata": {
"authors": [
{
"name": "wamartin"
"name": "mesameki"
}
],
"kernelspec": {

View File

@@ -1,221 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Summary\n",
"From raw data that is a mixture of categoricals and numeric, featurize the categoricals using one hot encoding. Use tabular explainer to get explain object and then get raw feature importances"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load titanic dataset. Impute missing values by filling both backward and forward since some data is at the first/last row. This is just for illustration and not a recommended way to impute missing data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"titanic_url = ('https://raw.githubusercontent.com/amueller/'\n",
" 'scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv')\n",
"data = pd.read_csv(titanic_url)\n",
"# fill missing values\n",
"data = data.fillna(method=\"ffill\")\n",
"data = data.fillna(method=\"bfill\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to example [here](https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html#sphx-glr-auto-examples-compose-plot-column-transformer-mixed-types-py), use a subset of columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"numeric_features = ['age', 'fare']\n",
"categorical_features = ['embarked', 'sex', 'pclass']\n",
"\n",
"y = data['survived'].values\n",
"X = data[categorical_features + numeric_features]\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One hot encode the categorical features"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import OneHotEncoder\n",
"one_enc = OneHotEncoder()\n",
"one_enc.fit(X_train[categorical_features])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Columnwise concatenate one hot encoded categoricals and numerical features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy import sparse\n",
"def get_feats(X):\n",
" a = one_enc.transform(X[categorical_features])\n",
" b = X[numeric_features]\n",
" return sparse.hstack((one_enc.transform(X[categorical_features]), X[numeric_features].values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Train a logistic regression model on featurized training data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"\n",
"X_train_transformed = get_feats(X_train)\n",
"X_test_transformed = get_feats(X_test)\n",
"\n",
"clf = LogisticRegression(solver='lbfgs', max_iter=200)\n",
"clf.fit(X_train_transformed, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get feature mapping between raw and generated features. Using the order in which features are concatenated in `get_feats` and using `categories_` in `OneHotEncoder` we are able to compute this mapping."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_feat_mapping = []\n",
"start_index = 0\n",
"for cat_list in one_enc.categories_:\n",
" raw_feat_mapping.append([start_index + i for i in range(len(cat_list))])\n",
" start_index += len(cat_list)\n",
"for i in range(len(numeric_features)):\n",
" raw_feat_mapping.append([start_index])\n",
" start_index += 1 "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"\n",
"explainer = TabularExplainer(clf, X_train_transformed)\n",
"global_explanation = explainer.explain_global(X_test_transformed)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_feat_imps = global_explanation.get_raw_feature_importances(raw_feat_mapping)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"feature_names = categorical_features + numeric_features\n",
"sorted_indices = np.argsort(raw_feat_imps)[::-1]\n",
"\n",
"for i in sorted_indices:\n",
" print(\"{}: {}\".format(feature_names[i], raw_feat_imps[i]))"
]
}
],
"metadata": {
"authors": [
{
"name": "hichando"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -7,6 +7,13 @@
"# Breast cancer diagnosis classification with scikit-learn (run model explainer locally)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-binary-classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -24,7 +31,8 @@
"\n",
"1. Train a SVM classification model using Scikit-learn\n",
"2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services\n",
"3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services"
"3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services\n",
"4. Visualize the global and local explanations with the visualization dashboard."
]
},
{
@@ -181,7 +189,9 @@
"metadata": {},
"outputs": [],
"source": [
"local_explanation = tabular_explainer.explain_local(x_test[0,:])"
"# explain the first member of the test set\n",
"instance_num = 0\n",
"local_explanation = tabular_explainer.explain_local(x_test[instance_num,:])"
]
},
{
@@ -190,9 +200,21 @@
"metadata": {},
"outputs": [],
"source": [
"# local feature importance information\n",
"local_importance_values = local_explanation.local_importance_values\n",
"print('local importance for first instance: {}'.format(local_importance_values[y_test[0]]))"
"# get the prediction for the first member of the test set and explain why model made that prediction\n",
"prediction_value = clf.predict(x_test)[instance_num]\n",
"\n",
"sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value]\n",
"sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value]\n",
"\n",
"\n",
"dict(zip(sorted_local_importance_names, sorted_local_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Load visualization dashboard"
]
},
{
@@ -201,7 +223,12 @@
"metadata": {},
"outputs": [],
"source": [
"print('local importance feature names: {}'.format(list(local_explanation.features)))"
"# Note you will need to have extensions enabled prior to jupyter kernel starting\n",
"!jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"!jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"# Or, in Jupyter Labs, uncomment below\n",
"# jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"# jupyter labextension install microsoft-mli-widget"
]
},
{
@@ -210,14 +237,23 @@
"metadata": {},
"outputs": [],
"source": [
"dict(zip(local_explanation.features, local_explanation.local_importance_values[y_test[0]]))"
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, model, x_test)"
]
}
],
"metadata": {
"authors": [
{
"name": "wamartin"
"name": "mesameki"
}
],
"kernelspec": {

View File

@@ -0,0 +1,280 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Iris flower classification with scikit-learn (run model explainer locally)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-multiclass-classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explain a model with the AML explain-model package\n",
"\n",
"1. Train a SVM classification model using Scikit-learn\n",
"2. Run 'explain_model' with full data in local mode, which doesn't contact any Azure services\n",
"3. Run 'explain_model' with summarized data in local mode, which doesn't contact any Azure services\n",
"4. Visualize the global and local explanations with the visualization dashboard."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_iris\n",
"from sklearn import svm\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Run model explainer locally with full data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the breast cancer diagnosis data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iris = load_iris()\n",
"X = iris['data']\n",
"y = iris['target']\n",
"classes = iris['target_names']\n",
"feature_names = iris['feature_names']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split data into train and test\n",
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train a SVM classification model, which you want to explain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"clf = svm.SVC(gamma=0.001, C=100., probability=True)\n",
"model = clf.fit(x_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain predictions on your local machine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tabular_explainer = TabularExplainer(model, x_train, features = feature_names, classes=classes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain overall model predictions (global explanation)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"global_explanation = tabular_explainer.explain_global(x_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Sorted SHAP values\n",
"print('ranked global importance values: {}'.format(global_explanation.get_ranked_global_values()))\n",
"# Corresponding feature names\n",
"print('ranked global importance names: {}'.format(global_explanation.get_ranked_global_names()))\n",
"# feature ranks (based on original order of features)\n",
"print('global importance rank: {}'.format(global_explanation.global_importance_rank))\n",
"# per class feature names\n",
"print('ranked per class feature names: {}'.format(global_explanation.get_ranked_per_class_names()))\n",
"# per class feature importance values\n",
"print('ranked per class feature values: {}'.format(global_explanation.get_ranked_per_class_values()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dict(zip(global_explanation.get_ranked_global_names(), global_explanation.get_ranked_global_values()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain overall model predictions as a collection of local (instance-level) explanations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# feature shap values for all features and all data points in the training data\n",
"print('local importance values: {}'.format(global_explanation.local_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain local data points (individual instances)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# explain the first member of the test set\n",
"instance_num = 0\n",
"local_explanation = tabular_explainer.explain_local(x_test[instance_num,:])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the prediction for the first member of the test set and explain why model made that prediction\n",
"prediction_value = clf.predict(x_test)[instance_num]\n",
"\n",
"sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value]\n",
"sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value]\n",
"\n",
"\n",
"dict(zip(sorted_local_importance_names, sorted_local_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load visualization dashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Note you will need to have extensions enabled prior to jupyter kernel starting\n",
"!jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"!jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"# Or, in Jupyter Labs, uncomment below\n",
"# jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"# jupyter labextension install microsoft-mli-widget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, model, x_test)"
]
}
],
"metadata": {
"authors": [
{
"name": "mesameki"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -7,6 +7,13 @@
"# Boston Housing Price Prediction with scikit-learn (run model explainer locally)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-local/explain-local-sklearn-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -24,7 +31,8 @@
"\n",
"1. Train a GradientBoosting regression model using Scikit-learn\n",
"2. Run 'explain_model' with full dataset in local mode, which doesn't contact any Azure services.\n",
"3. Run 'explain_model' with summarized dataset in local mode, which doesn't contact any Azure services."
"3. Run 'explain_model' with summarized dataset in local mode, which doesn't contact any Azure services.\n",
"4. Visualize the global and local explanations with the visualization dashboard."
]
},
{
@@ -85,10 +93,10 @@
"metadata": {},
"outputs": [],
"source": [
"clf = GradientBoostingRegressor(n_estimators=100, max_depth=4,\n",
"reg = GradientBoostingRegressor(n_estimators=100, max_depth=4,\n",
" learning_rate=0.1, loss='huber',\n",
" random_state=1)\n",
"model = clf.fit(x_train, y_train)"
"model = reg.fit(x_train, y_train)"
]
},
{
@@ -125,15 +133,6 @@
"global_explanation = tabular_explainer.explain_global(x_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(global_explanation)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -196,16 +195,58 @@
"metadata": {},
"outputs": [],
"source": [
"# local feature importance information\n",
"local_importance_values = local_explanation.local_importance_values\n",
"print('local importance values: {}'.format(local_importance_values))"
"# sorted local feature importance information; reflects the original feature order\n",
"sorted_local_importance_names = local_explanation.get_ranked_local_names()\n",
"sorted_local_importance_values = local_explanation.get_ranked_local_values()\n",
"\n",
"print('sorted local importance names: {}'.format(sorted_local_importance_names))\n",
"print('sorted local importance values: {}'.format(sorted_local_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load visualization dashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Note you will need to have extensions enabled prior to jupyter kernel starting\n",
"!jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"!jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"# Or, in Jupyter Labs, uncomment below\n",
"# jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"# jupyter labextension install microsoft-mli-widget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, model, x_test)"
]
}
],
"metadata": {
"authors": [
{
"name": "wamartin"
"name": "mesameki"
}
],
"kernelspec": {

