Compare commits

...

495 Commits

Author SHA1 Message Date
vizhur
59fcb54998 update samples from Release-42 as a part of SDK release 2020-03-20 18:10:08 +00:00
Harneet Virk
e0ea99a6bb Merge pull request #862 from Azure/release_update/Release-41
update samples from Release-41 as a part of  SDK release
2020-03-13 14:57:58 -07:00
vizhur
b06f5ce269 update samples from Release-41 as a part of SDK release 2020-03-13 21:57:04 +00:00
Harneet Virk
ed0ce9e895 Merge pull request #856 from Azure/release_update/Release-40
update samples from Release-40 as a part of  SDK release
2020-03-12 12:28:18 -07:00
vizhur
71053d705b update samples from Release-40 as a part of SDK release 2020-03-12 19:25:26 +00:00
Harneet Virk
77f98bf75f Merge pull request #852 from Azure/release_update_stable/Release-6
update samples from Release-6 as a part of 1.1.5 SDK stable release
2020-03-11 15:37:59 -06:00
vizhur
e443fd1342 update samples from Release-6 as a part of 1.1.5rc0 SDK stable release 2020-03-11 19:51:02 +00:00
Harneet Virk
2165cf308e update samples from Release-25 as a part of 1.1.2rc0 SDK experimental release (#829)
Co-authored-by: vizhur <vizhur@live.com>
2020-03-02 15:42:04 -05:00
Harneet Virk
3d6caa10a3 Merge pull request #801 from Azure/release_update/Release-39
update samples from Release-39 as a part of  SDK release
2020-02-13 19:03:36 -07:00
vizhur
4df079db1c update samples from Release-39 as a part of SDK release 2020-02-14 02:01:41 +00:00
Sander Vanhove
67d0b02ef9 Fix broken link in README (#797) 2020-02-13 08:20:28 -05:00
Harneet Virk
4e7b3784d5 Merge pull request #788 from Azure/release_update/Release-38
update samples from Release-38 as a part of  SDK release
2020-02-11 13:16:15 -07:00
vizhur
ed91e39d7e update samples from Release-38 as a part of SDK release 2020-02-11 20:00:16 +00:00
Harneet Virk
a09a1a16a7 Merge pull request #780 from Azure/release_update/Release-37
update samples from Release-37 as a part of  SDK release
2020-02-07 21:52:34 -07:00
vizhur
9662505517 update samples from Release-37 as a part of SDK release 2020-02-08 04:49:27 +00:00
Harneet Virk
8e103c02ff Merge pull request #779 from Azure/release_update/Release-36
update samples from Release-36 as a part of  SDK release
2020-02-07 21:40:57 -07:00
vizhur
ecb5157add update samples from Release-36 as a part of SDK release 2020-02-08 04:35:14 +00:00
Shané Winner
d7d23d5e7c Update index.md 2020-02-05 22:41:22 -08:00
Harneet Virk
83a21ba53a update samples from Release-35 as a part of SDK release (#765)
Co-authored-by: vizhur <vizhur@live.com>
2020-02-05 20:03:41 -05:00
Harneet Virk
3c9cb89c1a update samples from Release-18 as a part of 1.1.0rc0 SDK experimental release (#760)
Co-authored-by: vizhur <vizhur@live.com>
2020-02-04 22:19:52 -05:00
Sheri Gilley
cca7c2e26f add cell metadata 2020-02-04 11:31:07 -06:00
Harneet Virk
e895d7c2bf update samples - test (#758)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-31 15:19:58 -05:00
Shané Winner
3588eb9665 Update index.md 2020-01-23 15:46:43 -08:00
Harneet Virk
a09e726f31 update samples - test (#748)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-23 16:50:29 -05:00
Shané Winner
4fb1d9ee5b Update index.md 2020-01-22 11:38:24 -08:00
Harneet Virk
b05ff80e9d update samples from Release-169 as a part of 1.0.85 SDK release (#742)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-21 18:00:15 -05:00
Shané Winner
512630472b Update index.md 2020-01-08 14:52:23 -08:00
vizhur
ae1337fe70 Merge pull request #724 from Azure/release_update/Release-167
update samples from Release-167 as a part of 1.0.83 SDK release
2020-01-06 15:38:25 -05:00
vizhur
c95f970dc8 update samples from Release-167 as a part of 1.0.83 SDK release 2020-01-06 20:16:21 +00:00
Shané Winner
9b9d112719 Update index.md 2019-12-24 07:40:48 -08:00
vizhur
fe8fcd4b48 Merge pull request #712 from Azure/release_update/Release-31
update samples - test
2019-12-23 20:28:02 -05:00
vizhur
296ae01587 update samples - test 2019-12-24 00:42:48 +00:00
Shané Winner
8f4efe15eb Update index.md 2019-12-10 09:05:23 -08:00
vizhur
d179080467 Merge pull request #690 from Azure/release_update/Release-163
update samples from Release-163 as a part of 1.0.79 SDK release
2019-12-09 15:41:03 -05:00
vizhur
0040644e7a update samples from Release-163 as a part of 1.0.79 SDK release 2019-12-09 20:09:30 +00:00
Shané Winner
8aa04307fb Update index.md 2019-12-03 10:24:18 -08:00
Shané Winner
a525da4488 Update index.md 2019-11-27 13:08:21 -08:00
Shané Winner
e149565a8a Merge pull request #679 from Azure/release_update/Release-30
update samples - test
2019-11-27 13:05:00 -08:00
vizhur
75610ec31c update samples - test 2019-11-27 21:02:21 +00:00
Shané Winner
0c2c450b6b Update index.md 2019-11-25 14:34:48 -08:00
Shané Winner
0d548eabff Merge pull request #677 from Azure/release_update/Release-29
update samples - test
2019-11-25 14:31:50 -08:00
vizhur
e4029801e6 update samples - test 2019-11-25 22:24:09 +00:00
Shané Winner
156974ee7b Update index.md 2019-11-25 11:42:53 -08:00
Shané Winner
1f05157d24 Merge pull request #676 from Azure/release_update/Release-160
update samples from Release-160 as a part of 1.0.76 SDK release
2019-11-25 11:39:27 -08:00
vizhur
2214ea8616 update samples from Release-160 as a part of 1.0.76 SDK release 2019-11-25 19:28:19 +00:00
Sheri Gilley
b54b2566de Merge pull request #667 from Azure/sdk-codetest
remove deprecated auto_prepare_environment
2019-11-21 09:25:15 -06:00
Sheri Gilley
57b0f701f8 remove deprecated auto_prepare_environment 2019-11-20 17:28:44 -06:00
Shané Winner
d658c85208 Update index.md 2019-11-12 14:59:15 -08:00
vizhur
a5f627a9b6 Merge pull request #655 from Azure/release_update/Release-28
update samples - test
2019-11-12 17:11:45 -05:00
vizhur
a8b08bdff0 update samples - test 2019-11-12 21:53:12 +00:00
Shané Winner
0dc3f34b86 Update index.md 2019-11-11 14:49:44 -08:00
Shané Winner
9ba7d5e5bb Update index.md 2019-11-11 14:48:05 -08:00
Shané Winner
c6ad2f8ec0 Merge pull request #654 from Azure/release_update/Release-158
update samples from Release-158 as a part of 1.0.74 SDK release
2019-11-11 10:25:18 -08:00
vizhur
33d6def8c3 update samples from Release-158 as a part of 1.0.74 SDK release 2019-11-11 16:57:02 +00:00
Shané Winner
69d4344dff Update index.md 2019-11-04 10:09:41 -08:00
Shané Winner
34aeec1439 Update index.md 2019-11-04 10:08:10 -08:00
Shané Winner
a9b9ebbf7d Merge pull request #641 from Azure/release_update/Release-27
update samples - test
2019-11-04 10:02:25 -08:00
vizhur
41fa508d53 update samples - test 2019-11-04 17:57:28 +00:00
Shané Winner
e1bfa98844 Update index.md 2019-11-04 08:41:15 -08:00
Shané Winner
2bcee9aa20 Update index.md 2019-11-04 08:40:29 -08:00
Shané Winner
37541b1071 Merge pull request #638 from Azure/release_update/Release-26
update samples - test
2019-11-04 08:31:59 -08:00
Shané Winner
4aff1310a7 Merge branch 'master' into release_update/Release-26 2019-11-04 08:31:37 -08:00
Shané Winner
51ecb7c54f Update index.md 2019-11-01 10:38:46 -07:00
Shané Winner
4e7fc7c82c Update index.md 2019-11-01 10:36:02 -07:00
vizhur
4ed3f0767a update samples - test 2019-11-01 14:48:01 +00:00
vizhur
46ec74f8df Merge pull request #627 from jingyanwangms/jingywa/lightgbm-notebook
add Lightgbm Estimator notebook
2019-10-22 20:54:33 -04:00
Jingyan Wang
8d2e362a10 add Lightgbm notebook 2019-10-22 17:40:32 -07:00
vizhur
86c1b3d760 adding missing files for rapids 2019-10-21 12:20:15 -04:00
Shané Winner
41dc05952f Update index.md 2019-10-15 16:37:53 -07:00
vizhur
df2e08e4a3 Merge pull request #622 from Azure/release_update/Release-25
update samples - test
2019-10-15 18:34:28 -04:00
vizhur
828a976907 update samples - test 2019-10-15 22:01:55 +00:00
vizhur
1a373f11a0 Merge pull request #621 from Azure/ak/revert-db-overwrite
Revert automatic overwrite of databricks content
2019-10-15 16:07:37 -04:00
Akshaya Annavajhala (AK)
60de701207 revert overwrites 2019-10-15 12:33:31 -07:00
Akshaya Annavajhala (AK)
5841fa4a42 revert overwrites 2019-10-15 12:27:56 -07:00
Shané Winner
659fb7abc3 Merge pull request #619 from Azure/release_update/Release-153
update samples from Release-153 as a part of 1.0.69 SDK release
2019-10-14 15:39:40 -07:00
vizhur
2e404cfc3a update samples from Release-153 as a part of 1.0.69 SDK release 2019-10-14 22:30:58 +00:00
Shané Winner
5fcf4887bc Update index.md 2019-10-06 11:44:35 -07:00
Shané Winner
1e7f3117ae Update index.md 2019-10-06 11:44:01 -07:00
Shané Winner
bbb3f85da9 Update README.md 2019-10-06 11:33:56 -07:00
Shané Winner
c816dfb479 Update index.md 2019-10-06 11:29:58 -07:00
Shané Winner
8c128640b1 Update index.md 2019-10-06 11:28:34 -07:00
vizhur
4d2b937846 Merge pull request #600 from Azure/release_update/Release-24
Fix for Tensorflow 2.0 related Notebook Failures
2019-10-02 16:27:31 -04:00
vizhur
5492f52faf update samples - test 2019-10-02 20:23:54 +00:00
Shané Winner
735db9ebe7 Update index.md 2019-10-01 09:59:10 -07:00
Shané Winner
573030b990 Update README.md 2019-10-01 09:52:10 -07:00
Shané Winner
392a059000 Update index.md 2019-10-01 09:44:37 -07:00
Shané Winner
3580e54fbb Update index.md 2019-10-01 09:42:20 -07:00
Shané Winner
2017bcd716 Update index.md 2019-10-01 09:41:33 -07:00
Roope Astala
4a3f8e7025 Merge pull request #594 from Azure/release_update/Release-149
update samples from Release-149 as a part of 1.0.65 SDK release
2019-09-30 13:29:57 -04:00
vizhur
45880114db update samples from Release-149 as a part of 1.0.65 SDK release 2019-09-30 17:08:52 +00:00
Roope Astala
314bad72a4 Merge pull request #588 from skaarthik/rapids
updating to use AML base image and system managed dependencies
2019-09-25 07:44:31 -04:00
Kaarthik Sivashanmugam
f252308005 updating to use AML base image and system managed dependencies 2019-09-24 20:47:15 -07:00
Kaarthik Sivashanmugam
6622a6c5f2 Merge pull request #1 from Azure/master
merge latest changes from Azure/MLNB repo
2019-09-24 20:40:43 -07:00
Roope Astala
6b19e2f263 Merge pull request #587 from Azure/akshaya-a-patch-3
Update README.md to remove confusing reference
2019-09-24 16:13:16 -04:00
Akshaya Annavajhala
42fd4598cb Update README.md 2019-09-24 15:28:30 -04:00
Roope Astala
476d945439 Merge pull request #580 from akshaya-a/master
Add documentation on the preview ADB linking experience
2019-09-24 09:31:45 -04:00
Shané Winner
e96bb9bef2 Delete manage-runs.yml 2019-09-22 20:37:17 -07:00
Shané Winner
2be4a5e54d Delete manage-runs.ipynb 2019-09-22 20:37:07 -07:00
Shané Winner
247a25f280 Delete hello_with_delay.py 2019-09-22 20:36:50 -07:00
Shané Winner
5d9d8eade6 Delete hello_with_children.py 2019-09-22 20:36:39 -07:00
Shané Winner
dba978e42a Delete hello.py 2019-09-22 20:36:29 -07:00
Shané Winner
7f4101c33e Delete run_details.PNG 2019-09-22 20:36:12 -07:00
Shané Winner
62b0d5df69 Delete run_history.png 2019-09-22 20:36:01 -07:00
Shané Winner
f10b55a1bc Delete logging-api.ipynb 2019-09-22 20:35:47 -07:00
Shané Winner
da9e86635e Delete logging-api.yml 2019-09-22 20:35:36 -07:00
Shané Winner
9ca6388996 Delete datasets-diff.ipynb 2019-09-19 14:14:59 -07:00
Akshaya Annavajhala
3ce779063b address PR feedback 2019-09-18 15:48:42 -04:00
Akshaya Annavajhala
ce635ce4fe add the word mlflow 2019-09-18 13:25:41 -04:00
Akshaya Annavajhala
f08e68c8e9 add linking docs 2019-09-18 11:08:46 -04:00
Shané Winner
93a1d232db Update index.md 2019-09-17 10:00:57 -07:00
Shané Winner
923483528c Update index.md 2019-09-17 09:59:23 -07:00
Shané Winner
cbeacb2ab2 Delete sklearn_regression_model.pkl 2019-09-17 09:37:44 -07:00
Shané Winner
c928c50707 Delete score.py 2019-09-17 09:37:34 -07:00
Shané Winner
efb42bacf9 Delete register-model-deploy-local.ipynb 2019-09-17 09:37:26 -07:00
Shané Winner
d8f349a1ae Delete register-model-deploy-local-advanced.ipynb 2019-09-17 09:37:17 -07:00
Shané Winner
96a61fdc78 Delete myenv.yml 2019-09-17 09:37:08 -07:00
Shané Winner
ff8128f023 Delete helloworld.txt 2019-09-17 09:36:59 -07:00
Shané Winner
8260302a68 Delete dockerSharedDrive.JPG 2019-09-17 09:36:50 -07:00
Shané Winner
fbd7f4a55b Delete README.md 2019-09-17 09:36:41 -07:00
Shané Winner
d4e4206179 Delete helloworld.txt 2019-09-17 09:35:38 -07:00
Shané Winner
a98b918feb Delete model-register-and-deploy.ipynb 2019-09-17 09:35:29 -07:00
Shané Winner
890490ec70 Delete model-register-and-deploy.yml 2019-09-17 09:35:17 -07:00
Shané Winner
c068c9b979 Delete myenv.yml 2019-09-17 09:34:54 -07:00
Shané Winner
f334a3516f Delete score.py 2019-09-17 09:34:44 -07:00
Shané Winner
96248d8dff Delete sklearn_regression_model.pkl 2019-09-17 09:34:27 -07:00
Shané Winner
c42e865700 Delete README.md 2019-09-17 09:29:20 -07:00
vizhur
9233ce089a Merge pull request #577 from Azure/release_update/Release-146
update samples from Release-146 as a part of 1.0.62 SDK release
2019-09-16 19:44:43 -04:00
vizhur
6bb1e2a3e3 update samples from Release-146 as a part of 1.0.62 SDK release 2019-09-16 23:21:57 +00:00
Shané Winner
e1724c8a89 Merge pull request #573 from lostmygithubaccount/master
adding timeseries dataset example notebook
2019-09-16 11:00:30 -07:00
Shané Winner
446e0768cc Delete datasets-diff.ipynb 2019-09-16 10:53:16 -07:00
Cody Peterson
8a2f114a16 adding timeseries dataset example notebook 2019-09-13 08:30:26 -07:00
Shané Winner
80c0d4d30f Merge pull request #570 from trevorbye/master
new pipeline tutorial
2019-09-11 09:28:40 -07:00
Trevor Bye
e8f4708a5a adding index metadata 2019-09-11 09:24:41 -07:00
Trevor Bye
fbaeb84204 adding tutorial 2019-09-11 09:02:06 -07:00
Trevor Bye
da1fab0a77 removing dprep file from old deleted tutorial 2019-09-10 12:31:57 -07:00
Shané Winner
94d2890bb5 Update index.md 2019-09-06 06:37:35 -07:00
Shané Winner
4d1ec4f7d4 Update index.md 2019-09-06 06:30:54 -07:00
Shané Winner
ace3153831 Update index.md 2019-09-06 06:28:50 -07:00
Shané Winner
58bbfe57b2 Update index.md 2019-09-06 06:15:36 -07:00
vizhur
11ea00b1d9 Update index.md 2019-09-06 09:14:30 -04:00
Shané Winner
b81efca3e5 Update index.md 2019-09-06 06:13:03 -07:00
vizhur
d7ceb9bca2 Update index.md 2019-09-06 09:08:02 -04:00
Shané Winner
17730dc69a Merge pull request #564 from MayMSFT/patch-1
Update file-dataset-img-classification.ipynb
2019-09-04 13:31:08 -07:00
May Hu
3a029d48a2 Update file-dataset-img-classification.ipynb
made edit on the sdk version
2019-09-04 13:25:10 -07:00
vizhur
06d43956f3 Merge pull request #558 from Azure/release_update/Release-144
update samples from Release-144 as a part of 1.0.60 SDK release
2019-09-03 22:09:33 -04:00
vizhur
a1cb9b33a5 update samples from Release-144 as a part of 1.0.60 SDK release 2019-09-03 22:39:55 +00:00
Shané Winner
fdc3fe2a53 Delete README.md 2019-08-29 10:22:24 -07:00
Shané Winner
628b35912c Delete train-remote.yml 2019-08-29 10:22:15 -07:00
Shané Winner
3f4cc22e94 Delete train-remote.ipynb 2019-08-29 10:22:07 -07:00
Shané Winner
18d7afb707 Delete train_diabetes.py 2019-08-29 10:21:59 -07:00
Shané Winner
cd35ca30d4 Delete train-local.ipynb 2019-08-29 10:21:48 -07:00
Shané Winner
30eae0b46c Delete train-local.yml 2019-08-29 10:21:40 -07:00
Shané Winner
f16951387f Delete train.py 2019-08-29 10:21:27 -07:00
Shané Winner
0d8de29147 Delete train-and-deploy-pytorch.ipynb 2019-08-29 10:21:16 -07:00
Shané Winner
836354640c Delete train-and-deploy-pytorch.yml 2019-08-29 10:21:08 -07:00
Shané Winner
6162e80972 Delete deploy-model.yml 2019-08-29 10:20:55 -07:00
Shané Winner
fe9fe3392d Delete deploy-model.ipynb 2019-08-29 10:20:46 -07:00
Shané Winner
5ec6d8861b Delete auto-ml-dataprep-remote-execution.yml 2019-08-27 11:19:38 -07:00
Shané Winner
ae188f324e Delete auto-ml-dataprep-remote-execution.ipynb 2019-08-27 11:19:27 -07:00
Shané Winner
4c30c2bdb9 Delete auto-ml-dataprep.yml 2019-08-27 11:19:00 -07:00
Shané Winner
b891440e2d Delete auto-ml-dataprep.ipynb 2019-08-27 11:18:50 -07:00
Shané Winner
784827cdd2 Update README.md 2019-08-27 09:23:40 -07:00
vizhur
0957af04ca Merge pull request #545 from Azure/imatiach-msft-patch-1
add dataprep dependency to notebook
2019-08-23 13:14:30 -04:00
Ilya Matiach
a3bdd193d1 add dataprep dependency to notebook
add dataprep dependency to train-explain-model-on-amlcompute-and-deploy.ipynb notebook for azureml-explain-model package
2019-08-23 13:11:36 -04:00
Shané Winner
dff09970ac Update README.md 2019-08-23 08:38:01 -07:00
Shané Winner
abc7d21711 Update README.md 2019-08-23 05:28:45 +00:00
Shané Winner
ec12ef635f Delete azure-ml-datadrift.ipynb 2019-08-21 10:32:40 -07:00
Shané Winner
81b3e6f09f Delete azure-ml-datadrift.yml 2019-08-21 10:32:32 -07:00
Shané Winner
cc167dceda Delete score.py 2019-08-21 10:32:23 -07:00
Shané Winner
bc52a6d8ee Delete datasets-diff.ipynb 2019-08-21 10:31:50 -07:00
Shané Winner
5bbbdbe73c Delete Titanic.csv 2019-08-21 10:31:38 -07:00
Shané Winner
fd4de05ddd Delete train.py 2019-08-21 10:31:26 -07:00
Shané Winner
9eaab2189d Delete datasets-tutorial.ipynb 2019-08-21 10:31:15 -07:00
Shané Winner
12147754b2 Delete datasets-diff.ipynb 2019-08-21 10:31:05 -07:00
Shané Winner
90ef263823 Delete README.md 2019-08-21 10:30:54 -07:00
Shané Winner
143590cfb4 Delete new-york-taxi_scale-out.ipynb 2019-08-21 10:30:39 -07:00
Shané Winner
40379014ad Delete new-york-taxi.ipynb 2019-08-21 10:30:29 -07:00
Shané Winner
f7b0e99fa1 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-08-21 10:30:18 -07:00
Shané Winner
7a7ac48411 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-08-21 10:30:04 -07:00
Shané Winner
50107c5b1e Delete part-00007-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:51 -07:00
Shané Winner
e41d7e6819 Delete part-00006-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:36 -07:00
Shané Winner
691e038e84 Delete part-00005-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:18 -07:00
Shané Winner
426e79d635 Delete part-00004-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:02 -07:00
Shané Winner
326677e87f Delete part-00003-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:45 -07:00
Shané Winner
44988e30ae Delete part-00002-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:31 -07:00
Shané Winner
646ae37384 Delete part-00001-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:18 -07:00
Shané Winner
457e29a663 Delete part-00000-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:03 -07:00
Shané Winner
2771edfb2c Delete _SUCCESS 2019-08-21 10:27:45 -07:00
Shané Winner
f0001ec322 Delete adls-dpreptestfiles.crt 2019-08-21 10:27:31 -07:00
Shané Winner
d3e02a017d Delete chicago-aldermen-2015.csv 2019-08-21 10:27:05 -07:00
Shané Winner
a0ebed6876 Delete crime-dirty.csv 2019-08-21 10:26:55 -07:00
Shané Winner
dc0ab6db47 Delete crime-spring.csv 2019-08-21 10:26:45 -07:00
Shané Winner
ea7900f82c Delete crime-winter.csv 2019-08-21 10:26:35 -07:00
Shané Winner
0cb3fd180d Delete crime.parquet 2019-08-21 10:26:26 -07:00
Shané Winner
b05c3e46bb Delete crime.txt 2019-08-21 10:26:17 -07:00
Shané Winner
a1b7d298d3 Delete crime.xlsx 2019-08-21 10:25:41 -07:00
Shané Winner
cc5516c3b3 Delete crime_duplicate_headers.csv 2019-08-21 10:25:32 -07:00
Shané Winner
4fb6070b89 Delete crime.zip 2019-08-21 10:25:23 -07:00
Shané Winner
1b926cdf53 Delete crime-full.csv 2019-08-21 10:25:13 -07:00
Shané Winner
72fc00fb65 Delete crime.dprep 2019-08-21 10:24:56 -07:00
Shané Winner
ddc6b57253 Delete ADLSgen2-datapreptest.crt 2019-08-21 10:24:47 -07:00
Shané Winner
e8b3b98338 Delete crime_fixed_width_file.txt 2019-08-21 10:24:38 -07:00
Shané Winner
66325a1405 Delete crime_multiple_separators.csv 2019-08-21 10:24:29 -07:00
Shané Winner
0efbeaf4b8 Delete json.json 2019-08-21 10:24:12 -07:00
Shané Winner
11d487fb28 Merge pull request #542 from Azure/sgilley/update-deploy
change deployment to model-centric approach
2019-08-21 10:22:13 -07:00
Shané Winner
073e319ef9 Delete large_dflow.json 2019-08-21 10:21:41 -07:00
Shané Winner
3ed75f28d1 Delete map_func.py 2019-08-21 10:21:23 -07:00
Shané Winner
bfc0367f54 Delete median_income.csv 2019-08-21 10:21:14 -07:00
Shané Winner
075eeb583f Delete median_income_transformed.csv 2019-08-21 10:21:05 -07:00
Shané Winner
b7531d3b9e Delete parquet.parquet 2019-08-21 10:20:55 -07:00
Shané Winner
41dc3bd1cf Delete secrets.dprep 2019-08-21 10:20:45 -07:00
Shané Winner
b790b385a4 Delete stream-path.csv 2019-08-21 10:20:36 -07:00
Shané Winner
8700328fe9 Delete summarize.ipynb 2019-08-21 10:17:21 -07:00
Shané Winner
adbd2c8200 Delete subsetting-sampling.ipynb 2019-08-21 10:17:12 -07:00
Shané Winner
7d552effb0 Delete split-column-by-example.ipynb 2019-08-21 10:17:01 -07:00
Shané Winner
bc81d2a5a7 Delete semantic-types.ipynb 2019-08-21 10:16:52 -07:00
Shané Winner
7620de2d91 Delete secrets.ipynb 2019-08-21 10:16:42 -07:00
Shané Winner
07a43a0444 Delete replace-fill-error.ipynb 2019-08-21 10:16:33 -07:00
Shané Winner
f4d5874e09 Delete replace-datasource-replace-reference.ipynb 2019-08-21 10:16:23 -07:00
Shané Winner
8a0b4d24bd Delete random-split.ipynb 2019-08-21 10:16:14 -07:00
Shané Winner
636f19be1f Delete quantile-transformation.ipynb 2019-08-21 10:16:04 -07:00
Shané Winner
0fd7f7d9b2 Delete open-save-dataflows.ipynb 2019-08-21 10:15:54 -07:00
Shané Winner
ab6c66534f Delete one-hot-encoder.ipynb 2019-08-21 10:15:45 -07:00
Shané Winner
faccf13759 Delete min-max-scaler.ipynb 2019-08-21 10:15:36 -07:00
Shané Winner
4c6a28e4ed Delete label-encoder.ipynb 2019-08-21 10:15:25 -07:00
Shané Winner
64ad88e2cb Delete join.ipynb 2019-08-21 10:15:17 -07:00
Shané Winner
969ac90d39 Delete impute-missing-values.ipynb 2019-08-21 10:12:12 -07:00
Shané Winner
fb977c1e95 Delete fuzzy-group.ipynb 2019-08-21 10:12:03 -07:00
Shané Winner
d5ba3916f7 Delete filtering.ipynb 2019-08-21 10:11:53 -07:00
Shané Winner
f7f1087337 Delete external-references.ipynb 2019-08-21 10:11:43 -07:00
Shané Winner
47ea2dbc03 Delete derive-column-by-example.ipynb 2019-08-21 10:11:33 -07:00
Shané Winner
bd2cf534e5 Delete datastore.ipynb 2019-08-21 10:11:24 -07:00
Shané Winner
65f1668d69 Delete data-profile.ipynb 2019-08-21 10:11:16 -07:00
Shané Winner
e0fb7df0aa Delete data-ingestion.ipynb 2019-08-21 10:11:06 -07:00
Shané Winner
7047f76299 Delete custom-python-transforms.ipynb 2019-08-21 10:10:56 -07:00
Shané Winner
c39f2d5eb6 Delete column-type-transforms.ipynb 2019-08-21 10:10:45 -07:00
Shané Winner
5fda69a388 Delete column-manipulations.ipynb 2019-08-21 10:10:36 -07:00
Shané Winner
87ce954eef Delete cache.ipynb 2019-08-21 10:10:26 -07:00
Shané Winner
ebbeac413a Delete auto-read-file.ipynb 2019-08-21 10:10:15 -07:00
Shané Winner
a68bbaaab4 Delete assertions.ipynb 2019-08-21 10:10:05 -07:00
Shané Winner
8784dc979f Delete append-columns-and-rows.ipynb 2019-08-21 10:09:55 -07:00
Shané Winner
f8047544fc Delete add-column-using-expression.ipynb 2019-08-21 10:09:44 -07:00
Shané Winner
eeb2a05e4f Delete working-with-file-streams.ipynb 2019-08-21 10:09:33 -07:00
Shané Winner
6db9d7bd8b Delete writing-data.ipynb 2019-08-21 10:09:19 -07:00
Shané Winner
80e2fde734 Delete getting-started.ipynb 2019-08-21 10:09:04 -07:00
Shané Winner
ae4f5d40ee Delete README.md 2019-08-21 10:08:53 -07:00
Shané Winner
5516edadfd Delete README.md 2019-08-21 10:08:13 -07:00
Sheri Gilley
475afbf44b change deployment to model-centric approach 2019-08-21 09:50:49 -05:00
Shané Winner
197eaf1aab Merge pull request #541 from Azure/sdgilley/update-tutorial
Update img-classification-part1-training.ipynb
2019-08-20 15:59:24 -07:00
Sheri Gilley
184680f1d2 Update img-classification-part1-training.ipynb
updated explanation of datastore
2019-08-20 17:52:45 -05:00
Shané Winner
474f58bd0b Merge pull request #540 from trevorbye/master
removing tutorials for single combined tutorial
2019-08-20 15:22:47 -07:00
Trevor Bye
22c8433897 removing tutorials for single combined tutorial 2019-08-20 12:09:21 -07:00
Josée Martens
822cdd0f01 Update issue templates 2019-08-20 08:35:00 -05:00
Josée Martens
6e65d42986 Update issue templates 2019-08-20 08:26:45 -05:00
Harneet Virk
4c0cbac834 Merge pull request #537 from Azure/release_update/Release-141
update samples from Release-141 as a part of 1.0.57 SDK release
2019-08-19 18:32:44 -07:00
vizhur
44a7481ed1 update samples from Release-141 as a part of 1.0.57 SDK release 2019-08-19 23:33:44 +00:00
Ilya Matiach
8f418b216d Merge pull request #526 from imatiach-msft/ilmat/remove-old-explain-dirs
removing old explain model directories
2019-08-13 12:37:00 -04:00
Ilya Matiach
2d549ecad3 removing old directories 2019-08-13 12:31:51 -04:00
Josée Martens
4dbb024529 Update issue templates 2019-08-11 18:02:17 -05:00
Josée Martens
142a1a510e Update issue templates 2019-08-11 18:00:12 -05:00
vizhur
2522486c26 Merge pull request #519 from wamartin-aml/master
Add dataprep dependency
2019-08-08 09:34:36 -04:00
Walter Martin
6d5226e47c Add dataprep dependency 2019-08-08 09:31:18 -04:00
Shané Winner
e7676d7cdc Delete README.md 2019-08-07 13:14:39 -07:00
Shané Winner
a84f6636f1 Delete README.md 2019-08-07 13:14:24 -07:00
Roope Astala
41be10d1c1 Delete authentication-in-azure-ml.ipynb 2019-08-07 10:12:48 -04:00
vizhur
429eb43914 Merge pull request #513 from Azure/release_update/Release-139
update samples from Release-139 as a part of 1.0.55 SDK release
2019-08-05 16:22:25 -04:00
vizhur
c0dae0c645 update samples from Release-139 as a part of 1.0.55 SDK release 2019-08-05 18:39:19 +00:00
Shané Winner
e4d9a2b4c5 Delete score.py 2019-07-29 09:33:11 -07:00
Shané Winner
7648e8f516 Delete readme.md 2019-07-29 09:32:55 -07:00
Shané Winner
b5ed94b4eb Delete azure-ml-datadrift.ipynb 2019-07-29 09:32:47 -07:00
Shané Winner
85e487f74f Delete new-york-taxi_scale-out.ipynb 2019-07-28 00:38:05 -07:00
Shané Winner
c0a5b2de79 Delete new-york-taxi.ipynb 2019-07-28 00:37:56 -07:00
Shané Winner
0a9e076e5f Delete stream-path.csv 2019-07-28 00:37:44 -07:00
Shané Winner
e3b974811d Delete secrets.dprep 2019-07-28 00:37:33 -07:00
Shané Winner
381d1a6f35 Delete parquet.parquet 2019-07-28 00:37:20 -07:00
Shané Winner
adaa55675e Delete median_income_transformed.csv 2019-07-28 00:37:12 -07:00
Shané Winner
5e3c592d4b Delete median_income.csv 2019-07-28 00:37:02 -07:00
Shané Winner
9c6f1e2571 Delete map_func.py 2019-07-28 00:36:52 -07:00
Shané Winner
bd1bedd563 Delete large_dflow.json 2019-07-28 00:36:43 -07:00
Shané Winner
9716f3614e Delete json.json 2019-07-28 00:36:30 -07:00
Shané Winner
d2c72ca149 Delete crime_multiple_separators.csv 2019-07-28 00:36:19 -07:00
Shané Winner
4f62f64207 Delete crime_fixed_width_file.txt 2019-07-28 00:36:10 -07:00
Shané Winner
16473eb33e Delete crime_duplicate_headers.csv 2019-07-28 00:36:01 -07:00
Shané Winner
d10474c249 Delete crime.zip 2019-07-28 00:35:51 -07:00
Shané Winner
6389cc16f9 Delete crime.xlsx 2019-07-28 00:35:41 -07:00
Shané Winner
bc0a8e0152 Delete crime.txt 2019-07-28 00:35:30 -07:00
Shané Winner
39384aea52 Delete crime.parquet 2019-07-28 00:35:20 -07:00
Shané Winner
5bf4b0bafe Delete crime.dprep 2019-07-28 00:35:11 -07:00
Shané Winner
f22adb7949 Delete crime-winter.csv 2019-07-28 00:35:00 -07:00
Shané Winner
8409ab7133 Delete crime-spring.csv 2019-07-28 00:34:50 -07:00
Shané Winner
32acd55774 Delete crime-full.csv 2019-07-28 00:34:39 -07:00
Shané Winner
7f65c1a255 Delete crime-dirty.csv 2019-07-28 00:34:27 -07:00
Shané Winner
bc7ccc7ef3 Delete chicago-aldermen-2015.csv 2019-07-28 00:34:17 -07:00
Shané Winner
1cc79a71e9 Delete adls-dpreptestfiles.crt 2019-07-28 00:34:05 -07:00
Shané Winner
c0bec5f110 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:51 -07:00
Shané Winner
77e5664482 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:38 -07:00
Shané Winner
e2eb64372a Delete part-00007-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:23 -07:00
Shané Winner
03cbb6a3a2 Delete part-00006-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:12 -07:00
Shané Winner
44d3d998a8 Delete part-00005-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:00 -07:00
Shané Winner
c626f37057 Delete part-00004-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:48 -07:00
Shané Winner
0175574864 Delete part-00003-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:37 -07:00
Shané Winner
f6e8d57da3 Delete part-00002-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:25 -07:00
Shané Winner
01cd31ce44 Delete part-00001-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:13 -07:00
Shané Winner
eb2024b3e0 Delete part-00000-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:01 -07:00
Shané Winner
6bce41b3d7 Delete _SUCCESS 2019-07-28 00:31:49 -07:00
Shané Winner
bbdabbb552 Delete writing-data.ipynb 2019-07-28 00:31:32 -07:00
Shané Winner
65343fc263 Delete working-with-file-streams.ipynb 2019-07-28 00:31:22 -07:00
Shané Winner
b6b27fded6 Delete summarize.ipynb 2019-07-28 00:26:56 -07:00
Shané Winner
7e492cbeb6 Delete subsetting-sampling.ipynb 2019-07-28 00:26:41 -07:00
Shané Winner
4cc8f4c6af Delete split-column-by-example.ipynb 2019-07-28 00:26:25 -07:00
Shané Winner
9fba46821b Delete semantic-types.ipynb 2019-07-28 00:26:11 -07:00
Shané Winner
a45954a58f Delete secrets.ipynb 2019-07-28 00:25:58 -07:00
Shané Winner
f16dfb0e5b Delete replace-fill-error.ipynb 2019-07-28 00:25:45 -07:00
Shané Winner
edabbf9031 Delete replace-datasource-replace-reference.ipynb 2019-07-28 00:25:32 -07:00
Shané Winner
63d1d57dfb Delete random-split.ipynb 2019-07-28 00:25:21 -07:00
Shané Winner
10f7004161 Delete quantile-transformation.ipynb 2019-07-28 00:25:10 -07:00
Shané Winner
86ba4e7406 Delete open-save-dataflows.ipynb 2019-07-28 00:24:54 -07:00
Shané Winner
33bda032b8 Delete one-hot-encoder.ipynb 2019-07-28 00:24:43 -07:00
Shané Winner
0fd4bfbc56 Delete min-max-scaler.ipynb 2019-07-28 00:24:32 -07:00
Shané Winner
3fe08c944e Delete label-encoder.ipynb 2019-07-28 00:24:21 -07:00
Shané Winner
d587ea5676 Delete join.ipynb 2019-07-28 00:24:08 -07:00
Shané Winner
edd8562102 Delete impute-missing-values.ipynb 2019-07-28 00:23:55 -07:00
Shané Winner
5ac2c63336 Delete fuzzy-group.ipynb 2019-07-28 00:23:41 -07:00
Shané Winner
1f4e4cdda2 Delete filtering.ipynb 2019-07-28 00:23:28 -07:00
Shané Winner
2e245c1691 Delete external-references.ipynb 2019-07-28 00:23:11 -07:00
Shané Winner
e1b09f71fa Delete derive-column-by-example.ipynb 2019-07-28 00:22:54 -07:00
Shané Winner
8e2220d397 Delete datastore.ipynb 2019-07-28 00:22:43 -07:00
Shané Winner
f74ccf5048 Delete data-profile.ipynb 2019-07-28 00:22:32 -07:00
Shané Winner
97a6d9ca43 Delete data-ingestion.ipynb 2019-07-28 00:22:21 -07:00
Shané Winner
a0ff1c6b64 Delete custom-python-transforms.ipynb 2019-07-28 00:22:11 -07:00
Shané Winner
08f15ef4cf Delete column-type-transforms.ipynb 2019-07-28 00:21:58 -07:00
Shané Winner
7160416c0b Delete column-manipulations.ipynb 2019-07-28 00:21:47 -07:00
Shané Winner
218fed3d65 Delete cache.ipynb 2019-07-28 00:21:35 -07:00
Shané Winner
b8499dfb98 Delete auto-read-file.ipynb 2019-07-28 00:21:22 -07:00
Shané Winner
6bfd472cc2 Delete assertions.ipynb 2019-07-28 00:20:55 -07:00
Shané Winner
ecefb229e9 Delete append-columns-and-rows.ipynb 2019-07-28 00:20:40 -07:00
Shané Winner
883ad806ba Delete add-column-using-expression.ipynb 2019-07-28 00:20:22 -07:00
Shané Winner
848b5bc302 Delete getting-started.ipynb 2019-07-28 00:19:59 -07:00
Shané Winner
58087b53a0 Delete README.md 2019-07-28 00:19:45 -07:00
Shané Winner
ff4d5450a7 Delete README.md 2019-07-28 00:19:29 -07:00
Shané Winner
e2b2b89842 Delete datasets-tutorial.ipynb 2019-07-28 00:19:13 -07:00
Shané Winner
390be2ba24 Delete train.py 2019-07-28 00:19:00 -07:00
Shané Winner
cd1258f81d Delete Titanic.csv 2019-07-28 00:18:41 -07:00
Shané Winner
8a0b48ea48 Delete README.md 2019-07-28 00:18:14 -07:00
Roope Astala
b0dc904189 Merge pull request #502 from msdavx/patch-1
Add demo notebook for datasets diff attribute.
2019-07-26 19:16:13 -04:00
msdavx
82bede239a Add demo notebook for datasets diff attribute. 2019-07-26 11:10:37 -07:00
vizhur
774517e173 Merge pull request #500 from Azure/release_update/Release-137
update samples from Release-137 as a part of 1.0.53 SDK release
2019-07-25 16:36:25 -04:00
Shané Winner
c3ce2bc7fe Delete README.md 2019-07-25 13:28:15 -07:00
Shané Winner
5dd09a1f7c Delete README.md 2019-07-25 13:28:01 -07:00
vizhur
ee1da0ee19 update samples from Release-137 as a part of 1.0.53 SDK release 2019-07-24 22:37:36 +00:00
Paula Ledgerwood
ddfce6b24c Merge pull request #498 from Azure/revert-461-master
Revert "Finetune SSD VGG"
2019-07-24 14:25:43 -07:00
Paula Ledgerwood
31dfc3dc55 Revert "Finetune SSD VGG" 2019-07-24 14:08:00 -07:00
Paula Ledgerwood
168c45b188 Merge pull request #461 from borisneal/master
Finetune SSD VGG
2019-07-24 14:07:15 -07:00
fierval
159948db67 moving notice.txt 2019-07-24 08:50:41 -07:00
fierval
d842731a3b remove tf prereq item 2019-07-23 14:58:51 -07:00
fierval
7822fd4c13 notice + attribution for anchors 2019-07-23 14:49:20 -07:00
fierval
d9fbe4cd87 new folder structure 2019-07-22 10:31:22 -07:00
Shané Winner
a64f4d331a Merge pull request #488 from trevorbye/master
adding new notebook
2019-07-18 10:40:36 -07:00
Trevor Bye
c41f449208 adding new notebook 2019-07-18 10:27:21 -07:00
vizhur
4fe8c1702d Merge pull request #486 from Azure/release_update/Release-22
Fix for automl remote env
2019-07-12 19:18:13 -04:00
vizhur
18cd152591 update samples - test 2019-07-12 22:51:17 +00:00
vizhur
4170a394ed Merge pull request #474 from Azure/release_update/Release-132
update samples from Release-132 as a part of 1.0.48 SDK release
2019-07-09 19:14:29 -04:00
vizhur
475ea36106 update samples from Release-132 as a part of 1.0.48 SDK release 2019-07-09 22:02:57 +00:00
Roope Astala
9e0fc4f0e7 Merge pull request #459 from datashinobi/yassine/datadrift2
fix link to config nb & settingwithcopywarning
2019-07-03 12:41:31 -04:00
fierval
b025816c92 remove config.json 2019-07-02 17:32:56 -07:00
fierval
c75e820107 ssd vgg 2019-07-02 17:23:56 -07:00
Yassine Khelifi
e97e4742ba fix link to config nb & settingwithcopywarning 2019-07-02 16:56:21 +00:00
Roope Astala
14ecfb0bf3 Merge pull request #448 from jeff-shepherd/master
Update new notebooks to use dataprep and add sql files
2019-06-27 09:07:47 -04:00
Jeff Shepherd
61b396be4f Added sql files 2019-06-26 14:26:01 -07:00
Jeff Shepherd
3d2552174d Updated notebooks to use dataprep 2019-06-26 14:23:20 -07:00
Roope Astala
cd3c980a6e Merge pull request #447 from Azure/release-1.0.45
Merged notebook changes from release 1.0.45
2019-06-26 16:32:09 -04:00
Heather Shapiro
249bcac3c7 Merged notebook changes from release 1.0.45 2019-06-26 14:39:09 -04:00
Roope Astala
4a6bcebccc Update configuration.ipynb 2019-06-21 09:35:13 -04:00
Roope Astala
56e0ebc5ac Merge pull request #438 from rastala/master
add pipeline scripts
2019-06-19 18:56:42 -04:00
rastala
2aa39f2f4a add pipeline scripts 2019-06-19 18:55:32 -04:00
Roope Astala
4d247c1877 Merge pull request #437 from rastala/master
pytorch with mlflow
2019-06-19 17:23:06 -04:00
rastala
f6682f6f6d pytorch with mlflow 2019-06-19 17:21:52 -04:00
Roope Astala
26ecf25233 Merge pull request #436 from rastala/master
Update readme
2019-06-19 11:52:23 -04:00
Roope Astala
44c3a486c0 update readme 2019-06-19 11:49:49 -04:00
Roope Astala
c574f429b8 update readme 2019-06-19 11:48:52 -04:00
Roope Astala
77d557a5dc Merge pull request #435 from ganzhi/jamgan/drift
Add demo notebook for AML Data Drift
2019-06-17 16:39:46 -04:00
James Gan
13dedec4a4 Make it in same folder as internal repo 2019-06-17 13:38:27 -07:00
James Gan
6f5c52676f Add notebook to demo data drift 2019-06-17 13:33:30 -07:00
James Gan
90c105537c Add demo notebook for AML Data Drift 2019-06-17 13:31:08 -07:00
Roope Astala
ef264b1073 Merge pull request #434 from rastala/master
update pytorch
2019-06-17 11:57:29 -04:00
Roope Astala
824ac5e021 update pytorch 2019-06-17 11:56:42 -04:00
Roope Astala
e9a7b95716 Merge pull request #421 from csteegz/csteegz-add-warning
Add warning for using prediction client on azure notebooks
2019-06-13 20:27:34 -04:00
Roope Astala
789ee26357 Merge pull request #431 from jeff-shepherd/master
Fixed path for auto-ml-remote-amlcompute notebook
2019-06-13 16:56:25 -04:00
Jeff Shepherd
fc541706e7 Fixed path for auto-ml-remote-amlcompute 2019-06-13 13:12:32 -07:00
Roope Astala
64b8aa2a55 Merge pull request #429 from jeff-shepherd/master
Removed deprecated notebooks from readme
2019-06-13 14:40:57 -04:00
Jeff Shepherd
d3dc35dbb6 Removed deprecated notebooks from readme 2019-06-13 11:03:25 -07:00
Roope Astala
b55ac368e7 Merge pull request #428 from rastala/master
update cluster creation
2019-06-13 12:16:30 -04:00
Roope Astala
de162316d7 update cluster creation 2019-06-13 12:14:58 -04:00
Roope Astala
4ecc58dfe2 Merge pull request #427 from rastala/master
dockerfile
2019-06-12 10:24:34 -04:00
Roope Astala
daf27a76e4 dockerfile 2019-06-12 10:23:34 -04:00
Roope Astala
a05444845b Merge pull request #426 from rastala/master
version 1.0.43
2019-06-12 10:09:08 -04:00
Roope Astala
79c9f50c15 version 1.0.43 2019-06-12 10:08:35 -04:00
Roope Astala
67e10e0f6b Merge pull request #417 from lan-tang/patch-1
Create readme.md in data-drift
2019-06-11 13:47:55 -04:00
Roope Astala
1ef0331a0f Merge pull request #423 from rastala/master
add sklearn estimator
2019-06-11 11:30:37 -04:00
Roope Astala
5e91c836b9 add sklearn estimator 2019-06-11 11:29:56 -04:00
Colin Versteeg
661762854a add warning to training 2019-06-10 16:51:33 -07:00
Colin Versteeg
fbc90ba74f add to quickstart 2019-06-10 16:50:59 -07:00
Colin Versteeg
0d9c83d0a8 Update accelerated-models-object-detection.ipynb 2019-06-10 16:48:17 -07:00
Colin Versteeg
ca4cab1de9 Merge pull request #1 from Azure/master
pull from master
2019-06-10 16:45:12 -07:00
Roope Astala
ddbb3c45f6 Merge pull request #420 from rastala/master
mlflow integration preview
2019-06-10 15:12:36 -04:00
rastala
8eed4e39d0 mlflow integration preview 2019-06-10 15:10:57 -04:00
Lan Tang
b37c0297db Create readme.md 2019-06-07 12:32:32 -07:00
Roope Astala
968cc798d0 Update README.md 2019-06-05 12:15:33 -04:00
Roope Astala
5c9ca452fb Create README.md 2019-06-05 12:15:19 -04:00
Shané Winner
5e82680272 Update README.md 2019-05-31 10:58:39 -07:00
Roope Astala
41841fc8c0 Update README.md 2019-05-31 13:00:41 -04:00
Roope Astala
896bf63736 Merge pull request #397 from rastala/master
dockerfile
2019-05-29 11:05:18 -04:00
Roope Astala
d4751bf6ec dockerfile 2019-05-29 11:04:19 -04:00
Roope Astala
3531fe8a21 Merge pull request #396 from rastala/master
version 1.0.41
2019-05-29 11:01:15 -04:00
Roope Astala
db6ae67940 version 1.0.41 2019-05-29 10:59:59 -04:00
Shané Winner
2a479bb01e Merge pull request #395 from imatiach-msft/ilmat/fix-typo
fix typo
2019-05-28 14:02:33 -07:00
Ilya Matiach
d05eec92af fix typo 2019-05-28 16:59:59 -04:00
Josée Martens
70fdab0a28 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:45:04 -05:00
Josée Martens
7ce5a43b58 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:44:35 -05:00
Josée Martens
d2a9dbb582 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:43:38 -05:00
Roope Astala
a5d774683d Merge pull request #390 from rastala/master
fix default cluster creation in config notebook
2019-05-23 12:30:09 -04:00
Roope Astala
0e850f0917 fix default cluster creation in config notebook 2019-05-23 12:27:53 -04:00
Shané Winner
59f34b7179 Delete configtest.ipynb 2019-05-22 10:47:50 -07:00
Shané Winner
2a3cb69004 Create configtest.ipynb 2019-05-22 10:41:16 -07:00
Shané Winner
42894ff81a Delete LICENSE.txt 2019-05-22 10:22:05 -07:00
Shané Winner
2163cab50b Delete LICENSE.txt 2019-05-22 10:21:42 -07:00
Shané Winner
255edb04c0 Rename LICENSE.txt to LICENSE 2019-05-22 10:13:08 -07:00
Shané Winner
cfce079278 Rename LICENSES to LICENSE.txt 2019-05-22 10:06:31 -07:00
Shané Winner
ae6f067c81 Deleted index.html
cleaning up root directory
2019-05-22 10:04:23 -07:00
Shané Winner
1b7ff724f3 Deleted pr.md
Contents of this file moved to the README in the root directory.
2019-05-22 10:03:40 -07:00
Shané Winner
8bba850db1 moved the content in the pr.md file
moved the content in the pr.md file to under 'Projects using Azure Machine Learning'
2019-05-21 07:51:28 -07:00
Shané Winner
b9e35ea0cb Create LICENSE 2019-05-21 07:44:10 -07:00
Shané Winner
ffa28aa89c Delete sdk 2019-05-21 07:43:06 -07:00
Shané Winner
6ab85a20e3 Create LICENSES 2019-05-21 07:42:07 -07:00
Shané Winner
486c44d157 Create sdk 2019-05-21 07:39:43 -07:00
Shané Winner
cd80040dd8 Delete Licenses 2019-05-21 07:39:03 -07:00
Shané Winner
465a5b13b1 Create Licenses 2019-05-21 07:38:52 -07:00
Shané Winner
dcd2d58880 Added notice on the data/telemetry 2019-05-20 14:44:43 -07:00
Roope Astala
93bf4393f2 Merge pull request #381 from jeff-shepherd/master
Revert change to default amlcompute cluster
2019-05-16 15:35:43 -04:00
Jeff Shepherd
d6ebb484a6 Revert change to default amlcomputecluster to support existing resource
groups
2019-05-16 12:27:23 -07:00
Roope Astala
35afd43193 Merge pull request #372 from rogerhe/master
adding macOS specific yml. Install nomkl to workaround openmp issue
2019-05-14 19:07:42 -04:00
Roope Astala
2d68535de2 Merge pull request #376 from rastala/master
version 1.0.39
2019-05-14 16:04:09 -04:00
Roope Astala
0d448892a3 version check 2019-05-14 16:03:39 -04:00
Roope Astala
2d41c00488 version 1.0.39 2019-05-14 16:01:14 -04:00
Roger He
22597ac684 adding macOS specific yml. Install nomkl to workaround openmp issue 2019-05-09 16:51:51 -07:00
Josée Martens
8b1bffc200 Update README.md 2019-05-08 12:36:49 -05:00
Josée Martens
a240ac319f Update README.md 2019-05-08 12:27:57 -05:00
Josée Martens
83cfe3b9b3 Update README.md 2019-05-08 12:25:41 -05:00
Paula Ledgerwood
dcce6f227f Merge pull request #360 from Azure/paledger/update-readme
Update readme/cluster location from PM's instructions
2019-05-06 10:08:22 -07:00
Paula Ledgerwood
5328186d68 Update python kernel version 2019-05-06 09:45:20 -07:00
Paula Ledgerwood
7ccaa2cf57 Update readme from PM's instructions 2019-05-06 09:41:54 -07:00
Shané Winner
56b0664b6b Update img-classification-part1-training.ipynb 2019-05-05 17:47:31 -07:00
Shané Winner
4c1167edc4 Update img-classification-part1-training.ipynb 2019-05-05 17:45:48 -07:00
Shané Winner
eb643fe213 Update README.md 2019-05-05 17:26:29 -07:00
Shané Winner
5faa9d293c Update README.md 2019-05-05 15:34:27 -07:00
Shané Winner
32e2b5f647 Update train-hyperparameter-tune-deploy-with-tensorflow.ipynb 2019-05-05 15:32:19 -07:00
Shané Winner
ae25654882 Update train-hyperparameter-tune-deploy-with-pytorch.ipynb 2019-05-05 15:29:42 -07:00
Shané Winner
0ca05093bd Update train-hyperparameter-tune-deploy-with-keras.ipynb 2019-05-05 15:28:16 -07:00
Shané Winner
5e39582de3 Update train-hyperparameter-tune-deploy-with-chainer.ipynb 2019-05-05 15:24:14 -07:00
Shané Winner
6b6a6da9dc Update tensorboard.ipynb 2019-05-05 15:22:28 -07:00
Shané Winner
cba2c6b9e2 Update how-to-use-estimator.ipynb 2019-05-05 15:20:50 -07:00
Shané Winner
58557abd20 Update export-run-history-to-tensorboard.ipynb 2019-05-05 15:18:48 -07:00
Shané Winner
59452a3141 Update distributed-tensorflow-with-parameter-server.ipynb 2019-05-05 15:17:15 -07:00
Shané Winner
463718e26b Update distributed-tensorflow-with-horovod.ipynb 2019-05-05 15:15:13 -07:00
Shané Winner
9ea0ba5131 Update distributed-pytorch-with-horovod.ipynb 2019-05-05 15:13:28 -07:00
Shané Winner
2804a8d859 Update distributed-cntk-with-custom-docker.ipynb 2019-05-05 15:11:51 -07:00
Shané Winner
4761b668ff Update distributed-chainer.ipynb 2019-05-05 15:09:28 -07:00
Shané Winner
c4163017c2 Update using-environments.ipynb 2019-05-05 00:11:40 -07:00
Shané Winner
71e8e9bd23 Update train-within-notebook.ipynb 2019-05-05 00:09:26 -07:00
Shané Winner
6ff06dd137 Update train-on-remote-vm.ipynb 2019-05-05 00:06:23 -07:00
Sheri Gilley
7db93bcb1d update comments 2019-01-22 17:18:19 -06:00
Sheri Gilley
fcbe925640 Merge branch 'sdk-codetest' of https://github.com/Azure/MachineLearningNotebooks into sdk-codetest 2019-01-07 13:06:12 -06:00
Sheri Gilley
bedfbd649e fix files 2019-01-07 13:06:02 -06:00
Sheri Gilley
fb760f648d Delete temp.py 2019-01-07 12:58:32 -06:00
Sheri Gilley
a9a0713d2f Delete donotupload.py 2019-01-07 12:57:58 -06:00
Sheri Gilley
c9d018b52c remove prepare environment 2019-01-07 12:56:54 -06:00
Sheri Gilley
53dbd0afcf hdi run config code 2019-01-07 11:29:40 -06:00
Sheri Gilley
e3a64b1f16 code for remote vm 2019-01-04 12:51:11 -06:00
Sheri Gilley
732eecfc7c update names 2019-01-04 12:45:28 -06:00
Sheri Gilley
6995c086ff change snippet names 2019-01-03 22:39:06 -06:00
Sheri Gilley
80bba4c7ae code for amlcompute section 2019-01-03 18:55:31 -06:00
Sheri Gilley
3c581b533f for local computer 2019-01-03 18:07:12 -06:00
Sheri Gilley
cc688caa4e change names 2019-01-03 08:53:49 -06:00
Sheri Gilley
da225e116e new code 2019-01-03 08:02:35 -06:00
Sheri Gilley
73c5d02880 Update quickstart.py 2018-12-17 12:23:03 -06:00
Sheri Gilley
e472b54f1b Update quickstart.py 2018-12-17 12:22:40 -06:00
Sheri Gilley
716c6d8bb1 add quickstart code 2018-11-06 11:27:58 -06:00
Sheri Gilley
23189c6f40 move folder 2018-10-17 16:24:46 -05:00
Sheri Gilley
361b57ed29 change all names to camelCase 2018-10-17 11:47:09 -05:00
Sheri Gilley
3f531fd211 try camelCase 2018-10-17 11:09:46 -05:00
Sheri Gilley
111f5e8d73 playing around 2018-10-17 10:46:33 -05:00
Sheri Gilley
96c59d5c2b testing 2018-10-17 09:56:04 -05:00
Sheri Gilley
ce3214b7c6 fix name 2018-10-16 17:33:24 -05:00
Sheri Gilley
53199d17de add delete 2018-10-16 16:54:08 -05:00
Sheri Gilley
54c883412c add test service 2018-10-16 16:49:41 -05:00
641 changed files with 59366 additions and 93376 deletions

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.41"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.41" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.43"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.43" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -1,3 +1,4 @@
This software is made available to you on the condition that you agree to
[your agreement][1] governing your use of Azure.
If you do not have an existing agreement governing your use of Azure, you agree that

View File

@@ -24,8 +24,8 @@ pip install azureml-sdk
git clone https://github.com/Azure/MachineLearningNotebooks.git
# below steps are optional
# install the base SDK and a Jupyter notebook server
pip install azureml-sdk[notebooks]
# install the base SDK, Jupyter notebook server and tensorboard
pip install azureml-sdk[notebooks,tensorboard]
# install model explainability component
pip install azureml-sdk[explain]

