mirror of
https://github.com/Azure/MachineLearningNotebooks.git
synced 2025-12-22 02:25:12 -05:00
Compare commits
19 Commits
azureml-sd
...
vizhur-pat
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
05a225fa66 | ||
|
|
a956162114 | ||
|
|
cb5a178e40 | ||
|
|
d81c336c59 | ||
|
|
4244a24d81 | ||
|
|
3b488555e5 | ||
|
|
6abc478f33 | ||
|
|
666c2579eb | ||
|
|
5af3aa4231 | ||
|
|
e48d828ab0 | ||
|
|
44aa636c21 | ||
|
|
4678f9adc3 | ||
|
|
5bf85edade | ||
|
|
94f381e884 | ||
|
|
ea1b7599c3 | ||
|
|
6b8a6befde | ||
|
|
c1511b7b74 | ||
|
|
8f007a3333 | ||
|
|
18a11bbd8d |
29
Dockerfiles/1.0.21/Dockerfile
Normal file
29
Dockerfiles/1.0.21/Dockerfile
Normal file
@@ -0,0 +1,29 @@
|
||||
FROM continuumio/miniconda:4.5.11
|
||||
|
||||
# install git
|
||||
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
|
||||
|
||||
# create a new conda environment named azureml
|
||||
RUN conda create -n azureml -y -q Python=3.6
|
||||
|
||||
# install additional packages used by sample notebooks. this is optional
|
||||
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
|
||||
|
||||
# install azurmel-sdk components
|
||||
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.21"]
|
||||
|
||||
# clone Azure ML GitHub sample notebooks
|
||||
RUN cd /home && git clone -b "azureml-sdk-1.0.21" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
|
||||
|
||||
# generate jupyter configuration file
|
||||
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
|
||||
|
||||
# set an emtpy token for Jupyter to remove authentication.
|
||||
# this is NOT recommended for production environment
|
||||
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
|
||||
|
||||
# open up port 8887 on the container
|
||||
EXPOSE 8887
|
||||
|
||||
# start Jupyter notebook server on port 8887 when the container starts
|
||||
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"
|
||||
1
googled8147fb6c0788258.html
Normal file
1
googled8147fb6c0788258.html
Normal file
@@ -0,0 +1 @@
|
||||
google-site-verification: googled8147fb6c0788258.html
|
||||
22
how-to-use-azureml/automated-machine-learning/automl_env.yml
Normal file
22
how-to-use-azureml/automated-machine-learning/automl_env.yml
Normal file
@@ -0,0 +1,22 @@
|
||||
name: azure_automl
|
||||
dependencies:
|
||||
# The python interpreter version.
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- python>=3.5.2,<3.6.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.11.0,<1.15.0
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scikit-learn>=0.18.0,<=0.19.1
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- tensorflow>=1.12.0
|
||||
- py-xgboost<=0.80
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-sdk[automl,explain]
|
||||
- azureml-widgets
|
||||
- pandas_ml
|
||||
|
||||
@@ -0,0 +1,23 @@
|
||||
name: azure_automl
|
||||
dependencies:
|
||||
# The python interpreter version.
|
||||
# Currently Azure ML only supports 3.5.2 and later.
|
||||
- python>=3.5.2,<3.6.8
|
||||
- nb_conda
|
||||
- matplotlib==2.1.0
|
||||
- numpy>=1.15.3
|
||||
- cython
|
||||
- urllib3<1.24
|
||||
- scipy>=1.0.0,<=1.1.0
|
||||
- scikit-learn>=0.18.0,<=0.19.1
|
||||
- pandas>=0.22.0,<0.23.0
|
||||
- tensorflow>=1.12.0
|
||||
- py-xgboost<=0.80
|
||||
|
||||
- pip:
|
||||
# Required packages for AzureML execution, history, and data preparation.
|
||||
- azureml-sdk[automl,explain]
|
||||
- azureml-widgets
|
||||
- pandas_ml
|
||||
|
||||
|
||||
@@ -0,0 +1,51 @@
|
||||
@echo off
|
||||
set conda_env_name=%1
|
||||
set automl_env_file=%2
|
||||
set options=%3
|
||||
set PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
|
||||
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
|
||||
|
||||
IF NOT EXIST %automl_env_file% GOTO YmlMissing
|
||||
|
||||
call conda activate %conda_env_name% 2>nul:
|
||||
|
||||
if not errorlevel 1 (
|
||||
echo Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment %conda_env_name%
|
||||
call pip install --upgrade azureml-sdk[automl,notebooks,explain]
|
||||
if errorlevel 1 goto ErrorExit
|
||||
) else (
|
||||
call conda env create -f %automl_env_file% -n %conda_env_name%
|
||||
)
|
||||
|
||||
call conda activate %conda_env_name% 2>nul:
|
||||
if errorlevel 1 goto ErrorExit
|
||||
|
||||
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
|
||||
|
||||
REM azureml.widgets is now installed as part of the pip install under the conda env.