View File

@@ -0,0 +1,302 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Summary\n",
"From raw data that is a mixture of categoricals and numeric, featurize the categoricals using one hot encoding. Use tabular explainer to get explain object and then get raw feature importances"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-raw-features/explain-sklearn-raw-features.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explain a model with the AML explain-model package on raw features\n",
"\n",
"1. Train a Logistic Regression model using Scikit-learn\n",
"2. Run 'explain_model' with full dataset in local mode, which doesn't contact any Azure services.\n",
"3. Run 'explain_model' with summarized dataset in local mode, which doesn't contact any Azure services.\n",
"4. Visualize the global and local explanations with the visualization dashboard."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This example needs sklearn-pandas. If it is not installed, uncomment and run the following line."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install sklearn-pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.pipeline import Pipeline\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn.linear_model import LogisticRegression\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"from sklearn_pandas import DataFrameMapper\n",
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"titanic_url = ('https://raw.githubusercontent.com/amueller/'\n",
" 'scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv')\n",
"data = pd.read_csv(titanic_url)\n",
"# fill missing values\n",
"data = data.fillna(method=\"ffill\")\n",
"data = data.fillna(method=\"bfill\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Run model explainer locally with full data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to example [here](https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html#sphx-glr-auto-examples-compose-plot-column-transformer-mixed-types-py), use a subset of columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"numeric_features = ['age', 'fare']\n",
"categorical_features = ['embarked', 'sex', 'pclass']\n",
"\n",
"y = data['survived'].values\n",
"X = data[categorical_features + numeric_features]\n",
"\n",
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.pipeline import Pipeline\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.preprocessing import StandardScaler, OneHotEncoder\n",
"from sklearn_pandas import DataFrameMapper\n",
"\n",
"# Impute, standardize the numeric features and one-hot encode the categorical features. \n",
"\n",
"transformations = [\n",
" ([\"age\", \"fare\"], Pipeline(steps=[\n",
" ('imputer', SimpleImputer(strategy='median')),\n",
" ('scaler', StandardScaler())\n",
" ])),\n",
" ([\"embarked\"], Pipeline(steps=[\n",
" (\"imputer\", SimpleImputer(strategy='constant', fill_value='missing')), \n",
" (\"encoder\", OneHotEncoder(sparse=False))])),\n",
" ([\"sex\", \"pclass\"], OneHotEncoder(sparse=False)) \n",
"]\n",
"\n",
"\n",
"# Append classifier to preprocessing pipeline.\n",
"# Now we have a full prediction pipeline.\n",
"clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),\n",
" ('classifier', LogisticRegression(solver='lbfgs'))])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train a Logistic Regression model, which you want to explain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = clf.fit(x_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain predictions on your local machine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tabular_explainer = TabularExplainer(clf.steps[-1][1], initialization_examples=x_train, features=x_train.columns, transformations=transformations)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Passing in test dataset for evaluation examples - note it must be a representative sample of the original data\n",
"# x_train can be passed as well, but with more examples explanations will take longer although they may be more accurate\n",
"global_explanation = tabular_explainer.explain_global(x_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sorted_global_importance_values = global_explanation.get_ranked_global_values()\n",
"sorted_global_importance_names = global_explanation.get_ranked_global_names()\n",
"dict(zip(sorted_global_importance_names, sorted_global_importance_values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explain overall model predictions as a collection of local (instance-level) explanations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# explain the first member of the test set\n",
"local_explanation = tabular_explainer.explain_local(x_test[:1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the prediction for the first member of the test set and explain why model made that prediction\n",
"prediction_value = clf.predict(x_test)[0]\n",
"\n",
"sorted_local_importance_values = local_explanation.get_ranked_local_values()[prediction_value]\n",
"sorted_local_importance_names = local_explanation.get_ranked_local_names()[prediction_value]\n",
"\n",
"# Sorted local SHAP values\n",
"print('ranked local importance values: {}'.format(sorted_local_importance_values))\n",
"# Corresponding feature names\n",
"print('ranked local importance names: {}'.format(sorted_local_importance_names))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Load visualization dashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Note you will need to have extensions enabled prior to jupyter kernel starting\n",
"!jupyter nbextension install --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"!jupyter nbextension enable --py --sys-prefix azureml.contrib.explain.model.visualize\n",
"# Or, in Jupyter Labs, uncomment below\n",
"# jupyter labextension install @jupyter-widgets/jupyterlab-manager\n",
"# jupyter labextension install microsoft-mli-widget"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.contrib.explain.model.visualize import ExplanationDashboard"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ExplanationDashboard(global_explanation, model, x_test)"
]
}
],
"metadata": {
"authors": [
{
"name": "mesameki"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -7,6 +7,13 @@
"# Breast cancer diagnosis classification with scikit-learn (save model explanations via AML Run History)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-run-history/explain-run-history-sklearn-classification.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -229,7 +236,7 @@
"metadata": {
"authors": [
{
"name": "wamartin"
"name": "mesameki"
}
],
"kernelspec": {

View File

@@ -7,6 +7,13 @@
"# Boston Housing Price Prediction with scikit-learn (save model explanations via AML Run History)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/explain-model/explain-tabular-data-run-history/explain-run-history-sklearn-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -243,7 +250,7 @@
"metadata": {
"authors": [
{
"name": "wamartin"
"name": "mesameki"
}
],
"kernelspec": {