View File

@@ -2,7 +2,8 @@
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK allows you the choice of using local or cloud compute resources, while managing and maintaining the complete data science workflow from the cloud.
![Azure ML workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/service/media/overview-what-is-azure-ml/aml.png)
![Azure ML Workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/media/concept-azure-machine-learning-architecture/workflow.png)
## Quick installation
```sh
@@ -11,18 +12,17 @@ pip install azureml-sdk
Read more detailed instructions on [how to set up your environment](./NBSETUP.md) using Azure Notebook service, your own Jupyter notebook server, or Docker.
## How to navigate and use the example notebooks?
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [Configuration](./configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace.
It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, you should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
This [index](./index.md) should assist in navigating the Azure Machine Learning notebook samples and encourage efficient retrieval of topics and content.
If you want to...
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/img-classification-part2-deploy.ipynb).
* ...prepare your data and do automated machine learning, start with regression tutorials: [Part 1 (Data Prep)](./tutorials/regression-part1-data-prep.ipynb) and [Part 2 (Automated ML)](./tutorials/regression-part2-automated-ml.ipynb).
* ...try out and explore Azure ML, start with image classification tutorials: [Part 1 (Training)](./tutorials/image-classification-mnist-data/img-classification-part1-training.ipynb) and [Part 2 (Deployment)](./tutorials/image-classification-mnist-data/img-classification-part2-deploy.ipynb).
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
* ...deploy models as a realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as a batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](https://aka.ms/pl-batch-scoring).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb).
## Tutorials
@@ -39,6 +39,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
---
## Documentation
@@ -49,15 +50,27 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
---
## Community Repository
Visit this [community repository](https://github.com/microsoft/MLOps/tree/master/examples) to find useful end-to-end sample notebooks. Also, please follow these [contribution guidelines](https://github.com/microsoft/MLOps/blob/master/contributing.md) when contributing to this repository.
## Projects using Azure Machine Learning
Visit following repos to see projects contributed by Azure ML users:
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [AMLSamples](https://github.com/Azure/AMLSamples) Number of end-to-end examples, including face recognition, predictive maintenance, customer churn and sentiment analysis.
- [Learn about Natural Language Processing best practices using Azure Machine Learning service](https://github.com/microsoft/nlp)
- [Pre-Train BERT models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)
- [UMass Amherst Student Samples](https://github.com/katiehouse3/microsoft-azure-ml-notebooks) - A number of end-to-end machine learning notebooks, including machine translation, image classification, and customer churn, created by students in the 696DS course at UMass Amherst.
## Data/Telemetry
This repository collects usage data and sends it to Mircosoft to help improve our products and services. Read Microsoft's [privacy statement to learn more](https://privacy.microsoft.com/en-US/privacystatement)
To opt out of tracking, please go to the raw markdown or .ipynb files and remove the following line of code:
```sh
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)"
```
This URL will be slightly different depending on the file.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/README.png)

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/configuration.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -51,7 +58,7 @@
"\n",
"### What is an Azure Machine Learning workspace\n",
"\n",
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inferencing, and the monitoring of deployed models."
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models."
]
},
{
@@ -96,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.23 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.1.5 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
@@ -207,7 +214,10 @@
"* You do not have permission to create a resource group if it's non-existing.\n",
"* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
"\n",
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources."
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources.\n",
"\n",
"**Note**: A Basic workspace is created by default. If you would like to create an Enterprise workspace, please specify sku = 'enterprise'.\n",
"Please visit our [pricing page](https://azure.microsoft.com/en-us/pricing/details/machine-learning/) for more details on our Enterprise edition.\n"
]
},
{
@@ -228,6 +238,7 @@
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" create_resource_group = True,\n",
" sku = 'basic',\n",
" exist_ok = True)\n",
"ws.get_details()\n",
"\n",
@@ -251,7 +262,7 @@
"```shell\n",
"az vm list-skus -o tsv\n",
"```\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while note in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while not in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
"\n",
"\n",
@@ -268,14 +279,14 @@
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cpucluster\")\n",
" print(\"Found existing cpu-cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new cpucluster\")\n",
" print(\"Creating new cpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
@@ -306,14 +317,14 @@
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"gpucluster\"\n",
"gpu_cluster_name = \"gpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpucluster\")\n",
" print(\"Creating new gpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
@@ -350,7 +361,7 @@
"metadata": {
"authors": [
{
"name": "roastala"
"name": "ninhu"
}
],
"kernelspec": {

4
configuration.yml Normal file
View File

@@ -0,0 +1,4 @@
name: configuration
dependencies:
- pip:
- azureml-sdk

View File

@@ -287,8 +287,6 @@ Notice how the parameters are modified when using the CPU-only mode.
The outputs of the script can be observed in the master notebook as the script is executed
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/contrib/RAPIDS/README.png)

File diff suppressed because it is too large Load Diff

View File

@@ -15,21 +15,6 @@ from glob import glob
import os
import argparse
def initialize_rmm_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = True
#rmm_cfg.initial_pool_size = 2<<30 # set to 2GiB. Default is 1/2 total GPU memory
import cudf
return cudf._gdf.rmm_initialize()
def initialize_rmm_no_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = False
import cudf
return cudf._gdf.rmm_initialize()
def run_dask_task(func, **kwargs):
task = func(**kwargs)
return task
@@ -207,26 +192,26 @@ def gpu_load_names(col_path):
def create_ever_features(gdf, **kwargs):
everdf = gdf[['loan_id', 'current_loan_delinquency_status']]
everdf = everdf.groupby('loan_id', method='hash').max()
everdf = everdf.groupby('loan_id', method='hash').max().reset_index()
del(gdf)
everdf['ever_30'] = (everdf['max_current_loan_delinquency_status'] >= 1).astype('int8')
everdf['ever_90'] = (everdf['max_current_loan_delinquency_status'] >= 3).astype('int8')
everdf['ever_180'] = (everdf['max_current_loan_delinquency_status'] >= 6).astype('int8')
everdf.drop_column('max_current_loan_delinquency_status')
everdf['ever_30'] = (everdf['current_loan_delinquency_status'] >= 1).astype('int8')
everdf['ever_90'] = (everdf['current_loan_delinquency_status'] >= 3).astype('int8')
everdf['ever_180'] = (everdf['current_loan_delinquency_status'] >= 6).astype('int8')
everdf.drop_column('current_loan_delinquency_status')
return everdf
def create_delinq_features(gdf, **kwargs):
delinq_gdf = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status']]
del(gdf)
delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_30['delinquency_30'] = delinq_30['min_monthly_reporting_period']
delinq_30.drop_column('min_monthly_reporting_period')
delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_90['delinquency_90'] = delinq_90['min_monthly_reporting_period']
delinq_90.drop_column('min_monthly_reporting_period')
delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_180['delinquency_180'] = delinq_180['min_monthly_reporting_period']
delinq_180.drop_column('min_monthly_reporting_period')
delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min().reset_index()
delinq_30['delinquency_30'] = delinq_30['monthly_reporting_period']
delinq_30.drop_column('monthly_reporting_period')
delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min().reset_index()
delinq_90['delinquency_90'] = delinq_90['monthly_reporting_period']
delinq_90.drop_column('monthly_reporting_period')
delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min().reset_index()
delinq_180['delinquency_180'] = delinq_180['monthly_reporting_period']
delinq_180.drop_column('monthly_reporting_period')
del(delinq_gdf)
delinq_merge = delinq_30.merge(delinq_90, how='left', on=['loan_id'], type='hash')
delinq_merge['delinquency_90'] = delinq_merge['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
@@ -279,16 +264,15 @@ def create_joined_df(gdf, everdf, **kwargs):
def create_12_mon_features(joined_df, **kwargs):
testdfs = []
n_months = 12
for y in range(1, n_months + 1):
tmpdf = joined_df[['loan_id', 'timestamp_year', 'timestamp_month', 'delinquency_12', 'upb_12']]
tmpdf['josh_months'] = tmpdf['timestamp_year'] * 12 + tmpdf['timestamp_month']
tmpdf['josh_mody_n'] = ((tmpdf['josh_months'].astype('float64') - 24000 - y) / 12).floor()
tmpdf = tmpdf.groupby(['loan_id', 'josh_mody_n'], method='hash').agg({'delinquency_12': 'max','upb_12': 'min'})
tmpdf['delinquency_12'] = (tmpdf['max_delinquency_12']>3).astype('int32')
tmpdf['delinquency_12'] +=(tmpdf['min_upb_12']==0).astype('int32')
tmpdf.drop_column('max_delinquency_12')
tmpdf['upb_12'] = tmpdf['min_upb_12']
tmpdf.drop_column('min_upb_12')
tmpdf = tmpdf.groupby(['loan_id', 'josh_mody_n'], method='hash').agg({'delinquency_12': 'max','upb_12': 'min'}).reset_index()
tmpdf['delinquency_12'] = (tmpdf['delinquency_12']>3).astype('int32')
tmpdf['delinquency_12'] +=(tmpdf['upb_12']==0).astype('int32')
tmpdf['upb_12'] = tmpdf['upb_12']
tmpdf['timestamp_year'] = (((tmpdf['josh_mody_n'] * n_months) + 24000 + (y - 1)) / 12).floor().astype('int16')
tmpdf['timestamp_month'] = np.int8(y)
tmpdf.drop_column('josh_mody_n')
@@ -329,6 +313,7 @@ def last_mile_cleaning(df, **kwargs):
'delinquency_30', 'delinquency_90', 'delinquency_180', 'upb_12',
'zero_balance_effective_date','foreclosed_after', 'disposition_date','timestamp'
]
for column in drop_list:
df.drop_column(column)
for col, dtype in df.dtypes.iteritems():
@@ -342,7 +327,6 @@ def last_mile_cleaning(df, **kwargs):
return df.to_arrow(preserve_index=False)
def main():
#print('XGBOOST_BUILD_DOC is ' + os.environ['XGBOOST_BUILD_DOC'])
parser = argparse.ArgumentParser("rapidssample")
parser.add_argument("--data_dir", type=str, help="location of data")
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
@@ -364,7 +348,6 @@ def main():
print('data_dir = {0}'.format(data_dir))
print('num_gpu = {0}'.format(num_gpu))
print('part_count = {0}'.format(part_count))
#part_count = part_count + 1 # adding one because the usage below is not inclusive
print('end_year = {0}'.format(end_year))
print('cpu_predictor = {0}'.format(cpu_predictor))
@@ -380,19 +363,17 @@ def main():
client
print(client.ncores())
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
start_year = 2000
#end_year = 2000 # end_year is inclusive -- converted to parameter
#part_count = 2 # the number of data files to train against -- converted to parameter
client.run(initialize_rmm_pool)
client
print(client.ncores())
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
print('--->>> Workers used: {0}'.format(client.ncores()))
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
print("Reading ...")
t1 = datetime.datetime.now()
gpu_dfs = []
@@ -414,14 +395,9 @@ def main():
wait(gpu_dfs)
t2 = datetime.datetime.now()
print("Reading time ...")
print(t2-t1)
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
print("Reading time: {0}".format(str(t2-t1)))
print('--->>> Number of data parts: {0}'.format(len(gpu_dfs)))
client.run(cudf._gdf.rmm_finalize)
client.run(initialize_rmm_no_pool)
client
print(client.ncores())
dxgb_gpu_params = {
'nround': 100,
'max_depth': 8,
@@ -438,7 +414,7 @@ def main():
'n_gpus': 1,
'distributed_dask': True,
'loss': 'ls',
'objective': 'gpu:reg:linear',
'objective': 'reg:squarederror',
'max_features': 'auto',
'criterion': 'friedman_mse',
'grow_policy': 'lossguide',
@@ -446,13 +422,13 @@ def main():
}
if cpu_predictor:
print('Training using CPUs')
print('\n---->>>> Training using CPUs <<<<----\n')
dxgb_gpu_params['predictor'] = 'cpu_predictor'
dxgb_gpu_params['tree_method'] = 'hist'
dxgb_gpu_params['objective'] = 'reg:linear'
else:
print('Training using GPUs')
print('\n---->>>> Training using GPUs <<<<----\n')
print('Training parameters are {0}'.format(dxgb_gpu_params))
@@ -482,13 +458,12 @@ def main():
gc.collect()
wait(gpu_dfs)
# TRAIN THE MODEL
labels = None
t1 = datetime.datetime.now()
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
t2 = datetime.datetime.now()
print("Training time ...")
print(t2-t1)
print('str(bst) is {0}'.format(str(bst)))
print('\n---->>>> Training time: {0} <<<<----\n'.format(str(t2-t1)))
print('Exiting script')
if __name__ == '__main__':

View File

@@ -1,35 +0,0 @@
name: rapids
channels:
- nvidia
- numba
- conda-forge
- rapidsai
- defaults
- pytorch
dependencies:
- arrow-cpp=0.12.0
- bokeh
- cffi=1.11.5
- cmake=3.12
- cuda92
- cython==0.29
- dask=1.1.1
- distributed=1.25.3
- faiss-gpu=1.5.0
- numba=0.42
- numpy=1.15.4
- nvstrings
- pandas=0.23.4
- pyarrow=0.12.0
- scikit-learn
- scipy
- cudf
- cuml
- python=3.6.2
- jupyterlab
- pip:
- file:/rapids/xgboost/python-package/dist/xgboost-0.81-py3-none-any.whl
- git+https://github.com/rapidsai/dask-xgboost@dask-cudf
- git+https://github.com/rapidsai/dask-cudf@master
- git+https://github.com/rapidsai/dask-cuda@master

View File

@@ -0,0 +1,500 @@
1 0.644 0.247 -0.447 0.862 0.374 0.854 -1.126 -0.790 2.173 1.015 -0.201 1.400 0.000 1.575 1.807 1.607 0.000 1.585 -0.190 -0.744 3.102 0.958 1.061 0.980 0.875 0.581 0.905 0.796
0 0.385 1.800 1.037 1.044 0.349 1.502 -0.966 1.734 0.000 0.966 -1.960 -0.249 0.000 1.501 0.465 -0.354 2.548 0.834 -0.440 0.638 3.102 0.695 0.909 0.981 0.803 0.813 1.149 1.116
0 1.214 -0.166 0.004 0.505 1.434 0.628 -1.174 -1.230 1.087 0.579 -1.047 -0.118 0.000 0.835 0.340 1.234 2.548 0.711 -1.383 1.355 0.000 0.848 0.911 1.043 0.931 1.058 0.744 0.696
1 0.420 1.111 0.137 1.516 -1.657 0.854 0.623 1.605 1.087 1.511 -1.297 0.251 0.000 0.872 -0.368 -0.721 0.000 0.543 0.731 1.424 3.102 1.597 1.282 1.105 0.730 0.148 1.231 1.234
0 0.897 -1.703 -1.306 1.022 -0.729 0.836 0.859 -0.333 2.173 1.336 -0.965 0.972 2.215 0.671 1.021 -1.439 0.000 0.493 -2.019 -0.289 0.000 0.805 0.930 0.984 1.430 2.198 1.934 1.684
0 0.756 1.126 -0.945 2.355 -0.555 0.889 0.800 1.440 0.000 0.585 0.271 0.631 2.215 0.722 1.744 1.051 0.000 0.618 0.924 0.698 1.551 0.976 0.864 0.988 0.803 0.234 0.822 0.911
0 1.141 -0.741 0.953 1.478 -0.524 1.197 -0.871 1.689 2.173 0.875 1.321 -0.518 1.107 0.540 0.037 -0.987 0.000 0.879 1.187 0.245 0.000 0.888 0.701 1.747 1.358 2.479 1.491 1.223
1 0.606 -0.936 -0.384 1.257 -1.162 2.719 -0.600 0.100 2.173 3.303 -0.284 1.561 1.107 0.689 1.786 -0.326 0.000 0.780 -0.532 1.216 0.000 0.936 2.022 0.985 1.574 4.323 2.263 1.742
1 0.603 0.429 -0.279 1.448 1.301 1.008 2.423 -1.295 0.000 0.452 1.305 0.533 0.000 1.076 1.011 1.256 2.548 2.021 1.260 -0.343 0.000 0.890 0.969 1.281 0.763 0.652 0.827 0.785
0 1.171 -0.962 0.521 0.841 -0.315 1.196 -0.744 -0.882 2.173 0.726 -1.305 1.377 1.107 0.643 -1.790 -1.264 0.000 1.257 0.222 0.817 0.000 0.862 0.911 0.987 0.846 1.293 0.899 0.756
1 1.392 -0.358 0.235 1.494 -0.461 0.895 -0.848 1.549 2.173 0.841 -0.384 0.666 1.107 1.199 2.509 -0.891 0.000 1.109 -0.364 -0.945 0.000 0.693 2.135 1.170 1.362 0.959 2.056 1.842
1 1.024 1.076 -0.886 0.851 1.530 0.673 -0.449 0.187 1.087 0.628 -0.895 1.176 2.215 0.696 -0.232 -0.875 0.000 0.411 1.501 0.048 0.000 0.842 0.919 1.063 1.193 0.777 0.964 0.807
1 0.890 -0.760 1.182 1.369 0.751 0.696 -0.959 -0.710 1.087 0.775 -0.130 -1.409 2.215 0.701 -0.110 -0.739 0.000 0.508 -0.451 0.390 0.000 0.762 0.738 0.998 1.126 0.788 0.940 0.790
1 0.460 0.537 0.636 1.442 -0.269 0.585 0.323 -1.731 2.173 0.503 1.034 -0.927 0.000 0.928 -1.024 1.006 2.548 0.513 -0.618 -1.336 0.000 0.802 0.831 0.992 1.019 0.925 1.056 0.833
1 0.364 1.648 0.560 1.720 0.829 1.110 0.811 -0.588 0.000 0.408 1.045 1.054 2.215 0.319 -1.138 1.545 0.000 0.423 1.025 -1.265 3.102 1.656 0.928 1.003 0.544 0.327 0.670 0.746
1 0.525 -0.096 1.206 0.948 -1.103 1.519 -0.582 0.606 2.173 1.274 -0.572 -0.934 0.000 0.855 -1.028 -1.222 0.000 0.578 -1.000 -1.725 3.102 0.896 0.878 0.981 0.498 0.909 0.772 0.668
0 0.536 -0.821 -1.029 0.703 1.113 0.363 -0.711 0.022 1.087 0.325 1.503 1.249 2.215 0.673 1.041 -0.401 0.000 0.480 2.127 1.681 0.000 0.767 1.034 0.990 0.671 0.836 0.669 0.663
1 1.789 -0.583 1.641 0.897 0.799 0.515 -0.100 -1.483 0.000 1.101 0.031 -0.326 2.215 1.195 0.001 0.126 2.548 0.768 -0.148 0.601 0.000 0.916 0.921 1.207 1.069 0.483 0.934 0.795
1 1.332 -0.571 0.986 0.580 1.508 0.582 0.634 -0.746 1.087 1.084 -0.964 -0.489 0.000 0.785 0.274 0.343 2.548 0.779 0.721 1.489 0.000 1.733 1.145 0.990 1.270 0.715 0.897 0.915
0 1.123 0.629 -1.708 0.597 -0.882 0.752 0.195 1.522 2.173 1.671 1.515 -0.003 0.000 0.778 0.514 0.139 1.274 0.801 1.260 1.600 0.000 1.495 0.976 0.988 0.676 0.921 1.010 0.943
0 1.816 -0.515 0.171 0.980 -0.454 0.870 0.202 -1.399 2.173 1.130 1.066 -1.593 0.000 0.844 0.735 1.275 2.548 1.125 -1.133 0.348 0.000 0.837 0.693 0.988 1.112 0.784 1.009 0.974
1 0.364 0.694 0.445 1.862 0.159 0.963 -1.356 1.260 1.087 0.887 -0.540 -1.533 2.215 0.658 -2.544 -1.236 0.000 0.516 -0.807 0.039 0.000 0.891 1.004 0.991 1.092 0.976 1.000 0.953
1 0.790 -1.175 0.475 1.846 0.094 0.999 -1.090 0.257 0.000 1.422 0.854 1.112 2.215 1.302 1.004 -1.702 1.274 2.557 -0.787 -1.048 0.000 0.890 1.429 0.993 2.807 0.840 2.248 1.821
1 0.765 -0.500 -0.603 1.843 -0.560 1.068 0.007 0.746 2.173 1.154 -0.017 1.329 0.000 1.165 1.791 -1.585 0.000 1.116 0.441 -0.886 0.000 0.774 0.982 0.989 1.102 0.633 1.178 1.021
1 1.407 1.293 -1.418 0.502 -1.527 2.005 -2.122 0.622 0.000 1.699 1.508 -0.649 2.215 1.665 0.748 -0.755 0.000 2.555 0.811 1.423 1.551 7.531 5.520 0.985 1.115 1.881 4.487 3.379
1 0.772 -0.186 -1.372 0.823 -0.140 0.781 0.763 0.046 2.173 1.128 0.516 1.380 0.000 0.797 -0.640 -0.134 2.548 2.019 -0.972 -1.670 0.000 2.022 1.466 0.989 0.856 0.808 1.230 0.991
1 0.546 -0.954 0.715 1.335 -1.689 0.783 -0.443 -1.735 2.173 1.081 0.185 -0.435 0.000 1.433 -0.662 -0.389 0.000 0.969 0.924 1.099 0.000 0.910 0.879 0.988 0.683 0.753 0.878 0.865
1 0.596 0.276 -1.054 1.358 1.355 1.444 1.813 -0.208 0.000 1.175 -0.949 -1.573 0.000 0.855 -1.228 -0.925 2.548 1.837 -0.400 0.913 0.000 0.637 0.901 1.028 0.553 0.790 0.679 0.677
0 0.458 2.292 1.530 0.291 1.283 0.749 -0.930 -0.198 0.000 0.300 -1.560 0.990 0.000 0.811 -0.176 0.995 2.548 1.085 -0.178 -1.213 3.102 0.891 0.648 0.999 0.732 0.655 0.619 0.620
0 0.638 -0.575 -1.048 0.125 0.178 0.846 -0.753 -0.339 1.087 0.799 -0.727 1.182 0.000 0.888 0.283 0.717 0.000 1.051 -1.046 -1.557 3.102 0.889 0.871 0.989 0.884 0.923 0.836 0.779
1 0.434 -1.119 -0.313 2.427 0.461 0.497 0.261 -1.177 2.173 0.618 -0.737 -0.688 0.000 1.150 -1.237 -1.652 2.548 0.757 -0.054 1.700 0.000 0.809 0.741 0.982 1.450 0.936 1.086 0.910
1 0.431 -1.144 -1.030 0.778 -0.655 0.490 0.047 -1.546 0.000 1.583 -0.014 0.891 2.215 0.516 0.956 0.567 2.548 0.935 -1.123 -0.082 0.000 0.707 0.995 0.995 0.700 0.602 0.770 0.685
1 1.894 0.222 1.224 1.578 1.715 0.966 2.890 -0.013 0.000 0.922 -0.703 -0.844 0.000 0.691 2.056 1.039 0.000 0.900 -0.733 -1.240 3.102 1.292 1.992 1.026 0.881 0.684 1.759 1.755
0 0.985 -0.316 0.141 1.067 -0.946 0.819 -1.177 1.307 2.173 1.080 -0.429 0.557 1.107 1.726 1.435 -1.075 0.000 1.100 1.547 -0.647 0.000 0.873 1.696 1.179 1.146 1.015 1.538 1.270
0 0.998 -0.187 -0.236 0.882 0.755 0.468 0.950 -0.439 2.173 0.579 -0.550 -0.624 0.000 1.847 1.196 1.384 1.274 0.846 1.273 -1.072 0.000 1.194 0.797 1.013 1.319 1.174 0.963 0.898
0 0.515 0.246 -0.593 1.082 1.591 0.912 -0.623 -0.957 2.173 0.858 0.418 0.844 0.000 0.948 2.519 1.599 0.000 1.158 1.385 -0.095 3.102 0.973 1.033 0.988 0.998 1.716 1.054 0.901
0 0.919 -1.001 1.506 1.389 0.653 0.507 -0.616 -0.689 2.173 0.808 0.536 -0.467 2.215 0.496 2.187 -0.859 0.000 0.822 0.807 1.163 0.000 0.876 0.861 1.088 0.947 0.614 0.911 1.087
0 0.794 0.051 1.477 1.504 -1.695 0.716 0.315 0.264 1.087 0.879 -0.135 -1.094 2.215 1.433 -0.741 0.201 0.000 1.566 0.534 -0.989 0.000 0.627 0.882 0.974 0.807 1.130 0.929 0.925
1 0.455 -0.946 -1.175 1.453 -0.580 0.763 -0.856 0.840 0.000 0.829 1.223 1.174 2.215 0.714 0.638 -0.466 0.000 1.182 0.223 -1.333 0.000 0.977 0.938 0.986 0.713 0.714 0.796 0.843
1 0.662 -0.296 -1.287 1.212 -0.707 0.641 1.457 0.222 0.000 0.600 0.525 -1.700 2.215 0.784 -0.835 -0.961 2.548 0.865 1.131 1.162 0.000 0.854 0.877 0.978 0.740 0.734 0.888 0.811
0 0.390 0.698 -1.629 1.888 0.298 0.990 1.614 -1.572 0.000 1.666 0.170 0.719 2.215 1.590 1.064 -0.886 1.274 0.952 0.305 -1.216 0.000 1.048 0.897 1.173 0.891 1.936 1.273 1.102
0 1.014 0.117 1.384 0.686 -1.047 0.609 -1.245 -0.850 0.000 1.076 -1.158 0.814 1.107 1.598 -0.389 -0.111 0.000 0.907 1.688 -1.673 0.000 1.333 0.866 0.989 0.975 0.442 0.797 0.788
0 1.530 -1.408 -0.207 0.440 -1.357 0.902 -0.647 1.325 1.087 1.320 -0.819 0.246 1.107 0.503 1.407 -1.683 0.000 1.189 -0.972 -0.925 0.000 0.386 1.273 0.988 0.829 1.335 1.173 1.149
1 1.689 -0.590 0.915 2.076 1.202 0.644 -0.478 -0.238 0.000 0.809 -1.660 -1.184 0.000 1.227 -0.224 -0.808 2.548 1.655 1.047 -0.623 0.000 0.621 1.192 0.988 1.309 0.866 0.924 1.012
0 1.102 0.402 -1.622 1.262 1.022 0.576 0.271 -0.269 0.000 0.591 0.495 -1.278 0.000 1.271 0.209 0.575 2.548 0.941 0.964 -0.685 3.102 0.989 0.963 1.124 0.857 0.858 0.716 0.718
0 2.491 0.825 0.581 1.593 0.205 0.782 -0.815 1.499 0.000 1.179 -0.999 -1.509 0.000 0.926 0.920 -0.522 2.548 2.068 -1.021 -1.050 3.102 0.874 0.943 0.980 0.945 1.525 1.570 1.652
0 0.666 0.254 1.601 1.303 -0.250 1.236 -1.929 0.793 0.000 1.074 0.447 -0.871 0.000 0.991 1.059 -0.342 0.000 1.703 -0.393 -1.419 3.102 0.921 0.945 1.285 0.931 0.462 0.770 0.729
0 0.937 -1.126 1.424 1.395 1.743 0.760 0.428 -0.238 2.173 0.846 0.494 1.320 2.215 0.872 -1.826 -0.507 0.000 0.612 1.860 1.403 0.000 3.402 2.109 0.985 1.298 1.165 1.404 1.240
1 0.881 -1.086 -0.870 0.513 0.266 2.049 -1.870 1.160 0.000 2.259 -0.428 -0.935 2.215 1.321 -0.655 -0.449 2.548 1.350 -1.766 -0.108 0.000 0.911 1.852 0.987 1.167 0.820 1.903 1.443
0 0.410 0.835 -0.819 1.257 1.112 0.871 -1.737 -0.401 0.000 0.927 0.158 1.253 0.000 1.183 0.405 -1.570 0.000 0.807 -0.704 -0.438 3.102 0.932 0.962 0.987 0.653 0.315 0.616 0.648
1 0.634 0.196 -1.679 1.379 -0.967 2.260 -0.273 1.114 0.000 1.458 1.070 -0.278 1.107 1.195 0.110 -0.688 2.548 0.907 0.298 -1.359 0.000 0.949 1.129 0.984 0.675 0.877 0.938 0.824
1 0.632 -1.254 1.201 0.496 -0.106 0.235 2.731 -0.955 0.000 0.615 -0.805 0.600 0.000 0.633 -0.934 1.641 0.000 1.407 -0.483 -0.962 1.551 0.778 0.797 0.989 0.578 0.722 0.576 0.539
0 0.714 1.122 1.566 2.399 -1.431 1.665 0.299 0.323 0.000 1.489 1.087 -0.861 2.215 1.174 0.140 1.083 2.548 0.404 -0.968 1.105 0.000 0.867 0.969 0.981 1.039 1.552 1.157 1.173
1 0.477 -0.321 -0.471 1.966 1.034 2.282 1.359 -0.874 0.000 1.672 -0.258 1.109 0.000 1.537 0.604 0.231 2.548 1.534 -0.640 0.827 0.000 0.746 1.337 1.311 0.653 0.721 0.795 0.742
1 1.351 0.460 0.031 1.194 -1.185 0.670 -1.157 -1.637 2.173 0.599 -0.823 0.680 0.000 0.478 0.373 1.716 0.000 0.809 -0.919 0.010 1.551 0.859 0.839 1.564 0.994 0.777 0.971 0.826
1 0.520 -1.442 -0.348 0.840 1.654 1.273 -0.760 1.317 0.000 0.861 2.579 -0.791 0.000 1.779 0.257 -0.703 0.000 2.154 1.928 0.457 0.000 1.629 3.194 0.992 0.730 1.107 2.447 2.747
0 0.700 -0.308 0.920 0.438 -0.879 0.516 1.409 1.101 0.000 0.960 0.701 -0.049 2.215 1.442 -0.416 -1.439 2.548 0.628 1.009 -0.364 0.000 0.848 0.817 0.987 0.759 1.421 0.937 0.920
1 0.720 1.061 -0.546 0.798 -1.521 1.066 0.173 0.271 1.087 1.453 0.114 1.336 1.107 0.702 0.616 -0.367 0.000 0.543 -0.386 -1.301 0.000 0.653 0.948 0.989 1.031 1.500 0.965 0.790
1 0.735 -0.416 0.588 1.308 -0.382 1.042 0.344 1.609 0.000 0.926 0.163 -0.520 1.107 1.050 -0.427 1.159 2.548 0.834 0.613 0.948 0.000 0.848 1.189 1.042 0.844 1.099 0.829 0.843
1 0.777 -0.396 1.540 1.608 0.638 0.955 0.040 0.918 2.173 1.315 1.116 -0.823 0.000 0.781 -0.762 0.564 2.548 0.945 -0.573 1.379 0.000 0.679 0.706 1.124 0.608 0.593 0.515 0.493
1 0.934 0.319 -0.257 0.970 -0.980 0.726 0.774 0.731 0.000 0.896 0.038 -1.465 1.107 0.773 -0.055 -0.831 2.548 1.439 -0.229 0.698 0.000 0.964 1.031 0.995 0.845 0.480 0.810 0.762
0 0.461 0.771 0.019 2.055 -1.288 1.043 0.147 0.261 2.173 0.833 -0.156 1.425 0.000 0.832 0.805 -0.491 2.548 0.589 1.252 1.414 0.000 0.850 0.906 1.245 1.364 0.850 0.908 0.863
1 0.858 -0.116 -0.937 0.966 1.167 0.825 -0.108 1.111 1.087 0.733 1.163 -0.634 0.000 0.894 0.771 0.020 0.000 0.846 -1.124 -1.195 3.102 0.724 1.194 1.195 0.813 0.969 0.985 0.856
0 0.720 -0.335 -0.307 1.445 0.540 1.108 -0.034 -1.691 1.087 0.883 -1.356 -0.678 2.215 0.440 1.093 0.253 0.000 0.389 -1.582 -1.097 0.000 1.113 1.034 0.988 1.256 1.572 1.062 0.904
1 0.750 -0.811 -0.542 0.985 0.408 0.471 0.477 0.355 0.000 1.347 -0.875 -1.556 2.215 0.564 1.082 -0.724 0.000 0.793 -0.958 -0.020 3.102 0.836 0.825 0.986 1.066 0.924 0.927 0.883
0 0.392 -0.468 -0.216 0.680 1.565 1.086 -0.765 -0.581 1.087 1.264 -1.035 1.189 2.215 0.986 -0.338 0.747 0.000 0.884 -1.328 -0.965 0.000 1.228 0.988 0.982 1.135 1.741 1.108 0.956
1 0.434 -1.269 0.643 0.713 0.608 0.597 0.832 1.627 0.000 0.708 -0.422 0.079 2.215 1.533 -0.823 -1.127 2.548 0.408 -1.357 -0.828 0.000 1.331 1.087 0.999 1.075 1.015 0.875 0.809
0 0.828 -1.803 0.342 0.847 -0.162 1.585 -1.128 -0.272 2.173 1.974 0.039 -1.717 0.000 0.900 0.764 -1.741 0.000 1.349 -0.079 1.035 3.102 0.984 0.815 0.985 0.780 1.661 1.403 1.184
1 1.089 -0.350 -0.747 1.472 0.792 1.087 -0.069 -1.192 0.000 0.512 -0.841 -1.284 0.000 2.162 -0.821 0.545 2.548 1.360 2.243 -0.183 0.000 0.977 0.628 1.725 1.168 0.635 0.823 0.822
1 0.444 0.451 -1.332 1.176 -0.247 0.898 0.194 0.007 0.000 1.958 0.576 -1.618 2.215 0.584 1.203 0.268 0.000 0.939 1.033 1.264 3.102 0.829 0.886 0.985 1.265 0.751 1.032 0.948
0 0.629 0.114 1.177 0.917 -1.204 0.845 0.828 -0.088 0.000 0.962 -1.302 0.823 2.215 0.732 0.358 -1.334 2.548 0.538 0.582 1.561 0.000 1.028 0.834 0.988 0.904 1.205 1.039 0.885
1 1.754 -1.259 -0.573 0.959 -1.483 0.358 0.448 -1.452 0.000 0.711 0.313 0.499 2.215 1.482 -0.390 1.474 2.548 1.879 -1.540 0.668 0.000 0.843 0.825 1.313 1.315 0.939 1.048 0.871
1 0.549 0.706 -1.437 0.894 0.891 0.680 -0.762 -1.568 0.000 0.981 0.499 -0.425 2.215 1.332 0.678 0.485 1.274 0.803 0.022 -0.893 0.000 0.793 1.043 0.987 0.761 0.899 0.915 0.794
0 0.475 0.542 -0.987 1.569 0.069 0.551 1.543 -1.488 0.000 0.608 0.301 1.734 2.215 0.277 0.499 -0.522 0.000 1.375 1.212 0.696 3.102 0.652 0.756 0.987 0.828 0.830 0.715 0.679
1 0.723 0.049 -1.153 1.300 0.083 0.723 -0.749 0.630 0.000 1.126 0.412 -0.384 0.000 1.272 1.256 1.358 2.548 3.108 0.777 -1.486 3.102 0.733 1.096 1.206 1.269 0.899 1.015 0.903
1 1.062 0.296 0.725 0.285 -0.531 0.819 1.277 -0.667 0.000 0.687 0.829 -0.092 0.000 1.158 0.447 1.047 2.548 1.444 -0.186 -1.491 3.102 0.863 1.171 0.986 0.769 0.828 0.919 0.840
0 0.572 -0.349 1.396 2.023 0.795 0.577 0.457 -0.533 0.000 1.351 0.701 -1.091 0.000 0.724 -1.012 -0.182 2.548 0.923 -0.012 0.789 3.102 0.936 1.025 0.985 1.002 0.600 0.828 0.909
1 0.563 0.387 0.412 0.553 1.050 0.723 -0.992 -0.447 0.000 0.748 0.948 0.546 2.215 1.761 -0.559 -1.183 0.000 1.114 -0.251 1.192 3.102 0.936 0.912 0.976 0.578 0.722 0.829 0.892
1 1.632 1.577 -0.697 0.708 -1.263 0.863 0.012 1.197 2.173 0.498 0.990 -0.806 0.000 0.627 2.387 -1.283 0.000 0.607 1.290 -0.174 3.102 0.916 1.328 0.986 0.557 0.971 0.935 0.836
1 0.562 -0.360 0.399 0.803 -1.334 1.443 -0.116 1.628 2.173 0.750 0.987 0.135 1.107 0.795 0.298 -0.556 0.000 1.150 -0.113 -0.093 0.000 0.493 1.332 0.985 1.001 1.750 1.013 0.886
1 0.987 0.706 -0.492 0.861 0.607 0.593 0.088 -0.184 0.000 0.802 0.894 1.608 2.215 0.782 -0.471 1.500 2.548 0.521 0.772 -0.960 0.000 0.658 0.893 1.068 0.877 0.664 0.709 0.661
1 1.052 0.883 -0.581 1.566 0.860 0.931 1.515 -0.873 0.000 0.493 0.145 -0.672 0.000 1.133 0.935 1.581 2.548 1.630 0.695 0.923 3.102 1.105 1.087 1.713 0.948 0.590 0.872 0.883
1 2.130 -0.516 -0.291 0.776 -1.230 0.689 -0.257 0.800 2.173 0.730 -0.274 -1.437 0.000 0.615 0.241 1.083 0.000 0.834 0.757 1.613 3.102 0.836 0.806 1.333 1.061 0.730 0.889 0.783
1 0.742 0.797 1.628 0.311 -0.418 0.620 0.685 -1.457 0.000 0.683 1.774 -1.082 0.000 1.700 1.104 0.225 2.548 0.382 -2.184 -1.307 0.000 0.945 1.228 0.984 0.864 0.931 0.988 0.838
0 0.311 -1.249 -0.927 1.272 -1.262 0.642 -1.228 -0.136 0.000 1.220 -0.804 -1.558 2.215 0.950 -0.828 0.495 1.274 2.149 -1.672 0.634 0.000 1.346 0.887 0.981 0.856 1.101 1.001 1.106
0 0.660 -1.834 -0.667 0.601 1.236 0.932 -0.933 -0.135 2.173 1.373 -0.122 1.429 0.000 0.654 -0.034 -0.847 2.548 0.711 0.911 0.703 0.000 1.144 0.942 0.984 0.822 0.739 0.992 0.895
0 3.609 -0.590 0.851 0.615 0.455 1.280 0.003 -0.866 1.087 1.334 0.708 -1.131 0.000 0.669 0.480 0.092 0.000 0.975 0.983 -1.429 3.102 1.301 1.089 0.987 1.476 0.934 1.469 1.352
1 0.905 -0.403 1.567 2.651 0.953 1.194 -0.241 -0.567 1.087 0.308 -0.384 -0.007 0.000 0.608 -0.175 -1.163 2.548 0.379 0.941 1.662 0.000 0.580 0.721 1.126 0.895 0.544 1.097 0.836
1 0.983 0.255 1.093 0.905 -0.874 0.863 0.060 -0.368 0.000 0.824 -0.747 -0.633 0.000 0.614 0.961 1.052 0.000 0.792 -0.260 1.632 3.102 0.874 0.883 1.280 0.663 0.406 0.592 0.645
1 1.160 -1.027 0.274 0.460 0.322 2.085 -1.623 -0.840 0.000 1.634 -1.046 1.182 2.215 0.492 -0.367 1.174 0.000 0.824 -0.998 1.617 0.000 0.943 0.884 1.001 1.209 1.313 1.034 0.866
0 0.299 0.028 -1.372 1.930 -0.661 0.840 -0.979 0.664 1.087 0.535 -2.041 1.434 0.000 1.087 -1.797 0.344 0.000 0.485 -0.560 -1.105 3.102 0.951 0.890 0.980 0.483 0.684 0.730 0.706
0 0.293 1.737 -1.418 2.074 0.794 0.679 1.024 -1.457 0.000 1.034 1.094 -0.168 1.107 0.506 1.680 -0.661 0.000 0.523 -0.042 -1.274 3.102 0.820 0.944 0.987 0.842 0.694 0.761 0.750
0 0.457 -0.393 1.560 0.738 -0.007 0.475 -0.230 0.246 0.000 0.776 -1.264 -0.606 2.215 0.865 -0.731 -1.576 2.548 1.153 0.343 1.436 0.000 1.060 0.883 0.988 0.972 0.703 0.758 0.720
0 0.935 -0.582 0.240 2.401 0.818 1.231 -0.618 -1.289 0.000 0.799 0.544 -0.228 2.215 0.525 -1.494 -0.969 0.000 0.609 -1.123 1.168 3.102 0.871 0.767 1.035 1.154 0.919 0.868 1.006
1 0.902 -0.745 -1.215 1.174 -0.501 1.215 0.167 1.162 0.000 0.896 1.217 -0.976 0.000 0.585 -0.429 1.036 0.000 1.431 -0.416 0.151 3.102 0.524 0.952 0.990 0.707 0.271 0.592 0.826
1 0.653 0.337 -0.320 1.118 -0.934 1.050 0.745 0.529 1.087 1.075 1.742 -1.538 0.000 0.585 1.090 0.973 0.000 1.091 -0.187 1.160 1.551 1.006 1.108 0.978 1.121 0.838 0.947 0.908
0 1.157 1.401 0.340 0.395 -1.218 0.945 1.928 -0.876 0.000 1.384 0.320 1.002 1.107 1.900 1.177 -0.462 2.548 1.122 1.316 1.720 0.000 1.167 1.096 0.989 0.937 1.879 1.307 1.041
0 0.960 0.355 -0.152 0.872 -0.338 0.391 0.348 0.956 1.087 0.469 2.664 1.409 0.000 0.756 -1.561 1.500 0.000 0.525 1.436 1.728 3.102 1.032 0.946 0.996 0.929 0.470 0.698 0.898
1 1.038 0.274 0.825 1.198 0.963 1.078 -0.496 -1.014 2.173 0.739 -0.727 -0.151 2.215 1.035 -0.799 0.398 0.000 1.333 -0.872 -1.498 0.000 0.849 1.033 0.985 0.886 0.936 0.975 0.823
0 0.490 0.277 0.318 1.303 0.694 1.333 -1.620 -0.563 0.000 1.459 -1.326 1.140 0.000 0.779 -0.673 -1.324 2.548 0.860 -1.247 0.043 0.000 0.857 0.932 0.992 0.792 0.278 0.841 1.498
0 1.648 -0.688 -1.386 2.790 0.995 1.087 1.359 -0.687 0.000 1.050 -0.223 -0.261 2.215 0.613 -0.889 1.335 0.000 1.204 0.827 0.309 3.102 0.464 0.973 2.493 1.737 0.827 1.319 1.062
0 1.510 -0.662 1.668 0.860 0.280 0.705 0.974 -1.647 1.087 0.662 -0.393 -0.225 0.000 0.610 -0.996 0.532 2.548 0.464 1.305 0.102 0.000 0.859 1.057 1.498 0.799 1.260 0.946 0.863
1 0.850 -1.185 -0.117 0.943 -0.449 1.142 0.875 -0.030 0.000 2.223 -0.461 1.627 2.215 0.767 -1.761 -1.692 0.000 1.012 -0.727 0.639 3.102 3.649 2.062 0.985 1.478 1.087 1.659 1.358
0 0.933 1.259 0.130 0.326 -0.890 0.306 1.136 1.142 0.000 0.964 0.705 -1.373 2.215 0.546 -0.196 -0.001 0.000 0.578 -1.169 1.004 3.102 0.830 0.836 0.988 0.837 1.031 0.749 0.655
0 0.471 0.697 1.570 1.109 0.201 1.248 0.348 -1.448 0.000 2.103 0.773 0.686 2.215 1.451 -0.087 -0.453 2.548 1.197 -0.045 -1.026 0.000 0.793 1.094 0.987 0.851 1.804 1.378 1.089
1 2.446 -0.701 -1.568 0.059 0.822 1.401 -0.600 -0.044 2.173 0.324 -0.001 1.344 2.215 0.913 -0.818 1.049 0.000 0.442 -1.088 -0.005 0.000 0.611 1.062 0.979 0.562 0.988 0.998 0.806
0 0.619 2.029 0.933 0.528 -0.903 0.974 0.760 -0.311 2.173 0.825 0.658 -1.466 1.107 0.894 1.594 0.370 0.000 0.882 -0.258 1.661 0.000 1.498 1.088 0.987 0.867 1.139 0.900 0.779
1 0.674 -0.131 -0.362 0.518 -1.574 0.876 0.442 0.145 1.087 0.497 -1.526 -1.704 0.000 0.680 2.514 -1.374 0.000 0.792 -0.479 0.773 1.551 0.573 1.198 0.984 0.800 0.667 0.987 0.832
1 1.447 1.145 -0.937 0.307 -1.458 0.478 1.264 0.816 1.087 0.558 1.015 -0.101 2.215 0.937 -0.190 1.177 0.000 0.699 0.954 -1.512 0.000 0.877 0.838 0.990 0.873 0.566 0.646 0.713
1 0.976 0.308 -0.844 0.436 0.610 1.253 0.149 -1.585 2.173 1.415 0.568 0.096 2.215 0.953 -0.855 0.441 0.000 0.867 -0.650 1.643 0.000 0.890 1.234 0.988 0.796 2.002 1.179 0.977
0 0.697 0.401 -0.718 0.920 0.735 0.958 -0.172 0.168 2.173 0.872 -0.097 -1.335 0.000 0.513 -1.192 -1.710 1.274 0.426 -1.637 1.368 0.000 0.997 1.227 1.072 0.800 1.013 0.786 0.749
1 1.305 -2.157 1.740 0.661 -0.912 0.705 -0.516 0.759 2.173 0.989 -0.716 -0.300 2.215 0.627 -1.052 -1.736 0.000 0.467 -2.467 0.568 0.000 0.807 0.964 0.988 1.427 1.012 1.165 0.926
0 1.847 1.663 -0.618 0.280 1.258 1.462 -0.054 1.371 0.000 0.900 0.309 -0.544 0.000 0.331 -2.149 -0.341 0.000 1.091 -0.833 0.710 3.102 1.496 0.931 0.989 1.549 0.115 1.140 1.150
0 0.410 -0.323 1.069 2.160 0.010 0.892 0.942 -1.640 2.173 0.946 0.938 1.314 0.000 1.213 -1.099 -0.794 2.548 0.650 0.053 0.056 0.000 1.041 0.916 1.063 0.985 1.910 1.246 1.107
1 0.576 1.092 -0.088 0.777 -1.579 0.757 0.271 0.109 0.000 0.819 0.827 -1.554 2.215 1.313 2.341 -1.568 0.000 2.827 0.239 -0.338 0.000 0.876 0.759 0.986 0.692 0.457 0.796 0.791
1 0.537 0.925 -1.406 0.306 -0.050 0.906 1.051 0.037 0.000 1.469 -0.177 -1.320 2.215 1.872 0.723 1.158 0.000 1.313 0.227 -0.501 3.102 0.953 0.727 0.978 0.755 0.892 0.932 0.781
0 0.716 -0.065 -0.484 1.313 -1.563 0.596 -0.242 0.678 2.173 0.426 -1.909 0.616 0.000 0.885 -0.406 -1.343 2.548 0.501 -1.327 -0.340 0.000 0.470 0.728 1.109 0.919 0.881 0.665 0.692
1 0.624 -0.389 0.128 1.636 -1.110 1.025 0.573 -0.843 2.173 0.646 -0.697 1.064 0.000 0.632 -1.442 0.961 0.000 0.863 -0.106 1.717 0.000 0.825 0.917 1.257 0.983 0.713 0.890 0.824
0 0.484 2.101 1.714 1.131 -0.823 0.750 0.583 -1.304 1.087 0.894 0.421 0.559 2.215 0.921 -0.063 0.282 0.000 0.463 -0.474 -1.387 0.000 0.742 0.886 0.995 0.993 1.201 0.806 0.754
0 0.570 0.339 -1.478 0.528 0.439 0.978 1.479 -1.411 2.173 0.763 1.541 -0.734 0.000 1.375 0.840 0.903 0.000 0.965 1.599 0.364 0.000 0.887 1.061 0.992 1.322 1.453 1.013 0.969
0 0.940 1.303 1.636 0.851 -1.732 0.803 -0.030 -0.177 0.000 0.480 -0.125 -0.954 0.000 0.944 0.709 0.296 2.548 1.342 -0.418 1.197 3.102 0.853 0.989 0.979 0.873 0.858 0.719 0.786
1 0.599 0.544 -0.238 0.816 1.043 0.857 0.660 1.128 2.173 0.864 -0.624 -0.843 0.000 1.159 0.367 0.174 0.000 1.520 -0.543 -1.508 0.000 0.842 0.828 0.984 0.759 0.895 0.918 0.791
1 1.651 1.897 -0.914 0.423 0.315 0.453 0.619 -1.607 2.173 0.532 -0.424 0.209 1.107 0.369 2.479 0.034 0.000 0.701 0.217 0.984 0.000 0.976 0.951 1.035 0.879 0.825 0.915 0.798
1 0.926 -0.574 -0.763 0.285 1.094 0.672 2.314 1.545 0.000 1.124 0.415 0.809 0.000 1.387 0.270 -0.949 2.548 1.547 -0.631 -0.200 3.102 0.719 0.920 0.986 0.889 0.933 0.797 0.777
0 0.677 1.698 -0.890 0.641 -0.449 0.607 1.754 1.720 0.000 0.776 0.372 0.782 2.215 0.511 1.491 -0.480 0.000 0.547 -0.341 0.853 3.102 0.919 1.026 0.997 0.696 0.242 0.694 0.687
0 1.266 0.602 0.958 0.487 1.256 0.709 0.843 -1.196 0.000 0.893 1.303 -0.594 1.107 1.090 1.320 0.354 0.000 0.797 1.846 1.139 0.000 0.780 0.896 0.986 0.661 0.709 0.790 0.806
1 0.628 -0.616 -0.329 0.764 -1.150 0.477 -0.715 1.187 2.173 1.250 0.607 1.026 2.215 0.983 -0.023 -0.583 0.000 0.377 1.344 -1.015 0.000 0.744 0.954 0.987 0.837 0.841 0.795 0.694
1 1.035 -0.828 -1.358 1.870 -1.060 1.075 0.130 0.448 2.173 0.660 0.697 0.641 0.000 0.425 1.006 -1.035 0.000 0.751 1.055 1.364 3.102 0.826 0.822 0.988 0.967 0.901 1.077 0.906
1 0.830 0.265 -0.150 0.660 1.105 0.592 -0.557 0.908 2.173 0.670 -1.419 -0.671 0.000 1.323 -0.409 1.644 2.548 0.850 -0.033 -0.615 0.000 0.760 0.967 0.984 0.895 0.681 0.747 0.770
1 1.395 1.100 1.167 1.088 0.218 0.400 -0.132 0.024 2.173 0.743 0.530 -1.361 2.215 0.341 -0.691 -0.238 0.000 0.396 -1.426 -0.933 0.000 0.363 0.472 1.287 0.922 0.810 0.792 0.656
1 1.070 1.875 -1.298 1.215 -0.106 0.767 0.795 0.514 1.087 0.401 2.780 1.276 0.000 0.686 1.127 1.721 2.548 0.391 -0.259 -1.167 0.000 1.278 1.113 1.389 0.852 0.824 0.838 0.785
0 1.114 -0.071 1.719 0.399 -1.383 0.849 0.254 0.481 0.000 0.958 -0.579 0.742 0.000 1.190 -0.140 -0.862 2.548 0.479 1.390 0.856 0.000 0.952 0.988 0.985 0.764 0.419 0.835 0.827
0 0.714 0.376 -0.568 1.578 -1.165 0.648 0.141 0.639 2.173 0.472 0.569 1.449 1.107 0.783 1.483 0.361 0.000 0.540 -0.790 0.032 0.000 0.883 0.811 0.982 0.775 0.572 0.760 0.745
0 0.401 -1.731 0.765 0.974 1.648 0.652 -1.024 0.191 0.000 0.544 -0.366 -1.246 2.215 0.627 0.140 1.008 2.548 0.810 0.409 0.429 0.000 0.950 0.934 0.977 0.621 0.580 0.677 0.650
1 0.391 1.679 -1.298 0.605 -0.832 0.549 1.338 0.522 2.173 1.244 0.884 1.070 0.000 1.002 0.846 -1.345 2.548 0.783 -2.464 -0.237 0.000 4.515 2.854 0.981 0.877 0.939 1.942 1.489
1 0.513 -0.220 -0.444 1.699 0.479 1.109 0.181 -0.999 2.173 0.883 -0.335 -1.716 2.215 1.075 -0.380 1.352 0.000 0.857 0.048 0.147 0.000 0.937 0.758 0.986 1.206 0.958 0.949 0.876
0 1.367 -0.388 0.798 1.158 1.078 0.811 -1.024 -1.628 0.000 1.504 0.097 -0.999 2.215 1.652 -0.860 0.054 2.548 0.573 -0.142 -1.401 0.000 0.869 0.833 1.006 1.412 1.641 1.214 1.041
1 1.545 -0.533 -1.517 1.177 1.289 2.331 -0.370 -0.073 0.000 1.295 -0.358 -0.891 2.215 0.476 0.756 0.985 0.000 1.945 -0.016 -1.651 3.102 1.962 1.692 1.073 0.656 0.941 1.312 1.242
0 0.858 0.978 -1.258 0.286 0.161 0.729 1.230 1.087 2.173 0.561 2.670 -0.109 0.000 0.407 2.346 0.938 0.000 1.078 0.729 -0.658 3.102 0.597 0.921 0.982 0.579 0.954 0.733 0.769
1 1.454 -1.384 0.870 0.067 0.394 1.033 -0.673 0.318 0.000 1.166 -0.763 -1.533 2.215 2.848 -0.045 -0.856 2.548 0.697 -0.140 1.134 0.000 0.931 1.293 0.977 1.541 1.326 1.201 1.078
1 0.559 -0.913 0.486 1.104 -0.321 1.073 -0.348 1.345 0.000 0.901 -0.827 -0.842 0.000 0.739 0.047 -0.415 2.548 0.433 -1.132 1.268 0.000 0.797 0.695 0.985 0.868 0.346 0.674 0.623
1 1.333 0.780 -0.964 0.916 1.202 1.822 -0.071 0.742 2.173 1.486 -0.399 -0.824 0.000 0.740 0.568 -0.134 0.000 0.971 -0.070 -1.589 3.102 1.278 0.929 1.421 1.608 1.214 1.215 1.137
1 2.417 0.631 -0.317 0.323 0.581 0.841 1.524 -1.738 0.000 0.543 1.176 -0.325 0.000 0.827 0.700 0.866 0.000 0.834 -0.262 -1.702 3.102 0.932 0.820 0.988 0.646 0.287 0.595 0.589
0 0.955 -1.242 0.938 1.104 0.474 0.798 -0.743 1.535 0.000 1.356 -1.357 -1.080 2.215 1.320 -1.396 -0.132 2.548 0.728 -0.529 -0.633 0.000 0.832 0.841 0.988 0.923 1.077 0.988 0.816
1 1.305 -1.918 0.391 1.161 0.063 0.724 2.593 1.481 0.000 0.592 -1.207 -0.329 0.000 0.886 -0.836 -1.168 2.548 1.067 -1.481 -1.440 0.000 0.916 0.688 0.991 0.969 0.550 0.665 0.638
0 1.201 0.071 -1.123 2.242 -1.533 0.702 -0.256 0.688 0.000 0.967 0.491 1.040 2.215 1.271 -0.558 0.095 0.000 1.504 0.676 -0.383 3.102 0.917 1.006 0.985 1.017 1.057 0.928 1.057
0 0.994 -1.607 1.596 0.774 -1.391 0.625 -0.134 -0.862 2.173 0.746 -0.765 -0.316 2.215 1.131 -0.320 0.869 0.000 0.607 0.826 0.301 0.000 0.798 0.967 0.999 0.880 0.581 0.712 0.774
1 0.482 -0.467 0.729 1.419 1.458 0.824 0.376 -0.242 0.000 1.368 0.023 1.459 2.215 0.826 0.669 -1.079 2.548 0.936 2.215 -0.309 0.000 1.883 1.216 0.997 1.065 0.946 1.224 1.526
1 0.383 1.588 1.611 0.748 1.194 0.866 -0.279 -0.636 0.000 0.707 0.536 0.801 2.215 1.647 -1.155 0.367 0.000 1.292 0.303 -1.681 3.102 2.016 1.581 0.986 0.584 0.684 1.107 0.958
0 0.629 0.203 0.736 0.671 -0.271 1.350 -0.486 0.761 2.173 0.496 -0.805 -1.718 0.000 2.393 0.044 -1.046 1.274 0.651 -0.116 -0.541 0.000 0.697 1.006 0.987 1.069 2.317 1.152 0.902
0 0.905 -0.564 -0.570 0.263 1.096 1.219 -1.397 -1.414 1.087 1.164 -0.533 -0.208 0.000 1.459 1.965 0.784 0.000 2.220 -1.421 0.452 0.000 0.918 1.360 0.993 0.904 0.389 2.118 1.707
1 1.676 1.804 1.171 0.529 1.175 1.664 0.354 -0.530 0.000 1.004 0.691 -1.280 2.215 0.838 0.373 0.626 2.548 1.094 1.774 0.501 0.000 0.806 1.100 0.991 0.769 0.976 0.807 0.740
1 1.364 -1.936 0.020 1.327 0.428 1.021 -1.665 -0.907 2.173 0.818 -2.701 1.303 0.000 0.716 -0.590 -1.629 2.548 0.895 -2.280 -1.602 0.000 1.211 0.849 0.989 1.320 0.864 1.065 0.949
0 0.629 -0.626 0.609 1.828 1.280 0.644 -0.856 -0.873 2.173 0.555 1.066 -0.640 0.000 0.477 -1.364 -1.021 2.548 1.017 0.036 0.380 0.000 0.947 0.941 0.994 1.128 0.241 0.793 0.815
1 1.152 -0.843 0.926 1.802 0.800 2.493 -1.449 -1.127 0.000 1.737 0.833 0.488 0.000 1.026 0.929 -0.990 2.548 1.408 0.689 1.142 3.102 1.171 0.956 0.993 2.009 0.867 1.499 1.474