|
||||
REM Removing the old user install so that the notebooks will use the latest widget.
|
||||
call jupyter nbextension uninstall --user --py azureml.widgets
|
||||
|
||||
echo.
|
||||
echo.
|
||||
echo ***************************************
|
||||
echo * AutoML setup completed successfully *
|
||||
echo ***************************************
|
||||
IF NOT "%options%"=="nolaunch" (
|
||||
echo.
|
||||
echo Starting jupyter notebook - please run the configuration notebook
|
||||
echo.
|
||||
jupyter notebook --log-level=50 --notebook-dir='..\..'
|
||||
)
|
||||
|
||||
goto End
|
||||
|
||||
:YmlMissing
|
||||
echo File %automl_env_file% not found.
|
||||
|
||||
:ErrorExit
|
||||
echo Install failed
|
||||
|
||||
:End
|
||||
@@ -0,0 +1,52 @@
|
||||
#!/bin/bash
|
||||
|
||||
CONDA_ENV_NAME=$1
|
||||
AUTOML_ENV_FILE=$2
|
||||
OPTIONS=$3
|
||||
PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
if [ "$CONDA_ENV_NAME" == "" ]
|
||||
then
|
||||
CONDA_ENV_NAME="azure_automl"
|
||||
fi
|
||||
|
||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||
then
|
||||
AUTOML_ENV_FILE="automl_env.yml"
|
||||
fi
|
||||
|
||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||
echo "File $AUTOML_ENV_FILE not found"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
|
||||
jupyter nbextension uninstall --user --py azureml.widgets
|
||||
else
|
||||
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
|
||||
source activate $CONDA_ENV_NAME &&
|
||||
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
|
||||
jupyter nbextension uninstall --user --py azureml.widgets &&
|
||||
echo "" &&
|
||||
echo "" &&
|
||||
echo "***************************************" &&
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
if [ "$OPTIONS" != "nolaunch" ]
|
||||
then
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
then
|
||||
echo "Installation failed"
|
||||
fi
|
||||
|
||||
|
||||
@@ -0,0 +1,55 @@
|
||||
#!/bin/bash
|
||||
|
||||
CONDA_ENV_NAME=$1
|
||||
AUTOML_ENV_FILE=$2
|
||||
OPTIONS=$3
|
||||
PIP_NO_WARN_SCRIPT_LOCATION=0
|
||||
|
||||
if [ "$CONDA_ENV_NAME" == "" ]
|
||||
then
|
||||
CONDA_ENV_NAME="azure_automl"
|
||||
fi
|
||||
|
||||
if [ "$AUTOML_ENV_FILE" == "" ]
|
||||
then
|
||||
AUTOML_ENV_FILE="automl_env_mac.yml"
|
||||
fi
|
||||
|
||||
if [ ! -f $AUTOML_ENV_FILE ]; then
|
||||
echo "File $AUTOML_ENV_FILE not found"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if source activate $CONDA_ENV_NAME 2> /dev/null
|
||||
then
|
||||
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
|
||||
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
|
||||
jupyter nbextension uninstall --user --py azureml.widgets
|
||||
else
|
||||
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
|
||||
source activate $CONDA_ENV_NAME &&
|
||||
conda install lightgbm -c conda-forge -y &&
|
||||
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
|
||||
jupyter nbextension uninstall --user --py azureml.widgets &&
|
||||
pip install numpy==1.15.3 &&
|
||||
echo "" &&
|
||||
echo "" &&
|
||||
echo "***************************************" &&
|
||||
echo "* AutoML setup completed successfully *" &&
|
||||
echo "***************************************" &&
|
||||
if [ "$OPTIONS" != "nolaunch" ]
|
||||
then
|
||||
echo "" &&
|
||||
echo "Starting jupyter notebook - please run the configuration notebook" &&
|
||||
echo "" &&
|
||||
jupyter notebook --log-level=50 --notebook-dir '../..'