View File

@@ -1,267 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Uncomment these if explanation packages are not already installed in your environment\n",
"#!pip install --upgrade azureml-sdk[explain]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explain a model with the AML explain-model package\n",
"\n",
"1. Train a SVM model using Scikit-learn\n",
"2. Run 'explain_model' in local mode, which doesn't contact any Azure services\n",
"3. Run 'explain_model' with AML Run History, which leverages Run History Service to store and manage the explanation data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Disclaimer: this notebook is a preview of model explainability, and the APIs shown below are subject to breaking changes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train a SVM model, which we will try to explain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import Iris dataset\n",
"from sklearn import datasets\n",
"iris = datasets.load_iris()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Split data into train and test\n",
"from sklearn.model_selection import train_test_split\n",
"x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import scikit learn, fit a SVM model\n",
"def create_scikit_learn_model(X, y):\n",
" from sklearn import svm\n",
" clf = svm.SVC(gamma=0.001, C=100., probability=True)\n",
" model = clf.fit(X, y)\n",
" return model\n",
"model = create_scikit_learn_model(x_train, y_train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run model explainer locally"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model.tabular_explainer import TabularExplainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"start = time.time()\n",
"\n",
"explainer = TabularExplainer(model, x_train, features=iris.feature_names)\n",
"global_explanation = explainer.explain_global(x_test)\n",
"\n",
"# importance values for each class, test example, and feature (local importance)\n",
"local_imp_values = global_explanation.local_importance_values\n",
"# base prediction with feature importances ignored\n",
"expected_values = global_explanation.expected_values\n",
"# global feature importance information\n",
"global_imp_values = global_explanation.global_importance_values\n",
"ranked_global_imp_names = global_explanation.get_ranked_global_names()\n",
"# global per-class feature importance information\n",
"per_class_imp_values = global_explanation.per_class_values\n",
"ranked_per_class_imp_names = global_explanation.get_ranked_per_class_names()\n",
"\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run model explainer with AML Run History"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Experiment, Run\n",
"from azureml.explain.model.tabular_explainer import TabularExplainer\n",
"from azureml.contrib.explain.model.explanation.explanation_client import ExplanationClient\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'explain_model'\n",
"experiment = Experiment(ws, experiment_name)\n",
"run = experiment.start_logging()\n",
"client = ExplanationClient.from_run(run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"start = time.time()\n",
"explainer = TabularExplainer(model, x_train, features=iris.feature_names, classes=iris.target_names)\n",
"explanation = explainer.explain_global(x_test)\n",
"client.upload_model_explanation(explanation)\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"explanation_from_run = client.download_model_explanation()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# global feature importance information\n",
"global_imp_values = explanation_from_run.global_importance_values\n",
"global_imp_names = explanation_from_run.get_ranked_global_names()\n",
"# global per-class feature importance information\n",
"per_class_imp_values = explanation_from_run.per_class_values\n",
"per_class_imp_names = explanation_from_run.get_ranked_per_class_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## This visualization is unsupported, and is not guaranteed to work in the future"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the shap values and explore locally\n",
"import shap\n",
"import numpy as np\n",
"shap.initjs()\n",
"display(shap.force_plot(explanation_from_run.expected_values[1], np.asarray(explanation_from_run.local_importance_values[1]), x_test))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.complete()"
]
}
],
"metadata": {
"authors": [
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -37,19 +37,12 @@ Azure Machine Learning Pipelines optimize for simplicity, speed, and efficiency.
In this directory, there are two types of notebooks:
* The first type of notebooks will introduce you to core Azure Machine Learning Pipelines features. These notebooks below belong in this category, and are designed to go in sequence; they're all located in the "intro-to-pipelines" folder:
1. [aml-pipelines-getting-started.ipynb](https://aka.ms/pl-get-started)
2. [aml-pipelines-with-data-dependency-steps.ipynb](https://aka.ms/pl-data-dep)
3. [aml-pipelines-publish-and-run-using-rest-endpoint.ipynb](https://aka.ms/pl-pub-rep)
4. [aml-pipelines-data-transfer.ipynb](https://aka.ms/pl-data-trans)
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](https://aka.ms/pl-databricks)
6. [aml-pipelines-use-adla-as-compute-target.ipynb](https://aka.ms/pl-adla)
7. [aml-pipelines-parameter-tuning-with-hyperdrive.ipynb](https://aka.ms/pl-hyperdrive)
8. [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb](https://aka.ms/pl-azbatch)
9. [aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb](https://aka.ms/pl-schedule)
10. [aml-pipelines-with-automated-machine-learning-step.ipynb](https://aka.ms/pl-automl)
Take a look at [intro-to-pipelines](./intro-to-pipelines/) for the list of notebooks that introduce Azure Machine Learning concepts for you.
* The second type of notebooks illustrate more sophisticated scenarios, and are independent of each other. These notebooks include:
1. [pipeline-batch-scoring.ipynb](https://aka.ms/pl-batch-score)
2. [pipeline-style-transfer.ipynb](https://aka.ms/pl-style-trans)
1. [pipeline-batch-scoring.ipynb](https://aka.ms/pl-batch-score): This notebook demonstrates how to run a batch scoring job using Azure Machine Learning pipelines.
2. [pipeline-style-transfer.ipynb](https://aka.ms/pl-style-trans): This notebook demonstrates a multi-step pipeline that uses GPU compute.
3. [nyc-taxi-data-regression-model-building.ipynb](https://aka.ms/pl-nyctaxi-tutorial): This notebook is an AzureML Pipelines version of the previously published two part sample.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/README.png)

View File

@@ -0,0 +1,18 @@
# Introduction to Azure Machine Learning Pipelines
The following notebooks provide an introduction to a concept in Azure Machine Learning Pipelines. They will introduce you to core Azure Machine Learning Pipelines features.
These notebooks below are designed to go in sequence.
1. [aml-pipelines-getting-started.ipynb](https://aka.ms/pl-get-started): Start with this notebook to understand the concepts of using Azure Machine Learning Pipelines. This notebook will show you how to runs steps in parallel and in sequence.
2. [aml-pipelines-with-data-dependency-steps.ipynb](https://aka.ms/pl-data-dep): This notebooks shows how to connect steps in your pipeline using data. Data produced by one step is used by subsequent steps to force an explicit dependency between steps.
3. [aml-pipelines-publish-and-run-using-rest-endpoint.ipynb](https://aka.ms/pl-pub-rep): Once you are satisfied with your iterative runs in, you could publish your pipeline to get a REST endpoint which could be invoked from non-Pythons clients as well.
4. [aml-pipelines-data-transfer.ipynb](https://aka.ms/pl-data-trans): This notebook shows how you transfer data between supported datastores.
5. [aml-pipelines-use-databricks-as-compute-target.ipynb](https://aka.ms/pl-databricks): This notebooks shows how you can use Pipelines to send your compute payload to Azure Databricks.
6. [aml-pipelines-use-adla-as-compute-target.ipynb](https://aka.ms/pl-adla): This notebook shows how you can use Azure Data Lake Analytics (ADLA) as a compute target.
7. [aml-pipelines-how-to-use-estimatorstep.ipynb](https://aka.ms/pl-estimator): This notebook shows how to use the EstimatorStep.
8. [aml-pipelines-parameter-tuning-with-hyperdrive.ipynb](https://aka.ms/pl-hyperdrive): HyperDriveStep in Pipelines shows how you can do hyper parameter tuning using Pipelines.
9. [aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.ipynb](https://aka.ms/pl-azbatch): AzureBatchStep can be used to run your custom code in AzureBatch cluster.
10. [aml-pipelines-setup-schedule-for-a-published-pipeline.ipynb](https://aka.ms/pl-schedule): Once you publish a Pipeline, you can schedule it to trigger based on an interval or on data change in a defined datastore.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/README.png)

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -53,7 +60,7 @@
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json\n",
"Initialize a workspace object from persisted configuration. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure the config file is present at .\\config.json\n",
"\n",
"If you don't have a config.json file, please go through the configuration Notebook located here:\n",
"https://github.com/Azure/MachineLearningNotebooks. \n",
@@ -141,7 +148,7 @@
" print(\"registered blob datastore with name: %s\" % blob_datastore_name)\n",
"\n",
"# CLI:\n",
"# az ml datastore register-blob -n <datastore-name> -a <account-name> -c <container-name> -k <account-key> [-t <sas-token>]"
"# az ml datastore attach-blob -n <datastore-name> -a <account-name> -c <container-name> -k <account-key> [-t <sas-token>]"
]
},
{