0 2.204 0.081 0.008 1.021 -0.679 2.676 0.090 1.163 0.000 2.210 -1.686 -1.195 0.000 1.805 0.891 -0.148 2.548 0.450 -0.502 -1.295 3.102 6.959 3.492 1.205 0.908 0.845 2.690 2.183
1 0.957 0.954 1.702 0.043 -0.503 1.113 0.033 -0.308 0.000 0.757 -0.363 -1.129 2.215 1.635 0.068 1.048 1.274 0.415 -2.098 0.061 0.000 1.010 0.979 0.992 0.704 1.125 0.761 0.715
0 1.222 0.418 1.059 1.303 1.442 0.282 -1.499 -1.286 0.000 1.567 0.016 -0.164 2.215 0.451 2.229 -1.229 0.000 0.660 -0.513 -0.296 3.102 2.284 1.340 0.985 1.531 0.314 1.032 1.094
1 0.603 1.675 -0.973 0.703 -1.709 1.023 0.652 1.296 2.173 1.078 0.363 -0.263 0.000 0.734 -0.457 -0.745 1.274 0.561 1.434 -0.042 0.000 0.888 0.771 0.984 0.847 1.234 0.874 0.777
0 0.897 0.949 -0.848 1.115 -0.085 0.522 -1.267 -1.418 0.000 0.684 -0.599 1.474 0.000 1.176 0.922 0.641 2.548 0.470 0.103 0.148 3.102 0.775 0.697 0.984 0.839 0.358 0.847 1.008
1 0.987 1.013 -1.504 0.468 -0.259 1.160 0.476 -0.971 2.173 1.266 0.919 0.780 0.000 0.634 1.695 0.233 0.000 0.487 -0.082 0.719 3.102 0.921 0.641 0.991 0.730 0.828 0.952 0.807
1 0.847 1.581 -1.397 1.629 1.529 1.053 0.816 -0.344 2.173 0.895 0.779 0.332 0.000 0.750 1.311 0.419 2.548 1.604 0.844 1.367 0.000 1.265 0.798 0.989 1.328 0.783 0.930 0.879
1 0.805 1.416 -1.327 0.397 0.589 0.488 0.982 0.843 0.000 0.664 -0.999 0.129 0.000 0.624 0.613 -0.558 0.000 1.431 -0.667 -1.561 3.102 0.959 1.103 0.989 0.590 0.632 0.926 0.798
0 1.220 -0.313 -0.489 1.759 0.201 1.698 -0.220 0.241 2.173 1.294 1.390 -1.682 0.000 1.447 -1.623 -1.296 0.000 1.710 0.872 -1.356 3.102 1.198 0.981 1.184 0.859 2.165 1.807 1.661
0 0.772 -0.611 -0.549 0.465 -1.528 1.103 -0.140 0.001 2.173 0.854 -0.406 1.655 0.000 0.733 -1.250 1.072 0.000 0.883 0.627 -1.132 3.102 0.856 0.927 0.987 1.094 1.013 0.938 0.870
1 1.910 0.771 0.828 0.231 1.267 1.398 1.455 -0.295 2.173 0.837 -2.564 0.770 0.000 0.540 2.189 1.287 0.000 1.345 1.311 -1.151 0.000 0.861 0.869 0.984 1.359 1.562 1.105 0.963
1 0.295 0.832 1.399 1.222 -0.517 2.480 0.013 1.591 0.000 2.289 0.436 0.287 2.215 1.995 -0.367 -0.409 1.274 0.375 1.367 -1.716 0.000 1.356 2.171 0.990 1.467 1.664 1.855 1.705
1 1.228 0.339 -0.575 0.417 1.474 0.480 -1.416 -1.498 2.173 0.614 -0.933 -0.961 0.000 1.189 1.690 1.003 0.000 1.690 -1.065 0.106 3.102 0.963 1.147 0.987 1.086 0.948 0.930 0.866
0 2.877 -1.014 1.440 0.782 0.483 1.134 -0.735 -0.196 2.173 1.123 0.084 -0.596 0.000 1.796 -0.356 1.044 2.548 1.406 1.582 -0.991 0.000 0.939 1.178 1.576 0.996 1.629 1.216 1.280
1 2.178 0.259 1.107 0.256 1.222 0.979 -0.440 -0.538 1.087 0.496 -0.760 -0.049 0.000 1.471 1.683 -1.486 0.000 0.646 0.695 -1.577 3.102 1.093 1.070 0.984 0.608 0.889 0.962 0.866
1 0.604 0.592 1.295 0.964 0.348 1.178 -0.016 0.832 2.173 1.626 -0.420 -0.760 0.000 0.748 0.461 -0.906 0.000 0.728 0.309 -1.269 1.551 0.852 0.604 0.989 0.678 0.949 1.021 0.878
0 0.428 -1.352 -0.912 1.713 0.797 1.894 -1.452 0.191 2.173 2.378 2.113 -1.190 0.000 0.860 2.174 0.949 0.000 1.693 0.759 1.426 3.102 0.885 1.527 1.186 1.090 3.294 4.492 3.676
0 0.473 0.485 0.154 1.433 -1.504 0.766 1.257 -1.302 2.173 0.414 0.119 0.238 0.000 0.805 0.242 -0.691 2.548 0.734 0.749 0.753 0.000 0.430 0.893 1.137 0.686 0.724 0.618 0.608
1 0.763 -0.601 0.876 0.182 -1.678 0.818 0.599 0.481 2.173 0.658 -0.737 -0.553 0.000 0.857 -1.138 -1.435 0.000 1.540 -1.466 -0.447 0.000 0.870 0.566 0.989 0.728 0.658 0.821 0.726
0 0.619 -0.273 -0.143 0.992 -1.267 0.566 0.876 -1.396 2.173 0.515 0.892 0.618 0.000 0.434 -0.902 0.862 2.548 0.490 -0.539 0.549 0.000 0.568 0.794 0.984 0.667 0.867 0.597 0.578
0 0.793 0.970 0.324 0.570 0.816 0.761 -0.550 1.519 2.173 1.150 0.496 -0.447 0.000 0.925 0.724 1.008 1.274 1.135 -0.275 -0.843 0.000 0.829 1.068 0.978 1.603 0.892 1.041 1.059
1 0.480 0.364 -0.067 1.906 -1.582 1.397 1.159 0.140 0.000 0.639 0.398 -1.102 0.000 1.597 -0.668 1.607 2.548 1.306 -0.797 0.288 3.102 0.856 1.259 1.297 1.022 1.032 1.049 0.939
0 0.514 1.304 1.490 1.741 -0.220 0.648 0.155 0.535 0.000 0.562 -1.016 0.837 0.000 0.863 -0.780 -0.815 2.548 1.688 -0.130 -1.545 3.102 0.887 0.980 1.309 1.269 0.654 1.044 1.035
0 1.225 0.333 0.656 0.893 0.859 1.037 -0.876 1.603 1.087 1.769 0.272 -0.227 2.215 1.000 0.579 -1.690 0.000 1.385 0.471 -0.860 0.000 0.884 1.207 0.995 1.097 2.336 1.282 1.145
0 2.044 -1.472 -0.294 0.392 0.369 0.927 0.718 1.492 1.087 1.619 -0.736 0.047 2.215 1.884 -0.101 -1.540 0.000 0.548 -0.441 1.117 0.000 0.798 0.877 0.981 0.750 2.272 1.469 1.276
0 1.037 -0.276 0.735 3.526 1.156 2.498 0.401 -0.590 1.087 0.714 -1.203 1.393 2.215 0.681 0.629 1.534 0.000 0.719 -0.355 -0.706 0.000 0.831 0.857 0.988 2.864 2.633 1.988 1.466
1 0.651 -1.218 -0.791 0.770 -1.449 0.610 -0.535 0.960 2.173 0.380 -1.072 -0.031 2.215 0.415 2.123 -1.100 0.000 0.776 0.217 0.420 0.000 0.986 1.008 1.001 0.853 0.588 0.799 0.776
0 1.586 -0.409 0.085 3.258 0.405 1.647 -0.674 -1.519 0.000 0.640 -1.027 -1.681 0.000 1.452 -0.444 -0.957 2.548 0.927 -0.017 1.215 3.102 0.519 0.866 0.992 0.881 0.847 1.018 1.278
0 0.712 0.092 -0.466 0.688 1.236 0.921 -1.217 -1.022 2.173 2.236 -1.167 0.868 2.215 0.851 -1.892 -0.753 0.000 0.475 -1.216 -0.383 0.000 0.668 0.758 0.988 1.180 2.093 1.157 0.934
0 0.419 0.471 0.974 2.805 0.235 1.473 -0.198 1.255 1.087 0.931 1.083 -0.712 0.000 1.569 1.358 -1.179 2.548 2.506 0.199 -0.842 0.000 0.929 0.991 0.992 1.732 2.367 1.549 1.430
1 0.667 1.003 1.504 0.368 1.061 0.885 -0.318 -0.353 0.000 1.438 -1.939 0.710 0.000 1.851 0.277 -1.460 2.548 1.403 0.517 -0.157 0.000 0.883 1.019 1.000 0.790 0.859 0.938 0.841
1 1.877 -0.492 0.372 0.441 0.955 1.034 -1.220 -0.846 1.087 0.952 -0.320 1.125 0.000 0.542 0.308 -1.261 2.548 1.018 -1.415 -1.547 0.000 1.280 0.932 0.991 1.273 0.878 0.921 0.906
0 1.052 0.901 1.176 1.280 1.517 0.562 -1.150 -0.079 2.173 1.228 -0.308 -0.354 0.000 0.790 -1.492 -0.963 0.000 0.942 -0.672 -1.588 3.102 1.116 0.902 0.988 1.993 0.765 1.375 1.325
1 0.518 -0.254 1.642 0.865 0.725 0.980 0.734 0.023 0.000 1.448 0.780 -1.736 2.215 0.955 0.513 -0.519 0.000 0.365 -0.444 -0.243 3.102 0.833 0.555 0.984 0.827 0.795 0.890 0.786
0 0.870 0.815 -0.506 0.663 -0.518 0.935 0.289 -1.675 2.173 1.188 0.005 0.635 0.000 0.580 0.066 -1.455 2.548 0.580 -0.634 -0.199 0.000 0.852 0.788 0.979 1.283 0.208 0.856 0.950
0 0.628 1.382 0.135 0.683 0.571 1.097 0.564 -0.950 2.173 0.617 -0.326 0.371 0.000 1.093 0.918 1.667 2.548 0.460 1.221 0.708 0.000 0.743 0.861 0.975 1.067 1.007 0.843 0.762
0 4.357 0.816 -1.609 1.845 -1.288 3.292 0.726 0.324 2.173 1.528 0.583 -0.801 2.215 0.605 0.572 1.406 0.000 0.794 -0.791 0.122 0.000 0.967 1.132 1.124 3.602 2.811 2.460 1.861
0 0.677 -1.265 1.559 0.866 -0.618 0.823 0.260 0.185 0.000 1.133 0.337 1.589 2.215 0.563 -0.830 0.510 0.000 0.777 0.117 -0.941 3.102 0.839 0.763 0.986 1.182 0.649 0.796 0.851
0 2.466 -1.838 -1.648 1.717 1.533 1.676 -1.553 -0.109 2.173 0.670 -0.666 0.284 0.000 0.334 -2.480 0.316 0.000 0.366 -0.804 -1.298 3.102 0.875 0.894 0.997 0.548 0.770 1.302 1.079
1 1.403 0.129 -1.307 0.688 0.306 0.579 0.753 0.814 1.087 0.474 0.694 -1.400 0.000 0.520 1.995 0.185 0.000 0.929 -0.504 1.270 3.102 0.972 0.998 1.353 0.948 0.650 0.688 0.724
1 0.351 1.188 -0.360 0.254 -0.346 1.129 0.545 1.691 0.000 0.652 -0.039 -0.258 2.215 1.089 0.655 0.472 2.548 0.554 -0.493 1.366 0.000 0.808 1.045 0.992 0.570 0.649 0.809 0.744
0 1.875 -0.013 -0.128 0.236 1.163 0.902 0.426 0.590 2.173 1.251 -1.210 -0.616 0.000 1.035 1.534 0.912 0.000 1.944 1.789 -1.691 0.000 0.974 1.113 0.990 0.925 1.120 0.956 0.912
0 0.298 0.750 -0.507 1.555 1.463 0.804 1.200 -0.665 0.000 0.439 -0.829 -0.252 1.107 0.770 -1.090 0.947 2.548 1.165 -0.166 -0.763 0.000 1.140 0.997 0.988 1.330 0.555 1.005 1.012
0 0.647 0.342 0.245 4.340 -0.157 2.229 0.068 1.170 2.173 2.133 -0.201 -1.441 0.000 1.467 0.697 -0.532 1.274 1.457 0.583 -1.640 0.000 0.875 1.417 0.976 2.512 2.390 1.794 1.665
1 1.731 -0.803 -1.013 1.492 -0.020 1.646 -0.541 1.121 2.173 0.459 -1.251 -1.495 2.215 0.605 -1.711 -0.232 0.000 0.658 0.634 -0.068 0.000 1.214 0.886 1.738 1.833 1.024 1.192 1.034
0 0.515 1.416 -1.089 1.697 1.426 1.414 0.941 0.027 0.000 1.480 0.133 -1.595 2.215 1.110 0.752 0.760 2.548 1.062 0.697 -0.492 0.000 0.851 0.955 0.994 1.105 1.255 1.175 1.095
0 1.261 0.858 1.465 0.757 0.305 2.310 0.679 1.080 2.173 1.544 2.518 -0.464 0.000 2.326 0.270 -0.841 0.000 2.163 0.839 -0.500 3.102 0.715 0.825 1.170 0.980 2.371 1.527 1.221
1 1.445 1.509 1.471 0.414 -1.285 0.767 0.864 -0.677 2.173 0.524 1.388 0.171 0.000 0.826 0.190 0.121 2.548 0.572 1.691 -1.603 0.000 0.870 0.935 0.994 0.968 0.735 0.783 0.777
1 0.919 -0.264 -1.245 0.681 -1.722 1.022 1.010 0.097 2.173 0.685 0.403 -1.351 0.000 1.357 -0.429 1.262 1.274 0.687 1.021 -0.563 0.000 0.953 0.796 0.991 0.873 1.749 1.056 0.917
1 0.293 -2.258 -1.427 1.191 1.202 0.394 -2.030 1.438 0.000 0.723 0.596 -0.024 2.215 0.525 -1.678 -0.290 0.000 0.788 -0.824 -1.029 3.102 0.821 0.626 0.976 1.080 0.810 0.842 0.771
0 3.286 0.386 1.688 1.619 -1.620 1.392 -0.009 0.280 0.000 1.179 -0.776 -0.110 2.215 1.256 0.248 -1.114 2.548 0.777 0.825 -0.156 0.000 1.026 1.065 0.964 0.909 1.249 1.384 1.395
1 1.075 0.603 0.561 0.656 -0.685 0.985 0.175 0.979 2.173 1.154 0.584 -0.886 0.000 1.084 -0.354 -1.004 2.548 0.865 1.224 1.269 0.000 1.346 1.073 1.048 0.873 1.310 1.003 0.865
1 1.098 -0.091 1.466 1.558 0.915 0.649 1.314 -1.182 2.173 0.791 0.073 0.351 0.000 0.517 0.940 1.195 0.000 1.150 1.187 -0.692 3.102 0.866 0.822 0.980 1.311 0.394 1.119 0.890
1 0.481 -1.042 0.148 1.135 -1.249 1.202 -0.344 0.308 1.087 0.779 -1.431 1.581 0.000 0.860 -0.860 -1.125 0.000 0.785 0.303 1.199 3.102 0.878 0.853 0.988 1.072 0.827 0.936 0.815
0 1.348 0.497 0.318 0.806 0.976 1.393 -0.152 0.632 2.173 2.130 0.515 -1.054 0.000 0.908 0.062 -0.780 0.000 1.185 0.687 1.668 1.551 0.720 0.898 0.985 0.683 1.292 1.320 1.131
0 2.677 -0.420 -1.685 1.828 1.433 2.040 -0.718 -0.039 0.000 0.400 -0.873 0.472 0.000 0.444 0.340 -0.830 2.548 0.431 0.768 -1.417 3.102 0.869 0.917 0.996 0.707 0.193 0.728 1.154
1 1.300 0.586 -0.122 1.306 0.609 0.727 -0.556 -1.652 2.173 0.636 0.720 1.393 2.215 0.328 1.280 -0.390 0.000 0.386 0.752 -0.905 0.000 0.202 0.751 1.106 0.864 0.799 0.928 0.717
0 0.637 -0.176 1.737 1.322 -0.414 0.702 -0.964 -0.680 0.000 1.054 -0.461 0.889 2.215 0.861 -0.267 0.225 0.000 1.910 -1.888 1.027 0.000 0.919 0.899 1.186 0.993 1.109 0.862 0.775
1 0.723 -0.104 1.572 0.428 -0.840 0.655 0.544 1.401 2.173 1.522 -0.154 -0.452 2.215 0.996 0.190 0.273 0.000 1.906 -0.176 0.966 0.000 0.945 0.894 0.990 0.981 1.555 0.988 0.893
0 2.016 -0.570 1.612 0.798 0.441 0.334 0.191 -0.909 0.000 0.939 0.146 0.021 2.215 0.553 -0.444 1.156 2.548 0.781 -1.545 -0.520 0.000 0.922 0.956 1.528 0.722 0.699 0.778 0.901
0 1.352 -0.707 1.284 0.665 0.580 0.694 -1.040 -0.899 2.173 0.692 -2.048 0.029 0.000 0.545 -2.042 1.259 0.000 0.661 -0.808 -1.251 3.102 0.845 0.991 0.979 0.662 0.225 0.685 0.769
1 1.057 -1.561 -0.411 0.952 -0.681 1.236 -1.107 1.045 2.173 1.288 -2.521 -0.521 0.000 1.361 -1.239 1.546 0.000 0.373 -1.540 0.028 0.000 0.794 0.782 0.987 0.889 0.832 0.972 0.828
0 1.118 -0.017 -1.227 1.077 1.256 0.714 0.624 -0.811 0.000 0.800 0.704 0.387 1.107 0.604 0.234 0.986 0.000 1.306 -0.456 0.094 3.102 0.828 0.984 1.195 0.987 0.672 0.774 0.748
1 0.602 2.201 0.212 0.119 0.182 0.474 2.130 1.270 0.000 0.370 2.088 -0.573 0.000 0.780 -0.725 -1.033 0.000 1.642 0.598 0.303 3.102 0.886 0.988 0.985 0.644 0.756 0.651 0.599
0 1.677 -0.844 1.581 0.585 0.887 1.012 -2.315 0.752 0.000 1.077 0.748 -0.195 0.000 0.718 0.832 -1.337 1.274 1.181 -0.557 -1.006 3.102 1.018 1.247 0.988 0.908 0.651 1.311 1.120
1 1.695 0.259 1.224 1.344 1.067 0.718 -1.752 -0.215 0.000 0.473 0.991 -0.993 0.000 0.891 1.285 -1.500 2.548 0.908 -0.131 0.288 0.000 0.945 0.824 0.979 1.009 0.951 0.934 0.833
0 0.793 0.628 0.432 1.707 0.302 0.919 1.045 -0.784 0.000 1.472 0.175 -1.284 2.215 1.569 0.155 0.971 2.548 0.435 0.735 1.625 0.000 0.801 0.907 0.992 0.831 1.446 1.082 1.051
1 0.537 -0.664 -0.244 1.104 1.272 1.154 0.394 1.633 0.000 1.527 0.963 0.559 2.215 1.744 0.650 -0.912 0.000 1.097 0.730 -0.368 3.102 1.953 1.319 1.045 1.309 0.869 1.196 1.126
1 0.585 -1.469 1.005 0.749 -1.060 1.224 -0.717 -0.323 2.173 1.012 -0.201 1.268 0.000 0.359 -0.567 0.476 0.000 1.117 -1.124 1.557 3.102 0.636 1.281 0.986 0.616 1.289 0.890 0.881
1 0.354 -1.517 0.667 2.534 -1.298 1.020 -0.375 1.254 0.000 1.119 -0.060 -1.538 2.215 1.059 -0.395 -0.140 0.000 2.609 0.199 -0.778 1.551 0.957 0.975 1.286 1.666 1.003 1.224 1.135
1 0.691 -1.619 -1.380 0.361 1.727 1.493 -1.093 -0.289 0.000 1.447 -0.640 1.341 0.000 1.453 -0.617 -1.456 1.274 1.061 -1.481 -0.091 0.000 0.744 0.649 0.987 0.596 0.727 0.856 0.797
0 1.336 1.293 -1.359 0.357 0.067 1.110 -0.058 -0.515 0.000 0.976 1.498 1.207 0.000 1.133 0.437 1.053 2.548 0.543 1.374 0.171 0.000 0.764 0.761 0.984 0.827 0.553 0.607 0.612
0 0.417 -1.111 1.661 2.209 -0.683 1.931 -0.642 0.959 1.087 1.514 -2.032 -0.686 0.000 1.521 -0.539 1.344 0.000 0.978 -0.866 0.363 1.551 2.813 1.850 1.140 1.854 0.799 1.600 1.556
0 1.058 0.390 -0.591 0.134 1.149 0.346 -1.550 0.186 0.000 1.108 -0.999 0.843 1.107 1.124 0.415 -1.514 0.000 1.067 -0.426 -1.000 3.102 1.744 1.050 0.985 1.006 1.010 0.883 0.789
1 1.655 0.253 1.216 0.270 1.703 0.500 -0.006 -1.418 2.173 0.690 -0.350 0.170 2.215 1.045 -0.924 -0.774 0.000 0.996 -0.745 -0.123 0.000 0.839 0.820 0.993 0.921 0.869 0.725 0.708
0 1.603 -0.850 0.564 0.829 0.093 1.270 -1.113 -1.155 2.173 0.853 -1.021 1.248 2.215 0.617 -1.270 1.733 0.000 0.935 -0.092 0.136 0.000 1.011 1.074 0.977 0.823 1.269 1.054 0.878
0 1.568 -0.792 1.005 0.545 0.896 0.895 -1.698 -0.988 0.000 0.608 -1.634 1.705 0.000 0.826 0.208 0.618 1.274 2.063 -1.743 -0.520 0.000 0.939 0.986 0.990 0.600 0.435 1.033 1.087
0 0.489 -1.335 -1.102 1.738 1.028 0.628 -0.992 -0.627 0.000 0.652 -0.064 -0.215 0.000 1.072 0.173 -1.251 2.548 1.042 0.057 0.841 3.102 0.823 0.895 1.200 1.164 0.770 0.837 0.846
1 1.876 0.870 1.234 0.556 -1.262 1.764 0.855 -0.467 2.173 1.079 1.351 0.852 0.000 0.773 0.383 0.874 0.000 1.292 0.829 -1.228 3.102 0.707 0.969 1.102 1.601 1.017 1.112 1.028
0 1.033 0.407 -0.374 0.705 -1.254 0.690 -0.231 1.502 2.173 0.433 -2.009 -0.057 0.000 0.861 1.151 0.334 0.000 0.960 -0.839 1.299 3.102 2.411 1.480 0.982 0.995 0.377 1.012 0.994
0 1.092 0.653 -0.801 0.463 0.426 0.529 -1.055 0.040 0.000 0.663 0.999 1.255 1.107 0.749 -1.106 1.185 2.548 0.841 -0.745 -1.029 0.000 0.841 0.743 0.988 0.750 1.028 0.831 0.868
1 0.799 -0.285 -0.011 0.531 1.392 1.063 0.854 0.494 2.173 1.187 -1.065 -0.851 0.000 0.429 -0.296 1.072 0.000 0.942 -1.985 1.172 0.000 0.873 0.693 0.992 0.819 0.689 1.131 0.913
0 0.503 1.973 -0.377 1.515 -1.514 0.708 1.081 -0.313 2.173 1.110 -0.417 0.839 0.000 0.712 -1.153 1.165 0.000 0.675 -0.303 -0.930 1.551 0.709 0.761 1.032 0.986 0.698 0.963 1.291
0 0.690 -0.574 -1.608 1.182 1.118 0.557 -2.243 0.144 0.000 0.969 0.216 -1.383 1.107 1.054 0.888 -0.709 2.548 0.566 1.663 -0.550 0.000 0.752 1.528 0.987 1.408 0.740 1.290 1.123
1 0.890 1.501 0.786 0.779 -0.615 1.126 0.716 1.541 2.173 0.887 0.728 -0.673 2.215 1.216 0.332 -0.020 0.000 0.965 1.828 0.101 0.000 0.827 0.715 1.099 1.088 1.339 0.924 0.878
0 0.566 0.883 0.655 1.600 0.034 1.155 2.028 -1.499 0.000 0.723 -0.871 0.763 0.000 1.286 -0.696 -0.676 2.548 1.134 -0.113 1.207 3.102 4.366 2.493 0.984 0.960 0.962 1.843 1.511
0 1.146 1.086 -0.911 0.838 1.298 0.821 0.127 -0.145 0.000 1.352 0.474 -1.580 2.215 1.619 -0.081 0.675 2.548 1.382 -0.748 0.127 0.000 0.958 0.976 1.239 0.876 1.481 1.116 1.076
0 1.739 -0.326 -1.661 0.420 -1.705 1.193 -0.031 -1.212 2.173 1.783 -0.442 0.522 0.000 1.064 -0.692 0.027 0.000 1.314 0.359 -0.037 3.102 0.968 0.897 0.986 0.907 1.196 1.175 1.112
1 0.669 0.194 -0.703 0.657 -0.260 0.899 -2.511 0.311 0.000 1.482 0.773 0.974 2.215 3.459 0.037 -1.299 1.274 2.113 0.067 1.516 0.000 0.740 0.871 0.979 1.361 2.330 1.322 1.046
1 1.355 -1.033 -1.173 0.552 -0.048 0.899 -0.482 -1.287 2.173 1.422 -1.227 0.390 1.107 1.937 -0.028 0.914 0.000 0.849 -0.230 -1.734 0.000 0.986 1.224 1.017 1.051 1.788 1.150 1.009
1 0.511 -0.202 1.029 0.780 1.154 0.816 0.532 -0.731 0.000 0.757 0.517 0.749 2.215 1.302 0.289 -1.188 0.000 0.584 1.211 -0.350 0.000 0.876 0.943 0.995 0.963 0.256 0.808 0.891
1 1.109 0.572 1.484 0.753 1.543 1.711 -0.145 -0.746 1.087 1.759 0.631 0.845 2.215 0.945 0.542 0.003 0.000 0.378 -1.150 -0.044 0.000 0.764 1.042 0.992 1.045 2.736 1.441 1.140
0 0.712 -0.025 0.553 0.928 -0.711 1.304 0.045 -0.300 0.000 0.477 0.720 0.969 0.000 1.727 -0.474 1.328 1.274 1.282 2.222 1.684 0.000 0.819 0.765 1.023 0.961 0.657 0.799 0.744
1 1.131 -0.302 1.079 0.901 0.236 0.904 -0.249 1.694 2.173 1.507 -0.702 -1.128 0.000 0.774 0.565 0.284 2.548 1.802 1.446 -0.192 0.000 3.720 2.108 0.986 0.930 1.101 1.484 1.238
0 1.392 1.253 0.118 0.864 -1.358 0.922 -0.447 -1.243 1.087 1.969 1.031 0.774 2.215 1.333 -0.359 -0.681 0.000 1.099 -0.257 1.473 0.000 1.246 0.909 1.475 1.234 2.531 1.449 1.306
0 1.374 2.291 -0.479 1.339 -0.243 0.687 2.345 1.310 0.000 0.467 1.081 0.772 0.000 0.656 1.155 -1.636 2.548 0.592 0.536 -1.269 3.102 0.981 0.821 1.010 0.877 0.217 0.638 0.758
1 0.401 -1.516 0.909 2.738 0.519 0.887 0.566 -1.202 0.000 0.909 -0.176 1.682 0.000 2.149 -0.878 -0.514 2.548 0.929 -0.563 -1.555 3.102 1.228 0.803 0.980 1.382 0.884 1.025 1.172
1 0.430 -1.589 1.417 2.158 1.226 1.180 -0.829 -0.781 2.173 0.798 1.400 -0.111 0.000 0.939 -0.878 1.076 2.548 0.576 1.335 -0.826 0.000 0.861 0.970 0.982 1.489 1.308 1.015 0.992
1 1.943 -0.391 -0.840 0.621 -1.613 2.026 1.734 1.025 0.000 0.930 0.573 -0.912 0.000 1.326 0.847 -0.220 1.274 1.181 0.079 0.709 3.102 1.164 1.007 0.987 1.094 0.821 0.857 0.786
1 0.499 0.436 0.887 0.859 1.509 0.733 -0.559 1.111 1.087 1.011 -0.796 0.279 2.215 1.472 -0.510 -0.982 0.000 1.952 0.379 -0.733 0.000 1.076 1.358 0.991 0.589 0.879 1.068 0.922
0 0.998 -0.407 -1.711 0.139 0.652 0.810 -0.331 -0.721 0.000 0.471 -0.533 0.442 0.000 0.531 -1.405 0.120 2.548 0.707 0.098 -1.176 1.551 1.145 0.809 0.988 0.529 0.612 0.562 0.609
1 1.482 0.872 0.638 1.288 0.362 0.856 0.900 -0.511 1.087 1.072 1.061 -1.432 2.215 1.770 -2.292 -1.547 0.000 1.131 1.374 0.783 0.000 6.316 4.381 1.002 1.317 1.048 2.903 2.351
1 2.084 -0.422 1.289 1.125 0.735 1.104 -0.518 -0.326 2.173 0.413 -0.719 -0.699 0.000 0.857 0.108 -1.631 0.000 0.527 0.641 -1.362 3.102 0.791 0.952 1.016 0.776 0.856 0.987 0.836
0 0.464 0.674 0.025 0.430 -1.703 0.982 -1.311 -0.808 2.173 1.875 1.060 0.821 2.215 0.954 -0.480 -1.677 0.000 0.567 0.702 -0.939 0.000 0.781 1.076 0.989 1.256 3.632 1.652 1.252
1 0.457 -1.944 -1.010 1.409 0.931 1.098 -0.742 -0.415 0.000 1.537 -0.834 0.945 2.215 1.752 -0.287 -1.269 2.548 0.692 -1.537 -0.223 0.000 0.801 1.192 1.094 1.006 1.659 1.175 1.122
0 3.260 -0.943 1.737 0.920 1.309 0.946 -0.139 -0.271 2.173 0.994 -0.952 -0.311 0.000 0.563 -0.136 -0.881 0.000 1.236 -0.507 0.906 1.551 0.747 0.869 0.985 1.769 1.034 1.179 1.042
0 0.615 -0.778 0.246 1.861 1.619 0.560 -0.943 -0.204 2.173 0.550 -0.759 -1.342 2.215 0.578 0.076 -0.973 0.000 0.939 0.035 0.680 0.000 0.810 0.747 1.401 0.772 0.702 0.719 0.662
1 2.370 -0.064 -0.237 1.737 0.154 2.319 -1.838 -1.673 0.000 1.053 -1.305 -0.075 0.000 0.925 0.149 0.318 1.274 0.851 -0.922 0.981 3.102 0.919 0.940 0.989 0.612 0.598 1.219 1.626
1 1.486 0.311 -1.262 1.354 -0.847 0.886 -0.158 1.213 2.173 1.160 -0.218 0.239 0.000 1.166 0.494 0.278 2.548 0.575 1.454 -1.701 0.000 0.429 1.129 0.983 1.111 1.049 1.006 0.920
1 1.294 1.587 -0.864 0.487 -0.312 0.828 1.051 -0.031 1.087 2.443 1.216 1.609 2.215 1.167 0.813 0.921 0.000 1.751 -0.415 0.119 0.000 1.015 1.091 0.974 1.357 2.093 1.178 1.059
1 0.984 0.465 -1.661 0.379 -0.554 0.977 0.237 0.365 0.000 0.510 0.143 1.101 0.000 1.099 -0.662 -1.593 2.548 1.104 -0.197 -0.648 3.102 0.925 0.922 0.986 0.642 0.667 0.806 0.722
1 0.930 -0.009 0.047 0.667 1.367 1.065 -0.231 0.815 0.000 1.199 -1.114 -0.877 2.215 0.940 0.824 -1.583 0.000 1.052 -0.407 -0.076 1.551 1.843 1.257 1.013 1.047 0.751 1.158 0.941
0 0.767 -0.011 -0.637 0.341 -1.437 1.438 -0.425 -0.450 2.173 1.073 -0.718 1.341 2.215 0.633 -1.394 0.486 0.000 0.603 -1.945 -1.626 0.000 0.703 0.790 0.984 1.111 1.848 1.129 1.072
1 1.779 0.017 0.432 0.402 1.022 0.959 1.480 1.595 2.173 1.252 1.365 0.006 0.000 1.188 -0.174 -1.107 0.000 1.181 0.518 -0.258 0.000 1.057 0.910 0.991 1.616 0.779 1.158 1.053
0 0.881 0.630 1.029 1.990 0.508 1.102 0.742 -1.298 2.173 1.565 1.085 0.686 2.215 2.691 1.391 -0.904 0.000 0.499 1.388 -1.199 0.000 0.347 0.861 0.997 0.881 1.920 1.233 1.310
0 1.754 -0.266 0.389 0.347 -0.030 0.462 -1.408 -0.957 2.173 0.515 -2.341 -1.700 0.000 0.588 -0.797 1.355 2.548 0.608 0.329 -1.389 0.000 1.406 0.909 0.988 0.760 0.593 0.768 0.847
0 1.087 0.311 -1.447 0.173 0.567 0.854 0.362 0.584 0.000 1.416 -0.716 -1.211 2.215 0.648 -0.358 -0.692 1.274 0.867 -0.513 0.206 0.000 0.803 0.813 0.984 1.110 0.491 0.921 0.873
0 0.279 1.114 -1.190 3.004 -0.738 1.233 0.896 1.092 2.173 0.454 -0.374 0.117 2.215 0.357 0.119 1.270 0.000 0.458 1.343 0.316 0.000 0.495 0.540 0.988 1.715 1.139 1.618 1.183
1 1.773 -0.694 -1.518 2.306 -1.200 3.104 0.749 0.362 0.000 1.871 0.230 -1.686 2.215 0.805 -0.179 -0.871 1.274 0.910 0.607 -0.246 0.000 1.338 1.598 0.984 1.050 0.919 1.678 1.807
0 0.553 0.683 0.827 0.973 -0.706 1.488 0.149 1.140 2.173 1.788 0.447 -0.478 0.000 0.596 1.043 1.607 0.000 0.373 -0.868 -1.308 1.551 1.607 1.026 0.998 1.134 0.808 1.142 0.936
1 0.397 1.101 -1.139 1.688 0.146 0.972 0.541 1.518 0.000 1.549 -0.873 -1.012 0.000 2.282 -0.151 0.314 2.548 1.174 0.033 -1.368 0.000 0.937 0.776 1.039 1.143 0.959 0.986 1.013
1 0.840 1.906 -0.959 0.869 0.576 0.642 0.554 -1.351 0.000 0.756 0.923 -0.823 2.215 1.251 1.130 0.545 2.548 1.513 0.410 1.073 0.000 1.231 0.985 1.163 0.812 0.987 0.816 0.822
1 0.477 1.665 0.814 0.763 -0.382 0.828 -0.008 0.280 2.173 1.213 -0.001 1.560 0.000 1.136 0.311 -1.289 0.000 0.797 1.091 -0.616 3.102 1.026 0.964 0.992 0.772 0.869 0.916 0.803
0 2.655 0.020 0.273 1.464 0.482 1.709 -0.107 -1.456 2.173 0.825 0.141 -0.386 0.000 1.342 -0.592 1.635 1.274 0.859 -0.175 -0.874 0.000 0.829 0.946 1.003 2.179 0.836 1.505 1.176
0 0.771 -1.992 -0.720 0.732 -1.464 0.869 -1.290 0.388 2.173 0.926 -1.072 -1.489 2.215 0.640 -1.232 0.840 0.000 0.528 -2.440 -0.446 0.000 0.811 0.868 0.993 0.995 1.317 0.809 0.714
0 1.357 1.302 0.076 0.283 -1.060 0.783 1.559 -0.994 0.000 0.947 1.212 1.617 0.000 1.127 0.311 0.442 2.548 0.582 -0.052 1.186 1.551 1.330 0.995 0.985 0.846 0.404 0.858 0.815
0 0.442 -0.381 -0.424 1.244 0.591 0.731 0.605 -0.713 2.173 0.629 2.762 1.040 0.000 0.476 2.693 -0.617 0.000 0.399 0.442 1.486 3.102 0.839 0.755 0.988 0.869 0.524 0.877 0.918
0 0.884 0.422 0.055 0.818 0.624 0.950 -0.763 1.624 0.000 0.818 -0.609 -1.166 0.000 1.057 -0.528 1.070 2.548 1.691 -0.124 -0.335 3.102 1.104 0.933 0.985 0.913 1.000 0.863 1.056
0 1.276 0.156 1.714 1.053 -1.189 0.672 -0.464 -0.030 2.173 0.469 -2.483 0.442 0.000 0.564 2.580 -0.253 0.000 0.444 -0.628 1.080 1.551 5.832 2.983 0.985 1.162 0.494 1.809 1.513
0 1.106 -0.556 0.406 0.573 -1.400 0.769 -0.518 1.457 2.173 0.743 -0.352 -0.010 0.000 1.469 -0.550 -0.930 2.548 0.540 1.236 -0.571 0.000 0.962 0.970 1.101 0.805 1.107 0.873 0.773
0 0.539 -0.964 -0.464 1.371 -1.606 0.667 -0.160 0.655 0.000 0.952 0.352 -0.740 2.215 0.952 0.007 1.123 0.000 1.061 -0.505 1.389 3.102 1.063 0.991 1.019 0.633 0.967 0.732 0.799
1 0.533 -0.989 -1.608 0.462 -1.723 1.204 -0.598 -0.098 2.173 1.343 -0.460 1.632 2.215 0.577 0.221 -0.492 0.000 0.628 -0.073 0.472 0.000 0.518 0.880 0.988 1.179 1.874 1.041 0.813
1 1.024 1.075 -0.795 0.286 -1.436 1.365 0.857 -0.309 2.173 0.804 1.532 1.435 0.000 1.511 0.722 1.494 0.000 1.778 0.903 0.753 1.551 0.686 0.810 0.999 0.900 1.360 1.133 0.978
1 2.085 -0.269 -1.423 0.789 1.298 0.281 1.652 0.187 0.000 0.658 -0.760 -0.042 2.215 0.663 0.024 0.120 0.000 0.552 -0.299 -0.428 3.102 0.713 0.811 1.130 0.705 0.218 0.675 0.743
1 0.980 -0.443 0.813 0.785 -1.253 0.719 0.448 -1.458 0.000 1.087 0.595 0.635 1.107 1.428 0.029 -0.995 0.000 1.083 1.562 -0.092 0.000 0.834 0.891 1.165 0.967 0.661 0.880 0.817
1 0.903 -0.733 -0.980 0.634 -0.639 0.780 0.266 -0.287 2.173 1.264 -0.936 1.004 0.000 1.002 -0.056 -1.344 2.548 1.183 -0.098 1.169 0.000 0.733 1.002 0.985 0.711 0.916 0.966 0.875
0 0.734 -0.304 -1.175 2.851 1.674 0.904 -0.634 0.412 2.173 1.363 -1.050 -0.282 0.000 1.476 -1.603 0.103 0.000 2.231 -0.718 1.708 3.102 0.813 0.896 1.088 0.686 1.392 1.033 1.078
1 1.680 0.591 -0.243 0.111 -0.478 0.326 -0.079 -1.555 2.173 0.711 0.714 0.922 2.215 0.355 0.858 1.682 0.000 0.727 1.620 1.360 0.000 0.334 0.526 1.001 0.862 0.633 0.660 0.619
1 1.163 0.225 -0.202 0.501 -0.979 1.609 -0.938 1.424 0.000 1.224 -0.118 -1.274 0.000 2.034 1.241 -0.254 0.000 1.765 0.536 0.237 3.102 0.894 0.838 0.988 0.693 0.579 0.762 0.726
0 1.223 1.232 1.471 0.489 1.728 0.703 -0.111 0.411 0.000 1.367 1.014 -1.294 1.107 1.524 -0.414 -0.164 2.548 1.292 0.833 0.316 0.000 0.861 0.752 0.994 0.836 1.814 1.089 0.950
0 0.816 1.637 -1.557 1.036 -0.342 0.913 1.333 0.949 2.173 0.812 0.756 -0.628 2.215 1.333 0.470 1.495 0.000 1.204 -2.222 -1.675 0.000 1.013 0.924 1.133 0.758 1.304 0.855 0.860
0 0.851 -0.564 -0.691 0.692 1.345 1.219 1.014 0.318 0.000 1.422 -0.262 -1.635 2.215 0.531 1.802 0.008 0.000 0.508 0.515 -1.267 3.102 0.821 0.787 1.026 0.783 0.432 1.149 1.034
0 0.800 -0.599 0.204 0.552 -0.484 0.974 0.413 0.961 2.173 1.269 -0.984 -1.039 2.215 0.380 -1.213 1.371 0.000 0.551 0.332 -0.659 0.000 0.694 0.852 0.984 1.057 2.037 1.096 0.846
0 0.744 -0.071 -0.255 0.638 0.512 1.125 0.407 0.844 2.173 0.860 -0.481 -0.677 0.000 1.102 0.181 -1.194 0.000 1.011 -1.081 -1.713 3.102 0.854 0.862 0.982 1.111 1.372 1.042 0.920
1 0.400 1.049 -0.625 0.880 -0.407 1.040 2.150 -1.359 0.000 0.747 -0.144 0.847 2.215 0.560 -1.829 0.698 0.000 1.663 -0.668 0.267 0.000 0.845 0.964 0.996 0.820 0.789 0.668 0.668
0 1.659 -0.705 -1.057 1.803 -1.436 1.008 0.693 0.005 0.000 0.895 -0.007 0.681 1.107 1.085 0.125 1.476 2.548 1.214 1.068 0.486 0.000 0.867 0.919 0.986 1.069 0.692 1.026 1.313
0 0.829 -0.153 0.861 0.615 -0.548 0.589 1.077 -0.041 2.173 1.056 0.763 -1.737 0.000 0.639 0.970 0.725 0.000 0.955 1.227 -0.799 3.102 1.020 1.024 0.985 0.750 0.525 0.685 0.671
1 0.920 -0.806 -0.840 1.048 0.278 0.973 -0.077 -1.364 2.173 1.029 0.309 0.133 0.000 1.444 1.484 1.618 1.274 1.419 -0.482 0.417 0.000 0.831 1.430 1.151 1.829 1.560 1.343 1.224
1 0.686 0.249 -0.905 0.343 -1.731 0.724 -2.823 -0.901 0.000 0.982 0.303 1.312 1.107 1.016 0.245 0.610 0.000 1.303 -0.557 -0.360 3.102 1.384 1.030 0.984 0.862 1.144 0.866 0.779
0 1.603 0.444 0.508 0.586 0.401 0.610 0.467 -1.735 2.173 0.914 0.626 -1.019 0.000 0.812 0.422 -0.408 2.548 0.902 1.679 1.490 0.000 1.265 0.929 0.990 1.004 0.816 0.753 0.851
1 0.623 0.780 -0.203 0.056 0.015 0.899 0.793 1.326 1.087 0.803 1.478 -1.499 2.215 1.561 1.492 -0.120 0.000 0.904 0.795 0.137 0.000 0.548 1.009 0.850 0.924 0.838 0.914 0.860
0 1.654 -2.032 -1.160 0.859 -1.583 0.689 -1.965 0.891 0.000 0.646 -1.014 -0.288 2.215 0.630 -0.815 0.402 0.000 0.638 0.316 0.655 3.102 0.845 0.879 0.993 1.067 0.625 1.041 0.958
1 0.828 -1.269 -1.203 0.744 -0.213 0.626 -1.017 -0.404 0.000 1.281 -0.931 1.733 2.215 0.699 -0.351 1.287 0.000 1.251 -1.171 0.197 0.000 0.976 1.186 0.987 0.646 0.655 0.733 0.671
1 0.677 0.111 1.090 1.580 1.591 1.560 0.654 -0.341 2.173 0.794 -0.266 0.702 0.000 0.823 0.651 -1.239 2.548 0.730 1.467 -1.530 0.000 1.492 1.023 0.983 1.909 1.022 1.265 1.127
1 0.736 0.882 -1.060 0.589 0.168 1.663 0.781 1.022 2.173 2.025 1.648 -1.292 0.000 1.240 0.924 -0.421 1.274 1.354 0.065 0.501 0.000 0.316 0.925 0.988 0.664 1.736 0.992 0.807
1 1.040 -0.822 1.638 0.974 -0.674 0.393 0.830 0.011 2.173 0.770 -0.140 -0.402 0.000 0.294 -0.133 0.030 0.000 1.220 0.807 0.638 0.000 0.826 1.063 1.216 1.026 0.705 0.934 0.823
1 0.711 0.602 0.048 1.145 0.966 0.934 0.263 -1.589 2.173 0.971 -0.496 -0.421 1.107 0.628 -0.865 0.845 0.000 0.661 -0.008 -0.565 0.000 0.893 0.705 0.988 0.998 1.339 0.908 0.872
1 0.953 -1.651 -0.167 0.885 1.053 1.013 -1.239 0.133 0.000 1.884 -1.122 1.222 2.215 1.906 -0.860 -1.184 1.274 1.413 -0.668 -1.647 0.000 1.873 1.510 1.133 1.050 1.678 1.246 1.061
1 0.986 -0.892 -1.380 0.917 1.134 0.950 -1.162 -0.469 0.000 0.569 -1.393 0.215 0.000 0.320 2.667 1.712 0.000 1.570 -0.375 1.457 3.102 0.925 1.128 1.011 0.598 0.824 0.913 0.833
1 1.067 0.099 1.154 0.527 -0.789 1.085 0.623 -1.602 2.173 1.511 -0.230 0.022 2.215 0.269 -0.377 0.883 0.000 0.571 -0.540 -0.512 0.000 0.414 0.803 1.022 0.959 2.053 1.041 0.780
0 0.825 -2.118 0.217 1.453 -0.493 0.819 0.313 -0.942 0.000 2.098 -0.725 1.096 2.215 0.484 1.336 1.458 0.000 0.482 0.100 1.163 0.000 0.913 0.536 0.990 1.679 0.957 1.095 1.143
1 1.507 0.054 1.120 0.698 -1.340 0.912 0.384 0.015 1.087 0.720 0.247 -0.820 0.000 0.286 0.154 1.578 2.548 0.629 1.582 -0.576 0.000 0.828 0.893 1.136 0.514 0.632 0.699 0.709
1 0.610 1.180 -0.993 0.816 0.301 0.932 0.758 1.539 0.000 0.726 -0.830 0.248 2.215 0.883 0.857 -1.305 0.000 1.338 1.009 -0.252 3.102 0.901 1.074 0.987 0.875 1.159 1.035 0.858
1 1.247 -1.360 1.502 1.525 -1.332 0.618 1.063 0.755 0.000 0.582 -0.155 0.473 2.215 1.214 -0.422 -0.551 2.548 0.838 -1.171 -1.166 0.000 2.051 1.215 1.062 1.091 0.725 0.896 1.091
0 0.373 -0.600 1.291 2.573 0.207 0.765 -0.209 1.667 0.000 0.668 0.724 -1.499 0.000 1.045 -0.338 -0.754 2.548 0.558 -0.469 0.029 3.102 0.868 0.939 1.124 0.519 0.383 0.636 0.838
0 0.791 0.336 -0.307 0.494 1.213 1.158 0.336 1.081 2.173 0.918 1.289 -0.449 0.000 0.735 -0.521 -0.969 0.000 1.052 0.499 -1.188 3.102 0.699 1.013 0.987 0.622 1.050 0.712 0.661
0 1.321 0.856 0.464 0.202 0.901 1.144 0.120 -1.651 0.000 0.803 0.577 -0.509 2.215 0.695 -0.114 0.423 2.548 0.621 1.852 -0.420 0.000 0.697 0.964 0.983 0.527 0.659 0.719 0.729
0 0.563 2.081 0.913 0.982 -0.533 0.549 -0.481 -1.730 0.000 0.962 0.921 0.569 2.215 0.731 1.184 -0.679 1.274 0.918 0.931 -1.432 0.000 1.008 0.919 0.993 0.895 0.819 0.810 0.878
1 1.148 0.345 0.953 0.921 0.617 0.991 1.103 -0.484 0.000 0.970 1.978 1.525 0.000 1.150 0.689 -0.757 2.548 0.517 0.995 1.245 0.000 1.093 1.140 0.998 1.006 0.756 0.864 0.838
1 1.400 0.128 -1.695 1.169 1.070 1.094 -0.345 -0.249 0.000 1.224 0.364 -0.036 2.215 1.178 0.530 -1.544 0.000 1.334 0.933 1.604 0.000 0.560 1.267 1.073 0.716 0.780 0.832 0.792
0 0.330 -2.133 1.403 0.628 0.379 1.686 -0.995 0.030 1.087 2.071 0.127 -0.457 0.000 4.662 -0.855 1.477 0.000 2.072 -0.917 -1.416 3.102 5.403 3.074 0.977 0.936 1.910 2.325 1.702
0 0.989 0.473 0.968 1.970 1.368 0.844 0.574 -0.290 2.173 0.866 -0.345 -1.019 0.000 1.130 0.605 -0.752 0.000 0.956 -0.888 0.870 3.102 0.885 0.886 0.982 1.157 1.201 1.100 1.068
1 0.773 0.418 0.753 1.388 1.070 1.104 -0.378 -0.758 0.000 1.027 0.397 -0.496 2.215 1.234 0.027 1.084 2.548 0.936 0.209 1.677 0.000 1.355 1.020 0.983 0.550 1.206 0.916 0.931
0 0.319 2.015 1.534 0.570 -1.134 0.632 0.124 0.757 0.000 0.477 0.598 -1.109 1.107 0.449 0.438 -0.755 2.548 0.574 -0.659 0.691 0.000 0.440 0.749 0.985 0.517 0.158 0.505 0.522
0 1.215 1.453 -1.386 1.276 1.298 0.643 0.570 -0.196 2.173 0.588 2.104 0.498 0.000 0.617 -0.296 -0.801 2.548 0.452 0.110 0.313 0.000 0.815 0.953 1.141 1.166 0.547 0.892 0.807
1 1.257 -1.869 -0.060 0.265 0.653 1.527 -0.346 1.163 2.173 0.758 -2.119 -0.604 0.000 1.473 -1.133 -1.290 2.548 0.477 -0.428 -0.066 0.000 0.818 0.841 0.984 1.446 1.729 1.211 1.054
1 1.449 0.464 1.585 1.418 -1.488 1.540 0.942 0.087 0.000 0.898 0.402 -0.631 2.215 0.753 0.039 -1.729 0.000 0.859 0.849 -1.054 0.000 0.791 0.677 0.995 0.687 0.527 0.703 0.606
1 1.084 -1.997 0.900 1.333 1.024 0.872 -0.864 -1.500 2.173 1.072 -0.813 -0.421 2.215 0.924 0.478 0.304 0.000 0.992 -0.398 -1.022 0.000 0.741 1.085 0.980 1.221 1.176 1.032 0.961
0 1.712 1.129 0.125 1.120 -1.402 1.749 0.951 -1.575 2.173 1.711 0.445 0.578 0.000 1.114 0.234 -1.011 0.000 1.577 -0.088 0.086 3.102 2.108 1.312 1.882 1.597 2.009 1.441 1.308
0 0.530 0.248 1.622 1.450 -1.012 1.221 -1.154 -0.763 2.173 1.698 -0.586 0.733 0.000 0.889 1.042 1.038 1.274 0.657 0.008 0.701 0.000 0.430 1.005 0.983 0.930 2.264 1.357 1.146
1 0.921 1.735 0.883 0.699 -1.614 0.821 1.463 0.319 1.087 1.099 0.814 -1.600 2.215 1.375 0.702 -0.691 0.000 0.869 1.326 -0.790 0.000 0.980 0.900 0.988 0.832 1.452 0.816 0.709
0 2.485 -0.823 -0.297 0.886 -1.404 0.989 0.835 1.615 2.173 0.382 0.588 -0.224 0.000 1.029 -0.456 1.546 2.548 0.613 -0.359 -0.789 0.000 0.768 0.977 1.726 2.007 0.913 1.338 1.180
1 0.657 -0.069 -0.078 1.107 1.549 0.804 1.335 -1.630 2.173 1.271 0.481 0.153 1.107 1.028 0.144 -0.762 0.000 1.098 0.132 1.570 0.000 0.830 0.979 1.175 1.069 1.624 1.000 0.868
1 2.032 0.329 -1.003 0.493 -0.136 1.159 -0.224 0.750 1.087 0.396 0.546 0.587 0.000 0.620 1.805 0.982 0.000 1.236 0.744 -1.621 0.000 0.930 1.200 0.988 0.482 0.771 0.887 0.779
0 0.524 -1.319 0.634 0.471 1.221 0.599 -0.588 -0.461 0.000 1.230 -1.504 -1.517 1.107 1.436 -0.035 0.104 2.548 0.629 1.997 -1.282 0.000 2.084 1.450 0.984 1.084 1.827 1.547 1.213
1 0.871 0.618 -1.544 0.718 0.186 1.041 -1.180 0.434 2.173 1.133 1.558 -1.301 0.000 0.452 -0.595 0.522 0.000 0.665 0.567 0.130 3.102 1.872 1.114 1.095 1.398 0.979 1.472 1.168
1 3.308 1.037 -0.634 0.690 -0.619 1.975 0.949 1.280 0.000 0.826 0.546 -0.139 2.215 0.635 -0.045 0.427 0.000 1.224 0.112 1.339 3.102 1.756 1.050 0.992 0.738 0.903 0.968 1.238
0 0.588 2.104 -0.872 1.136 1.743 0.842 0.638 0.015 0.000 0.481 0.928 1.000 2.215 0.595 0.125 1.429 0.000 0.951 -1.140 -0.511 3.102 1.031 1.057 0.979 0.673 1.064 1.001 0.891
0 0.289 0.823 0.013 0.615 -1.601 0.177 2.403 -0.015 0.000 0.258 1.151 1.036 2.215 0.694 0.553 -1.326 2.548 0.411 0.366 0.106 0.000 0.482 0.562 0.989 0.670 0.404 0.516 0.561
1 0.294 -0.660 -1.162 1.752 0.384 0.860 0.513 1.119 0.000 2.416 0.107 -1.342 0.000 1.398 0.361 -0.350 2.548 1.126 -0.902 0.040 1.551 0.650 1.125 0.988 0.531 0.843 0.912 0.911
0 0.599 -0.616 1.526 1.381 0.507 0.955 -0.646 -0.085 2.173 0.775 -0.533 1.116 2.215 0.789 -0.136 -1.176 0.000 2.449 1.435 -1.433 0.000 1.692 1.699 1.000 0.869 1.119 1.508 1.303
1 1.100 -1.174 -1.114 1.601 -1.576 1.056 -1.343 0.547 2.173 0.555 0.367 0.592 2.215 0.580 -1.862 -0.914 0.000 0.904 0.508 -0.444 0.000 1.439 1.105 0.986 1.408 1.104 1.190 1.094
1 2.237 -0.701 1.470 0.719 -0.199 0.745 -0.132 -0.737 1.087 0.976 -0.227 0.093 2.215 0.699 0.057 1.133 0.000 0.661 0.573 -0.679 0.000 0.785 0.772 1.752 1.235 0.856 0.990 0.825
1 0.455 -0.880 -1.482 1.260 -0.178 1.499 0.158 1.022 0.000 1.867 -0.435 -0.675 2.215 1.234 0.783 1.586 0.000 0.641 -0.454 -0.409 3.102 1.002 0.964 0.986 0.761 0.240 1.190 0.995
1 1.158 -0.778 -0.159 0.823 1.641 1.341 -0.830 -1.169 2.173 0.840 -1.554 0.934 0.000 0.693 0.488 -1.218 2.548 1.042 1.395 0.276 0.000 0.946 0.785 1.350 1.079 0.893 1.267 1.151
1 0.902 -0.078 -0.055 0.872 -0.012 0.843 1.276 1.739 2.173 0.838 1.492 0.918 0.000 0.626 0.904 -0.648 2.548 0.412 -2.027 -0.883 0.000 2.838 1.664 0.988 1.803 0.768 1.244 1.280
1 0.649 -1.028 -1.521 1.097 0.774 1.216 -0.383 -0.318 2.173 1.643 -0.285 -1.705 0.000 0.911 -0.091 0.341 0.000 0.592 0.537 0.732 3.102 0.911 0.856 1.027 1.160 0.874 0.986 0.893
1 1.192 1.846 -0.781 1.326 -0.747 1.550 1.177 1.366 0.000 1.196 0.151 0.387 2.215 0.527 2.261 -0.190 0.000 0.390 1.474 0.381 0.000 0.986 1.025 1.004 1.392 0.761 0.965 1.043
0 0.438 -0.358 -1.549 0.836 0.436 0.818 0.276 -0.708 2.173 0.707 0.826 0.392 0.000 1.050 1.741 -1.066 0.000 1.276 -1.583 0.842 0.000 1.475 1.273 0.986 0.853 1.593 1.255 1.226
1 1.083 0.142 1.701 0.605 -0.253 1.237 0.791 1.183 2.173 0.842 2.850 -0.082 0.000 0.724 -0.464 -0.694 0.000 1.499 0.456 -0.226 3.102 0.601 0.799 1.102 0.995 1.389 1.013 0.851
0 0.828 1.897 -0.615 0.572 -0.545 0.572 0.461 0.464 2.173 0.393 0.356 1.069 2.215 1.840 0.088 1.500 0.000 0.407 -0.663 -0.787 0.000 0.950 0.965 0.979 0.733 0.363 0.618 0.733
0 0.735 1.438 1.197 1.123 -0.214 0.641 0.949 0.858 0.000 1.162 0.524 -0.896 2.215 0.992 0.454 -1.475 2.548 0.902 1.079 0.019 0.000 0.822 0.917 1.203 1.032 0.569 0.780 0.764
0 0.437 -2.102 0.044 1.779 -1.042 1.231 -0.181 -0.515 1.087 2.666 0.863 1.466 2.215 1.370 0.345 -1.371 0.000 0.906 0.363 1.611 0.000 1.140 1.362 1.013 3.931 3.004 2.724 2.028
1 0.881 1.814 -0.987 0.384 0.800 2.384 1.422 0.640 0.000 1.528 0.292 -0.962 1.107 2.126 -0.371 -1.401 2.548 0.700 0.109 0.203 0.000 0.450 0.813 0.985 0.956 1.013 0.993 0.774
1 0.630 0.408 0.152 0.194 0.316 0.710 -0.824 -0.358 2.173 0.741 0.535 -0.851 2.215 0.933 0.406 1.148 0.000 0.523 -0.479 -0.625 0.000 0.873 0.960 0.988 0.830 0.921 0.711 0.661
1 0.870 -0.448 -1.134 0.616 0.135 0.600 0.649 -0.622 2.173 0.768 0.709 -0.123 0.000 1.308 0.500 1.468 0.000 1.973 -0.286 1.462 3.102 0.909 0.944 0.990 0.835 1.250 0.798 0.776
0 1.290 0.552 1.330 0.615 -1.353 0.661 0.240 -0.393 0.000 0.531 0.053 -1.588 0.000 0.675 0.839 -0.345 1.274 1.597 0.020 0.536 3.102 1.114 0.964 0.987 0.783 0.675 0.662 0.675
1 0.943 0.936 1.068 1.373 0.671 2.170 -2.011 -1.032 0.000 0.640 0.361 -0.806 0.000 2.239 -0.083 0.590 2.548 1.224 0.646 -1.723 0.000 0.879 0.834 0.981 1.436 0.568 0.916 0.931
1 0.431 1.686 -1.053 0.388 1.739 0.457 -0.471 -0.743 2.173 0.786 1.432 -0.547 2.215 0.537 -0.413 1.256 0.000 0.413 2.311 -0.408 0.000 1.355 1.017 0.982 0.689 1.014 0.821 0.715
0 1.620 -0.055 -0.862 1.341 -1.571 0.634 -0.906 0.935 2.173 0.501 -2.198 -0.525 0.000 0.778 -0.708 -0.060 0.000 0.988 -0.621 0.489 3.102 0.870 0.956 1.216 0.992 0.336 0.871 0.889
1 0.549 0.304 -1.443 1.309 -0.312 1.116 0.644 1.519 2.173 1.078 -0.303 -0.736 0.000 1.261 0.387 0.628 2.548 0.945 -0.190 0.090 0.000 0.893 1.043 1.000 1.124 1.077 1.026 0.886
0 0.412 -0.618 -1.486 1.133 -0.665 0.646 0.436 1.520 0.000 0.993 0.976 0.106 2.215 0.832 0.091 0.164 2.548 0.672 -0.650 1.256 0.000 0.695 1.131 0.991 1.017 0.455 1.226 1.087
0 1.183 -0.084 1.644 1.389 0.967 0.843 0.938 -0.670 0.000 0.480 0.256 0.123 2.215 0.437 1.644 0.491 0.000 0.501 -0.416 0.101 3.102 1.060 0.804 1.017 0.775 0.173 0.535 0.760
0 1.629 -1.486 -0.683 2.786 -0.492 1.347 -2.638 1.453 0.000 1.857 0.208 0.873 0.000 0.519 -1.265 -1.602 1.274 0.903 -1.102 -0.329 1.551 6.892 3.522 0.998 0.570 0.477 2.039 2.006
1 2.045 -0.671 -1.235 0.490 -0.952 0.525 -1.252 1.289 0.000 1.088 -0.993 0.648 2.215 0.975 -0.109 -0.254 2.548 0.556 -1.095 -0.194 0.000 0.803 0.861 0.980 1.282 0.945 0.925 0.811
0 0.448 -0.058 -0.974 0.945 -1.633 1.181 -1.139 0.266 2.173 1.118 -0.761 1.502 1.107 1.706 0.585 -0.680 0.000 0.487 -1.951 0.945 0.000 2.347 1.754 0.993 1.161 1.549 1.414 1.176
0 0.551 0.519 0.448 2.183 1.293 1.220 0.628 -0.627 2.173 1.019 -0.002 -0.652 0.000 1.843 -0.386 1.042 2.548 0.400 -1.102 -1.014 0.000 0.648 0.792 1.049 0.888 2.132 1.262 1.096
0 1.624 0.488 1.403 0.760 0.559 0.812 0.777 -1.244 2.173 0.613 0.589 -0.030 2.215 0.692 1.058 0.683 0.000 1.054 1.165 -0.765 0.000 0.915 0.875 1.059 0.821 0.927 0.792 0.721
1 0.774 0.444 1.257 0.515 -0.689 0.515 1.448 -1.271 0.000 0.793 0.118 0.811 1.107 0.679 0.326 -0.426 0.000 1.066 -0.865 -0.049 3.102 0.960 1.046 0.986 0.716 0.772 0.855 0.732
1 2.093 -1.240 1.615 0.918 -1.202 1.412 -0.541 0.640 1.087 2.019 0.872 -0.639 0.000 0.672 -0.936 0.972 0.000 0.896 0.235 0.212 0.000 0.810 0.700 1.090 0.797 0.862 1.049 0.874
1 0.908 1.069 0.283 0.400 1.293 0.609 1.452 -1.136 0.000 0.623 0.417 -0.098 2.215 1.023 0.775 1.054 1.274 0.706 2.346 -1.305 0.000 0.744 1.006 0.991 0.606 0.753 0.796 0.753
0 0.403 -1.328 -0.065 0.901 1.052 0.708 -0.354 -0.718 2.173 0.892 0.633 1.684 2.215 0.999 -1.205 0.941 0.000 0.930 1.072 -0.809 0.000 2.105 1.430 0.989 0.838 1.147 1.042 0.883
0 1.447 0.453 0.118 1.731 0.650 0.771 0.446 -1.564 0.000 0.973 -2.014 0.354 0.000 1.949 -0.643 -1.531 1.274 1.106 -0.334 -1.163 0.000 0.795 0.821 1.013 1.699 0.918 1.118 1.018
1 1.794 0.123 -0.454 0.057 1.489 0.966 -1.190 1.090 1.087 0.539 -0.535 1.035 0.000 1.096 -1.069 -1.236 2.548 0.659 -1.196 -0.283 0.000 0.803 0.756 0.985 1.343 1.109 0.993 0.806
0 1.484 -2.047 0.813 0.591 -0.295 0.923 0.312 -1.164 2.173 0.654 -0.316 0.752 2.215 0.599 1.966 -1.128 0.000 0.626 -0.304 -1.431 0.000 1.112 0.910 1.090 0.986 1.189 1.350 1.472
0 0.417 -2.016 0.849 1.817 0.040 1.201 -1.676 -1.394 0.000 0.792 0.537 0.641 2.215 0.794 -1.222 0.187 0.000 0.825 -0.217 1.334 3.102 1.470 0.931 0.987 1.203 0.525 0.833 0.827
1 0.603 1.009 0.033 0.486 1.225 0.884 -0.617 -1.058 0.000 0.500 -1.407 -0.567 0.000 1.476 -0.876 0.605 2.548 0.970 0.560 1.092 3.102 0.853 1.153 0.988 0.846 0.920 0.944 0.835
1 1.381 -0.326 0.552 0.417 -0.027 1.030 -0.835 -1.287 2.173 0.941 -0.421 1.519 2.215 0.615 -1.650 0.377 0.000 0.606 0.644 0.650 0.000 1.146 0.970 0.990 1.191 0.884 0.897 0.826
1 0.632 1.200 -0.703 0.438 -1.700 0.779 -0.731 0.958 1.087 0.605 0.393 -1.376 0.000 0.670 -0.827 -1.315 2.548 0.626 -0.501 0.417 0.000 0.904 0.903 0.998 0.673 0.803 0.722 0.640
1 1.561 -0.569 1.580 0.329 0.237 1.059 0.731 0.415 2.173 0.454 0.016 -0.828 0.000 0.587 0.008 -0.291 1.274 0.597 1.119 1.191 0.000 0.815 0.908 0.988 0.733 0.690 0.892 0.764
1 2.102 0.087 0.449 1.164 -0.390 1.085 -0.408 -1.116 2.173 0.578 0.197 -0.137 0.000 1.202 0.917 1.523 0.000 0.959 -0.832 1.404 3.102 1.380 1.109 1.486 1.496 0.886 1.066 1.025
1 1.698 -0.489 -0.552 0.976 -1.009 1.620 -0.721 0.648 1.087 1.481 -1.860 -1.354 0.000 1.142 -1.140 1.401 2.548 1.000 -1.274 -0.158 0.000 1.430 1.130 0.987 1.629 1.154 1.303 1.223
1 1.111 -0.249 -1.457 0.421 0.939 0.646 -2.076 0.362 0.000 1.315 0.796 -1.436 2.215 0.780 0.130 0.055 0.000 1.662 -0.834 0.461 0.000 0.920 0.948 0.990 1.046 0.905 1.493 1.169
1 0.945 0.390 -1.159 1.675 0.437 0.356 0.261 0.543 1.087 0.574 0.838 1.599 2.215 0.496 -1.220 -0.022 0.000 0.558 -2.454 1.440 0.000 0.763 0.983 1.728 1.000 0.578 0.922 1.003
1 2.076 0.014 -1.314 0.854 -0.306 3.446 1.341 0.598 0.000 2.086 0.227 -0.747 2.215 1.564 -0.216 1.649 2.548 0.965 -0.857 -1.062 0.000 0.477 0.734 1.456 1.003 1.660 1.001 0.908
1 1.992 0.192 -0.103 0.108 -1.599 0.938 0.595 -1.360 2.173 0.869 -1.012 1.432 0.000 1.302 0.850 0.436 2.548 0.487 1.051 -1.027 0.000 0.502 0.829 0.983 1.110 1.394 0.904 0.836
0 0.460 1.625 1.485 1.331 1.242 0.675 -0.329 -1.039 1.087 0.671 -1.028 -0.514 0.000 1.265 -0.788 0.415 1.274 0.570 -0.683 -1.738 0.000 0.725 0.758 1.004 1.024 1.156 0.944 0.833