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $? -gt 0 ]
|
||||
then
|
||||
echo "Installation failed"
|
||||
fi
|
||||
|
||||
|
||||
|
||||
@@ -167,6 +167,31 @@
|
||||
"image.wait_for_creation(show_output = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Use a custom Docker image\n",
|
||||
"\n",
|
||||
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
|
||||
"\n",
|
||||
"Only Supported for `ContainerImage`(from azureml.core.image) with `python` runtime.\n",
|
||||
"```python\n",
|
||||
"# use an image available in public Container Registry without authentication\n",
|
||||
"image_config.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
|
||||
"\n",
|
||||
"# or, use an image available in a private Container Registry\n",
|
||||
"image_config.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
|
||||
"image_config.base_image_registry.address = \"myregistry.azurecr.io\"\n",
|
||||
"image_config.base_image_registry.username = \"username\"\n",
|
||||
"image_config.base_image_registry.password = \"password\"\n",
|
||||
"\n",
|
||||
"# or, use an image built during training.\n",
|
||||
"image_config.base_image = run.properties[\"AzureML.DerivedImageName\"]\n",
|
||||
"```\n",
|
||||
"You can get the address of training image from the properties of a Run object. Only new runs submitted with azureml-sdk>=1.0.22 to AMLCompute targets will have the 'AzureML.DerivedImageName' property. Instructions on how to get a Run can be found in [manage-runs](../../training/manage-runs/manage-runs.ipynb). \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -191,6 +216,56 @@
|
||||
" provisioning_configuration = prov_config)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Create AKS Cluster in an existing virtual network (optional)\n",
|
||||
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'''\n",
|
||||
"from azureml.core.compute import ComputeTarget, AksCompute\n",
|
||||
"\n",
|
||||
"# Create the compute configuration and set virtual network information\n",
|
||||
"config = AksCompute.provisioning_configuration(location=\"eastus2\")\n",
|
||||
"config.vnet_resourcegroup_name = \"mygroup\"\n",
|
||||
"config.vnet_name = \"mynetwork\"\n",
|
||||
"config.subnet_name = \"default\"\n",
|
||||
"config.service_cidr = \"10.0.0.0/16\"\n",
|
||||
"config.dns_service_ip = \"10.0.0.10\"\n",
|
||||
"config.docker_bridge_cidr = \"172.17.0.1/16\"\n",
|
||||
"\n",
|
||||
"# Create the compute target\n",
|
||||
"aks_target = ComputeTarget.create(workspace = ws,\n",
|
||||
" name = \"myaks\",\n",
|
||||
" provisioning_configuration = config)\n",
|
||||
"'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Enable SSL on the AKS Cluster (optional)\n",
|
||||
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
@@ -270,8 +345,9 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Test the web service\n",
|
||||
"We test the web sevice by passing data."
|
||||
"# Test the web service using run method\n",
|
||||
"We test the web sevice by passing data.\n",
|
||||
"Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -293,6 +369,57 @@
|
||||
"print(prediction)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Test the web service using raw HTTP request (optional)\n",
|
||||
"Alternatively you can construct a raw HTTP request and send it to the service. In this case you need to explicitly pass the HTTP header. This process is shown in the next 2 cells."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# retreive the API keys. AML generates two keys.\n",
|
||||
"'''\n",
|
||||
"key1, Key2 = aks_service.get_keys()\n",
|
||||
"print(key1)\n",
|
||||
"'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# construct raw HTTP request and send to the service\n",
|
||||
"'''\n",
|
||||
"%%time\n",
|
||||
"\n",
|
||||
"import requests\n",
|
||||
"\n",
|
||||
"import json\n",
|
||||
"\n",
|
||||
"test_sample = json.dumps({'data': [\n",
|
||||
" [1,2,3,4,5,6,7,8,9,10], \n",
|
||||
" [10,9,8,7,6,5,4,3,2,1]\n",
|
||||
"]})\n",
|
||||
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
|
||||
"\n",
|
||||
"# Don't forget to add key to the HTTP header.\n",
|
||||
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
|
||||
"\n",
|
||||
"resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"prediction:\", resp.text)\n",
|
||||
"'''"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@@ -317,7 +444,7 @@
|
||||
"metadata": {
|
||||
"authors": [
|
||||
{
|
||||
"name": "raymondl"
|
||||
"name": "aashishb"
|
||||
}
|
||||
],
|
||||
"kernelspec": {
|
||||
|
||||
Reference in New Issue
Block a user