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-getting-started.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -37,7 +44,7 @@
"metadata": {},
"source": [
"## Prerequisites and Azure Machine Learning Basics\n",
"Make sure you go through the configuration Notebook located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc. \n"
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc. \n"
]
},
{
@@ -58,8 +65,6 @@
"import os\n",
"import azureml.core\n",
"from azureml.core import Workspace, Experiment, Datastore\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.widgets import RunDetails\n",
"\n",
"# Check core SDK version number\n",
@@ -109,36 +114,20 @@
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')\n",
"\n",
"# Default datastore (Azure file storage)\n",
"def_file_store = ws.get_default_datastore() \n",
"# The above call is equivalent to Datastore(ws, \"workspacefilestore\") or simply Datastore(ws)\n",
"print(\"Default datastore's name: {}\".format(def_file_store.name))\n",
"\n",
"# Blob storage associated with the workspace\n",
"# Default datastore\n",
"def_blob_store = ws.get_default_datastore() \n",
"# The following call GETS the Azure Blob Store associated with your workspace.\n",
"# Note that workspaceblobstore is **the name of this store and CANNOT BE CHANGED and must be used as is** \n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print(\"Blobstore's name: {}\".format(def_blob_store.name))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# project folder\n",
"project_folder = '.'\n",
" \n",
"print('Sample projects will be created in {}.'.format(os.path.realpath(project_folder)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Required data and script files for the the tutorial\n",
"Sample files required to finish this tutorial are already copied to the project folder specified above. Even though the .py provided in the samples don't have much \"ML work,\" as a data scientist, you will work on this extensively as part of your work. To complete this tutorial, the contents of these files are not very important. The one-line files are for demostration purpose only."
"Sample files required to finish this tutorial are already copied to the corresponding source_directory locations. Even though the .py provided in the samples don't have much \"ML work,\" as a data scientist, you will work on this extensively as part of your work. To complete this tutorial, the contents of these files are not very important. The one-line files are for demostration purpose only."
]
},
{
@@ -146,7 +135,7 @@
"metadata": {},
"source": [
"### Datastore concepts\n",
"A [Datastore](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py) is a place where data can be stored that is then made accessible to a compute either by means of mounting or copying the data to the compute target. \n",
"A [Datastore](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py) is a place where data can be stored that is then made accessible to a compute either by means of mounting or copying the data to the compute target. \n",
"\n",
"A Datastore can either be backed by an Azure File Storage (default) or by an Azure Blob Storage.\n",
"\n",
@@ -169,19 +158,10 @@
"metadata": {},
"outputs": [],
"source": [
"# get_default_datastore() gets the default Azure File Store associated with your workspace.\n",
"# Here we are reusing the def_file_store object we obtained earlier\n",
"\n",
"# target_path is the directory at the destination\n",
"def_file_store.upload_files(['./20news.pkl'], \n",
" target_path = '20newsgroups', \n",
" overwrite = True, \n",
" show_progress = True)\n",
"\n",
"# Here we are reusing the def_blob_store we created earlier\n",
"# get_default_datastore() gets the default Azure Blob Store associated with your workspace.\n",
"# Here we are reusing the def_blob_store object we obtained earlier\n",
"def_blob_store.upload_files([\"./20news.pkl\"], target_path=\"20newsgroups\", overwrite=True)\n",
"\n",
"print(\"Upload calls completed\")"
"print(\"Upload call completed\")"
]
},
{
@@ -189,7 +169,7 @@
"metadata": {},
"source": [
"#### (Optional) See your files using Azure Portal\n",
"Once you successfully uploaded the files, you can browse to them (or upload more files) using [Azure Portal](https://portal.azure.com). At the portal, make sure you have selected **AzureML Nursery** as your subscription (click *Resource Groups* and then select the subscription). Then look for your **Machine Learning Workspace** (it has your *alias* as the name). It has a link to your storage. Click on the storage link. It will take you to a page where you can see [Blobs](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction), [Files](https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction), [Tables](https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview), and [Queues](https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction). We have just uploaded a file to the Blob storage and another one to the File storage. You should be able to see both of these files in their respective locations. "
"Once you successfully uploaded the files, you can browse to them (or upload more files) using [Azure Portal](https://portal.azure.com). At the portal, make sure you have selected your subscription (click *Resource Groups* and then select the subscription). Then look for your **Machine Learning Workspace** name. It has a link to your storage. Click on the storage link. It will take you to a page where you can see [Blobs](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction), [Files](https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction), [Tables](https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview), and [Queues](https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction). We have uploaded a file each to the Blob storage and to the File storage in the above step. You should be able to see both of these files in their respective locations. "
]
},
{
@@ -226,15 +206,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve or create a Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
"\n",
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. We will create an Azure Machine Learning Compute containing **STANDARD_D2_V2 CPU VMs**. This process is broken down into the following steps:\n",
"\n",
"1. Create the configuration\n",
"2. Create the Azure Machine Learning compute\n",
"\n",
"**This process will take about 3 minutes and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell.**"
"#### Retrieve default Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's get the default Azure Machine Learning Compute in the current workspace. We will then run the training script on this compute target."
]
},
{
@@ -243,22 +216,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aml_compute_target = \"aml-compute\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"found existing compute target.\")\n",
"except ComputeTargetException:\n",
" print(\"creating new compute target\")\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
" min_nodes = 1, \n",
" max_nodes = 4) \n",
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
" \n",
"print(\"Azure Machine Learning Compute attached\")\n"
"aml_compute = ws.get_default_compute_target(\"CPU\")"
]
},
{
@@ -295,15 +253,20 @@
"## Creating a Step in a Pipeline\n",
"A Step is a unit of execution. Step typically needs a target of execution (compute target), a script to execute, and may require script arguments and inputs, and can produce outputs. The step also could take a number of other parameters. Azure Machine Learning Pipelines provides the following built-in Steps:\n",
"\n",
"- [**PythonScriptStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py): Add a step to run a Python script in a Pipeline.\n",
"- [**PythonScriptStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py): Adds a step to run a Python script in a Pipeline.\n",
"- [**AdlaStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.adla_step.adlastep?view=azure-ml-py): Adds a step to run U-SQL script using Azure Data Lake Analytics.\n",
"- [**DataTransferStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.data_transfer_step.datatransferstep?view=azure-ml-py): Transfers data between Azure Blob and Data Lake accounts.\n",
"- [**DatabricksStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py): Adds a DataBricks notebook as a step in a Pipeline.\n",
"- [**HyperDriveStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.hyper_drive_step.hyperdrivestep?view=azure-ml-py): Creates a Hyper Drive step for Hyper Parameter Tuning in a Pipeline.\n",
"- [**AzureBatchStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.azurebatch_step.azurebatchstep?view=azure-ml-py): Creates a step for submitting jobs to Azure Batch\n",
"- [**EstimatorStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimator_step.estimatorstep?view=azure-ml-py): Adds a step to run Estimator in a Pipeline.\n",
"- [**MpiStep**](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.mpi_step.mpistep?view=azure-ml-py): Adds a step to run a MPI job in a Pipeline.\n",
"- [**AutoMLStep**](https://docs.microsoft.com/en-us/python/api/azureml-train-automl/azureml.train.automl.automlstep?view=azure-ml-py): Creates a AutoML step in a Pipeline.\n",
"\n",
"The following code will create a PythonScriptStep to be executed in the Azure Machine Learning Compute we created above using train.py, one of the files already made available in the project folder.\n",
"The following code will create a PythonScriptStep to be executed in the Azure Machine Learning Compute we created above using train.py, one of the files already made available in the `source_directory`.\n",
"\n",
"A **PythonScriptStep** is a basic, built-in step to run a Python Script on a compute target. It takes a script name and optionally other parameters like arguments for the script, compute target, inputs and outputs. If no compute target is specified, default compute target for the workspace is used."
"A **PythonScriptStep** is a basic, built-in step to run a Python Script on a compute target. It takes a script name and optionally other parameters like arguments for the script, compute target, inputs and outputs. If no compute target is specified, default compute target for the workspace is used. You can also use a [**RunConfiguration**](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py) to specify requirements for the PythonScriptStep, such as conda dependencies and docker image.\n",
"> The best practice is to use separate folders for scripts and its dependent files for each step and specify that folder as the `source_directory` for the step. This helps reduce the size of the snapshot created for the step (only the specific folder is snapshotted). Since changes in any files in the `source_directory` would trigger a re-upload of the snapshot, this helps keep the reuse of the step when there are no changes in the `source_directory` of the step."
]
},
{
@@ -314,6 +277,9 @@
"source": [
"# Uses default values for PythonScriptStep construct.\n",
"\n",
"source_directory = './train'\n",
"print('Source directory for the step is {}.'.format(os.path.realpath(source_directory)))\n",
"\n",
"# Syntax\n",
"# PythonScriptStep(\n",
"# script_name, \n",
@@ -332,7 +298,7 @@
"step1 = PythonScriptStep(name=\"train_step\",\n",
" script_name=\"train.py\", \n",
" compute_target=aml_compute, \n",
" source_directory=project_folder,\n",
" source_directory=source_directory,\n",
" allow_reuse=True)\n",
"print(\"Step1 created\")"
]
@@ -362,17 +328,45 @@
"metadata": {},
"outputs": [],
"source": [
"# All steps use files already available in the project_folder\n",
"# For this step, we use a different source_directory\n",
"source_directory = './compare'\n",
"print('Source directory for the step is {}.'.format(os.path.realpath(source_directory)))\n",
"\n",
"# All steps use the same Azure Machine Learning compute target as well\n",
"step2 = PythonScriptStep(name=\"compare_step\",\n",
" script_name=\"compare.py\", \n",
" compute_target=aml_compute, \n",
" source_directory=project_folder)\n",
" source_directory=source_directory)\n",
"\n",
"# Use a RunConfiguration to specify some additional requirements for this step.\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.runconfig import DEFAULT_CPU_IMAGE\n",
"\n",
"# create a new runconfig object\n",
"run_config = RunConfiguration()\n",
"\n",
"# enable Docker \n",
"run_config.environment.docker.enabled = True\n",
"\n",
"# set Docker base image to the default CPU-based image\n",
"run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE\n",
"\n",
"# use conda_dependencies.yml to create a conda environment in the Docker image for execution\n",
"run_config.environment.python.user_managed_dependencies = False\n",
"\n",
"# specify CondaDependencies obj\n",
"run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])\n",
"\n",
"# For this step, we use yet another source_directory\n",
"source_directory = './extract'\n",
"print('Source directory for the step is {}.'.format(os.path.realpath(source_directory)))\n",
"\n",
"step3 = PythonScriptStep(name=\"extract_step\",\n",
" script_name=\"extract.py\", \n",
" compute_target=aml_compute, \n",
" source_directory=project_folder)\n",
" source_directory=source_directory,\n",
" runconfig=run_config)\n",
"\n",
"# list of steps to run\n",
"steps = [step1, step2, step3]\n",
@@ -443,8 +437,8 @@
"source": [
"# Submit syntax\n",
"# submit(experiment_name, \n",
"# pipeline_parameters=None, \n",
"# continue_on_node_failure=False, \n",
"# pipeline_params=None, \n",
"# continue_on_step_failure=False, \n",
"# regenerate_outputs=False)\n",
"\n",
"pipeline_run1 = Experiment(ws, 'Hello_World1').submit(pipeline1, regenerate_outputs=False)\n",
@@ -587,7 +581,7 @@
"metadata": {
"authors": [
{
"name": "diray"
"name": "sanpil"
}
],
"kernelspec": {