0 0.871 0.839 -1.536 0.428 1.198 0.875 -1.256 -0.466 1.087 0.684 -0.768 0.150 0.000 0.556 -1.793 0.389 0.000 0.942 -1.126 1.339 1.551 0.624 0.734 0.986 1.357 0.960 1.474 1.294
1 0.951 1.651 0.576 1.273 1.495 0.834 0.048 -0.578 2.173 0.386 -0.056 -1.448 0.000 0.597 -0.196 0.162 2.548 0.524 1.649 1.625 0.000 0.737 0.901 1.124 1.014 0.556 1.039 0.845
1 1.049 -0.223 0.685 0.256 -1.191 2.506 0.238 -0.359 0.000 1.510 -0.904 1.158 1.107 2.733 -0.902 1.679 2.548 0.407 -0.474 -1.572 0.000 1.513 2.472 0.982 1.238 0.978 1.985 1.510
0 0.455 -0.028 0.265 1.286 1.373 0.459 0.331 -0.922 0.000 0.343 0.634 0.430 0.000 0.279 -0.084 -0.272 0.000 0.475 0.926 -0.123 3.102 0.803 0.495 0.987 0.587 0.211 0.417 0.445
1 2.074 0.388 0.878 1.110 1.557 1.077 -0.226 -0.295 2.173 0.865 -0.319 -1.116 2.215 0.707 -0.835 0.722 0.000 0.632 -0.608 -0.728 0.000 0.715 0.802 1.207 1.190 0.960 1.143 0.926
1 1.390 0.265 1.196 0.919 -1.371 1.858 0.506 0.786 0.000 1.280 -1.367 -0.720 2.215 1.483 -0.441 -0.675 2.548 1.076 0.294 -0.539 0.000 1.126 0.830 1.155 1.551 0.702 1.103 0.933
1 1.014 -0.079 1.597 1.038 -0.281 1.135 -0.722 -0.177 2.173 0.544 -1.475 -1.501 0.000 1.257 -1.315 1.212 0.000 0.496 -0.060 1.180 1.551 0.815 0.611 1.411 1.110 0.792 0.846 0.853
0 0.335 1.267 -1.154 2.011 -0.574 0.753 0.618 1.411 0.000 0.474 0.748 0.681 2.215 0.608 -0.446 -0.354 2.548 0.399 1.295 -0.581 0.000 0.911 0.882 0.975 0.832 0.598 0.580 0.678
1 0.729 -0.189 1.182 0.293 1.310 0.412 0.459 -0.632 0.000 0.869 -1.128 -0.625 2.215 1.173 -0.893 0.478 2.548 0.584 -2.394 -1.727 0.000 2.016 1.272 0.995 1.034 0.905 0.966 1.038
1 1.225 -1.215 -0.088 0.881 -0.237 0.600 -0.976 1.462 2.173 0.876 0.506 1.583 2.215 0.718 1.228 -0.031 0.000 0.653 -1.292 1.216 0.000 0.838 1.108 0.981 1.805 0.890 1.251 1.197
1 2.685 -0.444 0.847 0.253 0.183 0.641 -1.541 -0.873 2.173 0.417 2.874 -0.551 0.000 0.706 -1.431 0.764 0.000 1.390 -0.596 -1.397 0.000 0.894 0.829 0.993 0.789 0.654 0.883 0.746
0 0.638 -0.481 0.683 1.457 -1.024 0.707 -1.338 1.498 0.000 0.980 0.518 0.289 2.215 0.964 -0.531 -0.423 0.000 0.694 -0.654 -1.314 3.102 0.807 1.283 1.335 0.658 0.907 0.797 0.772
1 1.789 -0.765 -0.732 0.421 -0.020 1.142 -1.353 1.439 2.173 0.725 -1.518 -1.261 0.000 0.812 -2.597 -0.463 0.000 1.203 -0.120 1.001 0.000 0.978 0.673 0.985 1.303 1.400 1.078 0.983
1 0.784 -1.431 1.724 0.848 0.559 0.615 -1.643 -1.456 0.000 1.339 -0.513 0.040 2.215 0.394 -2.483 1.304 0.000 0.987 0.889 -0.339 0.000 0.732 0.713 0.987 0.973 0.705 0.875 0.759
1 0.911 1.098 -1.289 0.421 0.823 1.218 -0.503 0.431 0.000 0.775 0.432 -1.680 0.000 0.855 -0.226 -0.460 2.548 0.646 -0.947 -1.243 1.551 2.201 1.349 0.985 0.730 0.451 0.877 0.825
1 0.959 0.372 -0.269 1.255 0.702 1.151 0.097 0.805 2.173 0.993 1.011 0.767 2.215 1.096 0.185 0.381 0.000 1.001 -0.205 0.059 0.000 0.979 0.997 1.168 0.796 0.771 0.839 0.776
0 0.283 -1.864 -1.663 0.219 1.624 0.955 -1.213 0.932 2.173 0.889 0.395 -0.268 0.000 0.597 -1.083 -0.921 2.548 0.584 1.325 -1.072 0.000 0.856 0.927 0.996 0.937 0.936 1.095 0.892
0 2.017 -0.488 -0.466 1.029 -0.870 3.157 0.059 -0.343 2.173 3.881 0.872 1.502 1.107 3.631 1.720 0.963 0.000 0.633 -1.264 -1.734 0.000 4.572 3.339 1.005 1.407 5.590 3.614 3.110
1 1.088 0.414 -0.841 0.485 0.605 0.860 1.110 -0.568 0.000 1.152 -0.325 1.203 2.215 0.324 1.652 -0.104 0.000 0.510 1.095 -1.728 0.000 0.880 0.722 0.989 0.977 0.711 0.888 0.762
0 0.409 -1.717 0.712 0.809 -1.301 0.701 -1.529 -1.411 0.000 1.191 -0.582 0.438 2.215 1.147 0.813 -0.571 2.548 1.039 0.543 0.892 0.000 0.636 0.810 0.986 0.861 1.411 0.907 0.756
1 1.094 1.577 -0.988 0.497 -0.149 0.891 -2.459 1.034 0.000 0.646 0.792 -1.022 0.000 1.573 0.254 -0.053 2.548 1.428 0.190 -1.641 3.102 4.322 2.687 0.985 0.881 1.135 1.907 1.831
1 0.613 1.993 -0.280 0.544 0.931 0.909 1.526 1.559 0.000 0.840 1.473 -0.483 2.215 0.856 0.352 0.408 2.548 1.058 1.733 -1.396 0.000 0.801 1.066 0.984 0.639 0.841 0.871 0.748
0 0.958 -1.202 0.600 0.434 0.170 0.783 -0.214 1.319 0.000 0.835 -0.454 -0.615 2.215 0.658 -1.858 -0.891 0.000 0.640 0.172 -1.204 3.102 1.790 1.086 0.997 0.804 0.403 0.793 0.756
1 1.998 -0.238 0.972 0.058 0.266 0.759 1.576 -0.357 2.173 1.004 -0.349 -0.747 2.215 0.962 0.490 -0.453 0.000 1.592 0.661 -1.405 0.000 0.874 1.086 0.990 1.436 1.527 1.177 0.993
1 0.796 -0.171 -0.818 0.574 -1.625 1.201 -0.737 1.451 2.173 0.651 0.404 -0.452 0.000 1.150 -0.652 -0.120 0.000 1.008 -0.093 0.531 3.102 0.884 0.706 0.979 1.193 0.937 0.943 0.881
1 0.773 1.023 0.527 1.537 -0.201 2.967 -0.574 -1.534 2.173 2.346 -0.307 0.394 2.215 1.393 0.135 -0.027 0.000 3.015 0.187 0.516 0.000 0.819 1.260 0.982 2.552 3.862 2.179 1.786
0 1.823 1.008 -1.489 0.234 -0.962 0.591 0.461 0.996 2.173 0.568 -1.297 -0.410 0.000 0.887 2.157 1.194 0.000 2.079 0.369 -0.085 3.102 0.770 0.945 0.995 1.179 0.971 0.925 0.983
0 0.780 0.640 0.490 0.680 -1.301 0.715 -0.137 0.152 2.173 0.616 -0.831 1.668 0.000 1.958 0.528 -0.982 2.548 0.966 -1.551 0.462 0.000 1.034 1.079 1.008 0.827 1.369 1.152 0.983
1 0.543 0.801 1.543 1.134 -0.772 0.954 -0.849 0.410 1.087 0.851 -1.988 1.686 0.000 0.799 -0.912 -1.156 0.000 0.479 0.097 1.334 0.000 0.923 0.597 0.989 1.231 0.759 0.975 0.867
0 1.241 -0.014 0.129 1.158 0.670 0.445 -0.732 1.739 2.173 0.918 0.659 -1.340 2.215 0.557 2.410 -1.404 0.000 0.966 -1.545 -1.120 0.000 0.874 0.918 0.987 1.001 0.798 0.904 0.937
0 1.751 -0.266 -1.575 0.489 1.292 1.112 1.533 0.137 2.173 1.204 -0.414 -0.928 0.000 0.879 1.237 -0.415 2.548 1.479 1.469 0.913 0.000 2.884 1.747 0.989 1.742 0.600 1.363 1.293
1 1.505 1.208 -1.476 0.995 -0.836 2.800 -1.600 0.111 0.000 2.157 1.241 1.110 2.215 1.076 2.619 -0.913 0.000 1.678 2.204 -1.575 0.000 0.849 1.224 0.990 1.412 0.976 1.271 1.105
0 0.816 0.611 0.779 1.694 0.278 0.575 -0.787 1.592 2.173 1.148 1.076 -0.831 2.215 0.421 1.316 0.632 0.000 0.589 0.452 -1.466 0.000 0.779 0.909 0.990 1.146 1.639 1.236 0.949
1 0.551 -0.808 0.330 1.188 -0.294 0.447 -0.035 -0.993 0.000 0.432 -0.276 -0.481 2.215 1.959 -0.288 1.195 2.548 0.638 0.583 1.107 0.000 0.832 0.924 0.993 0.723 0.976 0.968 0.895
0 1.316 -0.093 0.995 0.860 -0.621 0.593 -0.560 -1.599 2.173 0.524 -0.318 -0.240 2.215 0.566 0.759 -0.368 0.000 0.483 -2.030 -1.104 0.000 1.468 1.041 1.464 0.811 0.778 0.690 0.722
1 1.528 0.067 -0.855 0.959 -1.464 1.143 -0.082 1.023 0.000 0.702 -0.763 -0.244 0.000 0.935 -0.881 0.206 2.548 0.614 -0.831 1.657 3.102 1.680 1.105 0.983 1.078 0.559 0.801 0.809
0 0.558 -0.833 -0.598 1.436 -1.724 1.316 -0.661 1.593 2.173 1.148 -0.503 -0.132 1.107 1.584 -0.125 0.380 0.000 1.110 -1.216 -0.181 0.000 1.258 0.860 1.053 0.790 1.814 1.159 1.007
1 0.819 0.879 1.221 0.598 -1.450 0.754 0.417 -0.369 2.173 0.477 1.199 0.274 0.000 1.073 0.368 0.273 2.548 1.599 2.047 1.690 0.000 0.933 0.984 0.983 0.788 0.613 0.728 0.717
0 0.981 -1.007 0.489 0.923 1.261 0.436 -0.698 -0.506 2.173 0.764 -1.105 -1.241 2.215 0.577 -2.573 -0.036 0.000 0.565 -1.628 1.610 0.000 0.688 0.801 0.991 0.871 0.554 0.691 0.656
0 2.888 0.568 -1.416 1.461 -1.157 1.756 -0.900 0.522 0.000 0.657 0.409 1.076 2.215 1.419 0.672 -0.019 0.000 1.436 -0.184 -0.980 3.102 0.946 0.919 0.995 1.069 0.890 0.834 0.856
1 0.522 1.805 -0.963 1.136 0.418 0.727 -0.195 -1.695 2.173 0.309 2.559 -0.178 0.000 0.521 1.794 0.919 0.000 0.788 0.174 -0.406 3.102 0.555 0.729 1.011 1.385 0.753 0.927 0.832
1 0.793 -0.162 -1.643 0.634 0.337 0.898 -0.633 1.689 0.000 0.806 -0.826 -0.356 2.215 0.890 -0.142 -1.268 0.000 1.293 0.574 0.725 0.000 0.833 1.077 0.988 0.721 0.679 0.867 0.753
0 1.298 1.098 0.280 0.371 -0.373 0.855 -0.306 -1.186 0.000 0.977 -0.421 1.003 0.000 0.978 0.956 -1.249 2.548 0.735 0.577 -0.037 3.102 0.974 1.002 0.992 0.549 0.587 0.725 0.954
1 0.751 -0.520 -1.653 0.168 -0.419 0.878 -1.023 -1.364 2.173 1.310 -0.667 0.863 0.000 1.196 -0.827 0.358 0.000 1.154 -0.165 -0.360 1.551 0.871 0.950 0.983 0.907 0.955 0.959 0.874
0 1.730 0.666 -1.432 0.446 1.302 0.921 -0.203 0.621 0.000 1.171 -0.365 -0.611 1.107 0.585 0.807 1.150 0.000 0.415 -0.843 1.311 0.000 0.968 0.786 0.986 1.059 0.371 0.790 0.848
1 0.596 -1.486 0.690 1.045 -1.344 0.928 0.867 0.820 2.173 0.610 0.999 -1.329 2.215 0.883 -0.001 -0.106 0.000 1.145 2.184 -0.808 0.000 2.019 1.256 1.056 1.751 1.037 1.298 1.518
1 0.656 -1.993 -0.519 1.643 -0.143 0.815 0.256 1.220 1.087 0.399 -1.184 -1.458 0.000 0.738 1.361 -1.443 0.000 0.842 0.033 0.293 0.000 0.910 0.891 0.993 0.668 0.562 0.958 0.787
1 1.127 -0.542 0.645 0.318 -1.496 0.661 -0.640 0.369 2.173 0.992 0.358 1.702 0.000 1.004 0.316 -1.109 0.000 1.616 -0.936 -0.707 1.551 0.875 1.191 0.985 0.651 0.940 0.969 0.834
0 0.916 -1.423 -1.490 1.248 -0.538 0.625 -0.535 -0.174 0.000 0.769 -0.389 1.608 2.215 0.667 -1.138 -1.738 1.274 0.877 -0.019 0.482 0.000 0.696 0.917 1.121 0.678 0.347 0.647 0.722
1 2.756 -0.637 -1.715 1.331 1.124 0.913 -0.296 -0.491 0.000 0.983 -0.831 0.000 2.215 1.180 -0.428 0.742 0.000 1.113 0.005 -1.157 1.551 1.681 1.096 1.462 0.976 0.917 1.009 1.040
0 0.755 1.754 0.701 2.111 0.256 1.243 0.057 -1.502 2.173 0.565 -0.034 -1.078 1.107 0.529 1.696 -1.090 0.000 0.665 0.292 0.107 0.000 0.870 0.780 0.990 2.775 0.465 1.876 1.758
1 0.593 -0.762 1.743 0.908 0.442 0.773 -1.357 -0.768 2.173 0.432 1.421 1.236 0.000 0.579 0.291 -0.403 0.000 0.966 -0.309 1.016 3.102 0.893 0.743 0.989 0.857 1.030 0.943 0.854
1 0.891 -1.151 -1.269 0.504 -0.622 0.893 -0.549 0.700 0.000 0.828 -0.825 0.154 2.215 1.083 0.632 -1.141 0.000 1.059 -0.557 1.526 3.102 2.117 1.281 0.987 0.819 0.802 0.917 0.828
1 2.358 -0.248 0.080 0.747 -0.975 1.019 1.374 1.363 0.000 0.935 0.127 -1.707 2.215 0.312 -0.827 0.017 0.000 0.737 1.059 -0.327 0.000 0.716 0.828 1.495 0.953 0.704 0.880 0.745
0 0.660 -0.017 -1.138 0.453 1.002 0.645 0.518 0.703 2.173 0.751 0.705 -0.592 2.215 0.744 -0.909 -1.596 0.000 0.410 -1.135 0.481 0.000 0.592 0.922 0.989 0.897 0.948 0.777 0.701
1 0.718 0.518 0.225 1.710 -0.022 1.888 -0.424 1.092 0.000 4.134 0.185 -1.366 0.000 1.415 1.293 0.242 2.548 2.351 0.264 -0.057 3.102 0.830 1.630 0.976 1.215 0.890 1.422 1.215
1 1.160 0.203 0.941 0.594 0.212 0.636 -0.556 0.679 2.173 1.089 -0.481 -1.008 1.107 1.245 -0.056 -1.357 0.000 0.587 1.007 0.056 0.000 1.106 0.901 0.987 0.786 1.224 0.914 0.837
1 0.697 0.542 0.619 0.985 1.481 0.745 0.415 1.644 2.173 0.903 0.495 -0.958 2.215 1.165 1.195 0.346 0.000 1.067 -0.881 -0.264 0.000 0.830 1.025 0.987 0.690 0.863 0.894 0.867
0 1.430 0.190 -0.700 0.246 0.518 1.302 0.660 -0.247 2.173 1.185 -0.539 1.504 0.000 1.976 -0.401 1.079 0.000 0.855 -0.958 -1.110 3.102 0.886 0.953 0.993 0.889 1.400 1.376 1.119
1 1.122 -0.795 0.202 0.397 -1.553 0.597 -1.459 -0.734 2.173 0.522 1.044 1.027 2.215 0.783 -1.243 1.701 0.000 0.371 1.737 0.199 0.000 1.719 1.176 0.988 0.723 1.583 1.063 0.914
0 1.153 0.526 1.236 0.266 0.001 1.139 -1.236 -0.585 2.173 1.337 -0.215 -1.356 2.215 1.780 1.129 0.902 0.000 1.608 -0.391 -0.161 0.000 1.441 1.633 0.990 1.838 1.516 1.635 1.373
1 0.760 1.012 0.758 0.937 0.051 0.941 0.687 -1.247 2.173 1.288 -0.743 0.822 0.000 1.552 1.782 -1.533 0.000 0.767 1.349 0.168 0.000 0.716 0.862 0.988 0.595 0.359 0.697 0.623
1 1.756 -1.469 1.395 1.345 -1.595 0.817 0.017 -0.741 2.173 0.483 -0.008 0.293 0.000 1.768 -0.663 0.438 1.274 1.202 -1.387 -0.222 0.000 1.022 1.058 0.992 1.407 1.427 1.356 1.133
0 0.397 0.582 -0.758 1.260 -1.735 0.889 -0.515 1.139 2.173 0.973 1.616 0.460 0.000 1.308 1.001 -0.709 2.548 0.858 0.995 -0.231 0.000 0.749 0.888 0.979 1.487 1.804 1.208 1.079
0 0.515 -0.984 0.425 1.114 -0.439 1.999 0.818 1.561 0.000 1.407 0.009 -0.380 0.000 1.332 0.230 0.397 0.000 1.356 -0.616 -1.057 3.102 0.978 1.017 0.990 1.118 0.862 0.835 0.919
1 1.368 -0.921 -0.866 0.842 -0.598 0.456 -1.176 1.219 1.087 0.419 -1.974 -0.819 0.000 0.791 -1.640 0.881 0.000 1.295 -0.782 0.442 3.102 0.945 0.761 0.974 0.915 0.535 0.733 0.651
0 2.276 0.134 0.399 2.525 0.376 1.111 -1.078 -1.571 0.000 0.657 2.215 -0.900 0.000 1.183 -0.662 -0.508 2.548 1.436 -0.517 0.960 3.102 0.569 0.931 0.993 1.170 0.967 0.879 1.207
0 0.849 0.907 0.124 0.652 1.585 0.715 0.355 -1.200 0.000 0.599 -0.892 1.301 0.000 1.106 1.151 0.582 0.000 1.895 -0.279 -0.568 3.102 0.881 0.945 0.998 0.559 0.649 0.638 0.660
1 2.105 0.248 -0.797 0.530 0.206 1.957 -2.175 0.797 0.000 1.193 0.637 -1.646 2.215 0.881 1.111 -1.046 0.000 0.872 -0.185 1.085 1.551 0.986 1.343 1.151 1.069 0.714 2.063 1.951
1 1.838 1.060 1.637 1.017 1.370 0.913 0.461 -0.609 1.087 0.766 -0.461 0.303 2.215 0.724 -0.061 0.886 0.000 0.941 1.123 -0.745 0.000 0.858 0.847 0.979 1.313 1.083 1.094 0.910
0 0.364 1.274 1.066 1.570 -0.394 0.485 0.012 -1.716 0.000 0.317 -1.233 0.534 2.215 0.548 -2.165 0.762 0.000 0.729 0.169 -0.318 3.102 0.892 0.944 1.013 0.594 0.461 0.688 0.715
1 0.503 1.343 -0.031 1.134 -1.204 0.590 -0.309 0.174 2.173 0.408 2.372 -0.628 0.000 1.850 0.400 1.147 2.548 0.664 -0.458 -0.885 0.000 1.445 1.283 0.989 1.280 1.118 1.127 1.026
0 1.873 0.258 0.103 2.491 0.530 1.678 0.644 -1.738 2.173 1.432 0.848 -1.340 0.000 0.621 1.323 -1.316 0.000 0.628 0.789 -0.206 1.551 0.426 0.802 1.125 0.688 1.079 1.338 1.239
1 0.826 -0.732 1.587 0.582 -1.236 0.495 0.757 -0.741 2.173 0.940 1.474 0.354 2.215 0.474 1.055 -1.657 0.000 0.415 1.758 0.841 0.000 0.451 0.578 0.984 0.757 0.922 0.860 0.696
0 0.935 -1.614 -0.597 0.299 1.223 0.707 -0.853 -1.026 0.000 0.751 0.007 -1.691 0.000 1.062 -0.125 0.976 2.548 0.877 1.275 0.646 0.000 0.962 1.074 0.980 0.608 0.726 0.741 0.662
1 0.643 0.542 -1.285 0.474 -0.366 0.667 -0.446 1.195 2.173 1.076 0.145 -0.126 0.000 0.970 -0.661 0.394 1.274 1.218 -0.184 -1.722 0.000 1.331 1.019 0.985 1.192 0.677 0.973 0.910
0 0.713 0.164 1.080 1.427 -0.460 0.960 -0.152 -0.940 2.173 1.427 -0.901 1.036 1.107 0.440 -1.269 -0.194 0.000 0.452 1.932 -0.532 0.000 1.542 1.210 1.374 1.319 1.818 1.220 1.050
0 0.876 -0.463 -1.224 2.458 -1.689 1.007 -0.752 0.398 0.000 2.456 -1.285 -0.152 1.107 1.641 1.838 1.717 0.000 0.458 0.194 0.488 3.102 4.848 2.463 0.986 1.981 0.974 2.642 2.258
1 0.384 -0.275 0.387 1.403 -0.994 0.620 -1.529 1.685 0.000 1.091 -1.644 1.078 0.000 0.781 -1.311 0.326 2.548 1.228 -0.728 -0.633 1.551 0.920 0.854 0.987 0.646 0.609 0.740 0.884
0 0.318 -1.818 -1.008 0.977 1.268 0.457 2.451 -1.522 0.000 0.881 1.351 0.461 2.215 0.929 0.239 -0.380 2.548 0.382 -0.613 1.330 0.000 1.563 1.193 0.994 0.829 0.874 0.901 1.026
1 0.612 -1.120 1.098 0.402 -0.480 0.818 0.188 1.511 0.000 0.800 -0.253 0.977 0.000 1.175 0.271 -1.289 1.274 2.531 0.226 -0.409 3.102 0.889 0.947 0.979 1.486 0.940 1.152 1.119
1 0.587 -0.737 -0.228 0.970 1.119 0.823 0.184 1.594 0.000 1.104 0.301 -0.818 2.215 0.819 0.712 -0.560 0.000 2.240 -0.419 0.340 3.102 1.445 1.103 0.988 0.715 1.363 1.019 0.926
0 1.030 -0.694 -1.638 0.893 -1.074 1.160 -0.766 0.485 0.000 1.632 -0.698 -1.142 2.215 1.050 -1.092 0.952 0.000 1.475 0.286 0.125 3.102 0.914 1.075 0.982 0.732 1.493 1.219 1.079
1 2.142 0.617 1.517 0.387 -0.862 0.345 1.203 -1.014 2.173 0.609 1.092 0.275 0.000 1.331 0.582 -0.183 2.548 0.557 1.540 -1.642 0.000 0.801 0.737 1.060 0.715 0.626 0.749 0.674
0 1.076 0.240 -0.246 0.871 -1.241 0.496 0.282 0.746 2.173 1.095 -0.648 1.100 2.215 0.446 -1.756 0.764 0.000 0.434 0.788 -0.991 0.000 1.079 0.868 1.047 0.818 0.634 0.795 0.733
0 1.400 0.901 -1.617 0.625 -0.163 0.661 -0.411 -1.616 2.173 0.685 0.524 0.425 0.000 0.881 -0.766 0.312 0.000 0.979 0.255 -0.667 3.102 0.898 1.105 1.253 0.730 0.716 0.738 0.795
0 3.302 1.132 1.051 0.658 0.768 1.308 0.251 -0.374 1.087 1.673 0.015 -0.898 0.000 0.688 -0.535 1.363 1.274 0.871 1.325 -1.583 0.000 1.646 1.249 0.995 1.919 1.288 1.330 1.329
0 1.757 0.202 0.750 0.767 -0.362 0.932 -1.033 -1.366 0.000 1.529 -1.012 -0.771 0.000 1.161 -0.287 0.059 0.000 2.185 1.147 1.099 3.102 0.795 0.529 1.354 1.144 1.491 1.319 1.161
0 1.290 0.905 -1.711 1.017 -0.695 1.008 -1.038 0.693 2.173 1.202 -0.595 0.187 0.000 1.011 0.139 -1.607 0.000 0.789 -0.613 -1.041 3.102 1.304 0.895 1.259 1.866 0.955 1.211 1.200
1 1.125 -0.004 1.694 0.373 0.329 0.978 0.640 -0.391 0.000 1.122 -0.376 1.521 2.215 0.432 2.413 -1.259 0.000 0.969 0.730 0.512 3.102 0.716 0.773 0.991 0.624 0.977 0.981 0.875
0 1.081 0.861 1.252 1.621 1.474 1.293 0.600 0.630 0.000 1.991 -0.090 -0.675 2.215 0.861 1.105 -0.201 0.000 1.135 2.489 -1.659 0.000 1.089 0.657 0.991 2.179 0.412 1.334 1.071
1 0.652 -0.294 1.241 1.034 0.490 1.033 0.551 -0.963 2.173 0.661 1.031 -1.654 2.215 1.376 -0.018 0.843 0.000 0.943 -0.329 -0.269 0.000 1.085 1.067 0.991 1.504 0.773 1.135 0.993
1 1.408 -1.028 -1.018 0.252 -0.242 0.465 -0.364 -0.200 0.000 1.466 0.669 0.739 1.107 1.031 0.415 -1.468 2.548 0.457 -1.091 -1.722 0.000 0.771 0.811 0.979 1.459 1.204 1.041 0.866
1 0.781 -1.143 -0.659 0.961 1.266 1.183 -0.686 0.119 2.173 1.126 -0.064 1.447 0.000 0.730 1.430 -1.535 0.000 1.601 0.513 1.658 0.000 0.871 1.345 1.184 1.058 0.620 1.107 0.978
1 1.300 -0.616 1.032 0.751 -0.731 0.961 -0.716 1.592 0.000 2.079 -1.063 -0.271 2.215 0.475 0.518 1.695 1.274 0.395 -2.204 0.349 0.000 1.350 0.983 1.369 1.265 1.428 1.135 0.982
1 0.833 0.809 1.657 1.637 1.019 0.705 1.077 -0.968 2.173 1.261 0.114 -0.298 1.107 1.032 0.017 0.236 0.000 0.640 -0.026 -1.598 0.000 0.894 0.982 0.981 1.250 1.054 1.018 0.853
1 1.686 -1.090 -0.301 0.890 0.557 1.304 -0.284 -1.393 2.173 0.388 2.118 0.513 0.000 0.514 -0.015 0.891 0.000 0.460 0.547 0.627 3.102 0.942 0.524 1.186 1.528 0.889 1.015 1.122
1 0.551 0.911 0.879 0.379 -0.796 1.154 -0.808 -0.966 0.000 1.168 -0.513 0.355 2.215 0.646 -1.309 0.773 0.000 0.544 -0.283 1.301 3.102 0.847 0.705 0.990 0.772 0.546 0.790 0.719
1 1.597 0.793 -1.119 0.691 -1.455 0.370 0.337 1.354 0.000 0.646 -1.005 0.732 2.215 1.019 0.040 0.209 0.000 0.545 0.958 0.239 3.102 0.962 0.793 0.994 0.719 0.745 0.812 0.739
0 1.033 -1.193 -0.452 0.247 0.970 0.503 -1.424 1.362 0.000 1.062 -0.416 -1.156 2.215 0.935 -0.023 0.555 2.548 0.410 -1.766 0.379 0.000 0.590 0.953 0.991 0.717 1.081 0.763 0.690
1 0.859 -1.004 1.521 0.781 -0.993 0.677 0.643 -0.338 2.173 0.486 0.409 1.283 0.000 0.679 0.110 0.285 0.000 0.715 -0.735 -0.157 1.551 0.702 0.773 0.984 0.627 0.633 0.694 0.643
0 0.612 -1.127 1.074 1.225 -0.426 0.927 -2.141 -0.473 0.000 1.290 -0.927 -1.085 2.215 1.183 1.981 -1.687 0.000 2.176 0.406 -1.581 0.000 0.945 0.651 1.170 0.895 1.604 1.179 1.142
1 0.535 0.321 -1.095 0.281 -0.960 0.876 -0.709 -0.076 0.000 1.563 -0.666 1.536 2.215 0.773 -0.321 0.435 0.000 0.682 -0.801 -0.952 3.102 0.711 0.667 0.985 0.888 0.741 0.872 0.758
1 0.745 1.586 1.578 0.863 -1.423 0.530 1.714 1.085 0.000 1.174 0.679 1.015 0.000 1.158 0.609 -1.186 2.548 1.851 0.832 -0.248 3.102 0.910 1.164 0.983 0.947 0.858 0.928 0.823
0 0.677 -1.014 -1.648 1.455 1.461 0.596 -2.358 0.517 0.000 0.800 0.849 -0.743 2.215 1.024 -0.282 -1.004 0.000 1.846 -0.977 0.378 3.102 2.210 1.423 0.982 1.074 1.623 1.417 1.258
1 0.815 -1.263 0.057 1.018 -0.208 0.339 -0.347 -1.646 2.173 1.223 0.600 -1.658 2.215 1.435 0.042 0.926 0.000 0.777 1.698 -0.698 0.000 1.022 1.058 1.000 0.784 0.477 0.886 0.836
0 3.512 -1.094 -0.220 0.338 -0.328 1.962 -1.099 1.544 1.087 1.461 -1.305 -0.922 2.215 1.219 -1.289 0.400 0.000 0.731 0.155 1.249 0.000 1.173 1.366 0.993 2.259 2.000 1.626 1.349
0 0.904 1.248 0.325 0.317 -1.624 0.685 -0.538 1.665 2.173 0.685 -2.145 -1.106 0.000 0.632 -1.460 1.017 0.000 1.085 -0.182 0.162 3.102 0.885 0.801 0.989 0.930 0.904 1.012 0.961

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,500 @@
1 0.644 0.247 -0.447 0.862 0.374 0.854 -1.126 -0.790 2.173 1.015 -0.201 1.400 0.000 1.575 1.807 1.607 0.000 1.585 -0.190 -0.744 3.102 0.958 1.061 0.980 0.875 0.581 0.905 0.796
0 0.385 1.800 1.037 1.044 0.349 1.502 -0.966 1.734 0.000 0.966 -1.960 -0.249 0.000 1.501 0.465 -0.354 2.548 0.834 -0.440 0.638 3.102 0.695 0.909 0.981 0.803 0.813 1.149 1.116
0 1.214 -0.166 0.004 0.505 1.434 0.628 -1.174 -1.230 1.087 0.579 -1.047 -0.118 0.000 0.835 0.340 1.234 2.548 0.711 -1.383 1.355 0.000 0.848 0.911 1.043 0.931 1.058 0.744 0.696
1 0.420 1.111 0.137 1.516 -1.657 0.854 0.623 1.605 1.087 1.511 -1.297 0.251 0.000 0.872 -0.368 -0.721 0.000 0.543 0.731 1.424 3.102 1.597 1.282 1.105 0.730 0.148 1.231 1.234
0 0.897 -1.703 -1.306 1.022 -0.729 0.836 0.859 -0.333 2.173 1.336 -0.965 0.972 2.215 0.671 1.021 -1.439 0.000 0.493 -2.019 -0.289 0.000 0.805 0.930 0.984 1.430 2.198 1.934 1.684
0 0.756 1.126 -0.945 2.355 -0.555 0.889 0.800 1.440 0.000 0.585 0.271 0.631 2.215 0.722 1.744 1.051 0.000 0.618 0.924 0.698 1.551 0.976 0.864 0.988 0.803 0.234 0.822 0.911
0 1.141 -0.741 0.953 1.478 -0.524 1.197 -0.871 1.689 2.173 0.875 1.321 -0.518 1.107 0.540 0.037 -0.987 0.000 0.879 1.187 0.245 0.000 0.888 0.701 1.747 1.358 2.479 1.491 1.223
1 0.606 -0.936 -0.384 1.257 -1.162 2.719 -0.600 0.100 2.173 3.303 -0.284 1.561 1.107 0.689 1.786 -0.326 0.000 0.780 -0.532 1.216 0.000 0.936 2.022 0.985 1.574 4.323 2.263 1.742
1 0.603 0.429 -0.279 1.448 1.301 1.008 2.423 -1.295 0.000 0.452 1.305 0.533 0.000 1.076 1.011 1.256 2.548 2.021 1.260 -0.343 0.000 0.890 0.969 1.281 0.763 0.652 0.827 0.785
0 1.171 -0.962 0.521 0.841 -0.315 1.196 -0.744 -0.882 2.173 0.726 -1.305 1.377 1.107 0.643 -1.790 -1.264 0.000 1.257 0.222 0.817 0.000 0.862 0.911 0.987 0.846 1.293 0.899 0.756
1 1.392 -0.358 0.235 1.494 -0.461 0.895 -0.848 1.549 2.173 0.841 -0.384 0.666 1.107 1.199 2.509 -0.891 0.000 1.109 -0.364 -0.945 0.000 0.693 2.135 1.170 1.362 0.959 2.056 1.842
1 1.024 1.076 -0.886 0.851 1.530 0.673 -0.449 0.187 1.087 0.628 -0.895 1.176 2.215 0.696 -0.232 -0.875 0.000 0.411 1.501 0.048 0.000 0.842 0.919 1.063 1.193 0.777 0.964 0.807
1 0.890 -0.760 1.182 1.369 0.751 0.696 -0.959 -0.710 1.087 0.775 -0.130 -1.409 2.215 0.701 -0.110 -0.739 0.000 0.508 -0.451 0.390 0.000 0.762 0.738 0.998 1.126 0.788 0.940 0.790
1 0.460 0.537 0.636 1.442 -0.269 0.585 0.323 -1.731 2.173 0.503 1.034 -0.927 0.000 0.928 -1.024 1.006 2.548 0.513 -0.618 -1.336 0.000 0.802 0.831 0.992 1.019 0.925 1.056 0.833
1 0.364 1.648 0.560 1.720 0.829 1.110 0.811 -0.588 0.000 0.408 1.045 1.054 2.215 0.319 -1.138 1.545 0.000 0.423 1.025 -1.265 3.102 1.656 0.928 1.003 0.544 0.327 0.670 0.746
1 0.525 -0.096 1.206 0.948 -1.103 1.519 -0.582 0.606 2.173 1.274 -0.572 -0.934 0.000 0.855 -1.028 -1.222 0.000 0.578 -1.000 -1.725 3.102 0.896 0.878 0.981 0.498 0.909 0.772 0.668
0 0.536 -0.821 -1.029 0.703 1.113 0.363 -0.711 0.022 1.087 0.325 1.503 1.249 2.215 0.673 1.041 -0.401 0.000 0.480 2.127 1.681 0.000 0.767 1.034 0.990 0.671 0.836 0.669 0.663
1 1.789 -0.583 1.641 0.897 0.799 0.515 -0.100 -1.483 0.000 1.101 0.031 -0.326 2.215 1.195 0.001 0.126 2.548 0.768 -0.148 0.601 0.000 0.916 0.921 1.207 1.069 0.483 0.934 0.795
1 1.332 -0.571 0.986 0.580 1.508 0.582 0.634 -0.746 1.087 1.084 -0.964 -0.489 0.000 0.785 0.274 0.343 2.548 0.779 0.721 1.489 0.000 1.733 1.145 0.990 1.270 0.715 0.897 0.915
0 1.123 0.629 -1.708 0.597 -0.882 0.752 0.195 1.522 2.173 1.671 1.515 -0.003 0.000 0.778 0.514 0.139 1.274 0.801 1.260 1.600 0.000 1.495 0.976 0.988 0.676 0.921 1.010 0.943
0 1.816 -0.515 0.171 0.980 -0.454 0.870 0.202 -1.399 2.173 1.130 1.066 -1.593 0.000 0.844 0.735 1.275 2.548 1.125 -1.133 0.348 0.000 0.837 0.693 0.988 1.112 0.784 1.009 0.974
1 0.364 0.694 0.445 1.862 0.159 0.963 -1.356 1.260 1.087 0.887 -0.540 -1.533 2.215 0.658 -2.544 -1.236 0.000 0.516 -0.807 0.039 0.000 0.891 1.004 0.991 1.092 0.976 1.000 0.953
1 0.790 -1.175 0.475 1.846 0.094 0.999 -1.090 0.257 0.000 1.422 0.854 1.112 2.215 1.302 1.004 -1.702 1.274 2.557 -0.787 -1.048 0.000 0.890 1.429 0.993 2.807 0.840 2.248 1.821
1 0.765 -0.500 -0.603 1.843 -0.560 1.068 0.007 0.746 2.173 1.154 -0.017 1.329 0.000 1.165 1.791 -1.585 0.000 1.116 0.441 -0.886 0.000 0.774 0.982 0.989 1.102 0.633 1.178 1.021
1 1.407 1.293 -1.418 0.502 -1.527 2.005 -2.122 0.622 0.000 1.699 1.508 -0.649 2.215 1.665 0.748 -0.755 0.000 2.555 0.811 1.423 1.551 7.531 5.520 0.985 1.115 1.881 4.487 3.379
1 0.772 -0.186 -1.372 0.823 -0.140 0.781 0.763 0.046 2.173 1.128 0.516 1.380 0.000 0.797 -0.640 -0.134 2.548 2.019 -0.972 -1.670 0.000 2.022 1.466 0.989 0.856 0.808 1.230 0.991
1 0.546 -0.954 0.715 1.335 -1.689 0.783 -0.443 -1.735 2.173 1.081 0.185 -0.435 0.000 1.433 -0.662 -0.389 0.000 0.969 0.924 1.099 0.000 0.910 0.879 0.988 0.683 0.753 0.878 0.865
1 0.596 0.276 -1.054 1.358 1.355 1.444 1.813 -0.208 0.000 1.175 -0.949 -1.573 0.000 0.855 -1.228 -0.925 2.548 1.837 -0.400 0.913 0.000 0.637 0.901 1.028 0.553 0.790 0.679 0.677
0 0.458 2.292 1.530 0.291 1.283 0.749 -0.930 -0.198 0.000 0.300 -1.560 0.990 0.000 0.811 -0.176 0.995 2.548 1.085 -0.178 -1.213 3.102 0.891 0.648 0.999 0.732 0.655 0.619 0.620
0 0.638 -0.575 -1.048 0.125 0.178 0.846 -0.753 -0.339 1.087 0.799 -0.727 1.182 0.000 0.888 0.283 0.717 0.000 1.051 -1.046 -1.557 3.102 0.889 0.871 0.989 0.884 0.923 0.836 0.779
1 0.434 -1.119 -0.313 2.427 0.461 0.497 0.261 -1.177 2.173 0.618 -0.737 -0.688 0.000 1.150 -1.237 -1.652 2.548 0.757 -0.054 1.700 0.000 0.809 0.741 0.982 1.450 0.936 1.086 0.910
1 0.431 -1.144 -1.030 0.778 -0.655 0.490 0.047 -1.546 0.000 1.583 -0.014 0.891 2.215 0.516 0.956 0.567 2.548 0.935 -1.123 -0.082 0.000 0.707 0.995 0.995 0.700 0.602 0.770 0.685
1 1.894 0.222 1.224 1.578 1.715 0.966 2.890 -0.013 0.000 0.922 -0.703 -0.844 0.000 0.691 2.056 1.039 0.000 0.900 -0.733 -1.240 3.102 1.292 1.992 1.026 0.881 0.684 1.759 1.755
0 0.985 -0.316 0.141 1.067 -0.946 0.819 -1.177 1.307 2.173 1.080 -0.429 0.557 1.107 1.726 1.435 -1.075 0.000 1.100 1.547 -0.647 0.000 0.873 1.696 1.179 1.146 1.015 1.538 1.270
0 0.998 -0.187 -0.236 0.882 0.755 0.468 0.950 -0.439 2.173 0.579 -0.550 -0.624 0.000 1.847 1.196 1.384 1.274 0.846 1.273 -1.072 0.000 1.194 0.797 1.013 1.319 1.174 0.963 0.898
0 0.515 0.246 -0.593 1.082 1.591 0.912 -0.623 -0.957 2.173 0.858 0.418 0.844 0.000 0.948 2.519 1.599 0.000 1.158 1.385 -0.095 3.102 0.973 1.033 0.988 0.998 1.716 1.054 0.901
0 0.919 -1.001 1.506 1.389 0.653 0.507 -0.616 -0.689 2.173 0.808 0.536 -0.467 2.215 0.496 2.187 -0.859 0.000 0.822 0.807 1.163 0.000 0.876 0.861 1.088 0.947 0.614 0.911 1.087
0 0.794 0.051 1.477 1.504 -1.695 0.716 0.315 0.264 1.087 0.879 -0.135 -1.094 2.215 1.433 -0.741 0.201 0.000 1.566 0.534 -0.989 0.000 0.627 0.882 0.974 0.807 1.130 0.929 0.925
1 0.455 -0.946 -1.175 1.453 -0.580 0.763 -0.856 0.840 0.000 0.829 1.223 1.174 2.215 0.714 0.638 -0.466 0.000 1.182 0.223 -1.333 0.000 0.977 0.938 0.986 0.713 0.714 0.796 0.843
1 0.662 -0.296 -1.287 1.212 -0.707 0.641 1.457 0.222 0.000 0.600 0.525 -1.700 2.215 0.784 -0.835 -0.961 2.548 0.865 1.131 1.162 0.000 0.854 0.877 0.978 0.740 0.734 0.888 0.811
0 0.390 0.698 -1.629 1.888 0.298 0.990 1.614 -1.572 0.000 1.666 0.170 0.719 2.215 1.590 1.064 -0.886 1.274 0.952 0.305 -1.216 0.000 1.048 0.897 1.173 0.891 1.936 1.273 1.102
0 1.014 0.117 1.384 0.686 -1.047 0.609 -1.245 -0.850 0.000 1.076 -1.158 0.814 1.107 1.598 -0.389 -0.111 0.000 0.907 1.688 -1.673 0.000 1.333 0.866 0.989 0.975 0.442 0.797 0.788
0 1.530 -1.408 -0.207 0.440 -1.357 0.902 -0.647 1.325 1.087 1.320 -0.819 0.246 1.107 0.503 1.407 -1.683 0.000 1.189 -0.972 -0.925 0.000 0.386 1.273 0.988 0.829 1.335 1.173 1.149
1 1.689 -0.590 0.915 2.076 1.202 0.644 -0.478 -0.238 0.000 0.809 -1.660 -1.184 0.000 1.227 -0.224 -0.808 2.548 1.655 1.047 -0.623 0.000 0.621 1.192 0.988 1.309 0.866 0.924 1.012
0 1.102 0.402 -1.622 1.262 1.022 0.576 0.271 -0.269 0.000 0.591 0.495 -1.278 0.000 1.271 0.209 0.575 2.548 0.941 0.964 -0.685 3.102 0.989 0.963 1.124 0.857 0.858 0.716 0.718
0 2.491 0.825 0.581 1.593 0.205 0.782 -0.815 1.499 0.000 1.179 -0.999 -1.509 0.000 0.926 0.920 -0.522 2.548 2.068 -1.021 -1.050 3.102 0.874 0.943 0.980 0.945 1.525 1.570 1.652
0 0.666 0.254 1.601 1.303 -0.250 1.236 -1.929 0.793 0.000 1.074 0.447 -0.871 0.000 0.991 1.059 -0.342 0.000 1.703 -0.393 -1.419 3.102 0.921 0.945 1.285 0.931 0.462 0.770 0.729
0 0.937 -1.126 1.424 1.395 1.743 0.760 0.428 -0.238 2.173 0.846 0.494 1.320 2.215 0.872 -1.826 -0.507 0.000 0.612 1.860 1.403 0.000 3.402 2.109 0.985 1.298 1.165 1.404 1.240
1 0.881 -1.086 -0.870 0.513 0.266 2.049 -1.870 1.160 0.000 2.259 -0.428 -0.935 2.215 1.321 -0.655 -0.449 2.548 1.350 -1.766 -0.108 0.000 0.911 1.852 0.987 1.167 0.820 1.903 1.443
0 0.410 0.835 -0.819 1.257 1.112 0.871 -1.737 -0.401 0.000 0.927 0.158 1.253 0.000 1.183 0.405 -1.570 0.000 0.807 -0.704 -0.438 3.102 0.932 0.962 0.987 0.653 0.315 0.616 0.648
1 0.634 0.196 -1.679 1.379 -0.967 2.260 -0.273 1.114 0.000 1.458 1.070 -0.278 1.107 1.195 0.110 -0.688 2.548 0.907 0.298 -1.359 0.000 0.949 1.129 0.984 0.675 0.877 0.938 0.824
1 0.632 -1.254 1.201 0.496 -0.106 0.235 2.731 -0.955 0.000 0.615 -0.805 0.600 0.000 0.633 -0.934 1.641 0.000 1.407 -0.483 -0.962 1.551 0.778 0.797 0.989 0.578 0.722 0.576 0.539
0 0.714 1.122 1.566 2.399 -1.431 1.665 0.299 0.323 0.000 1.489 1.087 -0.861 2.215 1.174 0.140 1.083 2.548 0.404 -0.968 1.105 0.000 0.867 0.969 0.981 1.039 1.552 1.157 1.173
1 0.477 -0.321 -0.471 1.966 1.034 2.282 1.359 -0.874 0.000 1.672 -0.258 1.109 0.000 1.537 0.604 0.231 2.548 1.534 -0.640 0.827 0.000 0.746 1.337 1.311 0.653 0.721 0.795 0.742
1 1.351 0.460 0.031 1.194 -1.185 0.670 -1.157 -1.637 2.173 0.599 -0.823 0.680 0.000 0.478 0.373 1.716 0.000 0.809 -0.919 0.010 1.551 0.859 0.839 1.564 0.994 0.777 0.971 0.826
1 0.520 -1.442 -0.348 0.840 1.654 1.273 -0.760 1.317 0.000 0.861 2.579 -0.791 0.000 1.779 0.257 -0.703 0.000 2.154 1.928 0.457 0.000 1.629 3.194 0.992 0.730 1.107 2.447 2.747
0 0.700 -0.308 0.920 0.438 -0.879 0.516 1.409 1.101 0.000 0.960 0.701 -0.049 2.215 1.442 -0.416 -1.439 2.548 0.628 1.009 -0.364 0.000 0.848 0.817 0.987 0.759 1.421 0.937 0.920
1 0.720 1.061 -0.546 0.798 -1.521 1.066 0.173 0.271 1.087 1.453 0.114 1.336 1.107 0.702 0.616 -0.367 0.000 0.543 -0.386 -1.301 0.000 0.653 0.948 0.989 1.031 1.500 0.965 0.790
1 0.735 -0.416 0.588 1.308 -0.382 1.042 0.344 1.609 0.000 0.926 0.163 -0.520 1.107 1.050 -0.427 1.159 2.548 0.834 0.613 0.948 0.000 0.848 1.189 1.042 0.844 1.099 0.829 0.843
1 0.777 -0.396 1.540 1.608 0.638 0.955 0.040 0.918 2.173 1.315 1.116 -0.823 0.000 0.781 -0.762 0.564 2.548 0.945 -0.573 1.379 0.000 0.679 0.706 1.124 0.608 0.593 0.515 0.493
1 0.934 0.319 -0.257 0.970 -0.980 0.726 0.774 0.731 0.000 0.896 0.038 -1.465 1.107 0.773 -0.055 -0.831 2.548 1.439 -0.229 0.698 0.000 0.964 1.031 0.995 0.845 0.480 0.810 0.762
0 0.461 0.771 0.019 2.055 -1.288 1.043 0.147 0.261 2.173 0.833 -0.156 1.425 0.000 0.832 0.805 -0.491 2.548 0.589 1.252 1.414 0.000 0.850 0.906 1.245 1.364 0.850 0.908 0.863
1 0.858 -0.116 -0.937 0.966 1.167 0.825 -0.108 1.111 1.087 0.733 1.163 -0.634 0.000 0.894 0.771 0.020 0.000 0.846 -1.124 -1.195 3.102 0.724 1.194 1.195 0.813 0.969 0.985 0.856
0 0.720 -0.335 -0.307 1.445 0.540 1.108 -0.034 -1.691 1.087 0.883 -1.356 -0.678 2.215 0.440 1.093 0.253 0.000 0.389 -1.582 -1.097 0.000 1.113 1.034 0.988 1.256 1.572 1.062 0.904
1 0.750 -0.811 -0.542 0.985 0.408 0.471 0.477 0.355 0.000 1.347 -0.875 -1.556 2.215 0.564 1.082 -0.724 0.000 0.793 -0.958 -0.020 3.102 0.836 0.825 0.986 1.066 0.924 0.927 0.883
0 0.392 -0.468 -0.216 0.680 1.565 1.086 -0.765 -0.581 1.087 1.264 -1.035 1.189 2.215 0.986 -0.338 0.747 0.000 0.884 -1.328 -0.965 0.000 1.228 0.988 0.982 1.135 1.741 1.108 0.956
1 0.434 -1.269 0.643 0.713 0.608 0.597 0.832 1.627 0.000 0.708 -0.422 0.079 2.215 1.533 -0.823 -1.127 2.548 0.408 -1.357 -0.828 0.000 1.331 1.087 0.999 1.075 1.015 0.875 0.809
0 0.828 -1.803 0.342 0.847 -0.162 1.585 -1.128 -0.272 2.173 1.974 0.039 -1.717 0.000 0.900 0.764 -1.741 0.000 1.349 -0.079 1.035 3.102 0.984 0.815 0.985 0.780 1.661 1.403 1.184
1 1.089 -0.350 -0.747 1.472 0.792 1.087 -0.069 -1.192 0.000 0.512 -0.841 -1.284 0.000 2.162 -0.821 0.545 2.548 1.360 2.243 -0.183 0.000 0.977 0.628 1.725 1.168 0.635 0.823 0.822
1 0.444 0.451 -1.332 1.176 -0.247 0.898 0.194 0.007 0.000 1.958 0.576 -1.618 2.215 0.584 1.203 0.268 0.000 0.939 1.033 1.264 3.102 0.829 0.886 0.985 1.265 0.751 1.032 0.948
0 0.629 0.114 1.177 0.917 -1.204 0.845 0.828 -0.088 0.000 0.962 -1.302 0.823 2.215 0.732 0.358 -1.334 2.548 0.538 0.582 1.561 0.000 1.028 0.834 0.988 0.904 1.205 1.039 0.885
1 1.754 -1.259 -0.573 0.959 -1.483 0.358 0.448 -1.452 0.000 0.711 0.313 0.499 2.215 1.482 -0.390 1.474 2.548 1.879 -1.540 0.668 0.000 0.843 0.825 1.313 1.315 0.939 1.048 0.871
1 0.549 0.706 -1.437 0.894 0.891 0.680 -0.762 -1.568 0.000 0.981 0.499 -0.425 2.215 1.332 0.678 0.485 1.274 0.803 0.022 -0.893 0.000 0.793 1.043 0.987 0.761 0.899 0.915 0.794
0 0.475 0.542 -0.987 1.569 0.069 0.551 1.543 -1.488 0.000 0.608 0.301 1.734 2.215 0.277 0.499 -0.522 0.000 1.375 1.212 0.696 3.102 0.652 0.756 0.987 0.828 0.830 0.715 0.679
1 0.723 0.049 -1.153 1.300 0.083 0.723 -0.749 0.630 0.000 1.126 0.412 -0.384 0.000 1.272 1.256 1.358 2.548 3.108 0.777 -1.486 3.102 0.733 1.096 1.206 1.269 0.899 1.015 0.903
1 1.062 0.296 0.725 0.285 -0.531 0.819 1.277 -0.667 0.000 0.687 0.829 -0.092 0.000 1.158 0.447 1.047 2.548 1.444 -0.186 -1.491 3.102 0.863 1.171 0.986 0.769 0.828 0.919 0.840
0 0.572 -0.349 1.396 2.023 0.795 0.577 0.457 -0.533 0.000 1.351 0.701 -1.091 0.000 0.724 -1.012 -0.182 2.548 0.923 -0.012 0.789 3.102 0.936 1.025 0.985 1.002 0.600 0.828 0.909
1 0.563 0.387 0.412 0.553 1.050 0.723 -0.992 -0.447 0.000 0.748 0.948 0.546 2.215 1.761 -0.559 -1.183 0.000 1.114 -0.251 1.192 3.102 0.936 0.912 0.976 0.578 0.722 0.829 0.892
1 1.632 1.577 -0.697 0.708 -1.263 0.863 0.012 1.197 2.173 0.498 0.990 -0.806 0.000 0.627 2.387 -1.283 0.000 0.607 1.290 -0.174 3.102 0.916 1.328 0.986 0.557 0.971 0.935 0.836
1 0.562 -0.360 0.399 0.803 -1.334 1.443 -0.116 1.628 2.173 0.750 0.987 0.135 1.107 0.795 0.298 -0.556 0.000 1.150 -0.113 -0.093 0.000 0.493 1.332 0.985 1.001 1.750 1.013 0.886
1 0.987 0.706 -0.492 0.861 0.607 0.593 0.088 -0.184 0.000 0.802 0.894 1.608 2.215 0.782 -0.471 1.500 2.548 0.521 0.772 -0.960 0.000 0.658 0.893 1.068 0.877 0.664 0.709 0.661
1 1.052 0.883 -0.581 1.566 0.860 0.931 1.515 -0.873 0.000 0.493 0.145 -0.672 0.000 1.133 0.935 1.581 2.548 1.630 0.695 0.923 3.102 1.105 1.087 1.713 0.948 0.590 0.872 0.883
1 2.130 -0.516 -0.291 0.776 -1.230 0.689 -0.257 0.800 2.173 0.730 -0.274 -1.437 0.000 0.615 0.241 1.083 0.000 0.834 0.757 1.613 3.102 0.836 0.806 1.333 1.061 0.730 0.889 0.783
1 0.742 0.797 1.628 0.311 -0.418 0.620 0.685 -1.457 0.000 0.683 1.774 -1.082 0.000 1.700 1.104 0.225 2.548 0.382 -2.184 -1.307 0.000 0.945 1.228 0.984 0.864 0.931 0.988 0.838
0 0.311 -1.249 -0.927 1.272 -1.262 0.642 -1.228 -0.136 0.000 1.220 -0.804 -1.558 2.215 0.950 -0.828 0.495 1.274 2.149 -1.672 0.634 0.000 1.346 0.887 0.981 0.856 1.101 1.001 1.106
0 0.660 -1.834 -0.667 0.601 1.236 0.932 -0.933 -0.135 2.173 1.373 -0.122 1.429 0.000 0.654 -0.034 -0.847 2.548 0.711 0.911 0.703 0.000 1.144 0.942 0.984 0.822 0.739 0.992 0.895
0 3.609 -0.590 0.851 0.615 0.455 1.280 0.003 -0.866 1.087 1.334 0.708 -1.131 0.000 0.669 0.480 0.092 0.000 0.975 0.983 -1.429 3.102 1.301 1.089 0.987 1.476 0.934 1.469 1.352
1 0.905 -0.403 1.567 2.651 0.953 1.194 -0.241 -0.567 1.087 0.308 -0.384 -0.007 0.000 0.608 -0.175 -1.163 2.548 0.379 0.941 1.662 0.000 0.580 0.721 1.126 0.895 0.544 1.097 0.836
1 0.983 0.255 1.093 0.905 -0.874 0.863 0.060 -0.368 0.000 0.824 -0.747 -0.633 0.000 0.614 0.961 1.052 0.000 0.792 -0.260 1.632 3.102 0.874 0.883 1.280 0.663 0.406 0.592 0.645
1 1.160 -1.027 0.274 0.460 0.322 2.085 -1.623 -0.840 0.000 1.634 -1.046 1.182 2.215 0.492 -0.367 1.174 0.000 0.824 -0.998 1.617 0.000 0.943 0.884 1.001 1.209 1.313 1.034 0.866
0 0.299 0.028 -1.372 1.930 -0.661 0.840 -0.979 0.664 1.087 0.535 -2.041 1.434 0.000 1.087 -1.797 0.344 0.000 0.485 -0.560 -1.105 3.102 0.951 0.890 0.980 0.483 0.684 0.730 0.706
0 0.293 1.737 -1.418 2.074 0.794 0.679 1.024 -1.457 0.000 1.034 1.094 -0.168 1.107 0.506 1.680 -0.661 0.000 0.523 -0.042 -1.274 3.102 0.820 0.944 0.987 0.842 0.694 0.761 0.750
0 0.457 -0.393 1.560 0.738 -0.007 0.475 -0.230 0.246 0.000 0.776 -1.264 -0.606 2.215 0.865 -0.731 -1.576 2.548 1.153 0.343 1.436 0.000 1.060 0.883 0.988 0.972 0.703 0.758 0.720
0 0.935 -0.582 0.240 2.401 0.818 1.231 -0.618 -1.289 0.000 0.799 0.544 -0.228 2.215 0.525 -1.494 -0.969 0.000 0.609 -1.123 1.168 3.102 0.871 0.767 1.035 1.154 0.919 0.868 1.006
1 0.902 -0.745 -1.215 1.174 -0.501 1.215 0.167 1.162 0.000 0.896 1.217 -0.976 0.000 0.585 -0.429 1.036 0.000 1.431 -0.416 0.151 3.102 0.524 0.952 0.990 0.707 0.271 0.592 0.826
1 0.653 0.337 -0.320 1.118 -0.934 1.050 0.745 0.529 1.087 1.075 1.742 -1.538 0.000 0.585 1.090 0.973 0.000 1.091 -0.187 1.160 1.551 1.006 1.108 0.978 1.121 0.838 0.947 0.908
0 1.157 1.401 0.340 0.395 -1.218 0.945 1.928 -0.876 0.000 1.384 0.320 1.002 1.107 1.900 1.177 -0.462 2.548 1.122 1.316 1.720 0.000 1.167 1.096 0.989 0.937 1.879 1.307 1.041
0 0.960 0.355 -0.152 0.872 -0.338 0.391 0.348 0.956 1.087 0.469 2.664 1.409 0.000 0.756 -1.561 1.500 0.000 0.525 1.436 1.728 3.102 1.032 0.946 0.996 0.929 0.470 0.698 0.898
1 1.038 0.274 0.825 1.198 0.963 1.078 -0.496 -1.014 2.173 0.739 -0.727 -0.151 2.215 1.035 -0.799 0.398 0.000 1.333 -0.872 -1.498 0.000 0.849 1.033 0.985 0.886 0.936 0.975 0.823
0 0.490 0.277 0.318 1.303 0.694 1.333 -1.620 -0.563 0.000 1.459 -1.326 1.140 0.000 0.779 -0.673 -1.324 2.548 0.860 -1.247 0.043 0.000 0.857 0.932 0.992 0.792 0.278 0.841 1.498
0 1.648 -0.688 -1.386 2.790 0.995 1.087 1.359 -0.687 0.000 1.050 -0.223 -0.261 2.215 0.613 -0.889 1.335 0.000 1.204 0.827 0.309 3.102 0.464 0.973 2.493 1.737 0.827 1.319 1.062
0 1.510 -0.662 1.668 0.860 0.280 0.705 0.974 -1.647 1.087 0.662 -0.393 -0.225 0.000 0.610 -0.996 0.532 2.548 0.464 1.305 0.102 0.000 0.859 1.057 1.498 0.799 1.260 0.946 0.863
1 0.850 -1.185 -0.117 0.943 -0.449 1.142 0.875 -0.030 0.000 2.223 -0.461 1.627 2.215 0.767 -1.761 -1.692 0.000 1.012 -0.727 0.639 3.102 3.649 2.062 0.985 1.478 1.087 1.659 1.358
0 0.933 1.259 0.130 0.326 -0.890 0.306 1.136 1.142 0.000 0.964 0.705 -1.373 2.215 0.546 -0.196 -0.001 0.000 0.578 -1.169 1.004 3.102 0.830 0.836 0.988 0.837 1.031 0.749 0.655
0 0.471 0.697 1.570 1.109 0.201 1.248 0.348 -1.448 0.000 2.103 0.773 0.686 2.215 1.451 -0.087 -0.453 2.548 1.197 -0.045 -1.026 0.000 0.793 1.094 0.987 0.851 1.804 1.378 1.089
1 2.446 -0.701 -1.568 0.059 0.822 1.401 -0.600 -0.044 2.173 0.324 -0.001 1.344 2.215 0.913 -0.818 1.049 0.000 0.442 -1.088 -0.005 0.000 0.611 1.062 0.979 0.562 0.988 0.998 0.806
0 0.619 2.029 0.933 0.528 -0.903 0.974 0.760 -0.311 2.173 0.825 0.658 -1.466 1.107 0.894 1.594 0.370 0.000 0.882 -0.258 1.661 0.000 1.498 1.088 0.987 0.867 1.139 0.900 0.779
1 0.674 -0.131 -0.362 0.518 -1.574 0.876 0.442 0.145 1.087 0.497 -1.526 -1.704 0.000 0.680 2.514 -1.374 0.000 0.792 -0.479 0.773 1.551 0.573 1.198 0.984 0.800 0.667 0.987 0.832
1 1.447 1.145 -0.937 0.307 -1.458 0.478 1.264 0.816 1.087 0.558 1.015 -0.101 2.215 0.937 -0.190 1.177 0.000 0.699 0.954 -1.512 0.000 0.877 0.838 0.990 0.873 0.566 0.646 0.713
1 0.976 0.308 -0.844 0.436 0.610 1.253 0.149 -1.585 2.173 1.415 0.568 0.096 2.215 0.953 -0.855 0.441 0.000 0.867 -0.650 1.643 0.000 0.890 1.234 0.988 0.796 2.002 1.179 0.977
0 0.697 0.401 -0.718 0.920 0.735 0.958 -0.172 0.168 2.173 0.872 -0.097 -1.335 0.000 0.513 -1.192 -1.710 1.274 0.426 -1.637 1.368 0.000 0.997 1.227 1.072 0.800 1.013 0.786 0.749
1 1.305 -2.157 1.740 0.661 -0.912 0.705 -0.516 0.759 2.173 0.989 -0.716 -0.300 2.215 0.627 -1.052 -1.736 0.000 0.467 -2.467 0.568 0.000 0.807 0.964 0.988 1.427 1.012 1.165 0.926
0 1.847 1.663 -0.618 0.280 1.258 1.462 -0.054 1.371 0.000 0.900 0.309 -0.544 0.000 0.331 -2.149 -0.341 0.000 1.091 -0.833 0.710 3.102 1.496 0.931 0.989 1.549 0.115 1.140 1.150
0 0.410 -0.323 1.069 2.160 0.010 0.892 0.942 -1.640 2.173 0.946 0.938 1.314 0.000 1.213 -1.099 -0.794 2.548 0.650 0.053 0.056 0.000 1.041 0.916 1.063 0.985 1.910 1.246 1.107
1 0.576 1.092 -0.088 0.777 -1.579 0.757 0.271 0.109 0.000 0.819 0.827 -1.554 2.215 1.313 2.341 -1.568 0.000 2.827 0.239 -0.338 0.000 0.876 0.759 0.986 0.692 0.457 0.796 0.791
1 0.537 0.925 -1.406 0.306 -0.050 0.906 1.051 0.037 0.000 1.469 -0.177 -1.320 2.215 1.872 0.723 1.158 0.000 1.313 0.227 -0.501 3.102 0.953 0.727 0.978 0.755 0.892 0.932 0.781
0 0.716 -0.065 -0.484 1.313 -1.563 0.596 -0.242 0.678 2.173 0.426 -1.909 0.616 0.000 0.885 -0.406 -1.343 2.548 0.501 -1.327 -0.340 0.000 0.470 0.728 1.109 0.919 0.881 0.665 0.692
1 0.624 -0.389 0.128 1.636 -1.110 1.025 0.573 -0.843 2.173 0.646 -0.697 1.064 0.000 0.632 -1.442 0.961 0.000 0.863 -0.106 1.717 0.000 0.825 0.917 1.257 0.983 0.713 0.890 0.824
0 0.484 2.101 1.714 1.131 -0.823 0.750 0.583 -1.304 1.087 0.894 0.421 0.559 2.215 0.921 -0.063 0.282 0.000 0.463 -0.474 -1.387 0.000 0.742 0.886 0.995 0.993 1.201 0.806 0.754
0 0.570 0.339 -1.478 0.528 0.439 0.978 1.479 -1.411 2.173 0.763 1.541 -0.734 0.000 1.375 0.840 0.903 0.000 0.965 1.599 0.364 0.000 0.887 1.061 0.992 1.322 1.453 1.013 0.969
0 0.940 1.303 1.636 0.851 -1.732 0.803 -0.030 -0.177 0.000 0.480 -0.125 -0.954 0.000 0.944 0.709 0.296 2.548 1.342 -0.418 1.197 3.102 0.853 0.989 0.979 0.873 0.858 0.719 0.786
1 0.599 0.544 -0.238 0.816 1.043 0.857 0.660 1.128 2.173 0.864 -0.624 -0.843 0.000 1.159 0.367 0.174 0.000 1.520 -0.543 -1.508 0.000 0.842 0.828 0.984 0.759 0.895 0.918 0.791
1 1.651 1.897 -0.914 0.423 0.315 0.453 0.619 -1.607 2.173 0.532 -0.424 0.209 1.107 0.369 2.479 0.034 0.000 0.701 0.217 0.984 0.000 0.976 0.951 1.035 0.879 0.825 0.915 0.798
1 0.926 -0.574 -0.763 0.285 1.094 0.672 2.314 1.545 0.000 1.124 0.415 0.809 0.000 1.387 0.270 -0.949 2.548 1.547 -0.631 -0.200 3.102 0.719 0.920 0.986 0.889 0.933 0.797 0.777
0 0.677 1.698 -0.890 0.641 -0.449 0.607 1.754 1.720 0.000 0.776 0.372 0.782 2.215 0.511 1.491 -0.480 0.000 0.547 -0.341 0.853 3.102 0.919 1.026 0.997 0.696 0.242 0.694 0.687
0 1.266 0.602 0.958 0.487 1.256 0.709 0.843 -1.196 0.000 0.893 1.303 -0.594 1.107 1.090 1.320 0.354 0.000 0.797 1.846 1.139 0.000 0.780 0.896 0.986 0.661 0.709 0.790 0.806
1 0.628 -0.616 -0.329 0.764 -1.150 0.477 -0.715 1.187 2.173 1.250 0.607 1.026 2.215 0.983 -0.023 -0.583 0.000 0.377 1.344 -1.015 0.000 0.744 0.954 0.987 0.837 0.841 0.795 0.694
1 1.035 -0.828 -1.358 1.870 -1.060 1.075 0.130 0.448 2.173 0.660 0.697 0.641 0.000 0.425 1.006 -1.035 0.000 0.751 1.055 1.364 3.102 0.826 0.822 0.988 0.967 0.901 1.077 0.906