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-azurebatch-to-run-a-windows-executable.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -67,7 +74,7 @@
"source": [
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json\n",
"\n",
"If you don't have a config.json file, please go through the configuration Notebook located [here](https://github.com/Azure/MachineLearningNotebooks). \n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, If you don't have a config.json file, please go through the configuration Notebook located [here](https://github.com/Azure/MachineLearningNotebooks). \n",
"\n",
"This sets you up with a working config file that has information on your workspace, subscription id, etc. "
]
@@ -106,25 +113,7 @@
"metadata": {},
"outputs": [],
"source": [
"batch_compute_name = 'mybatchcompute' # Name to associate with new compute in workspace\n",
"\n",
"# Batch account details needed to attach as compute to workspace\n",
"batch_account_name = \"<batch_account_name>\" # Name of the Batch account\n",
"batch_resource_group = \"<batch_resource_group>\" # Name of the resource group which contains this account\n",
"\n",
"try:\n",
" # check if already attached\n",
" batch_compute = BatchCompute(ws, batch_compute_name)\n",
"except ComputeTargetException:\n",
" print('Attaching Batch compute...')\n",
" provisioning_config = BatchCompute.attach_configuration(resource_group=batch_resource_group, \n",
" account_name=batch_account_name)\n",
" batch_compute = ComputeTarget.attach(ws, batch_compute_name, provisioning_config)\n",
" batch_compute.wait_for_completion()\n",
" print(\"Provisioning state:{}\".format(batch_compute.provisioning_state))\n",
" print(\"Provisioning errors:{}\".format(batch_compute.provisioning_errors))\n",
"\n",
"print(\"Using Batch compute:{}\".format(batch_compute.cluster_resource_id))"
"batch_compute = ws.get_default_compute_target(\"CPU\")"
]
},
{
@@ -189,8 +178,8 @@
"\n",
"\n",
"def upload_file_to_datastore(datastore, file_name, content):\n",
" dir = create_local_file(content=content, file_name=file_name)\n",
" datastore.upload(src_dir=dir, overwrite=True, show_progress=True)"
" src_dir = create_local_file(content=content, file_name=file_name)\n",
" datastore.upload(src_dir=src_dir, overwrite=True, show_progress=True)"
]
},
{
@@ -245,7 +234,7 @@
"\n",
"file_name=\"azurebatch.cmd\"\n",
"with open(path.join(binaries_folder, file_name), 'w') as f:\n",
" f.write(\"copy \\\"%1\\\" \\\"%2\\\"\")"
" f.write(\"copy \\\"%1\\\" \\\"%2\\\"\")"
]
},
{