1 0.830 0.265 -0.150 0.660 1.105 0.592 -0.557 0.908 2.173 0.670 -1.419 -0.671 0.000 1.323 -0.409 1.644 2.548 0.850 -0.033 -0.615 0.000 0.760 0.967 0.984 0.895 0.681 0.747 0.770
1 1.395 1.100 1.167 1.088 0.218 0.400 -0.132 0.024 2.173 0.743 0.530 -1.361 2.215 0.341 -0.691 -0.238 0.000 0.396 -1.426 -0.933 0.000 0.363 0.472 1.287 0.922 0.810 0.792 0.656
1 1.070 1.875 -1.298 1.215 -0.106 0.767 0.795 0.514 1.087 0.401 2.780 1.276 0.000 0.686 1.127 1.721 2.548 0.391 -0.259 -1.167 0.000 1.278 1.113 1.389 0.852 0.824 0.838 0.785
0 1.114 -0.071 1.719 0.399 -1.383 0.849 0.254 0.481 0.000 0.958 -0.579 0.742 0.000 1.190 -0.140 -0.862 2.548 0.479 1.390 0.856 0.000 0.952 0.988 0.985 0.764 0.419 0.835 0.827
0 0.714 0.376 -0.568 1.578 -1.165 0.648 0.141 0.639 2.173 0.472 0.569 1.449 1.107 0.783 1.483 0.361 0.000 0.540 -0.790 0.032 0.000 0.883 0.811 0.982 0.775 0.572 0.760 0.745
0 0.401 -1.731 0.765 0.974 1.648 0.652 -1.024 0.191 0.000 0.544 -0.366 -1.246 2.215 0.627 0.140 1.008 2.548 0.810 0.409 0.429 0.000 0.950 0.934 0.977 0.621 0.580 0.677 0.650
1 0.391 1.679 -1.298 0.605 -0.832 0.549 1.338 0.522 2.173 1.244 0.884 1.070 0.000 1.002 0.846 -1.345 2.548 0.783 -2.464 -0.237 0.000 4.515 2.854 0.981 0.877 0.939 1.942 1.489
1 0.513 -0.220 -0.444 1.699 0.479 1.109 0.181 -0.999 2.173 0.883 -0.335 -1.716 2.215 1.075 -0.380 1.352 0.000 0.857 0.048 0.147 0.000 0.937 0.758 0.986 1.206 0.958 0.949 0.876
0 1.367 -0.388 0.798 1.158 1.078 0.811 -1.024 -1.628 0.000 1.504 0.097 -0.999 2.215 1.652 -0.860 0.054 2.548 0.573 -0.142 -1.401 0.000 0.869 0.833 1.006 1.412 1.641 1.214 1.041
1 1.545 -0.533 -1.517 1.177 1.289 2.331 -0.370 -0.073 0.000 1.295 -0.358 -0.891 2.215 0.476 0.756 0.985 0.000 1.945 -0.016 -1.651 3.102 1.962 1.692 1.073 0.656 0.941 1.312 1.242
0 0.858 0.978 -1.258 0.286 0.161 0.729 1.230 1.087 2.173 0.561 2.670 -0.109 0.000 0.407 2.346 0.938 0.000 1.078 0.729 -0.658 3.102 0.597 0.921 0.982 0.579 0.954 0.733 0.769
1 1.454 -1.384 0.870 0.067 0.394 1.033 -0.673 0.318 0.000 1.166 -0.763 -1.533 2.215 2.848 -0.045 -0.856 2.548 0.697 -0.140 1.134 0.000 0.931 1.293 0.977 1.541 1.326 1.201 1.078
1 0.559 -0.913 0.486 1.104 -0.321 1.073 -0.348 1.345 0.000 0.901 -0.827 -0.842 0.000 0.739 0.047 -0.415 2.548 0.433 -1.132 1.268 0.000 0.797 0.695 0.985 0.868 0.346 0.674 0.623
1 1.333 0.780 -0.964 0.916 1.202 1.822 -0.071 0.742 2.173 1.486 -0.399 -0.824 0.000 0.740 0.568 -0.134 0.000 0.971 -0.070 -1.589 3.102 1.278 0.929 1.421 1.608 1.214 1.215 1.137
1 2.417 0.631 -0.317 0.323 0.581 0.841 1.524 -1.738 0.000 0.543 1.176 -0.325 0.000 0.827 0.700 0.866 0.000 0.834 -0.262 -1.702 3.102 0.932 0.820 0.988 0.646 0.287 0.595 0.589
0 0.955 -1.242 0.938 1.104 0.474 0.798 -0.743 1.535 0.000 1.356 -1.357 -1.080 2.215 1.320 -1.396 -0.132 2.548 0.728 -0.529 -0.633 0.000 0.832 0.841 0.988 0.923 1.077 0.988 0.816
1 1.305 -1.918 0.391 1.161 0.063 0.724 2.593 1.481 0.000 0.592 -1.207 -0.329 0.000 0.886 -0.836 -1.168 2.548 1.067 -1.481 -1.440 0.000 0.916 0.688 0.991 0.969 0.550 0.665 0.638
0 1.201 0.071 -1.123 2.242 -1.533 0.702 -0.256 0.688 0.000 0.967 0.491 1.040 2.215 1.271 -0.558 0.095 0.000 1.504 0.676 -0.383 3.102 0.917 1.006 0.985 1.017 1.057 0.928 1.057
0 0.994 -1.607 1.596 0.774 -1.391 0.625 -0.134 -0.862 2.173 0.746 -0.765 -0.316 2.215 1.131 -0.320 0.869 0.000 0.607 0.826 0.301 0.000 0.798 0.967 0.999 0.880 0.581 0.712 0.774
1 0.482 -0.467 0.729 1.419 1.458 0.824 0.376 -0.242 0.000 1.368 0.023 1.459 2.215 0.826 0.669 -1.079 2.548 0.936 2.215 -0.309 0.000 1.883 1.216 0.997 1.065 0.946 1.224 1.526
1 0.383 1.588 1.611 0.748 1.194 0.866 -0.279 -0.636 0.000 0.707 0.536 0.801 2.215 1.647 -1.155 0.367 0.000 1.292 0.303 -1.681 3.102 2.016 1.581 0.986 0.584 0.684 1.107 0.958
0 0.629 0.203 0.736 0.671 -0.271 1.350 -0.486 0.761 2.173 0.496 -0.805 -1.718 0.000 2.393 0.044 -1.046 1.274 0.651 -0.116 -0.541 0.000 0.697 1.006 0.987 1.069 2.317 1.152 0.902
0 0.905 -0.564 -0.570 0.263 1.096 1.219 -1.397 -1.414 1.087 1.164 -0.533 -0.208 0.000 1.459 1.965 0.784 0.000 2.220 -1.421 0.452 0.000 0.918 1.360 0.993 0.904 0.389 2.118 1.707
1 1.676 1.804 1.171 0.529 1.175 1.664 0.354 -0.530 0.000 1.004 0.691 -1.280 2.215 0.838 0.373 0.626 2.548 1.094 1.774 0.501 0.000 0.806 1.100 0.991 0.769 0.976 0.807 0.740
1 1.364 -1.936 0.020 1.327 0.428 1.021 -1.665 -0.907 2.173 0.818 -2.701 1.303 0.000 0.716 -0.590 -1.629 2.548 0.895 -2.280 -1.602 0.000 1.211 0.849 0.989 1.320 0.864 1.065 0.949
0 0.629 -0.626 0.609 1.828 1.280 0.644 -0.856 -0.873 2.173 0.555 1.066 -0.640 0.000 0.477 -1.364 -1.021 2.548 1.017 0.036 0.380 0.000 0.947 0.941 0.994 1.128 0.241 0.793 0.815
1 1.152 -0.843 0.926 1.802 0.800 2.493 -1.449 -1.127 0.000 1.737 0.833 0.488 0.000 1.026 0.929 -0.990 2.548 1.408 0.689 1.142 3.102 1.171 0.956 0.993 2.009 0.867 1.499 1.474
0 2.204 0.081 0.008 1.021 -0.679 2.676 0.090 1.163 0.000 2.210 -1.686 -1.195 0.000 1.805 0.891 -0.148 2.548 0.450 -0.502 -1.295 3.102 6.959 3.492 1.205 0.908 0.845 2.690 2.183
1 0.957 0.954 1.702 0.043 -0.503 1.113 0.033 -0.308 0.000 0.757 -0.363 -1.129 2.215 1.635 0.068 1.048 1.274 0.415 -2.098 0.061 0.000 1.010 0.979 0.992 0.704 1.125 0.761 0.715
0 1.222 0.418 1.059 1.303 1.442 0.282 -1.499 -1.286 0.000 1.567 0.016 -0.164 2.215 0.451 2.229 -1.229 0.000 0.660 -0.513 -0.296 3.102 2.284 1.340 0.985 1.531 0.314 1.032 1.094
1 0.603 1.675 -0.973 0.703 -1.709 1.023 0.652 1.296 2.173 1.078 0.363 -0.263 0.000 0.734 -0.457 -0.745 1.274 0.561 1.434 -0.042 0.000 0.888 0.771 0.984 0.847 1.234 0.874 0.777
0 0.897 0.949 -0.848 1.115 -0.085 0.522 -1.267 -1.418 0.000 0.684 -0.599 1.474 0.000 1.176 0.922 0.641 2.548 0.470 0.103 0.148 3.102 0.775 0.697 0.984 0.839 0.358 0.847 1.008
1 0.987 1.013 -1.504 0.468 -0.259 1.160 0.476 -0.971 2.173 1.266 0.919 0.780 0.000 0.634 1.695 0.233 0.000 0.487 -0.082 0.719 3.102 0.921 0.641 0.991 0.730 0.828 0.952 0.807
1 0.847 1.581 -1.397 1.629 1.529 1.053 0.816 -0.344 2.173 0.895 0.779 0.332 0.000 0.750 1.311 0.419 2.548 1.604 0.844 1.367 0.000 1.265 0.798 0.989 1.328 0.783 0.930 0.879
1 0.805 1.416 -1.327 0.397 0.589 0.488 0.982 0.843 0.000 0.664 -0.999 0.129 0.000 0.624 0.613 -0.558 0.000 1.431 -0.667 -1.561 3.102 0.959 1.103 0.989 0.590 0.632 0.926 0.798
0 1.220 -0.313 -0.489 1.759 0.201 1.698 -0.220 0.241 2.173 1.294 1.390 -1.682 0.000 1.447 -1.623 -1.296 0.000 1.710 0.872 -1.356 3.102 1.198 0.981 1.184 0.859 2.165 1.807 1.661
0 0.772 -0.611 -0.549 0.465 -1.528 1.103 -0.140 0.001 2.173 0.854 -0.406 1.655 0.000 0.733 -1.250 1.072 0.000 0.883 0.627 -1.132 3.102 0.856 0.927 0.987 1.094 1.013 0.938 0.870
1 1.910 0.771 0.828 0.231 1.267 1.398 1.455 -0.295 2.173 0.837 -2.564 0.770 0.000 0.540 2.189 1.287 0.000 1.345 1.311 -1.151 0.000 0.861 0.869 0.984 1.359 1.562 1.105 0.963
1 0.295 0.832 1.399 1.222 -0.517 2.480 0.013 1.591 0.000 2.289 0.436 0.287 2.215 1.995 -0.367 -0.409 1.274 0.375 1.367 -1.716 0.000 1.356 2.171 0.990 1.467 1.664 1.855 1.705
1 1.228 0.339 -0.575 0.417 1.474 0.480 -1.416 -1.498 2.173 0.614 -0.933 -0.961 0.000 1.189 1.690 1.003 0.000 1.690 -1.065 0.106 3.102 0.963 1.147 0.987 1.086 0.948 0.930 0.866
0 2.877 -1.014 1.440 0.782 0.483 1.134 -0.735 -0.196 2.173 1.123 0.084 -0.596 0.000 1.796 -0.356 1.044 2.548 1.406 1.582 -0.991 0.000 0.939 1.178 1.576 0.996 1.629 1.216 1.280
1 2.178 0.259 1.107 0.256 1.222 0.979 -0.440 -0.538 1.087 0.496 -0.760 -0.049 0.000 1.471 1.683 -1.486 0.000 0.646 0.695 -1.577 3.102 1.093 1.070 0.984 0.608 0.889 0.962 0.866
1 0.604 0.592 1.295 0.964 0.348 1.178 -0.016 0.832 2.173 1.626 -0.420 -0.760 0.000 0.748 0.461 -0.906 0.000 0.728 0.309 -1.269 1.551 0.852 0.604 0.989 0.678 0.949 1.021 0.878
0 0.428 -1.352 -0.912 1.713 0.797 1.894 -1.452 0.191 2.173 2.378 2.113 -1.190 0.000 0.860 2.174 0.949 0.000 1.693 0.759 1.426 3.102 0.885 1.527 1.186 1.090 3.294 4.492 3.676
0 0.473 0.485 0.154 1.433 -1.504 0.766 1.257 -1.302 2.173 0.414 0.119 0.238 0.000 0.805 0.242 -0.691 2.548 0.734 0.749 0.753 0.000 0.430 0.893 1.137 0.686 0.724 0.618 0.608
1 0.763 -0.601 0.876 0.182 -1.678 0.818 0.599 0.481 2.173 0.658 -0.737 -0.553 0.000 0.857 -1.138 -1.435 0.000 1.540 -1.466 -0.447 0.000 0.870 0.566 0.989 0.728 0.658 0.821 0.726
0 0.619 -0.273 -0.143 0.992 -1.267 0.566 0.876 -1.396 2.173 0.515 0.892 0.618 0.000 0.434 -0.902 0.862 2.548 0.490 -0.539 0.549 0.000 0.568 0.794 0.984 0.667 0.867 0.597 0.578
0 0.793 0.970 0.324 0.570 0.816 0.761 -0.550 1.519 2.173 1.150 0.496 -0.447 0.000 0.925 0.724 1.008 1.274 1.135 -0.275 -0.843 0.000 0.829 1.068 0.978 1.603 0.892 1.041 1.059
1 0.480 0.364 -0.067 1.906 -1.582 1.397 1.159 0.140 0.000 0.639 0.398 -1.102 0.000 1.597 -0.668 1.607 2.548 1.306 -0.797 0.288 3.102 0.856 1.259 1.297 1.022 1.032 1.049 0.939
0 0.514 1.304 1.490 1.741 -0.220 0.648 0.155 0.535 0.000 0.562 -1.016 0.837 0.000 0.863 -0.780 -0.815 2.548 1.688 -0.130 -1.545 3.102 0.887 0.980 1.309 1.269 0.654 1.044 1.035
0 1.225 0.333 0.656 0.893 0.859 1.037 -0.876 1.603 1.087 1.769 0.272 -0.227 2.215 1.000 0.579 -1.690 0.000 1.385 0.471 -0.860 0.000 0.884 1.207 0.995 1.097 2.336 1.282 1.145
0 2.044 -1.472 -0.294 0.392 0.369 0.927 0.718 1.492 1.087 1.619 -0.736 0.047 2.215 1.884 -0.101 -1.540 0.000 0.548 -0.441 1.117 0.000 0.798 0.877 0.981 0.750 2.272 1.469 1.276
0 1.037 -0.276 0.735 3.526 1.156 2.498 0.401 -0.590 1.087 0.714 -1.203 1.393 2.215 0.681 0.629 1.534 0.000 0.719 -0.355 -0.706 0.000 0.831 0.857 0.988 2.864 2.633 1.988 1.466
1 0.651 -1.218 -0.791 0.770 -1.449 0.610 -0.535 0.960 2.173 0.380 -1.072 -0.031 2.215 0.415 2.123 -1.100 0.000 0.776 0.217 0.420 0.000 0.986 1.008 1.001 0.853 0.588 0.799 0.776
0 1.586 -0.409 0.085 3.258 0.405 1.647 -0.674 -1.519 0.000 0.640 -1.027 -1.681 0.000 1.452 -0.444 -0.957 2.548 0.927 -0.017 1.215 3.102 0.519 0.866 0.992 0.881 0.847 1.018 1.278
0 0.712 0.092 -0.466 0.688 1.236 0.921 -1.217 -1.022 2.173 2.236 -1.167 0.868 2.215 0.851 -1.892 -0.753 0.000 0.475 -1.216 -0.383 0.000 0.668 0.758 0.988 1.180 2.093 1.157 0.934
0 0.419 0.471 0.974 2.805 0.235 1.473 -0.198 1.255 1.087 0.931 1.083 -0.712 0.000 1.569 1.358 -1.179 2.548 2.506 0.199 -0.842 0.000 0.929 0.991 0.992 1.732 2.367 1.549 1.430
1 0.667 1.003 1.504 0.368 1.061 0.885 -0.318 -0.353 0.000 1.438 -1.939 0.710 0.000 1.851 0.277 -1.460 2.548 1.403 0.517 -0.157 0.000 0.883 1.019 1.000 0.790 0.859 0.938 0.841
1 1.877 -0.492 0.372 0.441 0.955 1.034 -1.220 -0.846 1.087 0.952 -0.320 1.125 0.000 0.542 0.308 -1.261 2.548 1.018 -1.415 -1.547 0.000 1.280 0.932 0.991 1.273 0.878 0.921 0.906
0 1.052 0.901 1.176 1.280 1.517 0.562 -1.150 -0.079 2.173 1.228 -0.308 -0.354 0.000 0.790 -1.492 -0.963 0.000 0.942 -0.672 -1.588 3.102 1.116 0.902 0.988 1.993 0.765 1.375 1.325
1 0.518 -0.254 1.642 0.865 0.725 0.980 0.734 0.023 0.000 1.448 0.780 -1.736 2.215 0.955 0.513 -0.519 0.000 0.365 -0.444 -0.243 3.102 0.833 0.555 0.984 0.827 0.795 0.890 0.786
0 0.870 0.815 -0.506 0.663 -0.518 0.935 0.289 -1.675 2.173 1.188 0.005 0.635 0.000 0.580 0.066 -1.455 2.548 0.580 -0.634 -0.199 0.000 0.852 0.788 0.979 1.283 0.208 0.856 0.950
0 0.628 1.382 0.135 0.683 0.571 1.097 0.564 -0.950 2.173 0.617 -0.326 0.371 0.000 1.093 0.918 1.667 2.548 0.460 1.221 0.708 0.000 0.743 0.861 0.975 1.067 1.007 0.843 0.762
0 4.357 0.816 -1.609 1.845 -1.288 3.292 0.726 0.324 2.173 1.528 0.583 -0.801 2.215 0.605 0.572 1.406 0.000 0.794 -0.791 0.122 0.000 0.967 1.132 1.124 3.602 2.811 2.460 1.861
0 0.677 -1.265 1.559 0.866 -0.618 0.823 0.260 0.185 0.000 1.133 0.337 1.589 2.215 0.563 -0.830 0.510 0.000 0.777 0.117 -0.941 3.102 0.839 0.763 0.986 1.182 0.649 0.796 0.851
0 2.466 -1.838 -1.648 1.717 1.533 1.676 -1.553 -0.109 2.173 0.670 -0.666 0.284 0.000 0.334 -2.480 0.316 0.000 0.366 -0.804 -1.298 3.102 0.875 0.894 0.997 0.548 0.770 1.302 1.079
1 1.403 0.129 -1.307 0.688 0.306 0.579 0.753 0.814 1.087 0.474 0.694 -1.400 0.000 0.520 1.995 0.185 0.000 0.929 -0.504 1.270 3.102 0.972 0.998 1.353 0.948 0.650 0.688 0.724
1 0.351 1.188 -0.360 0.254 -0.346 1.129 0.545 1.691 0.000 0.652 -0.039 -0.258 2.215 1.089 0.655 0.472 2.548 0.554 -0.493 1.366 0.000 0.808 1.045 0.992 0.570 0.649 0.809 0.744
0 1.875 -0.013 -0.128 0.236 1.163 0.902 0.426 0.590 2.173 1.251 -1.210 -0.616 0.000 1.035 1.534 0.912 0.000 1.944 1.789 -1.691 0.000 0.974 1.113 0.990 0.925 1.120 0.956 0.912
0 0.298 0.750 -0.507 1.555 1.463 0.804 1.200 -0.665 0.000 0.439 -0.829 -0.252 1.107 0.770 -1.090 0.947 2.548 1.165 -0.166 -0.763 0.000 1.140 0.997 0.988 1.330 0.555 1.005 1.012
0 0.647 0.342 0.245 4.340 -0.157 2.229 0.068 1.170 2.173 2.133 -0.201 -1.441 0.000 1.467 0.697 -0.532 1.274 1.457 0.583 -1.640 0.000 0.875 1.417 0.976 2.512 2.390 1.794 1.665
1 1.731 -0.803 -1.013 1.492 -0.020 1.646 -0.541 1.121 2.173 0.459 -1.251 -1.495 2.215 0.605 -1.711 -0.232 0.000 0.658 0.634 -0.068 0.000 1.214 0.886 1.738 1.833 1.024 1.192 1.034
0 0.515 1.416 -1.089 1.697 1.426 1.414 0.941 0.027 0.000 1.480 0.133 -1.595 2.215 1.110 0.752 0.760 2.548 1.062 0.697 -0.492 0.000 0.851 0.955 0.994 1.105 1.255 1.175 1.095
0 1.261 0.858 1.465 0.757 0.305 2.310 0.679 1.080 2.173 1.544 2.518 -0.464 0.000 2.326 0.270 -0.841 0.000 2.163 0.839 -0.500 3.102 0.715 0.825 1.170 0.980 2.371 1.527 1.221
1 1.445 1.509 1.471 0.414 -1.285 0.767 0.864 -0.677 2.173 0.524 1.388 0.171 0.000 0.826 0.190 0.121 2.548 0.572 1.691 -1.603 0.000 0.870 0.935 0.994 0.968 0.735 0.783 0.777
1 0.919 -0.264 -1.245 0.681 -1.722 1.022 1.010 0.097 2.173 0.685 0.403 -1.351 0.000 1.357 -0.429 1.262 1.274 0.687 1.021 -0.563 0.000 0.953 0.796 0.991 0.873 1.749 1.056 0.917
1 0.293 -2.258 -1.427 1.191 1.202 0.394 -2.030 1.438 0.000 0.723 0.596 -0.024 2.215 0.525 -1.678 -0.290 0.000 0.788 -0.824 -1.029 3.102 0.821 0.626 0.976 1.080 0.810 0.842 0.771
0 3.286 0.386 1.688 1.619 -1.620 1.392 -0.009 0.280 0.000 1.179 -0.776 -0.110 2.215 1.256 0.248 -1.114 2.548 0.777 0.825 -0.156 0.000 1.026 1.065 0.964 0.909 1.249 1.384 1.395
1 1.075 0.603 0.561 0.656 -0.685 0.985 0.175 0.979 2.173 1.154 0.584 -0.886 0.000 1.084 -0.354 -1.004 2.548 0.865 1.224 1.269 0.000 1.346 1.073 1.048 0.873 1.310 1.003 0.865
1 1.098 -0.091 1.466 1.558 0.915 0.649 1.314 -1.182 2.173 0.791 0.073 0.351 0.000 0.517 0.940 1.195 0.000 1.150 1.187 -0.692 3.102 0.866 0.822 0.980 1.311 0.394 1.119 0.890
1 0.481 -1.042 0.148 1.135 -1.249 1.202 -0.344 0.308 1.087 0.779 -1.431 1.581 0.000 0.860 -0.860 -1.125 0.000 0.785 0.303 1.199 3.102 0.878 0.853 0.988 1.072 0.827 0.936 0.815
0 1.348 0.497 0.318 0.806 0.976 1.393 -0.152 0.632 2.173 2.130 0.515 -1.054 0.000 0.908 0.062 -0.780 0.000 1.185 0.687 1.668 1.551 0.720 0.898 0.985 0.683 1.292 1.320 1.131
0 2.677 -0.420 -1.685 1.828 1.433 2.040 -0.718 -0.039 0.000 0.400 -0.873 0.472 0.000 0.444 0.340 -0.830 2.548 0.431 0.768 -1.417 3.102 0.869 0.917 0.996 0.707 0.193 0.728 1.154
1 1.300 0.586 -0.122 1.306 0.609 0.727 -0.556 -1.652 2.173 0.636 0.720 1.393 2.215 0.328 1.280 -0.390 0.000 0.386 0.752 -0.905 0.000 0.202 0.751 1.106 0.864 0.799 0.928 0.717
0 0.637 -0.176 1.737 1.322 -0.414 0.702 -0.964 -0.680 0.000 1.054 -0.461 0.889 2.215 0.861 -0.267 0.225 0.000 1.910 -1.888 1.027 0.000 0.919 0.899 1.186 0.993 1.109 0.862 0.775
1 0.723 -0.104 1.572 0.428 -0.840 0.655 0.544 1.401 2.173 1.522 -0.154 -0.452 2.215 0.996 0.190 0.273 0.000 1.906 -0.176 0.966 0.000 0.945 0.894 0.990 0.981 1.555 0.988 0.893
0 2.016 -0.570 1.612 0.798 0.441 0.334 0.191 -0.909 0.000 0.939 0.146 0.021 2.215 0.553 -0.444 1.156 2.548 0.781 -1.545 -0.520 0.000 0.922 0.956 1.528 0.722 0.699 0.778 0.901
0 1.352 -0.707 1.284 0.665 0.580 0.694 -1.040 -0.899 2.173 0.692 -2.048 0.029 0.000 0.545 -2.042 1.259 0.000 0.661 -0.808 -1.251 3.102 0.845 0.991 0.979 0.662 0.225 0.685 0.769
1 1.057 -1.561 -0.411 0.952 -0.681 1.236 -1.107 1.045 2.173 1.288 -2.521 -0.521 0.000 1.361 -1.239 1.546 0.000 0.373 -1.540 0.028 0.000 0.794 0.782 0.987 0.889 0.832 0.972 0.828
0 1.118 -0.017 -1.227 1.077 1.256 0.714 0.624 -0.811 0.000 0.800 0.704 0.387 1.107 0.604 0.234 0.986 0.000 1.306 -0.456 0.094 3.102 0.828 0.984 1.195 0.987 0.672 0.774 0.748
1 0.602 2.201 0.212 0.119 0.182 0.474 2.130 1.270 0.000 0.370 2.088 -0.573 0.000 0.780 -0.725 -1.033 0.000 1.642 0.598 0.303 3.102 0.886 0.988 0.985 0.644 0.756 0.651 0.599
0 1.677 -0.844 1.581 0.585 0.887 1.012 -2.315 0.752 0.000 1.077 0.748 -0.195 0.000 0.718 0.832 -1.337 1.274 1.181 -0.557 -1.006 3.102 1.018 1.247 0.988 0.908 0.651 1.311 1.120
1 1.695 0.259 1.224 1.344 1.067 0.718 -1.752 -0.215 0.000 0.473 0.991 -0.993 0.000 0.891 1.285 -1.500 2.548 0.908 -0.131 0.288 0.000 0.945 0.824 0.979 1.009 0.951 0.934 0.833
0 0.793 0.628 0.432 1.707 0.302 0.919 1.045 -0.784 0.000 1.472 0.175 -1.284 2.215 1.569 0.155 0.971 2.548 0.435 0.735 1.625 0.000 0.801 0.907 0.992 0.831 1.446 1.082 1.051
1 0.537 -0.664 -0.244 1.104 1.272 1.154 0.394 1.633 0.000 1.527 0.963 0.559 2.215 1.744 0.650 -0.912 0.000 1.097 0.730 -0.368 3.102 1.953 1.319 1.045 1.309 0.869 1.196 1.126
1 0.585 -1.469 1.005 0.749 -1.060 1.224 -0.717 -0.323 2.173 1.012 -0.201 1.268 0.000 0.359 -0.567 0.476 0.000 1.117 -1.124 1.557 3.102 0.636 1.281 0.986 0.616 1.289 0.890 0.881
1 0.354 -1.517 0.667 2.534 -1.298 1.020 -0.375 1.254 0.000 1.119 -0.060 -1.538 2.215 1.059 -0.395 -0.140 0.000 2.609 0.199 -0.778 1.551 0.957 0.975 1.286 1.666 1.003 1.224 1.135
1 0.691 -1.619 -1.380 0.361 1.727 1.493 -1.093 -0.289 0.000 1.447 -0.640 1.341 0.000 1.453 -0.617 -1.456 1.274 1.061 -1.481 -0.091 0.000 0.744 0.649 0.987 0.596 0.727 0.856 0.797
0 1.336 1.293 -1.359 0.357 0.067 1.110 -0.058 -0.515 0.000 0.976 1.498 1.207 0.000 1.133 0.437 1.053 2.548 0.543 1.374 0.171 0.000 0.764 0.761 0.984 0.827 0.553 0.607 0.612
0 0.417 -1.111 1.661 2.209 -0.683 1.931 -0.642 0.959 1.087 1.514 -2.032 -0.686 0.000 1.521 -0.539 1.344 0.000 0.978 -0.866 0.363 1.551 2.813 1.850 1.140 1.854 0.799 1.600 1.556
0 1.058 0.390 -0.591 0.134 1.149 0.346 -1.550 0.186 0.000 1.108 -0.999 0.843 1.107 1.124 0.415 -1.514 0.000 1.067 -0.426 -1.000 3.102 1.744 1.050 0.985 1.006 1.010 0.883 0.789
1 1.655 0.253 1.216 0.270 1.703 0.500 -0.006 -1.418 2.173 0.690 -0.350 0.170 2.215 1.045 -0.924 -0.774 0.000 0.996 -0.745 -0.123 0.000 0.839 0.820 0.993 0.921 0.869 0.725 0.708
0 1.603 -0.850 0.564 0.829 0.093 1.270 -1.113 -1.155 2.173 0.853 -1.021 1.248 2.215 0.617 -1.270 1.733 0.000 0.935 -0.092 0.136 0.000 1.011 1.074 0.977 0.823 1.269 1.054 0.878
0 1.568 -0.792 1.005 0.545 0.896 0.895 -1.698 -0.988 0.000 0.608 -1.634 1.705 0.000 0.826 0.208 0.618 1.274 2.063 -1.743 -0.520 0.000 0.939 0.986 0.990 0.600 0.435 1.033 1.087
0 0.489 -1.335 -1.102 1.738 1.028 0.628 -0.992 -0.627 0.000 0.652 -0.064 -0.215 0.000 1.072 0.173 -1.251 2.548 1.042 0.057 0.841 3.102 0.823 0.895 1.200 1.164 0.770 0.837 0.846
1 1.876 0.870 1.234 0.556 -1.262 1.764 0.855 -0.467 2.173 1.079 1.351 0.852 0.000 0.773 0.383 0.874 0.000 1.292 0.829 -1.228 3.102 0.707 0.969 1.102 1.601 1.017 1.112 1.028
0 1.033 0.407 -0.374 0.705 -1.254 0.690 -0.231 1.502 2.173 0.433 -2.009 -0.057 0.000 0.861 1.151 0.334 0.000 0.960 -0.839 1.299 3.102 2.411 1.480 0.982 0.995 0.377 1.012 0.994
0 1.092 0.653 -0.801 0.463 0.426 0.529 -1.055 0.040 0.000 0.663 0.999 1.255 1.107 0.749 -1.106 1.185 2.548 0.841 -0.745 -1.029 0.000 0.841 0.743 0.988 0.750 1.028 0.831 0.868
1 0.799 -0.285 -0.011 0.531 1.392 1.063 0.854 0.494 2.173 1.187 -1.065 -0.851 0.000 0.429 -0.296 1.072 0.000 0.942 -1.985 1.172 0.000 0.873 0.693 0.992 0.819 0.689 1.131 0.913
0 0.503 1.973 -0.377 1.515 -1.514 0.708 1.081 -0.313 2.173 1.110 -0.417 0.839 0.000 0.712 -1.153 1.165 0.000 0.675 -0.303 -0.930 1.551 0.709 0.761 1.032 0.986 0.698 0.963 1.291
0 0.690 -0.574 -1.608 1.182 1.118 0.557 -2.243 0.144 0.000 0.969 0.216 -1.383 1.107 1.054 0.888 -0.709 2.548 0.566 1.663 -0.550 0.000 0.752 1.528 0.987 1.408 0.740 1.290 1.123
1 0.890 1.501 0.786 0.779 -0.615 1.126 0.716 1.541 2.173 0.887 0.728 -0.673 2.215 1.216 0.332 -0.020 0.000 0.965 1.828 0.101 0.000 0.827 0.715 1.099 1.088 1.339 0.924 0.878
0 0.566 0.883 0.655 1.600 0.034 1.155 2.028 -1.499 0.000 0.723 -0.871 0.763 0.000 1.286 -0.696 -0.676 2.548 1.134 -0.113 1.207 3.102 4.366 2.493 0.984 0.960 0.962 1.843 1.511
0 1.146 1.086 -0.911 0.838 1.298 0.821 0.127 -0.145 0.000 1.352 0.474 -1.580 2.215 1.619 -0.081 0.675 2.548 1.382 -0.748 0.127 0.000 0.958 0.976 1.239 0.876 1.481 1.116 1.076
0 1.739 -0.326 -1.661 0.420 -1.705 1.193 -0.031 -1.212 2.173 1.783 -0.442 0.522 0.000 1.064 -0.692 0.027 0.000 1.314 0.359 -0.037 3.102 0.968 0.897 0.986 0.907 1.196 1.175 1.112
1 0.669 0.194 -0.703 0.657 -0.260 0.899 -2.511 0.311 0.000 1.482 0.773 0.974 2.215 3.459 0.037 -1.299 1.274 2.113 0.067 1.516 0.000 0.740 0.871 0.979 1.361 2.330 1.322 1.046
1 1.355 -1.033 -1.173 0.552 -0.048 0.899 -0.482 -1.287 2.173 1.422 -1.227 0.390 1.107 1.937 -0.028 0.914 0.000 0.849 -0.230 -1.734 0.000 0.986 1.224 1.017 1.051 1.788 1.150 1.009
1 0.511 -0.202 1.029 0.780 1.154 0.816 0.532 -0.731 0.000 0.757 0.517 0.749 2.215 1.302 0.289 -1.188 0.000 0.584 1.211 -0.350 0.000 0.876 0.943 0.995 0.963 0.256 0.808 0.891
1 1.109 0.572 1.484 0.753 1.543 1.711 -0.145 -0.746 1.087 1.759 0.631 0.845 2.215 0.945 0.542 0.003 0.000 0.378 -1.150 -0.044 0.000 0.764 1.042 0.992 1.045 2.736 1.441 1.140
0 0.712 -0.025 0.553 0.928 -0.711 1.304 0.045 -0.300 0.000 0.477 0.720 0.969 0.000 1.727 -0.474 1.328 1.274 1.282 2.222 1.684 0.000 0.819 0.765 1.023 0.961 0.657 0.799 0.744
1 1.131 -0.302 1.079 0.901 0.236 0.904 -0.249 1.694 2.173 1.507 -0.702 -1.128 0.000 0.774 0.565 0.284 2.548 1.802 1.446 -0.192 0.000 3.720 2.108 0.986 0.930 1.101 1.484 1.238
0 1.392 1.253 0.118 0.864 -1.358 0.922 -0.447 -1.243 1.087 1.969 1.031 0.774 2.215 1.333 -0.359 -0.681 0.000 1.099 -0.257 1.473 0.000 1.246 0.909 1.475 1.234 2.531 1.449 1.306
0 1.374 2.291 -0.479 1.339 -0.243 0.687 2.345 1.310 0.000 0.467 1.081 0.772 0.000 0.656 1.155 -1.636 2.548 0.592 0.536 -1.269 3.102 0.981 0.821 1.010 0.877 0.217 0.638 0.758
1 0.401 -1.516 0.909 2.738 0.519 0.887 0.566 -1.202 0.000 0.909 -0.176 1.682 0.000 2.149 -0.878 -0.514 2.548 0.929 -0.563 -1.555 3.102 1.228 0.803 0.980 1.382 0.884 1.025 1.172
1 0.430 -1.589 1.417 2.158 1.226 1.180 -0.829 -0.781 2.173 0.798 1.400 -0.111 0.000 0.939 -0.878 1.076 2.548 0.576 1.335 -0.826 0.000 0.861 0.970 0.982 1.489 1.308 1.015 0.992
1 1.943 -0.391 -0.840 0.621 -1.613 2.026 1.734 1.025 0.000 0.930 0.573 -0.912 0.000 1.326 0.847 -0.220 1.274 1.181 0.079 0.709 3.102 1.164 1.007 0.987 1.094 0.821 0.857 0.786
1 0.499 0.436 0.887 0.859 1.509 0.733 -0.559 1.111 1.087 1.011 -0.796 0.279 2.215 1.472 -0.510 -0.982 0.000 1.952 0.379 -0.733 0.000 1.076 1.358 0.991 0.589 0.879 1.068 0.922
0 0.998 -0.407 -1.711 0.139 0.652 0.810 -0.331 -0.721 0.000 0.471 -0.533 0.442 0.000 0.531 -1.405 0.120 2.548 0.707 0.098 -1.176 1.551 1.145 0.809 0.988 0.529 0.612 0.562 0.609
1 1.482 0.872 0.638 1.288 0.362 0.856 0.900 -0.511 1.087 1.072 1.061 -1.432 2.215 1.770 -2.292 -1.547 0.000 1.131 1.374 0.783 0.000 6.316 4.381 1.002 1.317 1.048 2.903 2.351
1 2.084 -0.422 1.289 1.125 0.735 1.104 -0.518 -0.326 2.173 0.413 -0.719 -0.699 0.000 0.857 0.108 -1.631 0.000 0.527 0.641 -1.362 3.102 0.791 0.952 1.016 0.776 0.856 0.987 0.836
0 0.464 0.674 0.025 0.430 -1.703 0.982 -1.311 -0.808 2.173 1.875 1.060 0.821 2.215 0.954 -0.480 -1.677 0.000 0.567 0.702 -0.939 0.000 0.781 1.076 0.989 1.256 3.632 1.652 1.252
1 0.457 -1.944 -1.010 1.409 0.931 1.098 -0.742 -0.415 0.000 1.537 -0.834 0.945 2.215 1.752 -0.287 -1.269 2.548 0.692 -1.537 -0.223 0.000 0.801 1.192 1.094 1.006 1.659 1.175 1.122
0 3.260 -0.943 1.737 0.920 1.309 0.946 -0.139 -0.271 2.173 0.994 -0.952 -0.311 0.000 0.563 -0.136 -0.881 0.000 1.236 -0.507 0.906 1.551 0.747 0.869 0.985 1.769 1.034 1.179 1.042
0 0.615 -0.778 0.246 1.861 1.619 0.560 -0.943 -0.204 2.173 0.550 -0.759 -1.342 2.215 0.578 0.076 -0.973 0.000 0.939 0.035 0.680 0.000 0.810 0.747 1.401 0.772 0.702 0.719 0.662
1 2.370 -0.064 -0.237 1.737 0.154 2.319 -1.838 -1.673 0.000 1.053 -1.305 -0.075 0.000 0.925 0.149 0.318 1.274 0.851 -0.922 0.981 3.102 0.919 0.940 0.989 0.612 0.598 1.219 1.626
1 1.486 0.311 -1.262 1.354 -0.847 0.886 -0.158 1.213 2.173 1.160 -0.218 0.239 0.000 1.166 0.494 0.278 2.548 0.575 1.454 -1.701 0.000 0.429 1.129 0.983 1.111 1.049 1.006 0.920
1 1.294 1.587 -0.864 0.487 -0.312 0.828 1.051 -0.031 1.087 2.443 1.216 1.609 2.215 1.167 0.813 0.921 0.000 1.751 -0.415 0.119 0.000 1.015 1.091 0.974 1.357 2.093 1.178 1.059
1 0.984 0.465 -1.661 0.379 -0.554 0.977 0.237 0.365 0.000 0.510 0.143 1.101 0.000 1.099 -0.662 -1.593 2.548 1.104 -0.197 -0.648 3.102 0.925 0.922 0.986 0.642 0.667 0.806 0.722
1 0.930 -0.009 0.047 0.667 1.367 1.065 -0.231 0.815 0.000 1.199 -1.114 -0.877 2.215 0.940 0.824 -1.583 0.000 1.052 -0.407 -0.076 1.551 1.843 1.257 1.013 1.047 0.751 1.158 0.941
0 0.767 -0.011 -0.637 0.341 -1.437 1.438 -0.425 -0.450 2.173 1.073 -0.718 1.341 2.215 0.633 -1.394 0.486 0.000 0.603 -1.945 -1.626 0.000 0.703 0.790 0.984 1.111 1.848 1.129 1.072
1 1.779 0.017 0.432 0.402 1.022 0.959 1.480 1.595 2.173 1.252 1.365 0.006 0.000 1.188 -0.174 -1.107 0.000 1.181 0.518 -0.258 0.000 1.057 0.910 0.991 1.616 0.779 1.158 1.053
0 0.881 0.630 1.029 1.990 0.508 1.102 0.742 -1.298 2.173 1.565 1.085 0.686 2.215 2.691 1.391 -0.904 0.000 0.499 1.388 -1.199 0.000 0.347 0.861 0.997 0.881 1.920 1.233 1.310
0 1.754 -0.266 0.389 0.347 -0.030 0.462 -1.408 -0.957 2.173 0.515 -2.341 -1.700 0.000 0.588 -0.797 1.355 2.548 0.608 0.329 -1.389 0.000 1.406 0.909 0.988 0.760 0.593 0.768 0.847
0 1.087 0.311 -1.447 0.173 0.567 0.854 0.362 0.584 0.000 1.416 -0.716 -1.211 2.215 0.648 -0.358 -0.692 1.274 0.867 -0.513 0.206 0.000 0.803 0.813 0.984 1.110 0.491 0.921 0.873
0 0.279 1.114 -1.190 3.004 -0.738 1.233 0.896 1.092 2.173 0.454 -0.374 0.117 2.215 0.357 0.119 1.270 0.000 0.458 1.343 0.316 0.000 0.495 0.540 0.988 1.715 1.139 1.618 1.183
1 1.773 -0.694 -1.518 2.306 -1.200 3.104 0.749 0.362 0.000 1.871 0.230 -1.686 2.215 0.805 -0.179 -0.871 1.274 0.910 0.607 -0.246 0.000 1.338 1.598 0.984 1.050 0.919 1.678 1.807
0 0.553 0.683 0.827 0.973 -0.706 1.488 0.149 1.140 2.173 1.788 0.447 -0.478 0.000 0.596 1.043 1.607 0.000 0.373 -0.868 -1.308 1.551 1.607 1.026 0.998 1.134 0.808 1.142 0.936
1 0.397 1.101 -1.139 1.688 0.146 0.972 0.541 1.518 0.000 1.549 -0.873 -1.012 0.000 2.282 -0.151 0.314 2.548 1.174 0.033 -1.368 0.000 0.937 0.776 1.039 1.143 0.959 0.986 1.013
1 0.840 1.906 -0.959 0.869 0.576 0.642 0.554 -1.351 0.000 0.756 0.923 -0.823 2.215 1.251 1.130 0.545 2.548 1.513 0.410 1.073 0.000 1.231 0.985 1.163 0.812 0.987 0.816 0.822
1 0.477 1.665 0.814 0.763 -0.382 0.828 -0.008 0.280 2.173 1.213 -0.001 1.560 0.000 1.136 0.311 -1.289 0.000 0.797 1.091 -0.616 3.102 1.026 0.964 0.992 0.772 0.869 0.916 0.803
0 2.655 0.020 0.273 1.464 0.482 1.709 -0.107 -1.456 2.173 0.825 0.141 -0.386 0.000 1.342 -0.592 1.635 1.274 0.859 -0.175 -0.874 0.000 0.829 0.946 1.003 2.179 0.836 1.505 1.176
0 0.771 -1.992 -0.720 0.732 -1.464 0.869 -1.290 0.388 2.173 0.926 -1.072 -1.489 2.215 0.640 -1.232 0.840 0.000 0.528 -2.440 -0.446 0.000 0.811 0.868 0.993 0.995 1.317 0.809 0.714
0 1.357 1.302 0.076 0.283 -1.060 0.783 1.559 -0.994 0.000 0.947 1.212 1.617 0.000 1.127 0.311 0.442 2.548 0.582 -0.052 1.186 1.551 1.330 0.995 0.985 0.846 0.404 0.858 0.815
0 0.442 -0.381 -0.424 1.244 0.591 0.731 0.605 -0.713 2.173 0.629 2.762 1.040 0.000 0.476 2.693 -0.617 0.000 0.399 0.442 1.486 3.102 0.839 0.755 0.988 0.869 0.524 0.877 0.918
0 0.884 0.422 0.055 0.818 0.624 0.950 -0.763 1.624 0.000 0.818 -0.609 -1.166 0.000 1.057 -0.528 1.070 2.548 1.691 -0.124 -0.335 3.102 1.104 0.933 0.985 0.913 1.000 0.863 1.056
0 1.276 0.156 1.714 1.053 -1.189 0.672 -0.464 -0.030 2.173 0.469 -2.483 0.442 0.000 0.564 2.580 -0.253 0.000 0.444 -0.628 1.080 1.551 5.832 2.983 0.985 1.162 0.494 1.809 1.513
0 1.106 -0.556 0.406 0.573 -1.400 0.769 -0.518 1.457 2.173 0.743 -0.352 -0.010 0.000 1.469 -0.550 -0.930 2.548 0.540 1.236 -0.571 0.000 0.962 0.970 1.101 0.805 1.107 0.873 0.773
0 0.539 -0.964 -0.464 1.371 -1.606 0.667 -0.160 0.655 0.000 0.952 0.352 -0.740 2.215 0.952 0.007 1.123 0.000 1.061 -0.505 1.389 3.102 1.063 0.991 1.019 0.633 0.967 0.732 0.799
1 0.533 -0.989 -1.608 0.462 -1.723 1.204 -0.598 -0.098 2.173 1.343 -0.460 1.632 2.215 0.577 0.221 -0.492 0.000 0.628 -0.073 0.472 0.000 0.518 0.880 0.988 1.179 1.874 1.041 0.813
1 1.024 1.075 -0.795 0.286 -1.436 1.365 0.857 -0.309 2.173 0.804 1.532 1.435 0.000 1.511 0.722 1.494 0.000 1.778 0.903 0.753 1.551 0.686 0.810 0.999 0.900 1.360 1.133 0.978
1 2.085 -0.269 -1.423 0.789 1.298 0.281 1.652 0.187 0.000 0.658 -0.760 -0.042 2.215 0.663 0.024 0.120 0.000 0.552 -0.299 -0.428 3.102 0.713 0.811 1.130 0.705 0.218 0.675 0.743
1 0.980 -0.443 0.813 0.785 -1.253 0.719 0.448 -1.458 0.000 1.087 0.595 0.635 1.107 1.428 0.029 -0.995 0.000 1.083 1.562 -0.092 0.000 0.834 0.891 1.165 0.967 0.661 0.880 0.817
1 0.903 -0.733 -0.980 0.634 -0.639 0.780 0.266 -0.287 2.173 1.264 -0.936 1.004 0.000 1.002 -0.056 -1.344 2.548 1.183 -0.098 1.169 0.000 0.733 1.002 0.985 0.711 0.916 0.966 0.875
0 0.734 -0.304 -1.175 2.851 1.674 0.904 -0.634 0.412 2.173 1.363 -1.050 -0.282 0.000 1.476 -1.603 0.103 0.000 2.231 -0.718 1.708 3.102 0.813 0.896 1.088 0.686 1.392 1.033 1.078
1 1.680 0.591 -0.243 0.111 -0.478 0.326 -0.079 -1.555 2.173 0.711 0.714 0.922 2.215 0.355 0.858 1.682 0.000 0.727 1.620 1.360 0.000 0.334 0.526 1.001 0.862 0.633 0.660 0.619
1 1.163 0.225 -0.202 0.501 -0.979 1.609 -0.938 1.424 0.000 1.224 -0.118 -1.274 0.000 2.034 1.241 -0.254 0.000 1.765 0.536 0.237 3.102 0.894 0.838 0.988 0.693 0.579 0.762 0.726
0 1.223 1.232 1.471 0.489 1.728 0.703 -0.111 0.411 0.000 1.367 1.014 -1.294 1.107 1.524 -0.414 -0.164 2.548 1.292 0.833 0.316 0.000 0.861 0.752 0.994 0.836 1.814 1.089 0.950
0 0.816 1.637 -1.557 1.036 -0.342 0.913 1.333 0.949 2.173 0.812 0.756 -0.628 2.215 1.333 0.470 1.495 0.000 1.204 -2.222 -1.675 0.000 1.013 0.924 1.133 0.758 1.304 0.855 0.860
0 0.851 -0.564 -0.691 0.692 1.345 1.219 1.014 0.318 0.000 1.422 -0.262 -1.635 2.215 0.531 1.802 0.008 0.000 0.508 0.515 -1.267 3.102 0.821 0.787 1.026 0.783 0.432 1.149 1.034
0 0.800 -0.599 0.204 0.552 -0.484 0.974 0.413 0.961 2.173 1.269 -0.984 -1.039 2.215 0.380 -1.213 1.371 0.000 0.551 0.332 -0.659 0.000 0.694 0.852 0.984 1.057 2.037 1.096 0.846
0 0.744 -0.071 -0.255 0.638 0.512 1.125 0.407 0.844 2.173 0.860 -0.481 -0.677 0.000 1.102 0.181 -1.194 0.000 1.011 -1.081 -1.713 3.102 0.854 0.862 0.982 1.111 1.372 1.042 0.920
1 0.400 1.049 -0.625 0.880 -0.407 1.040 2.150 -1.359 0.000 0.747 -0.144 0.847 2.215 0.560 -1.829 0.698 0.000 1.663 -0.668 0.267 0.000 0.845 0.964 0.996 0.820 0.789 0.668 0.668
0 1.659 -0.705 -1.057 1.803 -1.436 1.008 0.693 0.005 0.000 0.895 -0.007 0.681 1.107 1.085 0.125 1.476 2.548 1.214 1.068 0.486 0.000 0.867 0.919 0.986 1.069 0.692 1.026 1.313
0 0.829 -0.153 0.861 0.615 -0.548 0.589 1.077 -0.041 2.173 1.056 0.763 -1.737 0.000 0.639 0.970 0.725 0.000 0.955 1.227 -0.799 3.102 1.020 1.024 0.985 0.750 0.525 0.685 0.671
1 0.920 -0.806 -0.840 1.048 0.278 0.973 -0.077 -1.364 2.173 1.029 0.309 0.133 0.000 1.444 1.484 1.618 1.274 1.419 -0.482 0.417 0.000 0.831 1.430 1.151 1.829 1.560 1.343 1.224
1 0.686 0.249 -0.905 0.343 -1.731 0.724 -2.823 -0.901 0.000 0.982 0.303 1.312 1.107 1.016 0.245 0.610 0.000 1.303 -0.557 -0.360 3.102 1.384 1.030 0.984 0.862 1.144 0.866 0.779
0 1.603 0.444 0.508 0.586 0.401 0.610 0.467 -1.735 2.173 0.914 0.626 -1.019 0.000 0.812 0.422 -0.408 2.548 0.902 1.679 1.490 0.000 1.265 0.929 0.990 1.004 0.816 0.753 0.851
1 0.623 0.780 -0.203 0.056 0.015 0.899 0.793 1.326 1.087 0.803 1.478 -1.499 2.215 1.561 1.492 -0.120 0.000 0.904 0.795 0.137 0.000 0.548 1.009 0.850 0.924 0.838 0.914 0.860
0 1.654 -2.032 -1.160 0.859 -1.583 0.689 -1.965 0.891 0.000 0.646 -1.014 -0.288 2.215 0.630 -0.815 0.402 0.000 0.638 0.316 0.655 3.102 0.845 0.879 0.993 1.067 0.625 1.041 0.958
1 0.828 -1.269 -1.203 0.744 -0.213 0.626 -1.017 -0.404 0.000 1.281 -0.931 1.733 2.215 0.699 -0.351 1.287 0.000 1.251 -1.171 0.197 0.000 0.976 1.186 0.987 0.646 0.655 0.733 0.671
1 0.677 0.111 1.090 1.580 1.591 1.560 0.654 -0.341 2.173 0.794 -0.266 0.702 0.000 0.823 0.651 -1.239 2.548 0.730 1.467 -1.530 0.000 1.492 1.023 0.983 1.909 1.022 1.265 1.127
1 0.736 0.882 -1.060 0.589 0.168 1.663 0.781 1.022 2.173 2.025 1.648 -1.292 0.000 1.240 0.924 -0.421 1.274 1.354 0.065 0.501 0.000 0.316 0.925 0.988 0.664 1.736 0.992 0.807
1 1.040 -0.822 1.638 0.974 -0.674 0.393 0.830 0.011 2.173 0.770 -0.140 -0.402 0.000 0.294 -0.133 0.030 0.000 1.220 0.807 0.638 0.000 0.826 1.063 1.216 1.026 0.705 0.934 0.823
1 0.711 0.602 0.048 1.145 0.966 0.934 0.263 -1.589 2.173 0.971 -0.496 -0.421 1.107 0.628 -0.865 0.845 0.000 0.661 -0.008 -0.565 0.000 0.893 0.705 0.988 0.998 1.339 0.908 0.872
1 0.953 -1.651 -0.167 0.885 1.053 1.013 -1.239 0.133 0.000 1.884 -1.122 1.222 2.215 1.906 -0.860 -1.184 1.274 1.413 -0.668 -1.647 0.000 1.873 1.510 1.133 1.050 1.678 1.246 1.061
1 0.986 -0.892 -1.380 0.917 1.134 0.950 -1.162 -0.469 0.000 0.569 -1.393 0.215 0.000 0.320 2.667 1.712 0.000 1.570 -0.375 1.457 3.102 0.925 1.128 1.011 0.598 0.824 0.913 0.833
1 1.067 0.099 1.154 0.527 -0.789 1.085 0.623 -1.602 2.173 1.511 -0.230 0.022 2.215 0.269 -0.377 0.883 0.000 0.571 -0.540 -0.512 0.000 0.414 0.803 1.022 0.959 2.053 1.041 0.780
0 0.825 -2.118 0.217 1.453 -0.493 0.819 0.313 -0.942 0.000 2.098 -0.725 1.096 2.215 0.484 1.336 1.458 0.000 0.482 0.100 1.163 0.000 0.913 0.536 0.990 1.679 0.957 1.095 1.143
1 1.507 0.054 1.120 0.698 -1.340 0.912 0.384 0.015 1.087 0.720 0.247 -0.820 0.000 0.286 0.154 1.578 2.548 0.629 1.582 -0.576 0.000 0.828 0.893 1.136 0.514 0.632 0.699 0.709
1 0.610 1.180 -0.993 0.816 0.301 0.932 0.758 1.539 0.000 0.726 -0.830 0.248 2.215 0.883 0.857 -1.305 0.000 1.338 1.009 -0.252 3.102 0.901 1.074 0.987 0.875 1.159 1.035 0.858
1 1.247 -1.360 1.502 1.525 -1.332 0.618 1.063 0.755 0.000 0.582 -0.155 0.473 2.215 1.214 -0.422 -0.551 2.548 0.838 -1.171 -1.166 0.000 2.051 1.215 1.062 1.091 0.725 0.896 1.091
0 0.373 -0.600 1.291 2.573 0.207 0.765 -0.209 1.667 0.000 0.668 0.724 -1.499 0.000 1.045 -0.338 -0.754 2.548 0.558 -0.469 0.029 3.102 0.868 0.939 1.124 0.519 0.383 0.636 0.838
0 0.791 0.336 -0.307 0.494 1.213 1.158 0.336 1.081 2.173 0.918 1.289 -0.449 0.000 0.735 -0.521 -0.969 0.000 1.052 0.499 -1.188 3.102 0.699 1.013 0.987 0.622 1.050 0.712 0.661
0 1.321 0.856 0.464 0.202 0.901 1.144 0.120 -1.651 0.000 0.803 0.577 -0.509 2.215 0.695 -0.114 0.423 2.548 0.621 1.852 -0.420 0.000 0.697 0.964 0.983 0.527 0.659 0.719 0.729
0 0.563 2.081 0.913 0.982 -0.533 0.549 -0.481 -1.730 0.000 0.962 0.921 0.569 2.215 0.731 1.184 -0.679 1.274 0.918 0.931 -1.432 0.000 1.008 0.919 0.993 0.895 0.819 0.810 0.878
1 1.148 0.345 0.953 0.921 0.617 0.991 1.103 -0.484 0.000 0.970 1.978 1.525 0.000 1.150 0.689 -0.757 2.548 0.517 0.995 1.245 0.000 1.093 1.140 0.998 1.006 0.756 0.864 0.838
1 1.400 0.128 -1.695 1.169 1.070 1.094 -0.345 -0.249 0.000 1.224 0.364 -0.036 2.215 1.178 0.530 -1.544 0.000 1.334 0.933 1.604 0.000 0.560 1.267 1.073 0.716 0.780 0.832 0.792
0 0.330 -2.133 1.403 0.628 0.379 1.686 -0.995 0.030 1.087 2.071 0.127 -0.457 0.000 4.662 -0.855 1.477 0.000 2.072 -0.917 -1.416 3.102 5.403 3.074 0.977 0.936 1.910 2.325 1.702
0 0.989 0.473 0.968 1.970 1.368 0.844 0.574 -0.290 2.173 0.866 -0.345 -1.019 0.000 1.130 0.605 -0.752 0.000 0.956 -0.888 0.870 3.102 0.885 0.886 0.982 1.157 1.201 1.100 1.068
1 0.773 0.418 0.753 1.388 1.070 1.104 -0.378 -0.758 0.000 1.027 0.397 -0.496 2.215 1.234 0.027 1.084 2.548 0.936 0.209 1.677 0.000 1.355 1.020 0.983 0.550 1.206 0.916 0.931
0 0.319 2.015 1.534 0.570 -1.134 0.632 0.124 0.757 0.000 0.477 0.598 -1.109 1.107 0.449 0.438 -0.755 2.548 0.574 -0.659 0.691 0.000 0.440 0.749 0.985 0.517 0.158 0.505 0.522
0 1.215 1.453 -1.386 1.276 1.298 0.643 0.570 -0.196 2.173 0.588 2.104 0.498 0.000 0.617 -0.296 -0.801 2.548 0.452 0.110 0.313 0.000 0.815 0.953 1.141 1.166 0.547 0.892 0.807
1 1.257 -1.869 -0.060 0.265 0.653 1.527 -0.346 1.163 2.173 0.758 -2.119 -0.604 0.000 1.473 -1.133 -1.290 2.548 0.477 -0.428 -0.066 0.000 0.818 0.841 0.984 1.446 1.729 1.211 1.054
1 1.449 0.464 1.585 1.418 -1.488 1.540 0.942 0.087 0.000 0.898 0.402 -0.631 2.215 0.753 0.039 -1.729 0.000 0.859 0.849 -1.054 0.000 0.791 0.677 0.995 0.687 0.527 0.703 0.606
1 1.084 -1.997 0.900 1.333 1.024 0.872 -0.864 -1.500 2.173 1.072 -0.813 -0.421 2.215 0.924 0.478 0.304 0.000 0.992 -0.398 -1.022 0.000 0.741 1.085 0.980 1.221 1.176 1.032 0.961
0 1.712 1.129 0.125 1.120 -1.402 1.749 0.951 -1.575 2.173 1.711 0.445 0.578 0.000 1.114 0.234 -1.011 0.000 1.577 -0.088 0.086 3.102 2.108 1.312 1.882 1.597 2.009 1.441 1.308
0 0.530 0.248 1.622 1.450 -1.012 1.221 -1.154 -0.763 2.173 1.698 -0.586 0.733 0.000 0.889 1.042 1.038 1.274 0.657 0.008 0.701 0.000 0.430 1.005 0.983 0.930 2.264 1.357 1.146
1 0.921 1.735 0.883 0.699 -1.614 0.821 1.463 0.319 1.087 1.099 0.814 -1.600 2.215 1.375 0.702 -0.691 0.000 0.869 1.326 -0.790 0.000 0.980 0.900 0.988 0.832 1.452 0.816 0.709
0 2.485 -0.823 -0.297 0.886 -1.404 0.989 0.835 1.615 2.173 0.382 0.588 -0.224 0.000 1.029 -0.456 1.546 2.548 0.613 -0.359 -0.789 0.000 0.768 0.977 1.726 2.007 0.913 1.338 1.180
1 0.657 -0.069 -0.078 1.107 1.549 0.804 1.335 -1.630 2.173 1.271 0.481 0.153 1.107 1.028 0.144 -0.762 0.000 1.098 0.132 1.570 0.000 0.830 0.979 1.175 1.069 1.624 1.000 0.868
1 2.032 0.329 -1.003 0.493 -0.136 1.159 -0.224 0.750 1.087 0.396 0.546 0.587 0.000 0.620 1.805 0.982 0.000 1.236 0.744 -1.621 0.000 0.930 1.200 0.988 0.482 0.771 0.887 0.779
0 0.524 -1.319 0.634 0.471 1.221 0.599 -0.588 -0.461 0.000 1.230 -1.504 -1.517 1.107 1.436 -0.035 0.104 2.548 0.629 1.997 -1.282 0.000 2.084 1.450 0.984 1.084 1.827 1.547 1.213
1 0.871 0.618 -1.544 0.718 0.186 1.041 -1.180 0.434 2.173 1.133 1.558 -1.301 0.000 0.452 -0.595 0.522 0.000 0.665 0.567 0.130 3.102 1.872 1.114 1.095 1.398 0.979 1.472 1.168
1 3.308 1.037 -0.634 0.690 -0.619 1.975 0.949 1.280 0.000 0.826 0.546 -0.139 2.215 0.635 -0.045 0.427 0.000 1.224 0.112 1.339 3.102 1.756 1.050 0.992 0.738 0.903 0.968 1.238
0 0.588 2.104 -0.872 1.136 1.743 0.842 0.638 0.015 0.000 0.481 0.928 1.000 2.215 0.595 0.125 1.429 0.000 0.951 -1.140 -0.511 3.102 1.031 1.057 0.979 0.673 1.064 1.001 0.891
0 0.289 0.823 0.013 0.615 -1.601 0.177 2.403 -0.015 0.000 0.258 1.151 1.036 2.215 0.694 0.553 -1.326 2.548 0.411 0.366 0.106 0.000 0.482 0.562 0.989 0.670 0.404 0.516 0.561
1 0.294 -0.660 -1.162 1.752 0.384 0.860 0.513 1.119 0.000 2.416 0.107 -1.342 0.000 1.398 0.361 -0.350 2.548 1.126 -0.902 0.040 1.551 0.650 1.125 0.988 0.531 0.843 0.912 0.911
0 0.599 -0.616 1.526 1.381 0.507 0.955 -0.646 -0.085 2.173 0.775 -0.533 1.116 2.215 0.789 -0.136 -1.176 0.000 2.449 1.435 -1.433 0.000 1.692 1.699 1.000 0.869 1.119 1.508 1.303
1 1.100 -1.174 -1.114 1.601 -1.576 1.056 -1.343 0.547 2.173 0.555 0.367 0.592 2.215 0.580 -1.862 -0.914 0.000 0.904 0.508 -0.444 0.000 1.439 1.105 0.986 1.408 1.104 1.190 1.094
1 2.237 -0.701 1.470 0.719 -0.199 0.745 -0.132 -0.737 1.087 0.976 -0.227 0.093 2.215 0.699 0.057 1.133 0.000 0.661 0.573 -0.679 0.000 0.785 0.772 1.752 1.235 0.856 0.990 0.825
1 0.455 -0.880 -1.482 1.260 -0.178 1.499 0.158 1.022 0.000 1.867 -0.435 -0.675 2.215 1.234 0.783 1.586 0.000 0.641 -0.454 -0.409 3.102 1.002 0.964 0.986 0.761 0.240 1.190 0.995
1 1.158 -0.778 -0.159 0.823 1.641 1.341 -0.830 -1.169 2.173 0.840 -1.554 0.934 0.000 0.693 0.488 -1.218 2.548 1.042 1.395 0.276 0.000 0.946 0.785 1.350 1.079 0.893 1.267 1.151
1 0.902 -0.078 -0.055 0.872 -0.012 0.843 1.276 1.739 2.173 0.838 1.492 0.918 0.000 0.626 0.904 -0.648 2.548 0.412 -2.027 -0.883 0.000 2.838 1.664 0.988 1.803 0.768 1.244 1.280
1 0.649 -1.028 -1.521 1.097 0.774 1.216 -0.383 -0.318 2.173 1.643 -0.285 -1.705 0.000 0.911 -0.091 0.341 0.000 0.592 0.537 0.732 3.102 0.911 0.856 1.027 1.160 0.874 0.986 0.893
1 1.192 1.846 -0.781 1.326 -0.747 1.550 1.177 1.366 0.000 1.196 0.151 0.387 2.215 0.527 2.261 -0.190 0.000 0.390 1.474 0.381 0.000 0.986 1.025 1.004 1.392 0.761 0.965 1.043
0 0.438 -0.358 -1.549 0.836 0.436 0.818 0.276 -0.708 2.173 0.707 0.826 0.392 0.000 1.050 1.741 -1.066 0.000 1.276 -1.583 0.842 0.000 1.475 1.273 0.986 0.853 1.593 1.255 1.226
1 1.083 0.142 1.701 0.605 -0.253 1.237 0.791 1.183 2.173 0.842 2.850 -0.082 0.000 0.724 -0.464 -0.694 0.000 1.499 0.456 -0.226 3.102 0.601 0.799 1.102 0.995 1.389 1.013 0.851
0 0.828 1.897 -0.615 0.572 -0.545 0.572 0.461 0.464 2.173 0.393 0.356 1.069 2.215 1.840 0.088 1.500 0.000 0.407 -0.663 -0.787 0.000 0.950 0.965 0.979 0.733 0.363 0.618 0.733
0 0.735 1.438 1.197 1.123 -0.214 0.641 0.949 0.858 0.000 1.162 0.524 -0.896 2.215 0.992 0.454 -1.475 2.548 0.902 1.079 0.019 0.000 0.822 0.917 1.203 1.032 0.569 0.780 0.764
0 0.437 -2.102 0.044 1.779 -1.042 1.231 -0.181 -0.515 1.087 2.666 0.863 1.466 2.215 1.370 0.345 -1.371 0.000 0.906 0.363 1.611 0.000 1.140 1.362 1.013 3.931 3.004 2.724 2.028
1 0.881 1.814 -0.987 0.384 0.800 2.384 1.422 0.640 0.000 1.528 0.292 -0.962 1.107 2.126 -0.371 -1.401 2.548 0.700 0.109 0.203 0.000 0.450 0.813 0.985 0.956 1.013 0.993 0.774
1 0.630 0.408 0.152 0.194 0.316 0.710 -0.824 -0.358 2.173 0.741 0.535 -0.851 2.215 0.933 0.406 1.148 0.000 0.523 -0.479 -0.625 0.000 0.873 0.960 0.988 0.830 0.921 0.711 0.661
1 0.870 -0.448 -1.134 0.616 0.135 0.600 0.649 -0.622 2.173 0.768 0.709 -0.123 0.000 1.308 0.500 1.468 0.000 1.973 -0.286 1.462 3.102 0.909 0.944 0.990 0.835 1.250 0.798 0.776
0 1.290 0.552 1.330 0.615 -1.353 0.661 0.240 -0.393 0.000 0.531 0.053 -1.588 0.000 0.675 0.839 -0.345 1.274 1.597 0.020 0.536 3.102 1.114 0.964 0.987 0.783 0.675 0.662 0.675
1 0.943 0.936 1.068 1.373 0.671 2.170 -2.011 -1.032 0.000 0.640 0.361 -0.806 0.000 2.239 -0.083 0.590 2.548 1.224 0.646 -1.723 0.000 0.879 0.834 0.981 1.436 0.568 0.916 0.931
1 0.431 1.686 -1.053 0.388 1.739 0.457 -0.471 -0.743 2.173 0.786 1.432 -0.547 2.215 0.537 -0.413 1.256 0.000 0.413 2.311 -0.408 0.000 1.355 1.017 0.982 0.689 1.014 0.821 0.715
0 1.620 -0.055 -0.862 1.341 -1.571 0.634 -0.906 0.935 2.173 0.501 -2.198 -0.525 0.000 0.778 -0.708 -0.060 0.000 0.988 -0.621 0.489 3.102 0.870 0.956 1.216 0.992 0.336 0.871 0.889
1 0.549 0.304 -1.443 1.309 -0.312 1.116 0.644 1.519 2.173 1.078 -0.303 -0.736 0.000 1.261 0.387 0.628 2.548 0.945 -0.190 0.090 0.000 0.893 1.043 1.000 1.124 1.077 1.026 0.886
0 0.412 -0.618 -1.486 1.133 -0.665 0.646 0.436 1.520 0.000 0.993 0.976 0.106 2.215 0.832 0.091 0.164 2.548 0.672 -0.650 1.256 0.000 0.695 1.131 0.991 1.017 0.455 1.226 1.087
0 1.183 -0.084 1.644 1.389 0.967 0.843 0.938 -0.670 0.000 0.480 0.256 0.123 2.215 0.437 1.644 0.491 0.000 0.501 -0.416 0.101 3.102 1.060 0.804 1.017 0.775 0.173 0.535 0.760
0 1.629 -1.486 -0.683 2.786 -0.492 1.347 -2.638 1.453 0.000 1.857 0.208 0.873 0.000 0.519 -1.265 -1.602 1.274 0.903 -1.102 -0.329 1.551 6.892 3.522 0.998 0.570 0.477 2.039 2.006
1 2.045 -0.671 -1.235 0.490 -0.952 0.525 -1.252 1.289 0.000 1.088 -0.993 0.648 2.215 0.975 -0.109 -0.254 2.548 0.556 -1.095 -0.194 0.000 0.803 0.861 0.980 1.282 0.945 0.925 0.811
0 0.448 -0.058 -0.974 0.945 -1.633 1.181 -1.139 0.266 2.173 1.118 -0.761 1.502 1.107 1.706 0.585 -0.680 0.000 0.487 -1.951 0.945 0.000 2.347 1.754 0.993 1.161 1.549 1.414 1.176
0 0.551 0.519 0.448 2.183 1.293 1.220 0.628 -0.627 2.173 1.019 -0.002 -0.652 0.000 1.843 -0.386 1.042 2.548 0.400 -1.102 -1.014 0.000 0.648 0.792 1.049 0.888 2.132 1.262 1.096
0 1.624 0.488 1.403 0.760 0.559 0.812 0.777 -1.244 2.173 0.613 0.589 -0.030 2.215 0.692 1.058 0.683 0.000 1.054 1.165 -0.765 0.000 0.915 0.875 1.059 0.821 0.927 0.792 0.721
1 0.774 0.444 1.257 0.515 -0.689 0.515 1.448 -1.271 0.000 0.793 0.118 0.811 1.107 0.679 0.326 -0.426 0.000 1.066 -0.865 -0.049 3.102 0.960 1.046 0.986 0.716 0.772 0.855 0.732
1 2.093 -1.240 1.615 0.918 -1.202 1.412 -0.541 0.640 1.087 2.019 0.872 -0.639 0.000 0.672 -0.936 0.972 0.000 0.896 0.235 0.212 0.000 0.810 0.700 1.090 0.797 0.862 1.049 0.874
1 0.908 1.069 0.283 0.400 1.293 0.609 1.452 -1.136 0.000 0.623 0.417 -0.098 2.215 1.023 0.775 1.054 1.274 0.706 2.346 -1.305 0.000 0.744 1.006 0.991 0.606 0.753 0.796 0.753
0 0.403 -1.328 -0.065 0.901 1.052 0.708 -0.354 -0.718 2.173 0.892 0.633 1.684 2.215 0.999 -1.205 0.941 0.000 0.930 1.072 -0.809 0.000 2.105 1.430 0.989 0.838 1.147 1.042 0.883
0 1.447 0.453 0.118 1.731 0.650 0.771 0.446 -1.564 0.000 0.973 -2.014 0.354 0.000 1.949 -0.643 -1.531 1.274 1.106 -0.334 -1.163 0.000 0.795 0.821 1.013 1.699 0.918 1.118 1.018
1 1.794 0.123 -0.454 0.057 1.489 0.966 -1.190 1.090 1.087 0.539 -0.535 1.035 0.000 1.096 -1.069 -1.236 2.548 0.659 -1.196 -0.283 0.000 0.803 0.756 0.985 1.343 1.109 0.993 0.806
0 1.484 -2.047 0.813 0.591 -0.295 0.923 0.312 -1.164 2.173 0.654 -0.316 0.752 2.215 0.599 1.966 -1.128 0.000 0.626 -0.304 -1.431 0.000 1.112 0.910 1.090 0.986 1.189 1.350 1.472
0 0.417 -2.016 0.849 1.817 0.040 1.201 -1.676 -1.394 0.000 0.792 0.537 0.641 2.215 0.794 -1.222 0.187 0.000 0.825 -0.217 1.334 3.102 1.470 0.931 0.987 1.203 0.525 0.833 0.827
1 0.603 1.009 0.033 0.486 1.225 0.884 -0.617 -1.058 0.000 0.500 -1.407 -0.567 0.000 1.476 -0.876 0.605 2.548 0.970 0.560 1.092 3.102 0.853 1.153 0.988 0.846 0.920 0.944 0.835
1 1.381 -0.326 0.552 0.417 -0.027 1.030 -0.835 -1.287 2.173 0.941 -0.421 1.519 2.215 0.615 -1.650 0.377 0.000 0.606 0.644 0.650 0.000 1.146 0.970 0.990 1.191 0.884 0.897 0.826
1 0.632 1.200 -0.703 0.438 -1.700 0.779 -0.731 0.958 1.087 0.605 0.393 -1.376 0.000 0.670 -0.827 -1.315 2.548 0.626 -0.501 0.417 0.000 0.904 0.903 0.998 0.673 0.803 0.722 0.640
1 1.561 -0.569 1.580 0.329 0.237 1.059 0.731 0.415 2.173 0.454 0.016 -0.828 0.000 0.587 0.008 -0.291 1.274 0.597 1.119 1.191 0.000 0.815 0.908 0.988 0.733 0.690 0.892 0.764
1 2.102 0.087 0.449 1.164 -0.390 1.085 -0.408 -1.116 2.173 0.578 0.197 -0.137 0.000 1.202 0.917 1.523 0.000 0.959 -0.832 1.404 3.102 1.380 1.109 1.486 1.496 0.886 1.066 1.025
1 1.698 -0.489 -0.552 0.976 -1.009 1.620 -0.721 0.648 1.087 1.481 -1.860 -1.354 0.000 1.142 -1.140 1.401 2.548 1.000 -1.274 -0.158 0.000 1.430 1.130 0.987 1.629 1.154 1.303 1.223
1 1.111 -0.249 -1.457 0.421 0.939 0.646 -2.076 0.362 0.000 1.315 0.796 -1.436 2.215 0.780 0.130 0.055 0.000 1.662 -0.834 0.461 0.000 0.920 0.948 0.990 1.046 0.905 1.493 1.169
1 0.945 0.390 -1.159 1.675 0.437 0.356 0.261 0.543 1.087 0.574 0.838 1.599 2.215 0.496 -1.220 -0.022 0.000 0.558 -2.454 1.440 0.000 0.763 0.983 1.728 1.000 0.578 0.922 1.003
1 2.076 0.014 -1.314 0.854 -0.306 3.446 1.341 0.598 0.000 2.086 0.227 -0.747 2.215 1.564 -0.216 1.649 2.548 0.965 -0.857 -1.062 0.000 0.477 0.734 1.456 1.003 1.660 1.001 0.908
1 1.992 0.192 -0.103 0.108 -1.599 0.938 0.595 -1.360 2.173 0.869 -1.012 1.432 0.000 1.302 0.850 0.436 2.548 0.487 1.051 -1.027 0.000 0.502 0.829 0.983 1.110 1.394 0.904 0.836
0 0.460 1.625 1.485 1.331 1.242 0.675 -0.329 -1.039 1.087 0.671 -1.028 -0.514 0.000 1.265 -0.788 0.415 1.274 0.570 -0.683 -1.738 0.000 0.725 0.758 1.004 1.024 1.156 0.944 0.833
0 0.871 0.839 -1.536 0.428 1.198 0.875 -1.256 -0.466 1.087 0.684 -0.768 0.150 0.000 0.556 -1.793 0.389 0.000 0.942 -1.126 1.339 1.551 0.624 0.734 0.986 1.357 0.960 1.474 1.294
1 0.951 1.651 0.576 1.273 1.495 0.834 0.048 -0.578 2.173 0.386 -0.056 -1.448 0.000 0.597 -0.196 0.162 2.548 0.524 1.649 1.625 0.000 0.737 0.901 1.124 1.014 0.556 1.039 0.845
1 1.049 -0.223 0.685 0.256 -1.191 2.506 0.238 -0.359 0.000 1.510 -0.904 1.158 1.107 2.733 -0.902 1.679 2.548 0.407 -0.474 -1.572 0.000 1.513 2.472 0.982 1.238 0.978 1.985 1.510
0 0.455 -0.028 0.265 1.286 1.373 0.459 0.331 -0.922 0.000 0.343 0.634 0.430 0.000 0.279 -0.084 -0.272 0.000 0.475 0.926 -0.123 3.102 0.803 0.495 0.987 0.587 0.211 0.417 0.445
1 2.074 0.388 0.878 1.110 1.557 1.077 -0.226 -0.295 2.173 0.865 -0.319 -1.116 2.215 0.707 -0.835 0.722 0.000 0.632 -0.608 -0.728 0.000 0.715 0.802 1.207 1.190 0.960 1.143 0.926
1 1.390 0.265 1.196 0.919 -1.371 1.858 0.506 0.786 0.000 1.280 -1.367 -0.720 2.215 1.483 -0.441 -0.675 2.548 1.076 0.294 -0.539 0.000 1.126 0.830 1.155 1.551 0.702 1.103 0.933
1 1.014 -0.079 1.597 1.038 -0.281 1.135 -0.722 -0.177 2.173 0.544 -1.475 -1.501 0.000 1.257 -1.315 1.212 0.000 0.496 -0.060 1.180 1.551 0.815 0.611 1.411 1.110 0.792 0.846 0.853
0 0.335 1.267 -1.154 2.011 -0.574 0.753 0.618 1.411 0.000 0.474 0.748 0.681 2.215 0.608 -0.446 -0.354 2.548 0.399 1.295 -0.581 0.000 0.911 0.882 0.975 0.832 0.598 0.580 0.678
1 0.729 -0.189 1.182 0.293 1.310 0.412 0.459 -0.632 0.000 0.869 -1.128 -0.625 2.215 1.173 -0.893 0.478 2.548 0.584 -2.394 -1.727 0.000 2.016 1.272 0.995 1.034 0.905 0.966 1.038
1 1.225 -1.215 -0.088 0.881 -0.237 0.600 -0.976 1.462 2.173 0.876 0.506 1.583 2.215 0.718 1.228 -0.031 0.000 0.653 -1.292 1.216 0.000 0.838 1.108 0.981 1.805 0.890 1.251 1.197
1 2.685 -0.444 0.847 0.253 0.183 0.641 -1.541 -0.873 2.173 0.417 2.874 -0.551 0.000 0.706 -1.431 0.764 0.000 1.390 -0.596 -1.397 0.000 0.894 0.829 0.993 0.789 0.654 0.883 0.746
0 0.638 -0.481 0.683 1.457 -1.024 0.707 -1.338 1.498 0.000 0.980 0.518 0.289 2.215 0.964 -0.531 -0.423 0.000 0.694 -0.654 -1.314 3.102 0.807 1.283 1.335 0.658 0.907 0.797 0.772
1 1.789 -0.765 -0.732 0.421 -0.020 1.142 -1.353 1.439 2.173 0.725 -1.518 -1.261 0.000 0.812 -2.597 -0.463 0.000 1.203 -0.120 1.001 0.000 0.978 0.673 0.985 1.303 1.400 1.078 0.983
1 0.784 -1.431 1.724 0.848 0.559 0.615 -1.643 -1.456 0.000 1.339 -0.513 0.040 2.215 0.394 -2.483 1.304 0.000 0.987 0.889 -0.339 0.000 0.732 0.713 0.987 0.973 0.705 0.875 0.759
1 0.911 1.098 -1.289 0.421 0.823 1.218 -0.503 0.431 0.000 0.775 0.432 -1.680 0.000 0.855 -0.226 -0.460 2.548 0.646 -0.947 -1.243 1.551 2.201 1.349 0.985 0.730 0.451 0.877 0.825
1 0.959 0.372 -0.269 1.255 0.702 1.151 0.097 0.805 2.173 0.993 1.011 0.767 2.215 1.096 0.185 0.381 0.000 1.001 -0.205 0.059 0.000 0.979 0.997 1.168 0.796 0.771 0.839 0.776
0 0.283 -1.864 -1.663 0.219 1.624 0.955 -1.213 0.932 2.173 0.889 0.395 -0.268 0.000 0.597 -1.083 -0.921 2.548 0.584 1.325 -1.072 0.000 0.856 0.927 0.996 0.937 0.936 1.095 0.892
0 2.017 -0.488 -0.466 1.029 -0.870 3.157 0.059 -0.343 2.173 3.881 0.872 1.502 1.107 3.631 1.720 0.963 0.000 0.633 -1.264 -1.734 0.000 4.572 3.339 1.005 1.407 5.590 3.614 3.110
1 1.088 0.414 -0.841 0.485 0.605 0.860 1.110 -0.568 0.000 1.152 -0.325 1.203 2.215 0.324 1.652 -0.104 0.000 0.510 1.095 -1.728 0.000 0.880 0.722 0.989 0.977 0.711 0.888 0.762
0 0.409 -1.717 0.712 0.809 -1.301 0.701 -1.529 -1.411 0.000 1.191 -0.582 0.438 2.215 1.147 0.813 -0.571 2.548 1.039 0.543 0.892 0.000 0.636 0.810 0.986 0.861 1.411 0.907 0.756
1 1.094 1.577 -0.988 0.497 -0.149 0.891 -2.459 1.034 0.000 0.646 0.792 -1.022 0.000 1.573 0.254 -0.053 2.548 1.428 0.190 -1.641 3.102 4.322 2.687 0.985 0.881 1.135 1.907 1.831
1 0.613 1.993 -0.280 0.544 0.931 0.909 1.526 1.559 0.000 0.840 1.473 -0.483 2.215 0.856 0.352 0.408 2.548 1.058 1.733 -1.396 0.000 0.801 1.066 0.984 0.639 0.841 0.871 0.748
0 0.958 -1.202 0.600 0.434 0.170 0.783 -0.214 1.319 0.000 0.835 -0.454 -0.615 2.215 0.658 -1.858 -0.891 0.000 0.640 0.172 -1.204 3.102 1.790 1.086 0.997 0.804 0.403 0.793 0.756
1 1.998 -0.238 0.972 0.058 0.266 0.759 1.576 -0.357 2.173 1.004 -0.349 -0.747 2.215 0.962 0.490 -0.453 0.000 1.592 0.661 -1.405 0.000 0.874 1.086 0.990 1.436 1.527 1.177 0.993
1 0.796 -0.171 -0.818 0.574 -1.625 1.201 -0.737 1.451 2.173 0.651 0.404 -0.452 0.000 1.150 -0.652 -0.120 0.000 1.008 -0.093 0.531 3.102 0.884 0.706 0.979 1.193 0.937 0.943 0.881
1 0.773 1.023 0.527 1.537 -0.201 2.967 -0.574 -1.534 2.173 2.346 -0.307 0.394 2.215 1.393 0.135 -0.027 0.000 3.015 0.187 0.516 0.000 0.819 1.260 0.982 2.552 3.862 2.179 1.786
0 1.823 1.008 -1.489 0.234 -0.962 0.591 0.461 0.996 2.173 0.568 -1.297 -0.410 0.000 0.887 2.157 1.194 0.000 2.079 0.369 -0.085 3.102 0.770 0.945 0.995 1.179 0.971 0.925 0.983
0 0.780 0.640 0.490 0.680 -1.301 0.715 -0.137 0.152 2.173 0.616 -0.831 1.668 0.000 1.958 0.528 -0.982 2.548 0.966 -1.551 0.462 0.000 1.034 1.079 1.008 0.827 1.369 1.152 0.983
1 0.543 0.801 1.543 1.134 -0.772 0.954 -0.849 0.410 1.087 0.851 -1.988 1.686 0.000 0.799 -0.912 -1.156 0.000 0.479 0.097 1.334 0.000 0.923 0.597 0.989 1.231 0.759 0.975 0.867
0 1.241 -0.014 0.129 1.158 0.670 0.445 -0.732 1.739 2.173 0.918 0.659 -1.340 2.215 0.557 2.410 -1.404 0.000 0.966 -1.545 -1.120 0.000 0.874 0.918 0.987 1.001 0.798 0.904 0.937
0 1.751 -0.266 -1.575 0.489 1.292 1.112 1.533 0.137 2.173 1.204 -0.414 -0.928 0.000 0.879 1.237 -0.415 2.548 1.479 1.469 0.913 0.000 2.884 1.747 0.989 1.742 0.600 1.363 1.293
1 1.505 1.208 -1.476 0.995 -0.836 2.800 -1.600 0.111 0.000 2.157 1.241 1.110 2.215 1.076 2.619 -0.913 0.000 1.678 2.204 -1.575 0.000 0.849 1.224 0.990 1.412 0.976 1.271 1.105
0 0.816 0.611 0.779 1.694 0.278 0.575 -0.787 1.592 2.173 1.148 1.076 -0.831 2.215 0.421 1.316 0.632 0.000 0.589 0.452 -1.466 0.000 0.779 0.909 0.990 1.146 1.639 1.236 0.949
1 0.551 -0.808 0.330 1.188 -0.294 0.447 -0.035 -0.993 0.000 0.432 -0.276 -0.481 2.215 1.959 -0.288 1.195 2.548 0.638 0.583 1.107 0.000 0.832 0.924 0.993 0.723 0.976 0.968 0.895
0 1.316 -0.093 0.995 0.860 -0.621 0.593 -0.560 -1.599 2.173 0.524 -0.318 -0.240 2.215 0.566 0.759 -0.368 0.000 0.483 -2.030 -1.104 0.000 1.468 1.041 1.464 0.811 0.778 0.690 0.722
1 1.528 0.067 -0.855 0.959 -1.464 1.143 -0.082 1.023 0.000 0.702 -0.763 -0.244 0.000 0.935 -0.881 0.206 2.548 0.614 -0.831 1.657 3.102 1.680 1.105 0.983 1.078 0.559 0.801 0.809
0 0.558 -0.833 -0.598 1.436 -1.724 1.316 -0.661 1.593 2.173 1.148 -0.503 -0.132 1.107 1.584 -0.125 0.380 0.000 1.110 -1.216 -0.181 0.000 1.258 0.860 1.053 0.790 1.814 1.159 1.007
1 0.819 0.879 1.221 0.598 -1.450 0.754 0.417 -0.369 2.173 0.477 1.199 0.274 0.000 1.073 0.368 0.273 2.548 1.599 2.047 1.690 0.000 0.933 0.984 0.983 0.788 0.613 0.728 0.717
0 0.981 -1.007 0.489 0.923 1.261 0.436 -0.698 -0.506 2.173 0.764 -1.105 -1.241 2.215 0.577 -2.573 -0.036 0.000 0.565 -1.628 1.610 0.000 0.688 0.801 0.991 0.871 0.554 0.691 0.656
0 2.888 0.568 -1.416 1.461 -1.157 1.756 -0.900 0.522 0.000 0.657 0.409 1.076 2.215 1.419 0.672 -0.019 0.000 1.436 -0.184 -0.980 3.102 0.946 0.919 0.995 1.069 0.890 0.834 0.856
1 0.522 1.805 -0.963 1.136 0.418 0.727 -0.195 -1.695 2.173 0.309 2.559 -0.178 0.000 0.521 1.794 0.919 0.000 0.788 0.174 -0.406 3.102 0.555 0.729 1.011 1.385 0.753 0.927 0.832
1 0.793 -0.162 -1.643 0.634 0.337 0.898 -0.633 1.689 0.000 0.806 -0.826 -0.356 2.215 0.890 -0.142 -1.268 0.000 1.293 0.574 0.725 0.000 0.833 1.077 0.988 0.721 0.679 0.867 0.753
0 1.298 1.098 0.280 0.371 -0.373 0.855 -0.306 -1.186 0.000 0.977 -0.421 1.003 0.000 0.978 0.956 -1.249 2.548 0.735 0.577 -0.037 3.102 0.974 1.002 0.992 0.549 0.587 0.725 0.954
1 0.751 -0.520 -1.653 0.168 -0.419 0.878 -1.023 -1.364 2.173 1.310 -0.667 0.863 0.000 1.196 -0.827 0.358 0.000 1.154 -0.165 -0.360 1.551 0.871 0.950 0.983 0.907 0.955 0.959 0.874
0 1.730 0.666 -1.432 0.446 1.302 0.921 -0.203 0.621 0.000 1.171 -0.365 -0.611 1.107 0.585 0.807 1.150 0.000 0.415 -0.843 1.311 0.000 0.968 0.786 0.986 1.059 0.371 0.790 0.848
1 0.596 -1.486 0.690 1.045 -1.344 0.928 0.867 0.820 2.173 0.610 0.999 -1.329 2.215 0.883 -0.001 -0.106 0.000 1.145 2.184 -0.808 0.000 2.019 1.256 1.056 1.751 1.037 1.298 1.518
1 0.656 -1.993 -0.519 1.643 -0.143 0.815 0.256 1.220 1.087 0.399 -1.184 -1.458 0.000 0.738 1.361 -1.443 0.000 0.842 0.033 0.293 0.000 0.910 0.891 0.993 0.668 0.562 0.958 0.787
1 1.127 -0.542 0.645 0.318 -1.496 0.661 -0.640 0.369 2.173 0.992 0.358 1.702 0.000 1.004 0.316 -1.109 0.000 1.616 -0.936 -0.707 1.551 0.875 1.191 0.985 0.651 0.940 0.969 0.834
0 0.916 -1.423 -1.490 1.248 -0.538 0.625 -0.535 -0.174 0.000 0.769 -0.389 1.608 2.215 0.667 -1.138 -1.738 1.274 0.877 -0.019 0.482 0.000 0.696 0.917 1.121 0.678 0.347 0.647 0.722
1 2.756 -0.637 -1.715 1.331 1.124 0.913 -0.296 -0.491 0.000 0.983 -0.831 0.000 2.215 1.180 -0.428 0.742 0.000 1.113 0.005 -1.157 1.551 1.681 1.096 1.462 0.976 0.917 1.009 1.040
0 0.755 1.754 0.701 2.111 0.256 1.243 0.057 -1.502 2.173 0.565 -0.034 -1.078 1.107 0.529 1.696 -1.090 0.000 0.665 0.292 0.107 0.000 0.870 0.780 0.990 2.775 0.465 1.876 1.758
1 0.593 -0.762 1.743 0.908 0.442 0.773 -1.357 -0.768 2.173 0.432 1.421 1.236 0.000 0.579 0.291 -0.403 0.000 0.966 -0.309 1.016 3.102 0.893 0.743 0.989 0.857 1.030 0.943 0.854
1 0.891 -1.151 -1.269 0.504 -0.622 0.893 -0.549 0.700 0.000 0.828 -0.825 0.154 2.215 1.083 0.632 -1.141 0.000 1.059 -0.557 1.526 3.102 2.117 1.281 0.987 0.819 0.802 0.917 0.828
1 2.358 -0.248 0.080 0.747 -0.975 1.019 1.374 1.363 0.000 0.935 0.127 -1.707 2.215 0.312 -0.827 0.017 0.000 0.737 1.059 -0.327 0.000 0.716 0.828 1.495 0.953 0.704 0.880 0.745
0 0.660 -0.017 -1.138 0.453 1.002 0.645 0.518 0.703 2.173 0.751 0.705 -0.592 2.215 0.744 -0.909 -1.596 0.000 0.410 -1.135 0.481 0.000 0.592 0.922 0.989 0.897 0.948 0.777 0.701
1 0.718 0.518 0.225 1.710 -0.022 1.888 -0.424 1.092 0.000 4.134 0.185 -1.366 0.000 1.415 1.293 0.242 2.548 2.351 0.264 -0.057 3.102 0.830 1.630 0.976 1.215 0.890 1.422 1.215
1 1.160 0.203 0.941 0.594 0.212 0.636 -0.556 0.679 2.173 1.089 -0.481 -1.008 1.107 1.245 -0.056 -1.357 0.000 0.587 1.007 0.056 0.000 1.106 0.901 0.987 0.786 1.224 0.914 0.837
1 0.697 0.542 0.619 0.985 1.481 0.745 0.415 1.644 2.173 0.903 0.495 -0.958 2.215 1.165 1.195 0.346 0.000 1.067 -0.881 -0.264 0.000 0.830 1.025 0.987 0.690 0.863 0.894 0.867
0 1.430 0.190 -0.700 0.246 0.518 1.302 0.660 -0.247 2.173 1.185 -0.539 1.504 0.000 1.976 -0.401 1.079 0.000 0.855 -0.958 -1.110 3.102 0.886 0.953 0.993 0.889 1.400 1.376 1.119
1 1.122 -0.795 0.202 0.397 -1.553 0.597 -1.459 -0.734 2.173 0.522 1.044 1.027 2.215 0.783 -1.243 1.701 0.000 0.371 1.737 0.199 0.000 1.719 1.176 0.988 0.723 1.583 1.063 0.914
0 1.153 0.526 1.236 0.266 0.001 1.139 -1.236 -0.585 2.173 1.337 -0.215 -1.356 2.215 1.780 1.129 0.902 0.000 1.608 -0.391 -0.161 0.000 1.441 1.633 0.990 1.838 1.516 1.635 1.373
1 0.760 1.012 0.758 0.937 0.051 0.941 0.687 -1.247 2.173 1.288 -0.743 0.822 0.000 1.552 1.782 -1.533 0.000 0.767 1.349 0.168 0.000 0.716 0.862 0.988 0.595 0.359 0.697 0.623
1 1.756 -1.469 1.395 1.345 -1.595 0.817 0.017 -0.741 2.173 0.483 -0.008 0.293 0.000 1.768 -0.663 0.438 1.274 1.202 -1.387 -0.222 0.000 1.022 1.058 0.992 1.407 1.427 1.356 1.133
0 0.397 0.582 -0.758 1.260 -1.735 0.889 -0.515 1.139 2.173 0.973 1.616 0.460 0.000 1.308 1.001 -0.709 2.548 0.858 0.995 -0.231 0.000 0.749 0.888 0.979 1.487 1.804 1.208 1.079
0 0.515 -0.984 0.425 1.114 -0.439 1.999 0.818 1.561 0.000 1.407 0.009 -0.380 0.000 1.332 0.230 0.397 0.000 1.356 -0.616 -1.057 3.102 0.978 1.017 0.990 1.118 0.862 0.835 0.919
1 1.368 -0.921 -0.866 0.842 -0.598 0.456 -1.176 1.219 1.087 0.419 -1.974 -0.819 0.000 0.791 -1.640 0.881 0.000 1.295 -0.782 0.442 3.102 0.945 0.761 0.974 0.915 0.535 0.733 0.651
0 2.276 0.134 0.399 2.525 0.376 1.111 -1.078 -1.571 0.000 0.657 2.215 -0.900 0.000 1.183 -0.662 -0.508 2.548 1.436 -0.517 0.960 3.102 0.569 0.931 0.993 1.170 0.967 0.879 1.207
0 0.849 0.907 0.124 0.652 1.585 0.715 0.355 -1.200 0.000 0.599 -0.892 1.301 0.000 1.106 1.151 0.582 0.000 1.895 -0.279 -0.568 3.102 0.881 0.945 0.998 0.559 0.649 0.638 0.660
1 2.105 0.248 -0.797 0.530 0.206 1.957 -2.175 0.797 0.000 1.193 0.637 -1.646 2.215 0.881 1.111 -1.046 0.000 0.872 -0.185 1.085 1.551 0.986 1.343 1.151 1.069 0.714 2.063 1.951
1 1.838 1.060 1.637 1.017 1.370 0.913 0.461 -0.609 1.087 0.766 -0.461 0.303 2.215 0.724 -0.061 0.886 0.000 0.941 1.123 -0.745 0.000 0.858 0.847 0.979 1.313 1.083 1.094 0.910
0 0.364 1.274 1.066 1.570 -0.394 0.485 0.012 -1.716 0.000 0.317 -1.233 0.534 2.215 0.548 -2.165 0.762 0.000 0.729 0.169 -0.318 3.102 0.892 0.944 1.013 0.594 0.461 0.688 0.715
1 0.503 1.343 -0.031 1.134 -1.204 0.590 -0.309 0.174 2.173 0.408 2.372 -0.628 0.000 1.850 0.400 1.147 2.548 0.664 -0.458 -0.885 0.000 1.445 1.283 0.989 1.280 1.118 1.127 1.026
0 1.873 0.258 0.103 2.491 0.530 1.678 0.644 -1.738 2.173 1.432 0.848 -1.340 0.000 0.621 1.323 -1.316 0.000 0.628 0.789 -0.206 1.551 0.426 0.802 1.125 0.688 1.079 1.338 1.239
1 0.826 -0.732 1.587 0.582 -1.236 0.495 0.757 -0.741 2.173 0.940 1.474 0.354 2.215 0.474 1.055 -1.657 0.000 0.415 1.758 0.841 0.000 0.451 0.578 0.984 0.757 0.922 0.860 0.696
0 0.935 -1.614 -0.597 0.299 1.223 0.707 -0.853 -1.026 0.000 0.751 0.007 -1.691 0.000 1.062 -0.125 0.976 2.548 0.877 1.275 0.646 0.000 0.962 1.074 0.980 0.608 0.726 0.741 0.662
1 0.643 0.542 -1.285 0.474 -0.366 0.667 -0.446 1.195 2.173 1.076 0.145 -0.126 0.000 0.970 -0.661 0.394 1.274 1.218 -0.184 -1.722 0.000 1.331 1.019 0.985 1.192 0.677 0.973 0.910
0 0.713 0.164 1.080 1.427 -0.460 0.960 -0.152 -0.940 2.173 1.427 -0.901 1.036 1.107 0.440 -1.269 -0.194 0.000 0.452 1.932 -0.532 0.000 1.542 1.210 1.374 1.319 1.818 1.220 1.050
0 0.876 -0.463 -1.224 2.458 -1.689 1.007 -0.752 0.398 0.000 2.456 -1.285 -0.152 1.107 1.641 1.838 1.717 0.000 0.458 0.194 0.488 3.102 4.848 2.463 0.986 1.981 0.974 2.642 2.258
1 0.384 -0.275 0.387 1.403 -0.994 0.620 -1.529 1.685 0.000 1.091 -1.644 1.078 0.000 0.781 -1.311 0.326 2.548 1.228 -0.728 -0.633 1.551 0.920 0.854 0.987 0.646 0.609 0.740 0.884
0 0.318 -1.818 -1.008 0.977 1.268 0.457 2.451 -1.522 0.000 0.881 1.351 0.461 2.215 0.929 0.239 -0.380 2.548 0.382 -0.613 1.330 0.000 1.563 1.193 0.994 0.829 0.874 0.901 1.026
1 0.612 -1.120 1.098 0.402 -0.480 0.818 0.188 1.511 0.000 0.800 -0.253 0.977 0.000 1.175 0.271 -1.289 1.274 2.531 0.226 -0.409 3.102 0.889 0.947 0.979 1.486 0.940 1.152 1.119
1 0.587 -0.737 -0.228 0.970 1.119 0.823 0.184 1.594 0.000 1.104 0.301 -0.818 2.215 0.819 0.712 -0.560 0.000 2.240 -0.419 0.340 3.102 1.445 1.103 0.988 0.715 1.363 1.019 0.926
0 1.030 -0.694 -1.638 0.893 -1.074 1.160 -0.766 0.485 0.000 1.632 -0.698 -1.142 2.215 1.050 -1.092 0.952 0.000 1.475 0.286 0.125 3.102 0.914 1.075 0.982 0.732 1.493 1.219 1.079
1 2.142 0.617 1.517 0.387 -0.862 0.345 1.203 -1.014 2.173 0.609 1.092 0.275 0.000 1.331 0.582 -0.183 2.548 0.557 1.540 -1.642 0.000 0.801 0.737 1.060 0.715 0.626 0.749 0.674
0 1.076 0.240 -0.246 0.871 -1.241 0.496 0.282 0.746 2.173 1.095 -0.648 1.100 2.215 0.446 -1.756 0.764 0.000 0.434 0.788 -0.991 0.000 1.079 0.868 1.047 0.818 0.634 0.795 0.733
0 1.400 0.901 -1.617 0.625 -0.163 0.661 -0.411 -1.616 2.173 0.685 0.524 0.425 0.000 0.881 -0.766 0.312 0.000 0.979 0.255 -0.667 3.102 0.898 1.105 1.253 0.730 0.716 0.738 0.795
0 3.302 1.132 1.051 0.658 0.768 1.308 0.251 -0.374 1.087 1.673 0.015 -0.898 0.000 0.688 -0.535 1.363 1.274 0.871 1.325 -1.583 0.000 1.646 1.249 0.995 1.919 1.288 1.330 1.329
0 1.757 0.202 0.750 0.767 -0.362 0.932 -1.033 -1.366 0.000 1.529 -1.012 -0.771 0.000 1.161 -0.287 0.059 0.000 2.185 1.147 1.099 3.102 0.795 0.529 1.354 1.144 1.491 1.319 1.161
0 1.290 0.905 -1.711 1.017 -0.695 1.008 -1.038 0.693 2.173 1.202 -0.595 0.187 0.000 1.011 0.139 -1.607 0.000 0.789 -0.613 -1.041 3.102 1.304 0.895 1.259 1.866 0.955 1.211 1.200
1 1.125 -0.004 1.694 0.373 0.329 0.978 0.640 -0.391 0.000 1.122 -0.376 1.521 2.215 0.432 2.413 -1.259 0.000 0.969 0.730 0.512 3.102 0.716 0.773 0.991 0.624 0.977 0.981 0.875
0 1.081 0.861 1.252 1.621 1.474 1.293 0.600 0.630 0.000 1.991 -0.090 -0.675 2.215 0.861 1.105 -0.201 0.000 1.135 2.489 -1.659 0.000 1.089 0.657 0.991 2.179 0.412 1.334 1.071
1 0.652 -0.294 1.241 1.034 0.490 1.033 0.551 -0.963 2.173 0.661 1.031 -1.654 2.215 1.376 -0.018 0.843 0.000 0.943 -0.329 -0.269 0.000 1.085 1.067 0.991 1.504 0.773 1.135 0.993
1 1.408 -1.028 -1.018 0.252 -0.242 0.465 -0.364 -0.200 0.000 1.466 0.669 0.739 1.107 1.031 0.415 -1.468 2.548 0.457 -1.091 -1.722 0.000 0.771 0.811 0.979 1.459 1.204 1.041 0.866
1 0.781 -1.143 -0.659 0.961 1.266 1.183 -0.686 0.119 2.173 1.126 -0.064 1.447 0.000 0.730 1.430 -1.535 0.000 1.601 0.513 1.658 0.000 0.871 1.345 1.184 1.058 0.620 1.107 0.978
1 1.300 -0.616 1.032 0.751 -0.731 0.961 -0.716 1.592 0.000 2.079 -1.063 -0.271 2.215 0.475 0.518 1.695 1.274 0.395 -2.204 0.349 0.000 1.350 0.983 1.369 1.265 1.428 1.135 0.982
1 0.833 0.809 1.657 1.637 1.019 0.705 1.077 -0.968 2.173 1.261 0.114 -0.298 1.107 1.032 0.017 0.236 0.000 0.640 -0.026 -1.598 0.000 0.894 0.982 0.981 1.250 1.054 1.018 0.853
1 1.686 -1.090 -0.301 0.890 0.557 1.304 -0.284 -1.393 2.173 0.388 2.118 0.513 0.000 0.514 -0.015 0.891 0.000 0.460 0.547 0.627 3.102 0.942 0.524 1.186 1.528 0.889 1.015 1.122
1 0.551 0.911 0.879 0.379 -0.796 1.154 -0.808 -0.966 0.000 1.168 -0.513 0.355 2.215 0.646 -1.309 0.773 0.000 0.544 -0.283 1.301 3.102 0.847 0.705 0.990 0.772 0.546 0.790 0.719
1 1.597 0.793 -1.119 0.691 -1.455 0.370 0.337 1.354 0.000 0.646 -1.005 0.732 2.215 1.019 0.040 0.209 0.000 0.545 0.958 0.239 3.102 0.962 0.793 0.994 0.719 0.745 0.812 0.739
0 1.033 -1.193 -0.452 0.247 0.970 0.503 -1.424 1.362 0.000 1.062 -0.416 -1.156 2.215 0.935 -0.023 0.555 2.548 0.410 -1.766 0.379 0.000 0.590 0.953 0.991 0.717 1.081 0.763 0.690
1 0.859 -1.004 1.521 0.781 -0.993 0.677 0.643 -0.338 2.173 0.486 0.409 1.283 0.000 0.679 0.110 0.285 0.000 0.715 -0.735 -0.157 1.551 0.702 0.773 0.984 0.627 0.633 0.694 0.643
0 0.612 -1.127 1.074 1.225 -0.426 0.927 -2.141 -0.473 0.000 1.290 -0.927 -1.085 2.215 1.183 1.981 -1.687 0.000 2.176 0.406 -1.581 0.000 0.945 0.651 1.170 0.895 1.604 1.179 1.142
1 0.535 0.321 -1.095 0.281 -0.960 0.876 -0.709 -0.076 0.000 1.563 -0.666 1.536 2.215 0.773 -0.321 0.435 0.000 0.682 -0.801 -0.952 3.102 0.711 0.667 0.985 0.888 0.741 0.872 0.758
1 0.745 1.586 1.578 0.863 -1.423 0.530 1.714 1.085 0.000 1.174 0.679 1.015 0.000 1.158 0.609 -1.186 2.548 1.851 0.832 -0.248 3.102 0.910 1.164 0.983 0.947 0.858 0.928 0.823
0 0.677 -1.014 -1.648 1.455 1.461 0.596 -2.358 0.517 0.000 0.800 0.849 -0.743 2.215 1.024 -0.282 -1.004 0.000 1.846 -0.977 0.378 3.102 2.210 1.423 0.982 1.074 1.623 1.417 1.258
1 0.815 -1.263 0.057 1.018 -0.208 0.339 -0.347 -1.646 2.173 1.223 0.600 -1.658 2.215 1.435 0.042 0.926 0.000 0.777 1.698 -0.698 0.000 1.022 1.058 1.000 0.784 0.477 0.886 0.836
0 3.512 -1.094 -0.220 0.338 -0.328 1.962 -1.099 1.544 1.087 1.461 -1.305 -0.922 2.215 1.219 -1.289 0.400 0.000 0.731 0.155 1.249 0.000 1.173 1.366 0.993 2.259 2.000 1.626 1.349
0 0.904 1.248 0.325 0.317 -1.624 0.685 -0.538 1.665 2.173 0.685 -2.145 -1.106 0.000 0.632 -1.460 1.017 0.000 1.085 -0.182 0.162 3.102 0.885 0.801 0.989 0.930 0.904 1.012 0.961

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,270 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/contrib/gbdt/lightgbm/lightgbm-example.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Use LightGBM Estimator in Azure Machine Learning\n",
"In this notebook we will demonstrate how to run a training job using LightGBM Estimator. [LightGBM](https://lightgbm.readthedocs.io/en/latest/) is a gradient boosting framework that uses tree based learning algorithms. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"This notebook uses azureml-contrib-gbdt package, if you don't already have the package, please install by uncommenting below cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#!pip install azureml-contrib-gbdt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace, Run, Experiment\n",
"import shutil, os\n",
"from azureml.widgets import RunDetails\n",
"from azureml.contrib.gbdt import LightGBM\n",
"from azureml.train.dnn import Mpi\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.core.compute_target import ComputeTargetException"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you are using an AzureML Compute Instance, you are all set. Otherwise, go through the [configuration.ipynb](../../../configuration.ipynb) notebook to install the Azure Machine Learning Python SDK and create an Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up machine learning resources"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cluster_vm_size = \"STANDARD_DS14_V2\"\n",
"cluster_min_nodes = 0\n",
"cluster_max_nodes = 20\n",
"cpu_cluster_name = 'TrainingCompute2' \n",
"\n",
"try:\n",
" cpu_cluster = AmlCompute(ws, cpu_cluster_name)\n",
" if cpu_cluster and type(cpu_cluster) is AmlCompute:\n",
" print('found compute target: ' + cpu_cluster_name)\n",
"except ComputeTargetException:\n",
" print('creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = cluster_vm_size, \n",
" vm_priority = 'lowpriority', \n",
" min_nodes = cluster_min_nodes, \n",
" max_nodes = cluster_max_nodes)\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, provisioning_config)\n",
" \n",
" # can poll for a minimum number of nodes and for a specific timeout. \n",
" # if no min node count is provided it will use the scale settings for the cluster\n",
" cpu_cluster.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)\n",
" \n",
" # For a more detailed view of current Azure Machine Learning Compute status, use get_status()\n",
" print(cpu_cluster.get_status().serialize())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From this point, you can either upload training data file directly or use Datastore for training data storage\n",
"## Upload training file from local"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"scripts_folder = \"scripts_folder\"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)\n",
"shutil.copy('./train.conf', os.path.join(scripts_folder, 'train.conf'))\n",
"shutil.copy('./binary0.train', os.path.join(scripts_folder, 'binary0.train'))\n",
"shutil.copy('./binary1.train', os.path.join(scripts_folder, 'binary1.train'))\n",
"shutil.copy('./binary0.test', os.path.join(scripts_folder, 'binary0.test'))\n",
"shutil.copy('./binary1.test', os.path.join(scripts_folder, 'binary1.test'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data_list=[\"binary0.train\", \"binary1.train\"]\n",
"validation_data_list = [\"binary0.test\", \"binary1.test\"]\n",
"lgbm = LightGBM(source_directory=scripts_folder, \n",
" compute_target=cpu_cluster, \n",
" distributed_training=Mpi(),\n",
" node_count=2,\n",
" lightgbm_config='train.conf',\n",
" data=training_data_list,\n",
" valid=validation_data_list\n",
" )\n",
"experiment_name = 'lightgbm-estimator-test'\n",
"experiment = Experiment(ws, name=experiment_name)\n",
"run = experiment.submit(lgbm, tags={\"test public docker image\": None})\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use data reference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.datastore import Datastore\n",
"from azureml.data.data_reference import DataReference\n",
"datastore = ws.get_default_datastore()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore.upload(src_dir='.',\n",
" target_path='.',\n",
" show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_data_list=[\"binary0.train\", \"binary1.train\"]\n",
"validation_data_list = [\"binary0.test\", \"binary1.test\"]\n",
"lgbm = LightGBM(source_directory='.', \n",
" compute_target=cpu_cluster, \n",
" distributed_training=Mpi(),\n",
" node_count=2,\n",
" inputs=[datastore.as_mount()],\n",
" lightgbm_config='train.conf',\n",
" data=training_data_list,\n",
" valid=validation_data_list\n",
" )\n",
"experiment_name = 'lightgbm-estimator-test'\n",
"experiment = Experiment(ws, name=experiment_name)\n",
"run = experiment.submit(lgbm, tags={\"use datastore.as_mount()\": None})\n",
"RunDetails(run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# uncomment below and run if compute resources are no longer needed\n",
"# cpu_cluster.delete() "
]
}
],
"metadata": {
"authors": [
{
"name": "jingywa"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,7 @@
name: lightgbm-example
dependencies:
- pip:
- azureml-sdk
- azureml-contrib-gbdt
- azureml-widgets
- azureml-core

View File

@@ -0,0 +1,111 @@
# task type, support train and predict
task = train
# boosting type, support gbdt for now, alias: boosting, boost
boosting_type = gbdt
# application type, support following application
# regression , regression task
# binary , binary classification task
# lambdarank , lambdarank task
# alias: application, app
objective = binary
# eval metrics, support multi metric, delimite by ',' , support following metrics
# l1
# l2 , default metric for regression
# ndcg , default metric for lambdarank
# auc
# binary_logloss , default metric for binary
# binary_error
metric = binary_logloss,auc
# frequence for metric output
metric_freq = 1
# true if need output metric for training data, alias: tranining_metric, train_metric
is_training_metric = true
# number of bins for feature bucket, 255 is a recommend setting, it can save memories, and also has good accuracy.
max_bin = 255
# training data
# if exsting weight file, should name to "binary.train.weight"
# alias: train_data, train
data = binary.train
# validation data, support multi validation data, separated by ','
# if exsting weight file, should name to "binary.test.weight"
# alias: valid, test, test_data,
valid_data = binary.test
# number of trees(iterations), alias: num_tree, num_iteration, num_iterations, num_round, num_rounds
num_trees = 100
# shrinkage rate , alias: shrinkage_rate
learning_rate = 0.1
# number of leaves for one tree, alias: num_leaf
num_leaves = 63
# type of tree learner, support following types:
# serial , single machine version
# feature , use feature parallel to train
# data , use data parallel to train
# voting , use voting based parallel to train
# alias: tree
tree_learner = feature
# number of threads for multi-threading. One thread will use one CPU, defalut is setted to #cpu.
# num_threads = 8
# feature sub-sample, will random select 80% feature to train on each iteration
# alias: sub_feature
feature_fraction = 0.8
# Support bagging (data sub-sample), will perform bagging every 5 iterations
bagging_freq = 5
# Bagging farction, will random select 80% data on bagging
# alias: sub_row
bagging_fraction = 0.8
# minimal number data for one leaf, use this to deal with over-fit
# alias : min_data_per_leaf, min_data
min_data_in_leaf = 50
# minimal sum hessians for one leaf, use this to deal with over-fit
min_sum_hessian_in_leaf = 5.0
# save memory and faster speed for sparse feature, alias: is_sparse
is_enable_sparse = true
# when data is bigger than memory size, set this to true. otherwise set false will have faster speed
# alias: two_round_loading, two_round
use_two_round_loading = false
# true if need to save data to binary file and application will auto load data from binary file next time
# alias: is_save_binary, save_binary
is_save_binary_file = false
# output model file
output_model = LightGBM_model.txt
# support continuous train from trained gbdt model
# input_model= trained_model.txt
# output prediction file for predict task
# output_result= prediction.txt
# support continuous train from initial score file
# input_init_score= init_score.txt
# number of machines in parallel training, alias: num_machine
num_machines = 2
# local listening port in parallel training, alias: local_port
local_listen_port = 12400
# machines list file for parallel training, alias: mlist
machine_list_file = mlist.txt

View File

@@ -2,19 +2,14 @@
Learn how to use Azure Machine Learning services for experimentation and model management.
If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration Notebook](../configuration.ipynb) first if you haven't already to establish your connection to the AzureML Workspace. Then, run the notebooks in following recommended order.
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-on-local](./training/train-on-local): Learn how to submit a run to local computer and use Azure ML managed run configuration.
* [train-on-amlcompute](./training/train-on-amlcompute): Use a 1-n node Azure ML managed compute cluster for remote runs on Azure CPU or GPU infrastructure.
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
* [logging-api](./training/logging-api): Learn about the details of logging metrics to run history.
* [register-model-create-image-deploy-service](./deployment/register-model-create-image-deploy-service): Learn about the details of model management.
* [logging-api](./track-and-monitor-experiments/logging-api): Learn about the details of logging metrics to run history.
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
* [enable-data-collection-for-models-in-aks](./deployment/enable-data-collection-for-models-in-aks) Learn about data collection APIs for deployed model.
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/README.png)

View File

@@ -21,22 +21,14 @@ Below are the three execution environments supported by automated ML.
<a name="jupyter"></a>
## Setup using Azure Notebooks - Jupyter based notebooks in the Azure cloud
## Setup using Notebook VMs - Jupyter based notebooks from a Azure VM
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
1. Follow the instructions in the [configuration](../../configuration.ipynb) notebook to create and connect to a workspace.
1. Open one of the sample notebooks.
<a name="databricks"></a>
## Setup using Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl_databricks]** as a PyPi library in Azure Databricks workspace.
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
- Attach the notebook to the cluster.
1. Open the [ML Azure portal](https://ml.azure.com)
1. Select Compute
1. Select Notebook VMs
1. Click New
1. Type a name for the Vm and select a VM type
1. Click Create
<a name="localconda"></a>
## Setup using a Local Conda environment
@@ -102,101 +94,71 @@ source activate azure_automl
jupyter notebook
```
<a name="databricks"></a>
## Setup using Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v6.0 (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl]** as a PyPi library in Azure Databricks workspace.
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
- Attach the notebook to the cluster.
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification
- Uses local compute for training
- [auto-ml-classification-credit-card-fraud.ipynb](classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- Simple example of using automated ML for classification to fraudulent credit card transactions
- Uses azure compute for training
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
- Dataset: Hardware Performance Dataset
- Simple example of using automated ML for regression
- Uses local compute for training
- Uses azure compute for training
- [auto-ml-remote-execution.ipynb](remote-execution/auto-ml-remote-execution.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using automated ML for classification using a remote linux DSVM for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automated ML settings as kwargs
- [auto-ml-remote-amlcompute.ipynb](remote-batchai/auto-ml-remote-amlcompute.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using automated ML for classification using remote AmlCompute for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automated ML settings as kwargs
- [auto-ml-remote-attach.ipynb](remote-attach/auto-ml-remote-attach.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- handling text data with preprocess flag
- Reading data from a blob store for remote executions
- using pandas dataframes for reading data
- [auto-ml-missing-data-blacklist-early-termination.ipynb](missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Blacklist certain pipelines
- Specify a target metrics to indicate stopping criteria
- Handling Missing Data in the input
- [auto-ml-sparse-data-train-test-split.ipynb](sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- Handle sparse datasets
- Specify custom train and validation set
- [auto-ml-exploring-previous-runs.ipynb](exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb)
- List all projects for the workspace
- List all automated ML Runs for a given project
- Get details for a automated ML Run. (automated ML settings, run widget & all metrics)
- Download fitted pipeline for any iteration
- [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- Download the data and store it in DataStore.
- [auto-ml-classification-with-deployment.ipynb](classification-with-deployment/auto-ml-classification-with-deployment.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification
- Registering the model
- Creating Image and creating aci service
- Testing the aci service
- [auto-ml-sample-weight.ipynb](sample-weight/auto-ml-sample-weight.ipynb)
- How to specifying sample_weight
- The difference that it makes to test results
- [auto-ml-subsampling-local.ipynb](subsampling/auto-ml-subsampling-local.ipynb)
- How to enable subsampling
- [auto-ml-dataprep.ipynb](dataprep/auto-ml-dataprep.ipynb)
- Using DataPrep for reading data
- [auto-ml-dataprep-remote-execution.ipynb](dataprep-remote-execution/auto-ml-dataprep-remote-execution.ipynb)
- Using DataPrep for reading data with remote execution
- [auto-ml-classification-with-whitelisting.ipynb](classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification with whitelisting tensorflow models.
- Uses local compute for training
- [auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb](regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb)
- Dataset: Hardware Performance Dataset
- Shows featurization and excplanation
- Uses azure compute for training
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
- Example of using automated ML for training a forecasting model
- [auto-ml-classification-credit-card-fraud-local.ipynb](local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb)
- Dataset: Kaggle's [credit card fraud detection dataset](https://www.kaggle.com/mlg-ulb/creditcardfraud)
- Simple example of using automated ML for classification to fraudulent credit card transactions
- Uses local compute for training
- [auto-ml-classification-bank-marketing-all-features.ipynb](classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)
- Dataset: UCI's [bank marketing dataset](https://www.kaggle.com/janiobachmann/bank-marketing-dataset)
- Simple example of using automated ML for classification to predict term deposit subscriptions for a bank
- Uses azure compute for training
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-classification-with-onnx.ipynb](classification-with-onnx/auto-ml-classification-with-onnx.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using automated ML for classification with ONNX models
- Uses local compute for training
- [auto-ml-forecasting-bike-share.ipynb](forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb)
- Dataset: forecasting for a bike-sharing
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-function.ipynb](forecasting-high-frequency/auto-ml-forecasting-function.ipynb)
- Example of training an automated ML forecasting model on multiple time-series
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)
- Example of training an automated ML forecasting model on multiple time-series
- Beer Production Forecasting
- [auto-ml-continuous-retraining.ipynb](continuous-retraining/auto-ml-continuous-retraining.ipynb)
- Continous retraining using Pipelines and Time-Series TabularDataset
- [auto-ml-classification-text-dnn.ipynb](classification-text-dnn/auto-ml-classification-text-dnn.ipynb)
- Classification with text data using deep learning in AutoML
- AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data.
- Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used.
- Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
@@ -235,6 +197,17 @@ If automl_setup_linux.sh fails on Ubuntu Linux with the error: `unable to execut
4) Check that the region is one of the supported regions: `eastus2`, `eastus`, `westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`
5) Check that you have access to the region using the Azure Portal.
## import AutoMLConfig fails after upgrade from before 1.0.76 to 1.0.76 or later
There were package changes in automated machine learning version 1.0.76, which require the previous version to be uninstalled before upgrading to the new version.
If you have manually upgraded from a version of automated machine learning before 1.0.76 to 1.0.76 or later, you may get the error:
`ImportError: cannot import name 'AutoMLConfig'`
This can be resolved by running:
`pip uninstall azureml-train-automl` and then
`pip install azureml-train-automl`
The automl_setup.cmd script does this automatically.
## workspace.from_config fails
If the call `ws = Workspace.from_config()` fails:
1) Make sure that you have run the `configuration.ipynb` notebook successfully.