View File

@@ -0,0 +1,260 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-estimatorstep.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to use EstimatorStep in AML Pipeline\n",
"\n",
"This notebook shows how to use the EstimatorStep with Azure Machine Learning Pipelines. Estimator is a convenient object in Azure Machine Learning that wraps run configuration information to help simplify the tasks of specifying how a script is executed.\n",
"\n",
"\n",
"## Prerequisite:\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (`config.json`)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's get started. First let's import some Python libraries."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"# check core SDK version number\n",
"print(\"Azure ML SDK Version: \", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Initialize a [Workspace](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#workspace) object from the existing workspace you created in the Prerequisites step. `Workspace.from_config()` creates a workspace object from the details stored in `config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get default AmlCompute\n",
"You can create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for training your model. In this tutorial, you use default `AmlCompute` as your training compute resource."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_cluster = ws.get_default_compute_target(\"CPU\")\n",
"\n",
"# use get_status() to get a detailed status for the current cluster. \n",
"print(cpu_cluster.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that you have created the compute target, let's see what the workspace's `compute_targets` property returns. You should now see one entry named 'cpucluster' of type `AmlCompute`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use a simple script\n",
"We have already created a simple \"hello world\" script. This is the script that we will submit through the estimator pattern. It prints a hello-world message, and if Azure ML SDK is installed, it will also logs an array of values ([Fibonacci numbers](https://en.wikipedia.org/wiki/Fibonacci_number))."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build an Estimator object\n",
"Estimator by default will attempt to use Docker-based execution. You can also enable Docker and let estimator pick the default CPU image supplied by Azure ML for execution. You can target an AmlCompute cluster (or any other supported compute target types). You can also customize the conda environment by adding conda and/or pip packages.\n",
"\n",
"> Note: The arguments to the entry script used in the Estimator object should be specified as *list* using\n",
" 'estimator_entry_script_arguments' parameter when instantiating EstimatorStep. Estimator object's parameter\n",
" 'script_params' accepts a dictionary. However 'estimator_entry_script_arguments' parameter expects arguments as\n",
" a list.\n",
"\n",
"> Estimator object initialization involves specifying a list of DataReference objects in its 'inputs' parameter.\n",
" In Pipelines, a step can take another step's output or DataReferences as input. So when creating an EstimatorStep,\n",
" the parameters 'inputs' and 'outputs' need to be set explicitly and that will override 'inputs' parameter\n",
" specified in the Estimator object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.core import PipelineData\n",
"\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"\n",
"input_data = DataReference(\n",
" datastore=def_blob_store,\n",
" data_reference_name=\"input_data\",\n",
" path_on_datastore=\"20newsgroups/20news.pkl\")\n",
"\n",
"output = PipelineData(\"output\", datastore=def_blob_store)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.estimator import Estimator\n",
"\n",
"est = Estimator(source_directory='.', \n",
" compute_target=cpu_cluster, \n",
" entry_script='dummy_train.py', \n",
" conda_packages=['scikit-learn'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an EstimatorStep\n",
"[EstimatorStep](https://docs.microsoft.com/en-us/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimator_step.estimatorstep?view=azure-ml-py) adds a step to run Estimator in a Pipeline.\n",
"\n",
"- **name:** Name of the step\n",
"- **estimator:** Estimator object\n",
"- **estimator_entry_script_arguments:** \n",
"- **runconfig_pipeline_params:** Override runconfig properties at runtime using key-value pairs each with name of the runconfig property and PipelineParameter for that property\n",
"- **inputs:** Inputs\n",
"- **outputs:** Output is list of PipelineData\n",
"- **compute_target:** Compute target to use \n",
"- **allow_reuse:** Whether the step should reuse previous results when run with the same settings/inputs. If this is false, a new run will always be generated for this step during pipeline execution.\n",
"- **version:** Optional version tag to denote a change in functionality for the step"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.steps import EstimatorStep\n",
"\n",
"est_step = EstimatorStep(name=\"Estimator_Train\", \n",
" estimator=est, \n",
" estimator_entry_script_arguments=[\"--datadir\", input_data, \"--output\", output],\n",
" runconfig_pipeline_params=None, \n",
" inputs=[input_data], \n",
" outputs=[output], \n",
" compute_target=cpu_cluster)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build and Submit the Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Pipeline\n",
"from azureml.core import Experiment\n",
"pipeline = Pipeline(workspace=ws, steps=[est_step])\n",
"pipeline_run = Experiment(ws, 'Estimator_sample').submit(pipeline)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## View Run Details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(pipeline_run).show()"
]
}
],
"metadata": {
"authors": [
{
"name": "sanpil"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -15,9 +22,17 @@
"# Azure Machine Learning Pipeline with HyperDriveStep\n",
"\n",
"\n",
"This notebook is used to demonstrate the use of HyperDriveStep in AML Pipeline.\n",
"This notebook is used to demonstrate the use of HyperDriveStep in AML Pipeline."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites and Azure Machine Learning Basics\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the configuration Notebook located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc. \n",
"\n",
"## Azure Machine Learning and Pipeline SDK-specific imports\n"
"## Azure Machine Learning and Pipeline SDK-specific imports"
]
},
{
@@ -26,19 +41,24 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"import urllib\n",
"import azureml.core\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.datastore import Datastore\n",
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.exceptions import ComputeTargetException\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.pipeline.steps import HyperDriveStep\n",
"from azureml.pipeline.core import Pipeline\n",
"from azureml.pipeline.steps import HyperDriveStep, HyperDriveStepRun\n",
"from azureml.pipeline.core import Pipeline, PipelineData\n",
"from azureml.train.dnn import TensorFlow\n",
"from azureml.train.hyperdrive import *\n",
"# from azureml.train.hyperdrive import *\n",
"from azureml.train.hyperdrive import RandomParameterSampling, BanditPolicy, HyperDriveConfig, PrimaryMetricGoal\n",
"from azureml.train.hyperdrive import choice, loguniform\n",
"\n",
"import os\n",
"import shutil\n",
"import urllib\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
@@ -50,7 +70,7 @@
"source": [
"## Initialize workspace\n",
"\n",
"Initialize a workspace object from persisted configuration. Make sure the config file is present at .\\config.json"
"Initialize a workspace object from persisted configuration. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure the config file is present at .\\config.json"
]
},
{
@@ -80,7 +100,7 @@
"script_folder = './tf-mnist'\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"\n",
"exp = Experiment(workspace=ws, name='tf-mnist')"
"exp = Experiment(workspace=ws, name='Hyperdrive_sample')"
]
},
{
@@ -105,6 +125,42 @@
"urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', filename = './data/mnist/test-labels.gz')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Show some sample images\n",
"Let's load the downloaded compressed file into numpy arrays using some utility functions included in the `utils.py` library file from the current folder. Then we use `matplotlib` to plot 30 random images from the dataset along with their labels."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from utils import load_data\n",
"\n",
"# note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge faster.\n",
"X_train = load_data('./data/mnist/train-images.gz', False) / 255.0\n",
"y_train = load_data('./data/mnist/train-labels.gz', True).reshape(-1)\n",
"\n",
"X_test = load_data('./data/mnist/test-images.gz', False) / 255.0\n",
"y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)\n",
"\n",
"count = 0\n",
"sample_size = 30\n",
"plt.figure(figsize = (16, 6))\n",
"for i in np.random.permutation(X_train.shape[0])[:sample_size]:\n",
" count = count + 1\n",
" plt.subplot(1, sample_size, count)\n",
" plt.axhline('')\n",
" plt.axvline('')\n",
" plt.text(x = 10, y = -10, s = y_train[i], fontsize = 18)\n",
" plt.imshow(X_train[i].reshape(28, 28), cmap = plt.cm.Greys)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -128,14 +184,8 @@
"metadata": {},
"source": [
"## Retrieve or create a Azure Machine Learning compute\n",
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads. Let's create a new Azure Machine Learning Compute in the current workspace, if it doesn't already exist. We will then run the training script on this compute target.\n",
"\n",
"If we could not find the compute with the given name in the previous cell, then we will create a new compute here. This process is broken down into the following steps:\n",
"\n",
"1. Create the configuration\n",
"2. Create the Azure Machine Learning compute\n",
"\n",
"**This process will take a few minutes and is providing only sparse output in the process. Please make sure to wait until the call returns before moving to the next cell.**\n"
"Azure Machine Learning Compute is a service for provisioning and managing clusters of Azure virtual machines for running machine learning workloads.\n",
"Let's check the available computes first."
]
},
{
@@ -144,20 +194,27 @@
"metadata": {},
"outputs": [],
"source": [
"cluster_name = \"gpucluster\"\n",
"cts = ws.compute_targets\n",
"for name, ct in cts.items():\n",
" print(name, ct.type, ct.provisioning_state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's get the default Azure Machine Learning Compute in the current workspace. We will then run the training script on this compute target."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target = ws.get_default_compute_target(\"GPU\")\n",
"\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cluster_name)\n",
" print('Found existing compute target {}.'.format(cluster_name))\n",
"except ComputeTargetException:\n",
" print('Creating a new compute target...')\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" max_nodes=4)\n",
"\n",
" compute_target = ComputeTarget.create(ws, cluster_name, compute_config)\n",
" compute_target.wait_for_completion(show_output=True, timeout_in_minutes=20)\n",
"\n",
"print(\"Azure Machine Learning Compute attached\")"
"print(compute_target.get_status().serialize())"
]
},
{
@@ -186,8 +243,12 @@
"metadata": {},
"source": [
"## Create TensorFlow estimator\n",
"Next, we construct an `azureml.train.dnn.TensorFlow` estimator object, use the Batch AI cluster as compute target, and pass the mount-point of the datastore to the training code as a parameter.\n",
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker."
"Next, we construct an [TensorFlow](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py) estimator object.\n",
"The TensorFlow estimator is providing a simple way of launching a TensorFlow training job on a compute target. It will automatically provide a docker image that has TensorFlow installed -- if additional pip or conda packages are required, their names can be passed in via the `pip_packages` and `conda_packages` arguments and they will be included in the resulting docker.\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release.\n",
"\n",
"The TensorFlow estimator also takes a `framework_version` parameter -- if no version is provided, the estimator will default to the latest version supported by AzureML. Use `TensorFlow.get_supported_versions()` to get a list of all versions supported by your current SDK version or see the [SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py) for the versions supported in the most current release."
]
},
{
@@ -199,7 +260,8 @@
"est = TensorFlow(source_directory=script_folder, \n",
" compute_target=compute_target,\n",
" entry_script='tf_mnist.py', \n",
" use_gpu=True)"
" use_gpu=True,\n",