View File

@@ -2,20 +2,36 @@ name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- python>=3.5.2,<3.6.8
- wheel==0.30.0
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<=1.16.2
- numpy>=1.16.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<0.23.0
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.80
- fbprophet==0.5
- pytorch=1.1.0
- cudatoolkit=9.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,explain]
- azureml-defaults
- azureml-dataprep[pandas]
- azureml-train-automl
- azureml-train
- azureml-widgets
- pandas_ml
- azureml-pipeline
- azureml-contrib-interpret
- pytorch-transformers==1.0.0
- spacy==2.1.8
- onnxruntime==1.0.0
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
channels:
- conda-forge
- pytorch

View File

@@ -0,0 +1,38 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- pip<=19.3.1
- nomkl
- python>=3.5.2,<3.6.8
- wheel==0.30.0
- nb_conda
- matplotlib==2.1.0
- numpy>=1.16.0,<=1.16.2
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<0.23.0
- py-xgboost<=0.80
- fbprophet==0.5
- pytorch=1.1.0
- cudatoolkit=9.0
- pip:
# Required packages for AzureML execution, history, and data preparation.
- azureml-defaults
- azureml-dataprep[pandas]
- azureml-train-automl
- azureml-train
- azureml-widgets
- azureml-pipeline
- azureml-contrib-interpret
- pytorch-transformers==1.0.0
- spacy==2.1.8
- onnxruntime==1.0.0
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz
channels:
- conda-forge
- pytorch

View File

@@ -9,11 +9,14 @@ IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing
IF "%CONDA_EXE%"=="" GOTO CondaMissing
call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 (
echo Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment %conda_env_name%
call pip install --upgrade azureml-sdk[automl,notebooks,explain]
echo Upgrading existing conda environment %conda_env_name%
call pip uninstall azureml-train-automl -y -q
call conda env update --name %conda_env_name% --file %automl_env_file%
if errorlevel 1 goto ErrorExit
) else (
call conda env create -f %automl_env_file% -n %conda_env_name%
@@ -42,6 +45,15 @@ IF NOT "%options%"=="nolaunch" (
goto End
:CondaMissing
echo Please run this script from an Anaconda Prompt window.
echo You can start an Anaconda Prompt window by
echo typing Anaconda Prompt on the Start menu.
echo If you don't see the Anaconda Prompt app, install Miniconda.
echo If you are running an older version of Miniconda or Anaconda,
echo you can upgrade using the command: conda update conda
goto End
:YmlMissing
echo File %automl_env_file% not found.

View File

@@ -22,8 +22,9 @@ fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
echo "Upgrading existing conda environment" $CONDA_ENV_NAME
pip uninstall azureml-train-automl -y -q
conda env update --name $CONDA_ENV_NAME --file $AUTOML_ENV_FILE &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&

View File

@@ -12,7 +12,7 @@ fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
AUTOML_ENV_FILE="automl_env_mac.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
@@ -22,8 +22,9 @@ fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
echo "Upgrading existing conda environment" $CONDA_ENV_NAME
pip uninstall azureml-train-automl -y -q
conda env update --name $CONDA_ENV_NAME --file $AUTOML_ENV_FILE &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&

View File

@@ -0,0 +1,918 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Deployment using a Bank Marketing Dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Deploy](#Deploy)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the UCI Bank Marketing dataset to showcase how you can use AutoML for a classification problem and deploy it to an Azure Container Instance (ACI). The classification goal is to predict if the client will subscribe to a term deposit with the bank.\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute with ONNX compatible config on.\n",
"4. Explore the results, featurization transparency options and save the ONNX model\n",
"5. Inference with the ONNX model.\n",
"6. Register the model.\n",
"7. Create a container image.\n",
"8. Create an Azure Container Instance (ACI) service.\n",
"9. Test the ACI service.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Blacklisting** certain pipelines\n",
"- Specifying **target metrics** to indicate stopping criteria\n",
"- Handling **missing data** in the input"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.explain.model._internal.explanation_client import ExplanationClient"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the `ws = Workspace.from_config()` line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see [aka.ms/aml-notebook-auth](http://aka.ms/aml-notebook-auth)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-bmarketing-all'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-4\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Leverage azure compute to load the bank marketing dataset as a Tabular Dataset into the dataset variable. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Training Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\")\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Add missing values in 75% of the lines.\n",
"import numpy as np\n",
"\n",
"missing_rate = 0.75\n",
"n_missing_samples = int(np.floor(data.shape[0] * missing_rate))\n",
"missing_samples = np.hstack((np.zeros(data.shape[0] - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool)))\n",
"rng = np.random.RandomState(0)\n",
"rng.shuffle(missing_samples)\n",
"missing_features = rng.randint(0, data.shape[1], n_missing_samples)\n",
"data.values[np.where(missing_samples)[0], missing_features] = np.nan"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"# Save the train data to a csv to be uploaded to the datastore\n",
"pd.DataFrame(data).to_csv(\"data/train_data.csv\", index=False)\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bankmarketing', overwrite=True, show_progress=True)\n",
"\n",
" \n",
"\n",
"# Upload the training data as a tabular dataset for access during training on remote compute\n",
"train_data = Dataset.Tabular.from_delimited_files(path=ds.path('bankmarketing/train_data.csv'))\n",
"label = \"y\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Validation Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_validate.csv\"\n",
"validation_dataset = Dataset.Tabular.from_delimited_files(validation_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_test.csv\"\n",
"test_dataset = Dataset.Tabular.from_delimited_files(test_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**blacklist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
"| **whitelist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blacklist_models** allowed for **whitelist_models**.|\n",
"|**experiment_exit_score**| Value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
"|**featurization**| 'auto' / 'off' Indicator for whether featurization step should be done automatically or not. Note: If the input data is sparse, featurization cannot be turned on.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"experiment_timeout_hours\" : 0.3,\n",
" \"enable_early_stopping\" : True,\n",
" \"iteration_timeout_minutes\": 5,\n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" #\"n_cross_validations\": 2,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"featurization\": 'auto',\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" compute_target=compute_target,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
" enable_onnx_compatible_models=True,\n",
" training_data = train_data,\n",
" label_column_name = label,\n",
" validation_data = validation_dataset,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the following cell to access previous runs. Uncomment the cell below and update the run_id."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from azureml.train.automl.run import AutoMLRun\n",
"#experiment_name = 'automl-classification-bmarketing'\n",
"#experiment = Experiment(ws, experiment_name)\n",
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
"#remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait for the remote run to complete\n",
"remote_run.wait_for_completion()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run_customized, fitted_model_customized = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transparency\n",
"\n",
"View updated featurization summary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_featurizer = fitted_model_customized.named_steps['datatransformer']\n",
"df = custom_featurizer.get_featurization_summary()\n",
"pd.DataFrame(data=df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set `is_user_friendly=False` to get a more detailed summary for the transforms being applied."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = custom_featurizer.get_featurization_summary(is_user_friendly=False)\n",
"pd.DataFrame(data=df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = custom_featurizer.get_stats_feature_type_summary()\n",
"pd.DataFrame(data=df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model's explanation\n",
"Retrieve the explanation from the best_run which includes explanations for engineered features and raw features. Make sure that the run for generating explanations for the best model is completed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait for the best model explanation run to complete\n",
"from azureml.core.run import Run\n",
"model_explainability_run_id = remote_run.get_properties().get('ModelExplainRunId')\n",
"print(model_explainability_run_id)\n",
"if model_explainability_run_id is not None:\n",
" model_explainability_run = Run(experiment=experiment, run_id=model_explainability_run_id)\n",
" model_explainability_run.wait_for_completion()\n",
"\n",
"# Get the best run object\n",
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download engineered feature importance from artifact store\n",
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = ExplanationClient.from_run(best_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False)\n",
"exp_data = engineered_explanations.get_feature_importance_dict()\n",
"exp_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download raw feature importance from artifact store\n",
"You can use ExplanationClient to download the raw feature explanations from the artifact store of the best_run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = ExplanationClient.from_run(best_run)\n",
"engineered_explanations = client.download_model_explanation(raw=True)\n",
"exp_data = engineered_explanations.get_feature_importance_dict()\n",
"exp_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best ONNX Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.\n",
"\n",
"Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, onnx_mdl = remote_run.get_output(return_onnx_model=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the best ONNX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.runtime.onnx_convert import OnnxConverter\n",
"onnx_fl_path = \"./best_model.onnx\"\n",
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Predict with the ONNX model, using onnxruntime package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import json\n",
"from azureml.automl.core.onnx_convert import OnnxConvertConstants\n",
"from azureml.train.automl import constants\n",
"\n",
"if sys.version_info < OnnxConvertConstants.OnnxIncompatiblePythonVersion:\n",
" python_version_compatible = True\n",
"else:\n",
" python_version_compatible = False\n",
"\n",
"import onnxruntime\n",
"from azureml.automl.runtime.onnx_convert import OnnxInferenceHelper\n",
"\n",
"def get_onnx_res(run):\n",
" res_path = 'onnx_resource.json'\n",
" run.download_file(name=constants.MODEL_RESOURCE_PATH_ONNX, output_file_path=res_path)\n",
" with open(res_path) as f:\n",
" onnx_res = json.load(f)\n",
" return onnx_res\n",
"\n",
"if python_version_compatible:\n",
" test_df = test_dataset.to_pandas_dataframe()\n",
" mdl_bytes = onnx_mdl.SerializeToString()\n",
" onnx_res = get_onnx_res(best_run)\n",
"\n",
" onnxrt_helper = OnnxInferenceHelper(mdl_bytes, onnx_res)\n",
" pred_onnx, pred_prob_onnx = onnxrt_helper.predict(test_df)\n",
"\n",
" print(pred_onnx)\n",
" print(pred_prob_onnx)\n",
"else:\n",
" print('Please use Python version 3.6 or 3.7 to run the inference helper.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_name = best_run.properties['model_name']\n",
"\n",
"script_file_name = 'inference/score.py'\n",
"conda_env_file_name = 'inference/env.yml'\n",
"\n",
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')\n",
"best_run.download_file('outputs/conda_env_v_1_0_0.yml', 'inference/env.yml')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Fitted Model for Deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model trained on bank marketing data to predict if a client will subscribe to a term deposit'\n",
"tags = None\n",
"model = remote_run.register_model(model_name = model_name, description = description, tags = tags)\n",
"\n",
"print(remote_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the model as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=conda_env_file_name)\n",
"inference_config = InferenceConfig(entry_script=script_file_name, environment=myenv)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"bmData\", 'type': \"automl_classification\"}, \n",
" description = 'sample service for Automl Classification')\n",
"\n",
"aci_service_name = 'automl-sample-bankmarketing-all'\n",
"print(aci_service_name)\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service\n",
"\n",
"Deletes the specified web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service\n",
"\n",
"Gets logs from a deployed web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"Now that the model is trained, run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load the bank marketing datasets.\n",
"from numpy import array"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = test_dataset.drop_columns(columns=['y'])\n",
"y_test = test_dataset.keep_columns(columns=['y'], validate=True)\n",
"test_dataset.take(5).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = X_test.to_pandas_dataframe()\n",
"y_test = y_test.to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"actual = array(y_test)\n",
"actual = actual[:,0]\n",
"print(y_pred.shape, \" \", actual.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib notebook\n",
"test_pred = plt.scatter(actual, y_pred, color='b')\n",
"test_test = plt.scatter(actual, actual, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Bank Marketing dataset is made available under the Creative Commons (CCO: Public Domain) License: https://creativecommons.org/publicdomain/zero/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: https://creativecommons.org/publicdomain/zero/1.0/ and is available at: https://www.kaggle.com/janiobachmann/bank-marketing-dataset .\n",
"\n",
"_**Acknowledgements**_\n",
"This data set is originally available within the UCI Machine Learning Database: https://archive.ics.uci.edu/ml/datasets/bank+marketing\n",
"\n",
"[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014"
]
}
],
"metadata": {
"authors": [
{
"name": "anumamah"
}
],
"category": "tutorial",
"compute": [
"AML"
],
"datasets": [
"Bankmarketing"
],
"deployment": [
"ACI"
],
"exclude_from_index": false,
"framework": [
"None"
],
"friendly_name": "Automated ML run with basic edition features.",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"tags": [
"featurization",
"explainability",
"remote_run",
"AutomatedML"
],
"task": "Classification"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,11 @@
name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- interpret
- onnxruntime==1.0.0
- azureml-explain-model
- azureml-contrib-interpret

View File

@@ -0,0 +1,489 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification of credit card fraudulent transactions on remote compute **_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
"\n",
"This notebook is using remote compute to train the model.\n",
"\n",
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using remote compute.\n",
"4. Explore the results.\n",
"5. Test the fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-ccard-remote'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create or Attach existing AmlCompute\n",
"A compute target is required to execute the Automated ML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your AmlCompute cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-1\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'cpu-cluster-1':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_DS12_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
"label_column_name = 'Class'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'average_precision_score_weighted',\n",
" \"enable_early_stopping\": True,\n",
" \"max_concurrent_iterations\": 2, # This is a limit for testing purpose, please increase it as per cluster size\n",
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" compute_target = compute_target,\n",
" training_data = training_data,\n",
" label_column_name = label_column_name,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"#from azureml.train.automl.run import AutoMLRun\n",
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"widget-rundetails-sample"
]
},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Explain model\n",
"\n",
"Automated ML models can be explained and visualized using the SDK Explainability library. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# convert the test data to dataframe\n",
"X_test_df = validation_data.drop_columns(columns=[label_column_name]).to_pandas_dataframe()\n",
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# call the predict functions on the model\n",
"y_pred = fitted_model.predict(X_test_df)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf =confusion_matrix(y_test_df.values,y_pred)\n",
"plt.imshow(cf,cmap=plt.cm.Blues,interpolation='nearest')\n",
"plt.colorbar()\n",
"plt.title('Confusion Matrix')\n",
"plt.xlabel('Predicted')\n",
"plt.ylabel('Actual')\n",
"class_labels = ['False','True']\n",
"tick_marks = np.arange(len(class_labels))\n",
"plt.xticks(tick_marks,class_labels)\n",
"plt.yticks([-0.5,0,1,1.5],['','False','True',''])\n",
"# plotting text value inside cells\n",
"thresh = cf.max() / 2.\n",
"for i,j in itertools.product(range(cf.shape[0]),range(cf.shape[1])):\n",
" plt.text(j,i,format(cf[i,j],'d'),horizontalalignment='center',color='white' if cf[i,j] >thresh else 'black')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
]
}
],
"metadata": {
"authors": [
{
"name": "tzvikei"
}
],
"category": "tutorial",
"compute": [
"AML Compute"
],
"datasets": [
"Creditcard"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"file_extension": ".py",
"framework": [
"None"
],
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"remote_run",
"AutomatedML"
],
"task": "Classification",
"version": "3.6.7"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,9 @@
name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- interpret
- azureml-explain-model

View File

@@ -0,0 +1,579 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Text Classification Using Deep Learning**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This notebook demonstrates classification with text data using deep learning in AutoML.\n",
"\n",
"AutoML highlights here include using deep neural networks (DNNs) to create embedded features from text data. Depending on the compute cluster the user provides, AutoML tried out Bidirectional Encoder Representations from Transformers (BERT) when a GPU compute is used, and Bidirectional Long-Short Term neural network (BiLSTM) when a CPU compute is used, thereby optimizing the choice of DNN for the uesr's setup.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade).\n",
"\n",
"Notebook synopsis:\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a text dataset (20 Newsgroups dataset from scikit-learn) for classification\n",
"3. Evaluating the final model on a test set\n",
"4. Deploying the model on ACI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import shutil\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.run import Run\n",
"from azureml.widgets import RunDetails\n",
"from azureml.core.model import Model \n",
"from helper import run_inference, get_result_df\n",
"from azureml.train.automl import AutoMLConfig\n",
"from sklearn.datasets import fetch_20newsgroups"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose an experiment name.\n",
"experiment_name = 'automl-classification-text-dnn'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up a compute cluster\n",
"This section uses a user-provided compute cluster (named \"dnntext-cluster\" in this example). If a cluster with this name does not exist in the user's workspace, the below code will create a new cluster. You can choose the parameters of the cluster as mentioned in the comments.\n",
"\n",
"Whether you provide/select a CPU or GPU cluster, AutoML will choose the appropriate DNN for that setup - BiLSTM or BERT text featurizer will be included in the candidate featurizers on CPU and GPU respectively. If your goal is to obtain the most accurate model, we recommend you use GPU clusters since BERT featurizers usually outperform BiLSTM featurizers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"dnntext-cluster\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_NC6\", # CPU for BiLSTM, such as \"STANDARD_D2_V2\" \n",
" # To use BERT (this is recommended for best performance), select a GPU such as \"STANDARD_NC6\" \n",
" # or similar GPU option\n",
" # available in your workspace\n",
" max_nodes = 1)\n",
"\n",
" # Create the cluster\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get data\n",
"For this notebook we will use 20 Newsgroups data from scikit-learn. We filter the data to contain four classes and take a sample as training data. Please note that for accuracy improvement, more data is needed. For this notebook we provide a small-data example so that you can use this template to use with your larger sized data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_dir = \"text-dnn-data\" # Local directory to store data\n",
"blobstore_datadir = data_dir # Blob store directory to store data in\n",
"target_column_name = 'y'\n",
"feature_column_name = 'X'\n",
"\n",
"def get_20newsgroups_data():\n",
" '''Fetches 20 Newsgroups data from scikit-learn\n",
" Returns them in form of pandas dataframes\n",
" '''\n",
" remove = ('headers', 'footers', 'quotes')\n",
" categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"\n",
" data = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" data = pd.DataFrame({feature_column_name: data.data, target_column_name: data.target})\n",
"\n",
" data_train = data[:200]\n",
" data_test = data[200:300] \n",
"\n",
" data_train = remove_blanks_20news(data_train, feature_column_name, target_column_name)\n",
" data_test = remove_blanks_20news(data_test, feature_column_name, target_column_name)\n",
" \n",
" return data_train, data_test\n",
" \n",
"def remove_blanks_20news(data, feature_column_name, target_column_name):\n",
" \n",
" data[feature_column_name] = data[feature_column_name].replace(r'\\n', ' ', regex=True).apply(lambda x: x.strip())\n",
" data = data[data[feature_column_name] != '']\n",
" \n",
" return data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Fetch data and upload to datastore for use in training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train, data_test = get_20newsgroups_data()\n",
"\n",
"if not os.path.isdir(data_dir):\n",
" os.mkdir(data_dir)\n",
" \n",
"train_data_fname = data_dir + '/train_data.csv'\n",
"test_data_fname = data_dir + '/test_data.csv'\n",
"\n",
"data_train.to_csv(train_data_fname, index=False)\n",
"data_test.to_csv(test_data_fname, index=False)\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload(src_dir=data_dir, target_path=blobstore_datadir,\n",
" overwrite=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/train_data.csv')])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare AutoML run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"experiment_timeout_minutes\": 20,\n",
" \"primary_metric\": 'accuracy',\n",
" \"max_concurrent_iterations\": 4, \n",
" \"max_cores_per_iteration\": -1,\n",
" \"enable_dnn\": True,\n",
" \"enable_early_stopping\": True,\n",
" \"validation_size\": 0.3,\n",
" \"verbosity\": logging.INFO,\n",
" \"enable_voting_ensemble\": False,\n",
" \"enable_stack_ensemble\": False,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" compute_target=compute_target,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Submit AutoML Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best model pipeline from our iterations, use it to test on test data on the same compute cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can test the model locally to get a feel of the input/output. This step may require additional package installations such as pytorch."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = automl_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now see what text transformations are used to convert text data to features for this dataset, including deep learning transformations based on BiLSTM or Transformer (BERT is one implementation of a Transformer) models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text_transformations_used = []\n",
"for column_group in fitted_model.named_steps['datatransformer'].get_featurization_summary():\n",
" text_transformations_used.extend(column_group['Transformations'])\n",
"text_transformations_used"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploying the model\n",
"We now use the best fitted model from the AutoML Run to make predictions on the test set. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Get results stats, extract the best model from AutoML run, download and register the resultant best model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"summary_df = get_result_df(automl_run)\n",
"best_dnn_run_id = summary_df['run_id'].iloc[0]\n",
"best_dnn_run = Run(experiment, best_dnn_run_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_dir = 'Model' # Local folder where the model will be stored temporarily\n",
"if not os.path.isdir(model_dir):\n",
" os.mkdir(model_dir)\n",
" \n",
"best_dnn_run.download_file('outputs/model.pkl', model_dir + '/model.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Register the model in your Azure Machine Learning Workspace. If you previously registered a model, please make sure to delete it so as to replace it with this new model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Register the model\n",
"model_name = 'textDNN-20News'\n",
"model = Model.register(model_path = model_dir + '/model.pkl',\n",
" model_name = model_name,\n",
" tags=None,\n",
" workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate on Test Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now use the best fitted model from the AutoML Run to make predictions on the test set. \n",
"\n",
"Test set schema should match that of the training set."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, blobstore_datadir + '/test_data.csv')])\n",
"\n",
"# preview the first 3 rows of the dataset\n",
"test_dataset.take(3).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy2('infer.py', script_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset,\n",
" target_column_name, model_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Display computed metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(test_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_run.wait_for_completion()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pd.Series(test_run.get_metrics())"
]
}
],
"metadata": {
"authors": [
{
"name": "anshirga"
}
],
"compute": [
"AML Compute"
],
"datasets": [
"None"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"framework": [
"None"
],
"friendly_name": "DNN Text Featurization",
"index_order": 2,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"tags": [
"None"
],
"task": "Text featurization using DNNs for classification"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,13 @@
name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- azurmel-train
- https://download.pytorch.org/whl/cpu/torch-1.1.0-cp35-cp35m-win_amd64.whl
- sentencepiece==0.1.82
- pytorch-transformers==1.0
- spacy==2.1.8
- https://aka.ms/automl-resources/packages/en_core_web_sm-2.1.0.tar.gz

View File

@@ -0,0 +1,60 @@
import pandas as pd
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def run_inference(test_experiment, compute_target, script_folder, train_run,
test_dataset, target_column_name, model_name):
train_run.download_file('outputs/conda_env_v_1_0_0.yml',
'inference/condafile.yml')
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path='inference/condafile.yml')
est = Estimator(source_directory=script_folder,
entry_script='infer.py',
script_params={
'--target_column_name': target_column_name,
'--model_name': model_name
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,
environment_definition=inference_env)
run = test_experiment.submit(
est, tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run.log("run_algorithm", run.tags['run_algorithm'])
return run
def get_result_df(remote_run):
children = list(remote_run.get_children(recursive=True))
summary_df = pd.DataFrame(index=['run_id', 'run_algorithm',
'primary_metric', 'Score'])
goal_minimize = False
for run in children:
if('run_algorithm' in run.properties and 'score' in run.properties):
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
run.properties['primary_metric'],
float(run.properties['score'])]
if('goal' in run.properties):
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
summary_df = summary_df.T.sort_values(
'Score',
ascending=goal_minimize).drop_duplicates(['run_algorithm'])
summary_df = summary_df.set_index('run_algorithm')
return summary_df

View File

@@ -0,0 +1,54 @@
import numpy as np
import argparse
from azureml.core import Run
from sklearn.externals import joblib
from azureml.automl.core._vendor.automl.client.core.common import metrics
from automl.client.core.common import constants
from azureml.core.model import Model
parser = argparse.ArgumentParser()
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--model_name', type=str, dest='model_name',
help='Name of registered model')
args = parser.parse_args()
target_column_name = args.target_column_name
model_name = args.model_name
print('args passed are: ')
print('Target column name: ', target_column_name)
print('Name of registered model: ', model_name)
model_path = Model.get_model_path(model_name)
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
X_test_df = test_dataset.drop_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
y_test_df = test_dataset.with_timestamp_columns(None) \
.keep_columns(columns=[target_column_name]) \
.to_pandas_dataframe()
predicted = model.predict_proba(X_test_df)
# use automl metrics module
scores = metrics.compute_metrics_classification(
np.array(predicted),
np.array(y_test_df),
class_labels=model.classes_,
metrics=list(constants.Metric.SCALAR_CLASSIFICATION_SET)
)
print("scores:")
print(scores)
for key, value in scores.items():
run.log(key, value)

View File

@@ -1,503 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Deployment**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Deploy](#Deploy)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) to showcase how you can use AutoML for a simple classification problem and deploy it to an Azure Container Instance (ACI).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Register the model.\n",
"6. Create a container image.\n",
"7. Create an Azure Container Instance (ACI) service.\n",
"8. Test the ACI service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-deployment'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-classification-deployment'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[10:,:]\n",
"y_train = digits.target[10:]\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" name = experiment_name,\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 20,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Fitted Model for Deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"\n",
"print(local_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Scoring Script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a YAML File for the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. The following cells create a file, myenv.yml, which specifies the dependencies from the run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dependencies = ml_run.get_run_sdk_dependencies(iteration = 7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn','py-xgboost<=0.80'],\n",
" pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"script_file_name = 'score.py'\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', local_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'area': \"digits\", 'type': \"automl_classification\"},\n",
" description = \"Image for automl classification sample\")\n",
"\n",
"image = Image.create(name = \"automlsampleimage\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"digits\", 'type': \"automl_classification\"}, \n",
" description = 'sample service for Automl Classification')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-sample-01'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]\n",
"\n",
"for index in np.random.choice(len(y_test), 3, replace = False):\n",
" print(index)\n",
" test_sample = json.dumps({'data':X_test[index:index + 1].tolist()})\n",
" predicted = aci_service.run(input_data = test_sample)\n",
" label = y_test[index]\n",
" predictedDict = json.loads(predicted)\n",
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0])\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,284 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"Please find the ONNX related documentations [here](https://github.com/onnx/onnx).\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute with ONNX compatible config on.\n",
"4. Explore the results and save the ONNX model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-classification-onnx'\n",
"project_folder = './sample_projects/automl-classification-onnx'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train with enable ONNX compatible models config on\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"Set the parameter enable_onnx_compatible_models=True, if you also want to generate the ONNX compatible models. Please note, the forecasting task and TensorFlow models are not ONNX compatible yet.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**enable_onnx_compatible_models**|Enable the ONNX compatible models in the experiment.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_onnx_compatible_models=True,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best ONNX Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*.\n",
"\n",
"Set the parameter return_onnx_model=True to retrieve the best ONNX model, instead of the Python model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, onnx_mdl = local_run.get_output(return_onnx_model=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the best ONNX model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl._vendor.automl.client.core.common.onnx_convert import OnnxConverter\n",
"onnx_fl_path = \"./best_model.onnx\"\n",
"OnnxConverter.save_onnx_model(onnx_mdl, onnx_fl_path)"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,392 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification using whitelist models**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"This notebooks shows how can automl can be trained on a a selected list of models,see the readme.md for the models.\n",
"This trains the model exclusively on tensorflow based models.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model on a whilelisted models using local compute. \n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Note: This notebook will install tensorflow if not already installed in the enviornment..\n",
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import sys\n",
"whitelist_models=[\"LightGBM\"]\n",
"if \"3.7\" != sys.version[0:3]:\n",
" try:\n",
" import tensorflow as tf1\n",
" except ImportError:\n",
" from pip._internal import main\n",
" main(['install', 'tensorflow>=1.10.0,<=1.12.0'])\n",
" logging.getLogger().setLevel(logging.ERROR)\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"]\n",
"\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-whitelist'\n",
"project_folder = './sample_projects/automl-local-whitelist'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_tf=True,\n",
" whitelist_models=whitelist_models,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,469 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the `ws = Workspace.from_config()` line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the `ws = Workspace.from_config()` line in the cell below with the following:\n",
"\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see [aka.ms/aml-notebook-auth](http://aka.ms/aml-notebook-auth)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-classification'\n",
"project_folder = './sample_projects/automl-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|\n",
"\n",
"Automated machine learning trains multiple machine learning pipelines. Each pipelines training is known as an iteration.\n",
"* You can specify a maximum number of iterations using the `iterations` parameter.\n",
"* You can specify a maximum time for the run using the `experiment_timeout_minutes` parameter.\n",
"* If you specify neither the `iterations` nor the `experiment_timeout_minutes`, automated ML keeps running iterations while it continues to see improvements in the scores.\n",
"\n",
"The following example doesn't specify `iterations` or `experiment_timeout_minutes` and so runs until the scores stop improving.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" primary_metric = 'AUC_weighted',\n",
" X = X_train, \n",
" y = y_train,\n",
" n_cross_validations = 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Optionally, you can continue an interrupted local run by calling `continue_experiment` without the `iterations` parameter, or run more iterations for a completed run by specifying the `iterations` parameter:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = local_run.continue_experiment(X = X_train, \n",
" y = y_train, \n",
" show_output = True,\n",
" iterations = 5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n",
"The following shows printing hyperparameters for each step in the pipeline."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pprint import pprint\n",
"\n",
"def print_model(model, prefix=\"\"):\n",
" for step in model.steps:\n",
" print(prefix + step[0])\n",
" if hasattr(step[1], 'estimators') and hasattr(step[1], 'weights'):\n",
" pprint({'estimators': list(e[0] for e in step[1].estimators), 'weights': step[1].weights})\n",
" print()\n",
" for estimator in step[1].estimators:\n",
" print_model(estimator[1], estimator[0]+ ' - ')\n",
" else:\n",
" pprint(step[1].get_params())\n",
" print()\n",
" \n",
"print_model(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_model(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_model(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test \n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,573 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/continous-retraining/auto-ml-continuous-retraining.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning \n",
"**Continous retraining using Pipelines and Time-Series TabularDataset**\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"2. [Setup](#Setup)\n",
"3. [Compute](#Compute)\n",
"4. [Run Configuration](#Run-Configuration)\n",
"5. [Data Ingestion Pipeline](#Data-Ingestion-Pipeline)\n",
"6. [Training Pipeline](#Training-Pipeline)\n",
"7. [Publish Retraining Pipeline and Schedule](#Publish-Retraining-Pipeline-and-Schedule)\n",
"8. [Test Retraining](#Test-Retraining)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use AutoML and Pipelines to enable contious retraining of a model based on updates to the training dataset. We will create two pipelines, the first one to demonstrate a training dataset that gets updated over time. We leverage time-series capabilities of `TabularDataset` to achieve this. The second pipeline utilizes pipeline `Schedule` to trigger continuous retraining. \n",
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
"In this notebook you will learn how to:\n",
"* Create an Experiment in an existing Workspace.\n",
"* Configure AutoML using AutoMLConfig.\n",
"* Create data ingestion pipeline to update a time-series based TabularDataset\n",
"* Create training pipeline to prepare data, run AutoML, register the model and setup pipeline triggers.\n",
"\n",
"## Setup\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accessing the Azure ML workspace requires authentication with Azure.\n",
"\n",
"The default authentication is interactive authentication using the default tenant. Executing the ws = Workspace.from_config() line in the cell below will prompt for authentication the first time that it is run.\n",
"\n",
"If you have multiple Azure tenants, you can specify the tenant by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
"```\n",
"from azureml.core.authentication import InteractiveLoginAuthentication\n",
"auth = InteractiveLoginAuthentication(tenant_id = 'mytenantid')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"If you need to run in an environment where interactive login is not possible, you can use Service Principal authentication by replacing the ws = Workspace.from_config() line in the cell below with the following:\n",
"```\n",
"from azureml.core.authentication import ServicePrincipalAuthentication\n",
"auth = auth = ServicePrincipalAuthentication('mytenantid', 'myappid', 'mypassword')\n",
"ws = Workspace.from_config(auth = auth)\n",
"```\n",
"For more details, see aka.ms/aml-notebook-auth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"dstor = ws.get_default_datastore()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'retrain-noaaweather'\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute \n",
"\n",
"#### Create or Attach existing AmlCompute\n",
"\n",
"You will need to create a compute target for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-42\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 4)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = 0, timeout_in_minutes = 10)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import CondaDependencies, DEFAULT_CPU_IMAGE, RunConfiguration\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]', 'applicationinsights', 'azureml-opendatasets'], \n",
" conda_packages=['numpy==1.16.2'], \n",
" pin_sdk_version=False)\n",
"#cd.add_pip_package('azureml-explain-model')\n",
"conda_run_config.environment.python.conda_dependencies = cd\n",
"\n",
"print('run config is ready')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Ingestion Pipeline \n",
"For this demo, we will use NOAA weather data from [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/). You can replace this with your own dataset, or you can skip this pipeline if you already have a time-series based `TabularDataset`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The name and target column of the Dataset to create \n",
"dataset = \"NOAA-Weather-DS4\"\n",
"target_column_name = \"temperature\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Upload Data Step\n",
"The data ingestion pipeline has a single step with a script to query the latest weather data and upload it to the blob store. During the first run, the script will create and register a time-series based `TabularDataset` with the past one week of weather data. For each subsequent run, the script will create a partition in the blob store by querying NOAA for new weather data since the last modified time of the dataset (`dataset.data_changed_time`) and creating a data.csv file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Pipeline, PipelineParameter\n",
"from azureml.pipeline.steps import PythonScriptStep\n",
"\n",
"ds_name = PipelineParameter(name=\"ds_name\", default_value=dataset)\n",
"upload_data_step = PythonScriptStep(script_name=\"upload_weather_data.py\", \n",
" allow_reuse=False,\n",
" name=\"upload_weather_data\",\n",
" arguments=[\"--ds_name\", ds_name],\n",
" compute_target=compute_target, \n",
" runconfig=conda_run_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit Pipeline Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_pipeline = Pipeline(\n",
" description=\"pipeline_with_uploaddata\",\n",
" workspace=ws, \n",
" steps=[upload_data_step])\n",
"data_pipeline_run = experiment.submit(data_pipeline, pipeline_parameters={\"ds_name\":dataset})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_pipeline_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training Pipeline\n",
"### Prepare Training Data Step\n",
"\n",
"Script to check if new data is available since the model was last trained. If no new data is available, we cancel the remaining pipeline steps. We need to set allow_reuse flag to False to allow the pipeline to run even when inputs don't change. We also need the name of the model to check the time the model was last trained."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PipelineData\n",
"\n",
"# The model name with which to register the trained model in the workspace.\n",
"model_name = PipelineParameter(\"model_name\", default_value=\"noaaweatherds\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_prep_step = PythonScriptStep(script_name=\"check_data.py\", \n",
" allow_reuse=False,\n",
" name=\"check_data\",\n",
" arguments=[\"--ds_name\", ds_name,\n",
" \"--model_name\", model_name],\n",
" compute_target=compute_target, \n",
" runconfig=conda_run_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"train_ds = Dataset.get_by_name(ws, dataset)\n",
"train_ds = train_ds.drop_columns([\"partition_date\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### AutoMLStep\n",
"Create an AutoMLConfig and a training step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.pipeline.steps import AutoMLStep\n",
"\n",
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"experiment_timeout_hours\": 0.25,\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n",
" \"max_concurrent_iterations\": 3,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"verbosity\": logging.INFO,\n",
" \"enable_early_stopping\": True\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl_errors.log',\n",
" path = \".\",\n",
" compute_target=compute_target,\n",
" training_data = train_ds,\n",
" label_column_name = target_column_name,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import PipelineData, TrainingOutput\n",
"\n",
"metrics_output_name = 'metrics_output'\n",
"best_model_output_name = 'best_model_output'\n",
"\n",
"metrics_data = PipelineData(name='metrics_data',\n",
" datastore=dstor,\n",
" pipeline_output_name=metrics_output_name,\n",
" training_output=TrainingOutput(type='Metrics'))\n",
"model_data = PipelineData(name='model_data',\n",
" datastore=dstor,\n",
" pipeline_output_name=best_model_output_name,\n",
" training_output=TrainingOutput(type='Model'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_step = AutoMLStep(\n",
" name='automl_module',\n",
" automl_config=automl_config,\n",
" outputs=[metrics_data, model_data],\n",
" allow_reuse=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Model Step\n",
"Script to register the model to the workspace. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"register_model_step = PythonScriptStep(script_name=\"register_model.py\",\n",
" name=\"register_model\",\n",
" allow_reuse=False,\n",
" arguments=[\"--model_name\", model_name, \"--model_path\", model_data, \"--ds_name\", ds_name],\n",
" inputs=[model_data],\n",
" compute_target=compute_target,\n",
" runconfig=conda_run_config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit Pipeline Run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline = Pipeline(\n",
" description=\"training_pipeline\",\n",
" workspace=ws, \n",
" steps=[data_prep_step, automl_step, register_model_step])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline_run = experiment.submit(training_pipeline, pipeline_parameters={\n",
" \"ds_name\": dataset, \"model_name\": \"noaaweatherds\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"training_pipeline_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Publish Retraining Pipeline and Schedule\n",
"Once we are happy with the pipeline, we can publish the training pipeline to the workspace and create a schedule to trigger on blob change. The schedule polls the blob store where the data is being uploaded and runs the retraining pipeline if there is a data change. A new version of the model will be registered to the workspace once the run is complete."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_name = \"Retraining-Pipeline-NOAAWeather\"\n",
"\n",
"published_pipeline = training_pipeline.publish(\n",
" name=pipeline_name, \n",
" description=\"Pipeline that retrains AutoML model\")\n",
"\n",
"published_pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Schedule\n",
"schedule = Schedule.create(workspace=ws, name=\"RetrainingSchedule\",\n",
" pipeline_parameters={\"ds_name\": dataset, \"model_name\": \"noaaweatherds\"},\n",
" pipeline_id=published_pipeline.id, \n",
" experiment_name=experiment_name, \n",
" datastore=dstor,\n",
" wait_for_provisioning=True,\n",
" polling_interval=1440)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Retraining\n",
"Here we setup the data ingestion pipeline to run on a schedule, to verify that the retraining pipeline runs as expected. \n",
"\n",
"Note: \n",
"* Azure NOAA Weather data is updated daily and retraining will not trigger if there is no new data available. \n",
"* Depending on the polling interval set in the schedule, the retraining may take some time trigger after data ingestion pipeline completes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_name = \"DataIngestion-Pipeline-NOAAWeather\"\n",
"\n",
"published_pipeline = training_pipeline.publish(\n",
" name=pipeline_name, \n",
" description=\"Pipeline that updates NOAAWeather Dataset\")\n",
"\n",
"published_pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.pipeline.core import Schedule\n",
"schedule = Schedule.create(workspace=ws, name=\"RetrainingSchedule-DataIngestion\",\n",
" pipeline_parameters={\"ds_name\":dataset},\n",
" pipeline_id=published_pipeline.id, \n",
" experiment_name=experiment_name, \n",
" datastore=dstor,\n",
" wait_for_provisioning=True,\n",
" polling_interval=1440)"
]
}
],
"metadata": {
"authors": [
{
"name": "vivijay"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- azureml-pipeline

View File

@@ -0,0 +1,46 @@
import argparse
import os
import azureml.core
from datetime import datetime
import pandas as pd
import pytz
from azureml.core import Dataset, Model
from azureml.core.run import Run, _OfflineRun
from azureml.core import Workspace
run = Run.get_context()
ws = None
if type(run) == _OfflineRun:
ws = Workspace.from_config()
else:
ws = run.experiment.workspace
print("Check for new data.")
parser = argparse.ArgumentParser("split")
parser.add_argument("--ds_name", help="input dataset name")
parser.add_argument("--model_name", help="name of the deployed model")
args = parser.parse_args()
print("Argument 1(ds_name): %s" % args.ds_name)
print("Argument 2(model_name): %s" % args.model_name)
# Get the latest registered model
try:
model = Model(ws, args.model_name)
last_train_time = model.created_time
print("Model was last trained on {0}.".format(last_train_time))
except Exception as e:
print("Could not get last model train time.")
last_train_time = datetime.min.replace(tzinfo=pytz.UTC)
train_ds = Dataset.get_by_name(ws, args.ds_name)
dataset_changed_time = train_ds.data_changed_time
if not dataset_changed_time > last_train_time:
print("Cancelling run since there is no new data.")
run.parent.cancel()
else:
# New data is available since the model was last trained
print("Dataset was last updated on {0}. Retraining...".format(dataset_changed_time))

View File

@@ -0,0 +1,33 @@
from azureml.core.model import Model, Dataset
from azureml.core.run import Run, _OfflineRun
from azureml.core import Workspace
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model_name")
parser.add_argument("--model_path")
parser.add_argument("--ds_name")
args = parser.parse_args()
print("Argument 1(model_name): %s" % args.model_name)
print("Argument 2(model_path): %s" % args.model_path)
print("Argument 3(ds_name): %s" % args.ds_name)
run = Run.get_context()
ws = None
if type(run) == _OfflineRun:
ws = Workspace.from_config()
else:
ws = run.experiment.workspace
train_ds = Dataset.get_by_name(ws, args.ds_name)
datasets = [(Dataset.Scenario.TRAINING, train_ds)]
# Register model with training dataset
model = Model.register(workspace=ws,
model_path=args.model_path,
model_name=args.model_name,
datasets=datasets)
print("Registered version {0} of model {1}".format(model.version, model.name))

View File

@@ -0,0 +1,89 @@
import argparse
import os
from datetime import datetime
from dateutil.relativedelta import relativedelta
import pandas as pd
import traceback
from azureml.core import Dataset
from azureml.core.run import Run, _OfflineRun
from azureml.core import Workspace
from azureml.opendatasets import NoaaIsdWeather
run = Run.get_context()
ws = None
if type(run) == _OfflineRun:
ws = Workspace.from_config()
else:
ws = run.experiment.workspace
usaf_list = ['725724', '722149', '723090', '722159', '723910', '720279',
'725513', '725254', '726430', '720381', '723074', '726682',
'725486', '727883', '723177', '722075', '723086', '724053',
'725070', '722073', '726060', '725224', '725260', '724520',
'720305', '724020', '726510', '725126', '722523', '703333',
'722249', '722728', '725483', '722972', '724975', '742079',
'727468', '722193', '725624', '722030', '726380', '720309',
'722071', '720326', '725415', '724504', '725665', '725424',
'725066']
def get_noaa_data(start_time, end_time):
columns = ['usaf', 'wban', 'datetime', 'latitude', 'longitude', 'elevation',
'windAngle', 'windSpeed', 'temperature', 'stationName', 'p_k']
isd = NoaaIsdWeather(start_time, end_time, cols=columns)
noaa_df = isd.to_pandas_dataframe()
df_filtered = noaa_df[noaa_df["usaf"].isin(usaf_list)]
df_filtered.reset_index(drop=True)
print("Received {0} rows of training data between {1} and {2}".format(
df_filtered.shape[0], start_time, end_time))
return df_filtered
print("Check for new data and prepare the data")
parser = argparse.ArgumentParser("split")
parser.add_argument("--ds_name", help="name of the Dataset to update")
args = parser.parse_args()
print("Argument 1(ds_name): %s" % args.ds_name)
dstor = ws.get_default_datastore()
register_dataset = False
try:
ds = Dataset.get_by_name(ws, args.ds_name)
end_time_last_slice = ds.data_changed_time.replace(tzinfo=None)
print("Dataset {0} last updated on {1}".format(args.ds_name,
end_time_last_slice))
except Exception as e:
print(traceback.format_exc())
print("Dataset with name {0} not found, registering new dataset.".format(args.ds_name))
register_dataset = True
end_time_last_slice = datetime.today() - relativedelta(weeks=2)
end_time = datetime.utcnow()
train_df = get_noaa_data(end_time_last_slice, end_time)
if train_df.size > 0:
print("Received {0} rows of new data after {0}.".format(
train_df.shape[0], end_time_last_slice))
folder_name = "{}/{:04d}/{:02d}/{:02d}/{:02d}/{:02d}/{:02d}".format(args.ds_name, end_time.year,
end_time.month, end_time.day,
end_time.hour, end_time.minute,
end_time.second)
file_path = "{0}/data.csv".format(folder_name)
# Add a new partition to the registered dataset
os.makedirs(folder_name, exist_ok=True)
train_df.to_csv(file_path, index=False)
dstor.upload_files(files=[file_path],
target_path=folder_name,
overwrite=True,
show_progress=True)
else:
print("No new data since {0}.".format(end_time_last_slice))
if register_dataset:
ds = Dataset.Tabular.from_delimited_files(dstor.path("{}/**/*.csv".format(
args.ds_name)), partition_format='/{partition_date:yyyy/MM/dd/HH/mm/ss}/data.csv')
ds.register(ws, name=args.ds_name)