" framework_version='1.13')"
]
},
{
@@ -207,7 +269,7 @@
"metadata": {},
"source": [
"## Intelligent hyperparameter tuning\n",
"We have trained the model with one set of hyperparameters, now let's how we can do hyperparameter tuning by launching multiple runs on the cluster. First let's define the parameter space using random sampling.\n",
"Now let's try hyperparameter tuning by launching multiple runs on the cluster. First let's define the parameter space using random sampling.\n",
"\n",
"In this example we will use random sampling to try different configuration sets of hyperparameters to maximize our primary metric, the best validation accuracy (`validation_acc`)."
]
@@ -259,13 +321,13 @@
"metadata": {},
"outputs": [],
"source": [
"hd_config = HyperDriveRunConfig(estimator=est, \n",
" hyperparameter_sampling=ps,\n",
" policy=early_termination_policy,\n",
" primary_metric_name='validation_acc', \n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, \n",
" max_total_runs=1,\n",
" max_concurrent_runs=1)"
"hd_config = HyperDriveConfig(estimator=est, \n",
" hyperparameter_sampling=ps,\n",
" policy=early_termination_policy,\n",
" primary_metric_name='validation_acc', \n",
" primary_metric_goal=PrimaryMetricGoal.MAXIMIZE, \n",
" max_total_runs=10,\n",
" max_concurrent_runs=4)"
]
},
{
@@ -274,6 +336,7 @@
"source": [
"## Add HyperDrive as a step of pipeline\n",
"\n",
"### Setup an input for the hypderdrive step\n",
"Let's setup a data reference for inputs of hyperdrive step."
]
},
@@ -295,7 +358,7 @@
"### HyperDriveStep\n",
"HyperDriveStep can be used to run HyperDrive job as a step in pipeline.\n",
"- **name:** Name of the step\n",
"- **hyperdrive_run_config:** A HyperDriveRunConfig that defines the configuration for this HyperDrive run\n",
"- **hyperdrive_config:** A HyperDriveConfig that defines the configuration for this HyperDrive run\n",
"- **estimator_entry_script_arguments:** List of command-line arguments for estimator entry script\n",
"- **inputs:** List of input port bindings\n",
"- **outputs:** List of output port bindings\n",
@@ -310,11 +373,18 @@
"metadata": {},
"outputs": [],
"source": [
"metrics_output_name = 'metrics_output'\n",
"metirics_data = PipelineData(name='metrics_data',\n",
" datastore=ds,\n",
" pipeline_output_name=metrics_output_name)\n",
"\n",
"hd_step_name='hd_step01'\n",
"hd_step = HyperDriveStep(\n",
" name=\"hyperdrive_module\",\n",
" hyperdrive_run_config=hd_config,\n",
" name=hd_step_name,\n",
" hyperdrive_config=hd_config,\n",
" estimator_entry_script_arguments=['--data-folder', data_folder],\n",
" inputs=[data_folder])"
" inputs=[data_folder],\n",
" metrics_output=metirics_data)"
]
},
{
@@ -331,7 +401,7 @@
"outputs": [],
"source": [
"pipeline = Pipeline(workspace=ws, steps=[hd_step])\n",
"pipeline_run = Experiment(ws, 'Hyperdrive_Test').submit(pipeline)"
"pipeline_run = exp.submit(pipeline)"
]
},
{
@@ -364,7 +434,403 @@
"metadata": {},
"outputs": [],
"source": [
"pipeline_run.wait_for_completion()"
"# PUBLISHONLY\n",
"# pipeline_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the metrics\n",
"Outputs of above run can be used as inputs of other steps in pipeline. In this tutorial, we will show the result metrics."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# metrics_output = pipeline_run.get_pipeline_output(metrics_output_name)\n",
"# num_file_downloaded = metrics_output.download('.', show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import pandas as pd\n",
"# import json\n",
"# with open(metrics_output._path_on_datastore) as f: \n",
"# metrics_output_result = f.read()\n",
" \n",
"# deserialized_metrics_output = json.loads(metrics_output_result)\n",
"# df = pd.DataFrame(deserialized_metrics_output)\n",
"# df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Find and register best model\n",
"When all the jobs finish, we can find out the one that has the highest accuracy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# hd_step_run = HyperDriveStepRun(step_run=pipeline_run.find_step_run(hd_step_name)[0])\n",
"# best_run = hd_step_run.get_best_run_by_primary_metric()\n",
"# best_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's list the model files uploaded during the run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(best_run.get_file_names())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can then register the folder (and all files in it) as a model named `tf-dnn-mnist` under the workspace for deployment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# model = best_run.register_model(model_name='tf-dnn-mnist', model_path='outputs/model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy the model in ACI\n",
"Now we are ready to deploy the model as a web service running in Azure Container Instance [ACI](https://azure.microsoft.com/en-us/services/container-instances/). Azure Machine Learning accomplishes this by constructing a Docker image with the scoring logic and model baked in.\n",
"### Create score.py\n",
"First, we will create a scoring script that will be invoked by the web service call. \n",
"\n",
"* Note that the scoring script must have two required functions, `init()` and `run(input_data)`. \n",
" * In `init()` function, you typically load the model into a global object. This function is executed only once when the Docker container is started. \n",
" * In `run(input_data)` function, the model is used to predict a value based on the input data. The input and output to `run` typically use JSON as serialization and de-serialization format but you are not limited to that."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"import tensorflow as tf\n",
"\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global X, output, sess\n",
" tf.reset_default_graph()\n",
" model_root = Model.get_model_path('tf-dnn-mnist')\n",
" saver = tf.train.import_meta_graph(os.path.join(model_root, 'mnist-tf.model.meta'))\n",
" X = tf.get_default_graph().get_tensor_by_name(\"network/X:0\")\n",
" output = tf.get_default_graph().get_tensor_by_name(\"network/output/MatMul:0\")\n",
" \n",
" sess = tf.Session()\n",
" saver.restore(sess, os.path.join(model_root, 'mnist-tf.model'))\n",
"\n",
"def run(raw_data):\n",
" data = np.array(json.loads(raw_data)['data'])\n",
" # make prediction\n",
" out = output.eval(session=sess, feed_dict={X: data})\n",
" y_hat = np.argmax(out, axis=1)\n",
" return y_hat.tolist()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create myenv.yml\n",
"We also need to create an environment file so that Azure Machine Learning can install the necessary packages in the Docker image which are required by your scoring script. In this case, we need to specify packages `numpy`, `tensorflow`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.runconfig import CondaDependencies\n",
"\n",
"# cd = CondaDependencies.create()\n",
"# cd.add_conda_package('numpy')\n",
"# cd.add_tensorflow_conda_package()\n",
"# cd.save_to_file(base_directory='./', conda_file_path='myenv.yml')\n",
"\n",
"# print(cd.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy to ACI\n",
"We are almost ready to deploy. Create a deployment configuration and specify the number of CPUs and gigbyte of RAM needed for your ACI container. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.webservice import AciWebservice\n",
"\n",
"# aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
"# memory_gb=1, \n",
"# tags={'name':'mnist', 'framework': 'TensorFlow DNN'},\n",
"# description='Tensorflow DNN on MNIST')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Deployment Process\n",
"Now we can deploy. **This cell will run for about 7-8 minutes**. Behind the scene, it will do the following:\n",
"1. **Register model** \n",
"Take the local `model` folder (which contains our previously downloaded trained model files) and register it (and the files inside that folder) as a model named `model` under the workspace. Azure ML will register the model directory or model file(s) we specify to the `model_paths` parameter of the `Webservice.deploy` call.\n",
"2. **Build Docker image** \n",
"Build a Docker image using the scoring file (`score.py`), the environment file (`myenv.yml`), and the `model` folder containing the TensorFlow model files. \n",
"3. **Register image** \n",
"Register that image under the workspace. \n",
"4. **Ship to ACI** \n",
"And finally ship the image to the ACI infrastructure, start up a container in ACI using that image, and expose an HTTP endpoint to accept REST client calls."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# from azureml.core.image import ContainerImage\n",
"\n",
"# imgconfig = ContainerImage.image_configuration(execution_script=\"score.py\", \n",
"# runtime=\"python\", \n",
"# conda_file=\"myenv.yml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# %%time\n",
"# from azureml.core.webservice import Webservice\n",
"\n",
"# service = Webservice.deploy_from_model(workspace=ws,\n",
"# name='tf-mnist-svc',\n",
"# deployment_config=aciconfig,\n",
"# models=[model],\n",
"# image_config=imgconfig)\n",
"\n",
"# service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Tip: If something goes wrong with the deployment, the first thing to look at is the logs from the service by running the following command:**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(service.get_logs())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is the scoring web service endpoint:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# print(service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the deployed model\n",
"Let's test the deployed model. Pick 30 random samples from the test set, and send it to the web service hosted in ACI. Note here we are using the `run` API in the SDK to invoke the service. You can also make raw HTTP calls using any HTTP tool such as curl.\n",
"\n",
"After the invocation, we print the returned predictions and plot them along with the input images. Use red font color and inversed image (white on black) to highlight the misclassified samples. Note since the model accuracy is pretty high, you might have to run the below cell a few times before you can see a misclassified sample."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import json\n",
"\n",
"# # find 30 random samples from test set\n",
"# n = 30\n",
"# sample_indices = np.random.permutation(X_test.shape[0])[0:n]\n",
"\n",
"# test_samples = json.dumps({\"data\": X_test[sample_indices].tolist()})\n",
"# test_samples = bytes(test_samples, encoding='utf8')\n",
"\n",
"# # predict using the deployed model\n",
"# result = service.run(input_data=test_samples)\n",
"\n",
"# # compare actual value vs. the predicted values:\n",
"# i = 0\n",
"# plt.figure(figsize = (20, 1))\n",
"\n",
"# for s in sample_indices:\n",
"# plt.subplot(1, n, i + 1)\n",
"# plt.axhline('')\n",
"# plt.axvline('')\n",
" \n",
"# # use different color for misclassified sample\n",
"# font_color = 'red' if y_test[s] != result[i] else 'black'\n",
"# clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys\n",
" \n",
"# plt.text(x=10, y=-10, s=y_hat[s], fontsize=18, color=font_color)\n",
"# plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)\n",
" \n",
"# i = i + 1\n",
"# plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also send raw HTTP request to the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# import requests\n",
"\n",
"# # send a random row from the test set to score\n",
"# random_index = np.random.randint(0, len(X_test)-1)\n",
"# input_data = \"{\\\"data\\\": [\" + str(list(X_test[random_index])) + \"]}\"\n",
"\n",
"# headers = {'Content-Type':'application/json'}\n",
"\n",
"# resp = requests.post(service.scoring_uri, input_data, headers=headers)\n",
"\n",
"# print(\"POST to url\", service.scoring_uri)\n",
"# print(\"input data:\", input_data)\n",
"# print(\"label:\", y_test[random_index])\n",
"# print(\"prediction:\", resp.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the workspace after the web service was deployed. You should see \n",
"* a registered model named 'model' and with the id 'model:1'\n",
"* an image called 'tf-mnist' and with a docker image location pointing to your workspace's Azure Container Registry (ACR) \n",
"* a webservice called 'tf-mnist' with some scoring URL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# models = ws.models\n",
"# for name, model in models.items():\n",
"# print(\"Model: {}, ID: {}\".format(name, model.id))\n",
" \n",
"# images = ws.images\n",
"# for name, image in images.items():\n",
"# print(\"Image: {}, location: {}\".format(name, image.image_location))\n",
" \n",
"# webservices = ws.webservices\n",
"# for name, webservice in webservices.items():\n",
"# print(\"Webservice: {}, scoring URI: {}\".format(name, webservice.scoring_uri))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up\n",
"You can delete the ACI deployment with a simple delete API call."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# PUBLISHONLY\n",
"# service.delete()"
]
}
],

View File

@@ -8,6 +8,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-publish-and-run-using-rest-endpoint.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -21,7 +28,7 @@
"metadata": {},
"source": [
"## Prerequisites and Azure Machine Learning Basics\n",
"Make sure you go through the configuration Notebook located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc. \n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the configuration Notebook located at https://github.com/Azure/MachineLearningNotebooks first if you haven't. This sets you up with a working config file that has information on your workspace, subscription id, etc. \n",
"\n",
"### Initialization Steps"
]
@@ -33,7 +40,7 @@
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core import Workspace, Datastore\n",
"from azureml.core import Workspace, Datastore, Experiment\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
@@ -55,10 +62,7 @@
"print(\"Default datastore's name: {}\".format(def_file_store.name))\n",
"\n",
"def_blob_store = Datastore(ws, \"workspaceblobstore\")\n",
"print(\"Blobstore's name: {}\".format(def_blob_store.name))\n",
"\n",
"# project folder\n",
"project_folder = '.'"
"print(\"Blobstore's name: {}\".format(def_blob_store.name))"
]
},
{
@@ -75,20 +79,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aml_compute_target = \"cpucluster\"\n",
"try:\n",
" aml_compute = AmlCompute(ws, aml_compute_target)\n",
" print(\"found existing compute target.\")\n",
"except ComputeTargetException:\n",
" print(\"creating new compute target\")\n",
" \n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\",\n",
" min_nodes = 1, \n",
" max_nodes = 4) \n",
" aml_compute = ComputeTarget.create(ws, aml_compute_target, provisioning_config)\n",
" aml_compute.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n"
"aml_compute = ws.get_default_compute_target(\"CPU\")"
]
},
{
@@ -160,7 +151,7 @@
" inputs=[blob_input_data],\n",
" outputs=[processed_data1],\n",
" compute_target=aml_compute, \n",
" source_directory=project_folder\n",
" source_directory='.'\n",
")\n",
"print(\"trainStep created\")"
]
@@ -191,7 +182,7 @@
" inputs=[processed_data1],\n",
" outputs=[processed_data2],\n",
" compute_target=aml_compute, \n",
" source_directory=project_folder)\n",
" source_directory='.')\n",
"print(\"extractStep created\")"
]
},
@@ -252,7 +243,7 @@
" inputs=[processed_data1, processed_data2],\n",
" outputs=[processed_data3], \n",
" compute_target=aml_compute, \n",
" source_directory=project_folder)\n",
" source_directory='.')\n",
"print(\"compareStep created\")"
]
},
@@ -270,10 +261,7 @@
"outputs": [],
"source": [
"pipeline1 = Pipeline(workspace=ws, steps=[compareStep])\n",
"print (\"Pipeline is built\")\n",
"\n",
"pipeline1.validate()\n",
"print(\"Simple validation complete\") "
"print (\"Pipeline is built\")"
]
},
{
@@ -290,10 +278,38 @@
"metadata": {},
"outputs": [],
"source": [
"published_pipeline1 = pipeline1.publish(name=\"My_New_Pipeline\", description=\"My Published Pipeline Description\")\n",
"published_pipeline1 = pipeline1.publish(name=\"My_New_Pipeline\", description=\"My Published Pipeline Description\", continue_on_step_failure=True)\n",
"published_pipeline1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: the continue_on_step_failure parameter specifies whether the execution of steps in the Pipeline will continue if one step fails. The default value is False, meaning when one step fails, the Pipeline execution will stop, canceling any running steps."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Publish the pipeline from a submitted PipelineRun\n",
"It is also possible to publish a pipeline from a submitted PipelineRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# submit a pipeline run\n",
"pipeline_run1 = Experiment(ws, 'Pipeline_experiment').submit(pipeline1)\n",
"# publish a pipeline from the submitted pipeline run\n",
"published_pipeline2 = pipeline_run1.publish_pipeline(name=\"My_New_Pipeline2\", description=\"My Published Pipeline Description\", version=\"0.1\", continue_on_step_failure=True)\n",
"published_pipeline2"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -325,7 +341,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run published pipeline using its REST endpoint"
"### Run published pipeline using its REST endpoint\n",
"[This notebook](https://aka.ms/pl-restep-auth) shows how to authenticate to AML workspace."
]
},
{

Some files were not shown because too many files have changed in this diff Show More