View File

@@ -1,498 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Prepare Data using `azureml.dataprep` for Remote Execution (DSVM)**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
"2. Pass the `Dataflow` to AutoML for a local run.\n",
"3. Pass the `Dataflow` to AutoML for a remote run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import time\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
" \n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataprep-remote-dsvm'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataprep-remote-dsvm'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"This creates a general AutoML settings object applicable for both local and remote runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach a Remote Linux DSVM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dsvm_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[dsvm_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found existing DVSM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pass Data with `Dataflow` Objects\n",
"\n",
"The `Dataflow` objects captured above can also be passed to the `submit` method for a remote run. AutoML will serialize the `Dataflow` object and send it to the remote compute target. The `Dataflow` will not be evaluated locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X,\n",
" y = y,\n",
" **automl_settings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the first iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"best_run, fitted_model = remote_run.get_output(iteration = iteration)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,448 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Prepare Data using `azureml.dataprep` for Local Execution**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
"2. Pass the `Dataflow` to AutoML for a local run.\n",
"3. Pass the `Dataflow` to AutoML for a remote run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
" \n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataprep-local'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataprep-local'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"This creates a general AutoML settings object applicable for both local and remote runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pass Data with `Dataflow` Objects\n",
"\n",
"The `Dataflow` objects captured above can be passed to the `submit` method for a local run. AutoML will retrieve the results from the `Dataflow` for model training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" X = X,\n",
" y = y,\n",
" **automl_settings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the first iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"best_run, fitted_model = local_run.get_output(iteration = iteration)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,342 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Exploring Previous Runs**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Explore](#Explore)\n",
"1. [Download](#Download)\n",
"1. [Register](#Register)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we present some examples on navigating previously executed runs. We also show how you can download a fitted model for any previous run.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. List all experiments in a workspace.\n",
"2. List all AutoML runs in an experiment.\n",
"3. Get details for an AutoML run, including settings, run widget, and all metrics.\n",
"4. Download a fitted pipeline for any iteration."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### List Experiments"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_list = Experiment.list(workspace=ws)\n",
"\n",
"summary_df = pd.DataFrame(index = ['No of Runs'])\n",
"for experiment in experiment_list:\n",
" automl_runs = list(experiment.get_runs(type='automl'))\n",
" summary_df[experiment.name] = [len(automl_runs)]\n",
" \n",
"pd.set_option('display.max_colwidth', -1)\n",
"summary_df.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### List runs for an experiment\n",
"Set `experiment_name` to any experiment name from the result of the Experiment.list cell to load the AutoML runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'automl-local-classification' # Replace this with any project name from previous cell.\n",
"\n",
"proj = ws.experiments[experiment_name]\n",
"summary_df = pd.DataFrame(index = ['Type', 'Status', 'Primary Metric', 'Iterations', 'Compute', 'Name'])\n",
"automl_runs = list(proj.get_runs(type='automl'))\n",
"automl_runs_project = []\n",
"for run in automl_runs:\n",
" properties = run.get_properties()\n",
" tags = run.get_tags()\n",
" amlsettings = json.loads(properties['AMLSettingsJsonString'])\n",
" if 'iterations' in tags:\n",
" iterations = tags['iterations']\n",
" else:\n",
" iterations = properties['num_iterations']\n",
" summary_df[run.id] = [amlsettings['task_type'], run.get_details()['status'], properties['primary_metric'], iterations, properties['target'], amlsettings['name']]\n",
" if run.get_details()['status'] == 'Completed':\n",
" automl_runs_project.append(run.id)\n",
" \n",
"from IPython.display import HTML\n",
"projname_html = HTML(\"<h3>{}</h3>\".format(proj.name))\n",
"\n",
"from IPython.display import display\n",
"display(projname_html)\n",
"display(summary_df.T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get details for a run\n",
"\n",
"Copy the project name and run id from the previous cell output to find more details on a particular run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_id = automl_runs_project[0] # Replace with your own run_id from above run ids\n",
"assert (run_id in summary_df.keys()), \"Run id not found! Please set run id to a value from above run ids\"\n",
"\n",
"from azureml.widgets import RunDetails\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\n",
"\n",
"summary_df = pd.DataFrame(index = ['Type', 'Status', 'Primary Metric', 'Iterations', 'Compute', 'Name', 'Start Time', 'End Time'])\n",
"properties = ml_run.get_properties()\n",
"tags = ml_run.get_tags()\n",
"status = ml_run.get_details()\n",
"amlsettings = json.loads(properties['AMLSettingsJsonString'])\n",
"if 'iterations' in tags:\n",
" iterations = tags['iterations']\n",
"else:\n",
" iterations = properties['num_iterations']\n",
"start_time = None\n",
"if 'startTimeUtc' in status:\n",
" start_time = status['startTimeUtc']\n",
"end_time = None\n",
"if 'endTimeUtc' in status:\n",
" end_time = status['endTimeUtc']\n",
"summary_df[ml_run.id] = [amlsettings['task_type'], status['status'], properties['primary_metric'], iterations, properties['target'], amlsettings['name'], start_time, end_time]\n",
"display(HTML('<h3>Runtime Details</h3>'))\n",
"display(summary_df)\n",
"\n",
"#settings_df = pd.DataFrame(data = amlsettings, index = [''])\n",
"display(HTML('<h3>AutoML Settings</h3>'))\n",
"display(amlsettings)\n",
"\n",
"display(HTML('<h3>Iterations</h3>'))\n",
"RunDetails(ml_run).show() \n",
"\n",
"children = list(ml_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"display(HTML('<h3>Metrics</h3>'))\n",
"display(rundata)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the Best Model for Any Given Metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metric = 'AUC_weighted' # Replace with a metric name.\n",
"best_run, fitted_model = ml_run.get_output(metric = metric)\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the Model for Any Given Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 1 # Replace with an iteration number.\n",
"best_run, fitted_model = ml_run.get_output(iteration = iteration)\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register fitted model for deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Best Model for Any Given Metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metric = 'AUC_weighted' # Replace with a metric name.\n",
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags, metric = metric)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Model for Any Given Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 1 # Replace with an iteration number.\n",
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags, iteration = iteration)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,20 @@
DATE,grain,BeerProduction
2017-01-01,grain,9049
2017-02-01,grain,10458
2017-03-01,grain,12489
2017-04-01,grain,11499
2017-05-01,grain,13553
2017-06-01,grain,14740
2017-07-01,grain,11424
2017-08-01,grain,13412
2017-09-01,grain,11917
2017-10-01,grain,12721
2017-11-01,grain,13272
2017-12-01,grain,14278
2018-01-01,grain,9572
2018-02-01,grain,10423
2018-03-01,grain,12667
2018-04-01,grain,11904
2018-05-01,grain,14120
2018-06-01,grain,14565
2018-07-01,grain,12622
1 DATE grain BeerProduction
2 2017-01-01 grain 9049
3 2017-02-01 grain 10458
4 2017-03-01 grain 12489
5 2017-04-01 grain 11499
6 2017-05-01 grain 13553
7 2017-06-01 grain 14740
8 2017-07-01 grain 11424
9 2017-08-01 grain 13412
10 2017-09-01 grain 11917
11 2017-10-01 grain 12721
12 2017-11-01 grain 13272
13 2017-12-01 grain 14278
14 2018-01-01 grain 9572
15 2018-02-01 grain 10423
16 2018-03-01 grain 12667
17 2018-04-01 grain 11904
18 2018-05-01 grain 14120
19 2018-06-01 grain 14565
20 2018-07-01 grain 12622

View File

@@ -0,0 +1,301 @@
DATE,grain,BeerProduction
1992-01-01,grain,3459
1992-02-01,grain,3458
1992-03-01,grain,4002
1992-04-01,grain,4564
1992-05-01,grain,4221
1992-06-01,grain,4529
1992-07-01,grain,4466
1992-08-01,grain,4137
1992-09-01,grain,4126
1992-10-01,grain,4259
1992-11-01,grain,4240
1992-12-01,grain,4936
1993-01-01,grain,3031
1993-02-01,grain,3261
1993-03-01,grain,4160
1993-04-01,grain,4377
1993-05-01,grain,4307
1993-06-01,grain,4696
1993-07-01,grain,4458
1993-08-01,grain,4457
1993-09-01,grain,4364
1993-10-01,grain,4236
1993-11-01,grain,4500
1993-12-01,grain,4974
1994-01-01,grain,3075
1994-02-01,grain,3377
1994-03-01,grain,4443
1994-04-01,grain,4261
1994-05-01,grain,4460
1994-06-01,grain,4985
1994-07-01,grain,4324
1994-08-01,grain,4719
1994-09-01,grain,4374
1994-10-01,grain,4248
1994-11-01,grain,4784
1994-12-01,grain,4971
1995-01-01,grain,3370
1995-02-01,grain,3484
1995-03-01,grain,4269
1995-04-01,grain,3994
1995-05-01,grain,4715
1995-06-01,grain,4974
1995-07-01,grain,4223
1995-08-01,grain,5000
1995-09-01,grain,4235
1995-10-01,grain,4554
1995-11-01,grain,4851
1995-12-01,grain,4826
1996-01-01,grain,3699
1996-02-01,grain,3983
1996-03-01,grain,4262
1996-04-01,grain,4619
1996-05-01,grain,5219
1996-06-01,grain,4836
1996-07-01,grain,4941
1996-08-01,grain,5062
1996-09-01,grain,4365
1996-10-01,grain,5012
1996-11-01,grain,4850
1996-12-01,grain,5097
1997-01-01,grain,3758
1997-02-01,grain,3825
1997-03-01,grain,4454
1997-04-01,grain,4635
1997-05-01,grain,5210
1997-06-01,grain,5057
1997-07-01,grain,5231
1997-08-01,grain,5034
1997-09-01,grain,4970
1997-10-01,grain,5342
1997-11-01,grain,4831
1997-12-01,grain,5965
1998-01-01,grain,3796
1998-02-01,grain,4019
1998-03-01,grain,4898
1998-04-01,grain,5090
1998-05-01,grain,5237
1998-06-01,grain,5447
1998-07-01,grain,5435
1998-08-01,grain,5107
1998-09-01,grain,5515
1998-10-01,grain,5583
1998-11-01,grain,5346
1998-12-01,grain,6286
1999-01-01,grain,4032
1999-02-01,grain,4435
1999-03-01,grain,5479
1999-04-01,grain,5483
1999-05-01,grain,5587
1999-06-01,grain,6176
1999-07-01,grain,5621
1999-08-01,grain,5889
1999-09-01,grain,5828
1999-10-01,grain,5849
1999-11-01,grain,6180
1999-12-01,grain,6771
2000-01-01,grain,4243
2000-02-01,grain,4952
2000-03-01,grain,6008
2000-04-01,grain,5353
2000-05-01,grain,6435
2000-06-01,grain,6673
2000-07-01,grain,5636
2000-08-01,grain,6630
2000-09-01,grain,5887
2000-10-01,grain,6322
2000-11-01,grain,6520
2000-12-01,grain,6678
2001-01-01,grain,5082
2001-02-01,grain,5216
2001-03-01,grain,5893
2001-04-01,grain,5894
2001-05-01,grain,6799
2001-06-01,grain,6667
2001-07-01,grain,6374
2001-08-01,grain,6840
2001-09-01,grain,5575
2001-10-01,grain,6545
2001-11-01,grain,6789
2001-12-01,grain,7180
2002-01-01,grain,5117
2002-02-01,grain,5442
2002-03-01,grain,6337
2002-04-01,grain,6525
2002-05-01,grain,7216
2002-06-01,grain,6761
2002-07-01,grain,6958
2002-08-01,grain,7070
2002-09-01,grain,6148
2002-10-01,grain,6924
2002-11-01,grain,6716
2002-12-01,grain,7975
2003-01-01,grain,5326
2003-02-01,grain,5609
2003-03-01,grain,6414
2003-04-01,grain,6741
2003-05-01,grain,7144
2003-06-01,grain,7133
2003-07-01,grain,7568
2003-08-01,grain,7266
2003-09-01,grain,6634
2003-10-01,grain,7626
2003-11-01,grain,6843
2003-12-01,grain,8540
2004-01-01,grain,5629
2004-02-01,grain,5898
2004-03-01,grain,7045
2004-04-01,grain,7094
2004-05-01,grain,7333
2004-06-01,grain,7918
2004-07-01,grain,7289
2004-08-01,grain,7396
2004-09-01,grain,7259
2004-10-01,grain,7268
2004-11-01,grain,7731
2004-12-01,grain,9058
2005-01-01,grain,5557
2005-02-01,grain,6237
2005-03-01,grain,7723
2005-04-01,grain,7262
2005-05-01,grain,8241
2005-06-01,grain,8757
2005-07-01,grain,7352
2005-08-01,grain,8496
2005-09-01,grain,7741
2005-10-01,grain,7710
2005-11-01,grain,8247
2005-12-01,grain,8902
2006-01-01,grain,6066
2006-02-01,grain,6590
2006-03-01,grain,7923
2006-04-01,grain,7335
2006-05-01,grain,8843
2006-06-01,grain,9327
2006-07-01,grain,7792
2006-08-01,grain,9156
2006-09-01,grain,8037
2006-10-01,grain,8640
2006-11-01,grain,9128
2006-12-01,grain,9545
2007-01-01,grain,6627
2007-02-01,grain,6743
2007-03-01,grain,8195
2007-04-01,grain,7828
2007-05-01,grain,9570
2007-06-01,grain,9484
2007-07-01,grain,8608
2007-08-01,grain,9543
2007-09-01,grain,8123
2007-10-01,grain,9649
2007-11-01,grain,9390
2007-12-01,grain,10065
2008-01-01,grain,7093
2008-02-01,grain,7483
2008-03-01,grain,8365
2008-04-01,grain,8895
2008-05-01,grain,9794
2008-06-01,grain,9977
2008-07-01,grain,9553
2008-08-01,grain,9375
2008-09-01,grain,9225
2008-10-01,grain,9948
2008-11-01,grain,8758
2008-12-01,grain,10839
2009-01-01,grain,7266
2009-02-01,grain,7578
2009-03-01,grain,8688
2009-04-01,grain,9162
2009-05-01,grain,9369
2009-06-01,grain,10167
2009-07-01,grain,9507
2009-08-01,grain,8923
2009-09-01,grain,9272
2009-10-01,grain,9075
2009-11-01,grain,8949
2009-12-01,grain,10843
2010-01-01,grain,6558
2010-02-01,grain,7481
2010-03-01,grain,9475
2010-04-01,grain,9424
2010-05-01,grain,9351
2010-06-01,grain,10552
2010-07-01,grain,9077
2010-08-01,grain,9273
2010-09-01,grain,9420
2010-10-01,grain,9413
2010-11-01,grain,9866
2010-12-01,grain,11455
2011-01-01,grain,6901
2011-02-01,grain,8014
2011-03-01,grain,9832
2011-04-01,grain,9281
2011-05-01,grain,9967
2011-06-01,grain,11344
2011-07-01,grain,9106
2011-08-01,grain,10469
2011-09-01,grain,10085
2011-10-01,grain,9612
2011-11-01,grain,10328
2011-12-01,grain,11483
2012-01-01,grain,7486
2012-02-01,grain,8641
2012-03-01,grain,9709
2012-04-01,grain,9423
2012-05-01,grain,11342
2012-06-01,grain,11274
2012-07-01,grain,9845
2012-08-01,grain,11163
2012-09-01,grain,9532
2012-10-01,grain,10754
2012-11-01,grain,10953
2012-12-01,grain,11922
2013-01-01,grain,8395
2013-02-01,grain,8888
2013-03-01,grain,10110
2013-04-01,grain,10493
2013-05-01,grain,12218
2013-06-01,grain,11385
2013-07-01,grain,11186
2013-08-01,grain,11462
2013-09-01,grain,10494
2013-10-01,grain,11540
2013-11-01,grain,11138
2013-12-01,grain,12709
2014-01-01,grain,8557
2014-02-01,grain,9059
2014-03-01,grain,10055
2014-04-01,grain,10977
2014-05-01,grain,11792
2014-06-01,grain,11904
2014-07-01,grain,10965
2014-08-01,grain,10981
2014-09-01,grain,10828
2014-10-01,grain,11817
2014-11-01,grain,10470
2014-12-01,grain,13310
2015-01-01,grain,8400
2015-02-01,grain,9062
2015-03-01,grain,10722
2015-04-01,grain,11107
2015-05-01,grain,11508
2015-06-01,grain,12904
2015-07-01,grain,11869
2015-08-01,grain,11224
2015-09-01,grain,12022
2015-10-01,grain,11983
2015-11-01,grain,11506
2015-12-01,grain,14183
2016-01-01,grain,8650
2016-02-01,grain,10323
2016-03-01,grain,12110
2016-04-01,grain,11424
2016-05-01,grain,12243
2016-06-01,grain,13686
2016-07-01,grain,10956
2016-08-01,grain,12706
2016-09-01,grain,12279
2016-10-01,grain,11914
2016-11-01,grain,13025
2016-12-01,grain,14431
1 DATE grain BeerProduction
2 1992-01-01 grain 3459
3 1992-02-01 grain 3458
4 1992-03-01 grain 4002
5 1992-04-01 grain 4564
6 1992-05-01 grain 4221
7 1992-06-01 grain 4529
8 1992-07-01 grain 4466
9 1992-08-01 grain 4137
10 1992-09-01 grain 4126
11 1992-10-01 grain 4259
12 1992-11-01 grain 4240
13 1992-12-01 grain 4936
14 1993-01-01 grain 3031
15 1993-02-01 grain 3261
16 1993-03-01 grain 4160
17 1993-04-01 grain 4377
18 1993-05-01 grain 4307
19 1993-06-01 grain 4696
20 1993-07-01 grain 4458
21 1993-08-01 grain 4457
22 1993-09-01 grain 4364
23 1993-10-01 grain 4236
24 1993-11-01 grain 4500
25 1993-12-01 grain 4974
26 1994-01-01 grain 3075
27 1994-02-01 grain 3377
28 1994-03-01 grain 4443
29 1994-04-01 grain 4261
30 1994-05-01 grain 4460
31 1994-06-01 grain 4985
32 1994-07-01 grain 4324
33 1994-08-01 grain 4719
34 1994-09-01 grain 4374
35 1994-10-01 grain 4248
36 1994-11-01 grain 4784
37 1994-12-01 grain 4971
38 1995-01-01 grain 3370
39 1995-02-01 grain 3484
40 1995-03-01 grain 4269
41 1995-04-01 grain 3994
42 1995-05-01 grain 4715
43 1995-06-01 grain 4974
44 1995-07-01 grain 4223
45 1995-08-01 grain 5000
46 1995-09-01 grain 4235
47 1995-10-01 grain 4554
48 1995-11-01 grain 4851
49 1995-12-01 grain 4826
50 1996-01-01 grain 3699
51 1996-02-01 grain 3983
52 1996-03-01 grain 4262
53 1996-04-01 grain 4619
54 1996-05-01 grain 5219
55 1996-06-01 grain 4836
56 1996-07-01 grain 4941
57 1996-08-01 grain 5062
58 1996-09-01 grain 4365
59 1996-10-01 grain 5012
60 1996-11-01 grain 4850
61 1996-12-01 grain 5097
62 1997-01-01 grain 3758
63 1997-02-01 grain 3825
64 1997-03-01 grain 4454
65 1997-04-01 grain 4635
66 1997-05-01 grain 5210
67 1997-06-01 grain 5057
68 1997-07-01 grain 5231
69 1997-08-01 grain 5034
70 1997-09-01 grain 4970
71 1997-10-01 grain 5342
72 1997-11-01 grain 4831
73 1997-12-01 grain 5965
74 1998-01-01 grain 3796
75 1998-02-01 grain 4019
76 1998-03-01 grain 4898
77 1998-04-01 grain 5090
78 1998-05-01 grain 5237
79 1998-06-01 grain 5447
80 1998-07-01 grain 5435
81 1998-08-01 grain 5107
82 1998-09-01 grain 5515
83 1998-10-01 grain 5583
84 1998-11-01 grain 5346
85 1998-12-01 grain 6286
86 1999-01-01 grain 4032
87 1999-02-01 grain 4435
88 1999-03-01 grain 5479
89 1999-04-01 grain 5483
90 1999-05-01 grain 5587
91 1999-06-01 grain 6176
92 1999-07-01 grain 5621
93 1999-08-01 grain 5889
94 1999-09-01 grain 5828
95 1999-10-01 grain 5849
96 1999-11-01 grain 6180
97 1999-12-01 grain 6771
98 2000-01-01 grain 4243
99 2000-02-01 grain 4952
100 2000-03-01 grain 6008
101 2000-04-01 grain 5353
102 2000-05-01 grain 6435
103 2000-06-01 grain 6673
104 2000-07-01 grain 5636
105 2000-08-01 grain 6630
106 2000-09-01 grain 5887
107 2000-10-01 grain 6322
108 2000-11-01 grain 6520
109 2000-12-01 grain 6678
110 2001-01-01 grain 5082
111 2001-02-01 grain 5216
112 2001-03-01 grain 5893
113 2001-04-01 grain 5894
114 2001-05-01 grain 6799
115 2001-06-01 grain 6667
116 2001-07-01 grain 6374
117 2001-08-01 grain 6840
118 2001-09-01 grain 5575
119 2001-10-01 grain 6545
120 2001-11-01 grain 6789
121 2001-12-01 grain 7180
122 2002-01-01 grain 5117
123 2002-02-01 grain 5442
124 2002-03-01 grain 6337
125 2002-04-01 grain 6525
126 2002-05-01 grain 7216
127 2002-06-01 grain 6761
128 2002-07-01 grain 6958
129 2002-08-01 grain 7070
130 2002-09-01 grain 6148
131 2002-10-01 grain 6924
132 2002-11-01 grain 6716
133 2002-12-01 grain 7975
134 2003-01-01 grain 5326
135 2003-02-01 grain 5609
136 2003-03-01 grain 6414
137 2003-04-01 grain 6741
138 2003-05-01 grain 7144
139 2003-06-01 grain 7133
140 2003-07-01 grain 7568
141 2003-08-01 grain 7266
142 2003-09-01 grain 6634
143 2003-10-01 grain 7626
144 2003-11-01 grain 6843
145 2003-12-01 grain 8540
146 2004-01-01 grain 5629
147 2004-02-01 grain 5898
148 2004-03-01 grain 7045
149 2004-04-01 grain 7094
150 2004-05-01 grain 7333
151 2004-06-01 grain 7918
152 2004-07-01 grain 7289
153 2004-08-01 grain 7396
154 2004-09-01 grain 7259
155 2004-10-01 grain 7268
156 2004-11-01 grain 7731
157 2004-12-01 grain 9058
158 2005-01-01 grain 5557
159 2005-02-01 grain 6237
160 2005-03-01 grain 7723
161 2005-04-01 grain 7262
162 2005-05-01 grain 8241
163 2005-06-01 grain 8757
164 2005-07-01 grain 7352
165 2005-08-01 grain 8496
166 2005-09-01 grain 7741
167 2005-10-01 grain 7710
168 2005-11-01 grain 8247
169 2005-12-01 grain 8902
170 2006-01-01 grain 6066
171 2006-02-01 grain 6590
172 2006-03-01 grain 7923
173 2006-04-01 grain 7335
174 2006-05-01 grain 8843
175 2006-06-01 grain 9327
176 2006-07-01 grain 7792
177 2006-08-01 grain 9156
178 2006-09-01 grain 8037
179 2006-10-01 grain 8640
180 2006-11-01 grain 9128
181 2006-12-01 grain 9545
182 2007-01-01 grain 6627
183 2007-02-01 grain 6743
184 2007-03-01 grain 8195
185 2007-04-01 grain 7828
186 2007-05-01 grain 9570
187 2007-06-01 grain 9484
188 2007-07-01 grain 8608
189 2007-08-01 grain 9543
190 2007-09-01 grain 8123
191 2007-10-01 grain 9649
192 2007-11-01 grain 9390
193 2007-12-01 grain 10065
194 2008-01-01 grain 7093
195 2008-02-01 grain 7483
196 2008-03-01 grain 8365
197 2008-04-01 grain 8895
198 2008-05-01 grain 9794
199 2008-06-01 grain 9977
200 2008-07-01 grain 9553
201 2008-08-01 grain 9375
202 2008-09-01 grain 9225
203 2008-10-01 grain 9948
204 2008-11-01 grain 8758
205 2008-12-01 grain 10839
206 2009-01-01 grain 7266
207 2009-02-01 grain 7578
208 2009-03-01 grain 8688
209 2009-04-01 grain 9162
210 2009-05-01 grain 9369
211 2009-06-01 grain 10167
212 2009-07-01 grain 9507
213 2009-08-01 grain 8923
214 2009-09-01 grain 9272
215 2009-10-01 grain 9075
216 2009-11-01 grain 8949
217 2009-12-01 grain 10843
218 2010-01-01 grain 6558
219 2010-02-01 grain 7481
220 2010-03-01 grain 9475
221 2010-04-01 grain 9424
222 2010-05-01 grain 9351
223 2010-06-01 grain 10552
224 2010-07-01 grain 9077
225 2010-08-01 grain 9273
226 2010-09-01 grain 9420
227 2010-10-01 grain 9413
228 2010-11-01 grain 9866
229 2010-12-01 grain 11455
230 2011-01-01 grain 6901
231 2011-02-01 grain 8014
232 2011-03-01 grain 9832
233 2011-04-01 grain 9281
234 2011-05-01 grain 9967
235 2011-06-01 grain 11344
236 2011-07-01 grain 9106
237 2011-08-01 grain 10469
238 2011-09-01 grain 10085
239 2011-10-01 grain 9612
240 2011-11-01 grain 10328
241 2011-12-01 grain 11483
242 2012-01-01 grain 7486
243 2012-02-01 grain 8641
244 2012-03-01 grain 9709
245 2012-04-01 grain 9423
246 2012-05-01 grain 11342
247 2012-06-01 grain 11274
248 2012-07-01 grain 9845
249 2012-08-01 grain 11163
250 2012-09-01 grain 9532
251 2012-10-01 grain 10754
252 2012-11-01 grain 10953
253 2012-12-01 grain 11922
254 2013-01-01 grain 8395
255 2013-02-01 grain 8888
256 2013-03-01 grain 10110
257 2013-04-01 grain 10493
258 2013-05-01 grain 12218
259 2013-06-01 grain 11385
260 2013-07-01 grain 11186
261 2013-08-01 grain 11462
262 2013-09-01 grain 10494
263 2013-10-01 grain 11540
264 2013-11-01 grain 11138
265 2013-12-01 grain 12709
266 2014-01-01 grain 8557
267 2014-02-01 grain 9059
268 2014-03-01 grain 10055
269 2014-04-01 grain 10977
270 2014-05-01 grain 11792
271 2014-06-01 grain 11904
272 2014-07-01 grain 10965
273 2014-08-01 grain 10981
274 2014-09-01 grain 10828
275 2014-10-01 grain 11817
276 2014-11-01 grain 10470
277 2014-12-01 grain 13310
278 2015-01-01 grain 8400
279 2015-02-01 grain 9062
280 2015-03-01 grain 10722
281 2015-04-01 grain 11107
282 2015-05-01 grain 11508
283 2015-06-01 grain 12904
284 2015-07-01 grain 11869
285 2015-08-01 grain 11224
286 2015-09-01 grain 12022
287 2015-10-01 grain 11983
288 2015-11-01 grain 11506
289 2015-12-01 grain 14183
290 2016-01-01 grain 8650
291 2016-02-01 grain 10323
292 2016-03-01 grain 12110
293 2016-04-01 grain 11424
294 2016-05-01 grain 12243
295 2016-06-01 grain 13686
296 2016-07-01 grain 10956
297 2016-08-01 grain 12706
298 2016-09-01 grain 12279
299 2016-10-01 grain 11914
300 2016-11-01 grain 13025
301 2016-12-01 grain 14431

View File

@@ -0,0 +1,663 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.png)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"# Automated Machine Learning\n",
"**Beer Production Forecasting**\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Evaluate](#Evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Introduction\n",
"This notebook demonstrates demand forecasting for Beer Production Dataset using AutoML.\n",
"\n",
"AutoML highlights here include using Deep Learning forecasts, Arima, Prophet, Remote Execution and Remote Inferencing, and working with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)\n",
"\n",
"Notebook synopsis:\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Configuration and remote run of AutoML for a time-series model exploring Regression learners, Arima, Prophet and DNNs\n",
"4. Evaluating the fitted model using a rolling test "
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Setup\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import os\n",
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"\n",
"from pandas.tseries.frequencies import to_offset\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
"from azureml.train.estimator import Estimator"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'beer-remote-cpu'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Using AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=4)\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Data\n",
"Read Beer demand data from file, and preview data."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Let's set up what we know about the dataset. \n",
"\n",
"**Target column** is what we want to forecast.\n",
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Grain** is another word for an individual time series in your dataset. Grains are identified by values of the columns listed `grain_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from pandas import DataFrame\n",
"from pandas import Grouper\n",
"from matplotlib import pyplot\n",
"from pandas import concat\n",
"from matplotlib import pyplot\n",
"from pandas.plotting import register_matplotlib_converters\n",
"register_matplotlib_converters()\n",
"plt.tight_layout()\n",
"plt.figure(figsize=(20, 10))\n",
"\n",
"plt.subplot(2, 1, 1)\n",
"plt.title('Beer Production By Year')\n",
"df = pd.read_csv(\"Beer_no_valid_split_train.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
"test_df = pd.read_csv(\"Beer_no_valid_split_test.csv\", parse_dates=True, index_col= 'DATE').drop(columns='grain')\n",
"pyplot.plot(df)\n",
"\n",
"plt.subplot(2, 1, 2)\n",
"plt.title('Beer Production By Month')\n",
"groups = df.groupby(df.index.month)\n",
"months = concat([DataFrame(x[1].values) for x in groups], axis=1)\n",
"months = DataFrame(months)\n",
"months.columns = range(1,13)\n",
"months.boxplot()\n",
"pyplot.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"target_column_name = 'BeerProduction'\n",
"time_column_name = 'DATE'\n",
"grain_column_names = []\n",
"freq = 'M' #Monthly data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split Training data into Train and Validation set and Upload to Datastores"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from helper import split_fraction_by_grain\n",
"from helper import split_full_for_forecasting\n",
"\n",
"train, valid = split_full_for_forecasting(df, time_column_name)\n",
"train.to_csv(\"train.csv\")\n",
"valid.to_csv(\"valid.csv\")\n",
"test_df.to_csv(\"test.csv\")\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files = ['./train.csv'], target_path = 'beer-dataset/tabular/', overwrite = True,show_progress = True)\n",
"datastore.upload_files(files = ['./valid.csv'], target_path = 'beer-dataset/tabular/', overwrite = True,show_progress = True)\n",
"datastore.upload_files(files = ['./test.csv'], target_path = 'beer-dataset/tabular/', overwrite = True,show_progress = True)\n",
"\n",
"from azureml.core import Dataset\n",
"train_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'beer-dataset/tabular/train.csv')])\n",
"valid_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'beer-dataset/tabular/valid.csv')])\n",
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'beer-dataset/tabular/test.csv')])"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 12 periods (i.e. 12 months). Notice that this is much shorter than the number of months in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"max_horizon = 12"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**enable_dnn**|Enable Forecasting DNNs|\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results.\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"automl_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon,\n",
" 'enable_dnn' : True,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_hours = 1,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" validation_data=valid_dataset, \n",
" verbosity=logging.INFO,\n",
" compute_target=compute_target,\n",
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" **automl_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. The experiment can be continued for more iterations if more accurate results are required."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output= False)\n",
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"# from azureml.train.automl.run import AutoMLRun\n",
"# remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Retrieve the Best Model for Each Algorithm\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from helper import get_result_df\n",
"summary_df = get_result_df(remote_run)\n",
"summary_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core.run import Run\n",
"from azureml.widgets import RunDetails\n",
"forecast_model = 'TCNForecaster'\n",
"if not forecast_model in summary_df['run_id']:\n",
" forecast_model = 'ForecastTCN'\n",
" \n",
"best_dnn_run_id = summary_df['run_id'][forecast_model]\n",
"best_dnn_run = Run(experiment, best_dnn_run_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"best_dnn_run.parent\n",
"RunDetails(best_dnn_run.parent).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"best_dnn_run\n",
"RunDetails(best_dnn_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Evaluate on Test Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. \n",
"\n",
"We always score on the original dataset whose schema matches the training set schema."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from azureml.core import Dataset\n",
"test_dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'beer-dataset/tabular/test.csv')])\n",
"# preview the first 3 rows of the dataset\n",
"test_dataset.take(5).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target = ws.compute_targets['cpu-cluster']\n",
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import os\n",
"import shutil\n",
"\n",
"script_folder = os.path.join(os.getcwd(), 'inference')\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy2('infer.py', script_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from helper import run_inference\n",
"\n",
"test_run = run_inference(test_experiment, compute_target, script_folder, best_dnn_run, test_dataset, valid_dataset, max_horizon,\n",
" target_column_name, time_column_name, freq)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RunDetails(test_run).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from helper import run_multiple_inferences\n",
"\n",
"summary_df = run_multiple_inferences(summary_df, experiment, test_experiment, compute_target, script_folder, test_dataset, \n",
" valid_dataset, max_horizon, target_column_name, time_column_name, freq)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"for run_name, run_summary in summary_df.iterrows():\n",
" print(run_name)\n",
" print(run_summary)\n",
" run_id = run_summary.run_id\n",
" test_run_id = run_summary.test_run_id\n",
" test_run = Run(test_experiment, test_run_id)\n",
" test_run.wait_for_completion()\n",
" test_score = test_run.get_metrics()[run_summary.primary_metric]\n",
" summary_df.loc[summary_df.run_id == run_id, 'Test Score'] = test_score\n",
" print(\"Test Score: \", test_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"summary_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "omkarm"
}
],
"hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,11 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- numpy==1.16.2
- azureml-train-automl
- azureml-widgets
- matplotlib
- azureml-train

View File

@@ -0,0 +1,137 @@
import pandas as pd
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def split_fraction_by_grain(df, fraction, time_column_name,
grain_column_names=None):
if not grain_column_names:
df['tmp_grain_column'] = 'grain'
grain_column_names = ['tmp_grain_column']
"""Group df by grain and split on last n rows for each group."""
df_grouped = (df.sort_values(time_column_name)
.groupby(grain_column_names, group_keys=False))
df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-int(len(dfg) *
fraction)] if fraction > 0 else dfg)
df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-int(len(dfg) *
fraction):] if fraction > 0 else dfg[:0])
if 'tmp_grain_column' in grain_column_names:
for df2 in (df, df_head, df_tail):
df2.drop('tmp_grain_column', axis=1, inplace=True)
grain_column_names.remove('tmp_grain_column')
return df_head, df_tail
def split_full_for_forecasting(df, time_column_name,
grain_column_names=None, test_split=0.2):
index_name = df.index.name
# Assumes that there isn't already a column called tmpindex
df['tmpindex'] = df.index
train_df, test_df = split_fraction_by_grain(
df, test_split, time_column_name, grain_column_names)
train_df = train_df.set_index('tmpindex')
train_df.index.name = index_name
test_df = test_df.set_index('tmpindex')
test_df.index.name = index_name
df.drop('tmpindex', axis=1, inplace=True)
return train_df, test_df
def get_result_df(remote_run):
children = list(remote_run.get_children(recursive=True))
summary_df = pd.DataFrame(index=['run_id', 'run_algorithm',
'primary_metric', 'Score'])
goal_minimize = False
for run in children:
if('run_algorithm' in run.properties and 'score' in run.properties):
summary_df[run.id] = [run.id, run.properties['run_algorithm'],
run.properties['primary_metric'],
float(run.properties['score'])]
if('goal' in run.properties):
goal_minimize = run.properties['goal'].split('_')[-1] == 'min'
summary_df = summary_df.T.sort_values(
'Score',
ascending=goal_minimize).drop_duplicates(['run_algorithm'])
summary_df = summary_df.set_index('run_algorithm')
return summary_df
def run_inference(test_experiment, compute_target, script_folder, train_run,
test_dataset, lookback_dataset, max_horizon,
target_column_name, time_column_name, freq):
model_base_name = 'model.pkl'
if 'model_data_location' in train_run.properties:
model_location = train_run.properties['model_data_location']
_, model_base_name = model_location.rsplit('/', 1)
train_run.download_file('outputs/{}'.format(model_base_name), 'inference/{}'.format(model_base_name))
train_run.download_file('outputs/conda_env_v_1_0_0.yml', 'inference/condafile.yml')
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path='inference/condafile.yml')
est = Estimator(source_directory=script_folder,
entry_script='infer.py',
script_params={
'--max_horizon': max_horizon,
'--target_column_name': target_column_name,
'--time_column_name': time_column_name,
'--frequency': freq,
'--model_path': model_base_name
},
inputs=[test_dataset.as_named_input('test_data'),
lookback_dataset.as_named_input('lookback_data')],
compute_target=compute_target,
environment_definition=inference_env)
run = test_experiment.submit(
est, tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run.log("run_algorithm", run.tags['run_algorithm'])
return run
def run_multiple_inferences(summary_df, train_experiment, test_experiment,
compute_target, script_folder, test_dataset,
lookback_dataset, max_horizon, target_column_name,
time_column_name, freq):
for run_name, run_summary in summary_df.iterrows():
print(run_name)
print(run_summary)
run_id = run_summary.run_id
train_run = Run(train_experiment, run_id)
test_run = run_inference(
test_experiment, compute_target, script_folder, train_run,
test_dataset, lookback_dataset, max_horizon, target_column_name,
time_column_name, freq)
print(test_run)
summary_df.loc[summary_df.run_id == run_id,
'test_run_id'] = test_run.id
return summary_df

View File

@@ -0,0 +1,325 @@
import pandas as pd
import numpy as np
import argparse
from azureml.core import Run
from sklearn.externals import joblib
from sklearn.metrics import mean_absolute_error, mean_squared_error
from azureml.automl.core._vendor.automl.client.core.common import metrics
from automl.client.core.common import constants
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
def do_rolling_forecast_with_lookback(fitted_model, X_test, y_test,
max_horizon, X_lookback, y_lookback,
freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
print("Using lookback of size: ", y_lookback.size)
df_list = []
origin_time = X_test[time_column_name].min()
X = X_lookback.append(X_test)
y = np.concatenate((y_lookback, y_test), axis=0)
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X[time_column_name] < horizon_time)
X_test_expand = X[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y[test_context_expand_wind]
# Print some debug info
print("Horizon_time:", horizon_time,
" origin_time: ", origin_time,
" max_horizon: ", max_horizon,
" freq: ", freq)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
# y_fcst, X_trans = y_query_expand, X_test_expand
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within
# the current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (X[time_column_name] >= origin_time)
df_list.append(align_outputs(
y_fcst[trans_roll_wind], X_trans[trans_roll_wind],
X[test_roll_wind], y[test_roll_wind]))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def do_rolling_forecast(fitted_model, X_test, y_test, max_horizon, freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X_test[time_column_name] < horizon_time)
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
# Print some debug info
print("Horizon_time:", horizon_time,
" origin_time: ", origin_time,
" max_horizon: ", max_horizon,
" freq: ", freq)
print("expand_wind: ", expand_wind)
print("y_query_expand")
print(y_query_expand)
print("X_test")
print(X_test)
print("X_test_expand")
print(X_test_expand)
print("Type of X_test_expand: ", type(X_test_expand))
print("Type of y_query_expand: ", type(y_query_expand))
print("y_query_expand")
print(y_query_expand)
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
print("y_fcst")
print(y_fcst)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind]))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))
parser = argparse.ArgumentParser()
parser.add_argument(
'--max_horizon', type=int, dest='max_horizon',
default=10, help='Max Horizon for forecasting')
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--time_column_name', type=str, dest='time_column_name',
help='Time Column Name')
parser.add_argument(
'--frequency', type=str, dest='freq',
help='Frequency of prediction')
parser.add_argument(
'--model_path', type=str, dest='model_path',
default='model.pkl', help='Filename of model to be loaded')
args = parser.parse_args()
max_horizon = args.max_horizon
target_column_name = args.target_column_name
time_column_name = args.time_column_name
freq = args.freq
model_path = args.model_path
print('args passed are: ')
print(max_horizon)
print(target_column_name)
print(time_column_name)
print(freq)
print(model_path)
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
lookback_dataset = run.input_datasets['lookback_data']
grain_column_names = []
df = test_dataset.to_pandas_dataframe()
print('Read df')
print(df)
X_test_df = test_dataset.drop_columns(columns=[target_column_name])
y_test_df = test_dataset.with_timestamp_columns(
None).keep_columns(columns=[target_column_name])
X_lookback_df = lookback_dataset.drop_columns(columns=[target_column_name])
y_lookback_df = lookback_dataset.with_timestamp_columns(
None).keep_columns(columns=[target_column_name])
fitted_model = joblib.load(model_path)
if hasattr(fitted_model, 'get_lookback'):
lookback = fitted_model.get_lookback()
df_all = do_rolling_forecast_with_lookback(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
X_lookback_df.to_pandas_dataframe()[-lookback:],
y_lookback_df.to_pandas_dataframe().values.T[0][-lookback:],
freq)
else:
df_all = do_rolling_forecast(
fitted_model,
X_test_df.to_pandas_dataframe(),
y_test_df.to_pandas_dataframe().values.T[0],
max_horizon,
freq)
print(df_all)
print("target values:::")
print(df_all[target_column_name])
print("predicted values:::")
print(df_all['predicted'])
# use automl metrics module
scores = metrics.compute_metrics_regression(
df_all['predicted'],
df_all[target_column_name],
list(constants.Metric.SCALAR_REGRESSION_SET),
None, None, None)
print("scores:")
print(scores)
for key, value in scores.items():
run.log(key, value)
print("Simple forecasting model")
rmse = np.sqrt(mean_squared_error(
df_all[target_column_name], df_all['predicted']))
print("[Test Data] \nRoot Mean squared error: %.2f" % rmse)
mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])
print('mean_absolute_error score: %.2f' % mae)
print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))
run.log('rmse', rmse)
run.log('mae', mae)

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -19,8 +26,10 @@
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Compute](#Compute)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Featurization](#Featurization)\n",
"1. [Evaluate](#Evaluate)"
]
},
@@ -29,19 +38,17 @@
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we show how AutoML can be used for bike share forecasting.\n",
"This notebook demonstrates demand forecasting for a bike-sharing service using AutoML.\n",
"\n",
"The purpose is to demonstrate how to take advantage of the built-in holiday featurization, access the feature names, and further demonstrate how to work with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"AutoML highlights here include built-in holiday featurization, accessing engineered feature names, and working with the `forecast` function. Please also look at the additional forecasting notebooks, which document lagging, rolling windows, forecast quantiles, other ways to use the forecast function, and forecaster deployment.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"Notebook synopsis:\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
"2. Configuration and local run of AutoML for a time-series model with lag and holiday features \n",
"3. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"4. Evaluating the fitted model using a rolling test "
]
},
{
@@ -61,23 +68,17 @@
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core import Workspace, Experiment, Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
"from datetime import datetime"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem."
]
},
{
@@ -90,8 +91,6 @@
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-bikeshareforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-bikeshareforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -99,9 +98,9 @@
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['SKU'] = ws.sku\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -112,8 +111,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"Read bike share demand data from file, and preview data."
"## Compute\n",
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
@@ -122,22 +124,65 @@
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv('bike-no.csv', parse_dates=['date'])"
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-bike\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 4)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set up what we know abou the dataset. \n",
"## Data\n",
"\n",
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace) is paired with the storage account, which contains the default data store. We will use it to upload the bike share data and create [tabular dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files = ['./bike-no.csv'], target_path = 'dataset/', overwrite = True,show_progress = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set up what we know about the dataset. \n",
"\n",
"**Target column** is what we want to forecast.\n",
"\n",
"**Time column** is the time axis along which to predict.\n",
"\n",
"**Grain** is another word for an individual time series in your dataset. Grains are identified by values of the columns listed `grain_column_names`, for example \"store\" and \"item\" if your data has multiple time series of sales, one series for each combination of store and item sold.\n",
"\n",
"This dataset has only one time series. Please see the [orange juice notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales) for an example of a multi-time series dataset."
"**Time column** is the time axis along which to predict."
]
},
{
@@ -147,17 +192,7 @@
"outputs": [],
"source": [
"target_column_name = 'cnt'\n",
"time_column_name = 'date'\n",
"grain_column_names = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split the data\n",
"\n",
"The first split we make is into train and test sets. Note we are splitting on time."
"time_column_name = 'date'"
]
},
{
@@ -166,29 +201,17 @@
"metadata": {},
"outputs": [],
"source": [
"train = data[data[time_column_name] < '2012-09-01']\n",
"test = data[data[time_column_name] >= '2012-09-01']\n",
"\n",
"X_train = train.copy()\n",
"y_train = X_train.pop(target_column_name).values\n",
"\n",
"X_test = test.copy()\n",
"y_test = X_test.pop(target_column_name).values\n",
"\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_test.shape)\n",
"print(y_test.shape)"
"dataset = Dataset.Tabular.from_delimited_files(path = [(datastore, 'dataset/bike-no.csv')]).with_timestamp_columns(fine_grain_timestamp=time_column_name) \n",
"dataset.take(5).to_pandas_dataframe().reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting forecaster maximum horizon \n",
"### Split the data\n",
"\n",
"Assuming your test data forms a full and regular time series(regular time intervals and no holes), \n",
"the maximum horizon you will need to forecast is the length of the longest grain in your test set."
"The first split we make is into train and test sets. Note we are splitting on time. Data before 9/1 will be used for training, and data after and including 9/1 will be used for testing."
]
},
{
@@ -197,10 +220,19 @@
"metadata": {},
"outputs": [],
"source": [
"if len(grain_column_names) == 0:\n",
" max_horizon = len(X_test)\n",
"else:\n",
" max_horizon = X_test.groupby(grain_column_names)[time_column_name].count().max()"
"# select data that occurs before a specified date\n",
"train = dataset.time_before(datetime(2012, 8, 31), include_boundary=True)\n",
"train.to_pandas_dataframe().tail(5).reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test = dataset.time_after(datetime(2012, 9, 1), include_boundary=True)\n",
"test.to_pandas_dataframe().head(5).reset_index(drop=True)"
]
},
{
@@ -215,13 +247,29 @@
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**country**|The country used to generate holiday features. These should be ISO 3166 two-letter country codes (i.e. 'US', 'GB').|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**max_horizon**|Maximum desired forecast horizon in units of time-series frequency|\n",
"|**country_or_region**|The country/region used to generate holiday features. These should be ISO 3166 two-letter country/region codes (i.e. 'US', 'GB').|\n",
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting forecaster maximum horizon \n",
"\n",
"The forecast horizon is the number of periods into the future that the model should predict. Here, we set the horizon to 14 periods (i.e. 14 days). Notice that this is much shorter than the number of days in the test set; we will need to use a rolling test to evaluate the performance on the whole test set. For more discussion of forecast horizons and guiding principles for setting them, please see the [energy demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand). "
]
},
{
@@ -230,34 +278,50 @@
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'date'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
" # these columns are a breakdown of the total and therefore a leak\n",
" \"drop_column_names\": ['casual', 'registered'],\n",
" # knowing the country allows Automated ML to bring in holidays\n",
" \"country\" : 'US',\n",
" \"max_horizon\" : max_horizon,\n",
" \"target_lags\": 1 \n",
"max_horizon = 14"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Config AutoML"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_series_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon, \n",
" 'country_or_region': 'US', # set country_or_region will trigger holiday featurizer\n",
" 'target_lags': 'auto', # use heuristic based lag setting \n",
" 'drop_column_names': ['casual', 'registered'] # these columns are a breakdown of the total and therefore a leak\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'forecasting', \n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3, \n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
" blacklist_models = ['ExtremeRandomTrees'], \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
" enable_early_stopping=True,\n",
" n_cross_validations=3, \n",
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" verbosity=logging.INFO,\n",
" **time_series_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now run the experiment, starting with 10 iterations of model search. Experiment can be continued for more iterations if the results are not yet good. You will see the currently running iterations printing to the console."
"We will now run the experiment, you can go to Azure ML portal to view the run details. "
]
},
{
@@ -266,14 +330,8 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Displaying the run objects gives you links to the visual tools in the Azure Portal. Go try them!"
"remote_run = experiment.submit(automl_config, show_output=False)\n",
"remote_run"
]
},
{
@@ -282,7 +340,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run"
"remote_run.wait_for_completion()"
]
},
{
@@ -290,7 +348,7 @@
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
"Below we select the best model from all the training iterations using get_output method."
]
},
{
@@ -299,7 +357,7 @@
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model.steps"
]
},
@@ -307,9 +365,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"## Featurization\n",
"\n",
"You can accees the engineered feature names generated in time-series featurization. Note that a number of named holiday periods are represented. We recommend that you have at least one year of data when using this feature to ensure that all yearly holidays are captured in the training featurization."
"You can access the engineered feature names generated in time-series featurization. Note that a number of named holiday periods are represented. We recommend that you have at least one year of data when using this feature to ensure that all yearly holidays are captured in the training featurization."
]
},
{
@@ -342,45 +400,26 @@
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()"
"# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values.\n",
"\n",
"We always score on the original dataset whose schema matches the scheme of the training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.NaN)\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
"## Evaluate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
"We now use the best fitted model from the AutoML Run to make forecasts for the test set. We will do batch scoring on the test dataset which should have the same schema as training dataset.\n",
"\n",
"The scoring will run on a remote compute. In this example, it will reuse the training compute.|"
]
},
{
@@ -389,38 +428,15 @@
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n"
"test_experiment = Experiment(ws, experiment_name + \"_test\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieving forecasts from the model\n",
"To run the forecast on the remote compute we will use two helper scripts: forecasting_script and forecasting_helper. These scripts contain the utility methods which will be used by the remote estimator. We copy these scripts to the project folder to upload them to remote compute."
]
},
{
@@ -429,17 +445,20 @@
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
"import os\n",
"import shutil\n",
"\n",
"script_folder = os.path.join(os.getcwd(), 'forecast')\n",
"os.makedirs(script_folder, exist_ok=True)\n",
"shutil.copy2('forecasting_script.py', script_folder)\n",
"shutil.copy2('forecasting_helper.py', script_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For brevity we have created the function called run_forecast. It submits the test data to the best model and run the estimation on the selected compute target."
]
},
{
@@ -448,28 +467,140 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"from run_forecast import run_rolling_forecast\n",
"\n",
"remote_run = run_rolling_forecast(test_experiment, compute_target, best_run, test, max_horizon,\n",
" target_column_name, time_column_name)\n",
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion(show_output=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the prediction result for metrics calcuation\n",
"The test data with predictions are saved in artifact outputs/predictions.csv. You can download it and calculation some error metrics for the forecasts and vizualize the predictions vs. the actuals."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.download_file('outputs/predictions.csv', 'predictions.csv')\n",
"df_all = pd.read_csv('predictions.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
"from matplotlib import pyplot as plt\n",
"from automl.client.core.common import constants\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
" print('{}: {:.3f}'.format(key, value))\n",
" \n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The MAPE seems high; it is being skewed by an actual with a small absolute value. For a more informative evaluation, we can calculate the metrics by forecast horizon:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from metrics_helper import MAPE, APE\n",
"df_all.groupby('horizon_origin').apply(\n",
" lambda df: pd.Series({'MAPE': MAPE(df[target_column_name], df['predicted']),\n",
" 'RMSE': np.sqrt(mean_squared_error(df[target_column_name], df['predicted'])),\n",
" 'MAE': mean_absolute_error(df[target_column_name], df['predicted'])}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It's also interesting to see the distributions of APE (absolute percentage error) by horizon. On a log scale, the outlying APE in the horizon-3 group is clear."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_all_APE = df_all.assign(APE=APE(df_all[target_column_name], df_all['predicted']))\n",
"APEs = [df_all_APE[df_all['horizon_origin'] == h].APE.values for h in range(1, max_horizon + 1)]\n",
"\n",
"%matplotlib inline\n",
"plt.boxplot(APEs)\n",
"plt.yscale('log')\n",
"plt.xlabel('horizon')\n",
"plt.ylabel('APE (%)')\n",
"plt.title('Absolute Percentage Errors by Forecast Horizon')\n",
"\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga@microsoft.com, tosingli@microsoft.com"
"name": "erwright"
}
],
"category": "tutorial",
"compute": [
"Remote"
],
"datasets": [
"BikeShare"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"file_extension": ".py",
"framework": [
"Azure ML AutoML"
],
"friendly_name": "Forecasting BikeShare Demand",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
@@ -486,7 +617,16 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"mimetype": "text/x-python",
"name": "python",
"npconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"Forecasting"
],
"task": "Forecasting",
"version": 3
},
"nbformat": 4,
"nbformat_minor": 2

View File

@@ -0,0 +1,10 @@
name: auto-ml-forecasting-bike-share
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- numpy==1.16.2
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -0,0 +1,99 @@
import pandas as pd
import numpy as np
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
def do_rolling_forecast(fitted_model, X_test, y_test, target_column_name,
time_column_name, max_horizon, freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X_test[time_column_name] < horizon_time)
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
target_column_name))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)

View File

@@ -0,0 +1,55 @@
import argparse
import azureml.train.automl
from azureml.automl.runtime._vendor.automl.client.core.runtime import forecasting_models
from azureml.core import Run
from sklearn.externals import joblib
import forecasting_helper
parser = argparse.ArgumentParser()
parser.add_argument(
'--max_horizon', type=int, dest='max_horizon',
default=10, help='Max Horizon for forecasting')
parser.add_argument(
'--target_column_name', type=str, dest='target_column_name',
help='Target Column Name')
parser.add_argument(
'--time_column_name', type=str, dest='time_column_name',
help='Time Column Name')
parser.add_argument(
'--frequency', type=str, dest='freq',
help='Frequency of prediction')
args = parser.parse_args()
max_horizon = args.max_horizon
target_column_name = args.target_column_name
time_column_name = args.time_column_name
freq = args.freq
run = Run.get_context()
# get input dataset by name
test_dataset = run.input_datasets['test_data']
grain_column_names = []
df = test_dataset.to_pandas_dataframe().reset_index(drop=True)
X_test_df = test_dataset.drop_columns(columns=[target_column_name]).to_pandas_dataframe().reset_index(drop=True)
y_test_df = test_dataset.with_timestamp_columns(None).keep_columns(columns=[target_column_name]).to_pandas_dataframe()
fitted_model = joblib.load('model.pkl')
df_all = forecasting_helper.do_rolling_forecast(
fitted_model,
X_test_df,
y_test_df.values.T[0],
target_column_name,
time_column_name,
max_horizon,
freq)
file_name = 'outputs/predictions.csv'
export_csv = df_all.to_csv(file_name, header=True)
# Upload the predictions into artifacts
run.upload_file(name=file_name, path_or_stream=file_name)

View File

@@ -0,0 +1,22 @@
import pandas as pd
import numpy as np
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))

View File

@@ -0,0 +1,41 @@
from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.train.estimator import Estimator
from azureml.core.run import Run
def run_rolling_forecast(test_experiment, compute_target, train_run, test_dataset,
max_horizon, target_column_name, time_column_name,
freq='D', inference_folder='./forecast'):
condafile = inference_folder + '/condafile.yml'
train_run.download_file('outputs/model.pkl',
inference_folder + '/model.pkl')
train_run.download_file('outputs/conda_env_v_1_0_0.yml', condafile)
inference_env = Environment("myenv")
inference_env.docker.enabled = True
inference_env.python.conda_dependencies = CondaDependencies(
conda_dependencies_file_path=condafile)
est = Estimator(source_directory=inference_folder,
entry_script='forecasting_script.py',
script_params={
'--max_horizon': max_horizon,
'--target_column_name': target_column_name,
'--time_column_name': time_column_name,
'--frequency': freq
},
inputs=[test_dataset.as_named_input('test_data')],
compute_target=compute_target,
environment_definition=inference_env)
run = test_experiment.submit(est,
tags={
'training_run_id': train_run.id,
'run_algorithm': train_run.properties['run_algorithm'],
'valid_score': train_run.properties['score'],
'primary_metric': train_run.properties['primary_metric']
})
run.log("run_algorithm", run.tags['run_algorithm'])
return run

View File

@@ -9,18 +9,30 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Energy Demand Forecasting**_\n",
"_**Forecasting using the Energy Demand Dataset**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)"
"1. [Data and Forecasting Configurations](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"\n",
"Advanced Forecasting\n",
"1. [Advanced Training](#advanced_training)\n",
"1. [Advanced Results](#advanced_results)"
]
},
{
@@ -28,24 +40,25 @@
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we show how AutoML can be used for energy demand forecasting.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"In this example we use the associated New York City energy demand dataset to showcase how you can use AutoML for a simple forecasting problem and explore the results. The goal is predict the energy demand for the next 48 hours based on historic time-series data.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features\n",
"6. Testing the fitted model"
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) first, if you haven't already, to establish your connection to the AzureML Workspace.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Creating an Experiment using an existing Workspace\n",
"1. Configure AutoML using 'AutoMLConfig'\n",
"1. Train the model using AmlCompute\n",
"1. Explore the engineered features and results\n",
"1. Configuration and remote run of AutoML for a time-series model with lag and rolling window features\n",
"1. Run and explore the forecast"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n"
"## Setup"
]
},
{
@@ -54,27 +67,29 @@
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import logging\n",
"\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"import os\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"import azureml.core\n",
"from azureml.core import Experiment, Workspace, Dataset\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score"
"from datetime import datetime"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
@@ -86,9 +101,10 @@
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-energydemandforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-energydemandforecasting'\n",
"experiment_name = 'automl-forecasting-energydemand'\n",
"\n",
"# # project folder\n",
"# project_folder = './sample_projects/automl-forecasting-energy-demand'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -98,7 +114,6 @@
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
@@ -109,8 +124,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"Read energy demanding data from file, and preview data."
"## Create or Attach existing AmlCompute\n",
"A compute target is required to execute a remote Automated ML run. \n",
"\n",
"[Azure Machine Learning Compute](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) is a managed-compute infrastructure that allows the user to easily create a single or multi-node compute. In this tutorial, you create AmlCompute as your training compute resource.\n",
"\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
@@ -119,26 +140,58 @@
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"nyc_energy.csv\", parse_dates=['timeStamp'])\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# let's take note of what columns means what in the data\n",
"time_column_name = 'timeStamp'\n",
"target_column_name = 'demand'"
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"aml-compute\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_DS12_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the data into train and test sets\n"
"# Data\n",
"\n",
"We will use energy consumption [data from New York City](http://mis.nyiso.com/public/P-58Blist.htm) for model training. The data is stored in a tabular format and includes energy demand and basic weather data at an hourly frequency. \n",
"\n",
"With Azure Machine Learning datasets you can keep a single copy of data in your storage, easily access data during model training, share data and collaborate with other users. Below, we will upload the datatset and create a [tabular dataset](https://docs.microsoft.com/bs-latn-ba/azure/machine-learning/service/how-to-create-register-datasets#dataset-types) to be used training and prediction."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's set up what we know about the dataset.\n",
"\n",
"<b>Target column</b> is what we want to forecast.<br></br>\n",
"<b>Time column</b> is the time axis along which to predict.\n",
"\n",
"The other columns, \"temp\" and \"precip\", are implicitly designated as features."
]
},
{
@@ -147,10 +200,93 @@
"metadata": {},
"outputs": [],
"source": [
"X_train = data[data[time_column_name] < '2017-02-01']\n",
"X_test = data[data[time_column_name] >= '2017-02-01']\n",
"y_train = X_train.pop(target_column_name).values\n",
"y_test = X_test.pop(target_column_name).values"
"target_column_name = 'demand'\n",
"time_column_name = 'timeStamp'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = Dataset.Tabular.from_delimited_files(path = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/nyc_energy.csv\").with_timestamp_columns(fine_grain_timestamp=time_column_name) \n",
"dataset.take(5).to_pandas_dataframe().reset_index(drop=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The NYC Energy dataset is missing energy demand values for all datetimes later than August 10th, 2017 5AM. Below, we trim the rows containing these missing values from the end of the dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cut off the end of the dataset due to large number of nan values\n",
"dataset = dataset.time_before(datetime(2017, 10, 10, 5))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split the data into train and test sets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The first split we make is into train and test sets. Note that we are splitting on time. Data before and including August 8th, 2017 5AM will be used for training, and data after will be used for testing."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# split into train based on time\n",
"train = dataset.time_before(datetime(2017, 8, 8, 5), include_boundary=True)\n",
"train.to_pandas_dataframe().reset_index(drop=True).sort_values(time_column_name).tail(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# split into test based on time\n",
"test = dataset.time_between(datetime(2017, 8, 8, 6), datetime(2017, 8, 10, 5))\n",
"test.to_pandas_dataframe().reset_index(drop=True).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting the maximum forecast horizon\n",
"\n",
"The forecast horizon is the number of periods into the future that the model should predict. It is generally recommend that users set forecast horizons to less than 100 time periods (i.e. less than 100 hours in the NYC energy example). Furthermore, **AutoML's memory use and computation time increase in proportion to the length of the horizon**, so consider carefully how this value is set. If a long horizon forecast really is necessary, consider aggregating the series to a coarser time scale. \n",
"\n",
"Learn more about forecast horizons in our [Auto-train a time-series forecast model](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-auto-train-forecast#configure-and-run-experiment) guide.\n",
"\n",
"In this example, we set the horizon to 48 hours."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max_horizon = 48"
]
},
{
@@ -159,18 +295,28 @@
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"Instantiate an AutoMLConfig object. This config defines the settings and data used to run the experiment. We can provide extra configurations within 'automl_settings', for this forecasting task we add the name of the time column and the maximum forecast horizon.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_hours**|Maximum amount of time in hours that the experiment take before it terminates.|\n",
"|**training_data**|The training data to be used within the experiment.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
"|**n_cross_validations**|Number of cross validation splits. Rolling Origin Validation is used to split time-series in a temporally consistent way.|\n",
"|**enable_early_stopping**|Flag to enble early termination if the score is not improving in the short term.|\n",
"|**time_column_name**|The name of your time column.|\n",
"|**max_horizon**|The number of periods out you would like to predict past your training data. Periods are inferred from your data.|\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
@@ -180,20 +326,20 @@
"outputs": [],
"source": [
"automl_settings = {\n",
" \"time_column_name\": time_column_name \n",
" 'time_column_name': time_column_name,\n",
" 'max_horizon': max_horizon,\n",
"}\n",
"\n",
"\n",
"automl_config = AutoMLConfig(task = 'forecasting',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
" enable_early_stopping=True,\n",
" n_cross_validations=3, \n",
" verbosity=logging.INFO,\n",
" **automl_settings)"
]
},
@@ -201,9 +347,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Submitting the configuration will start a new run in this experiment. For local runs, the execution is synchronous. Depending on the data and number of iterations, this can run for a while. Parameters controlling concurrency may speed up the process, depending on your hardware.\n",
"\n",
"You will see the currently running iterations printing to the console."
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while.\n",
"One may specify `show_output = True` to print currently running iterations to the console."
]
},
{
@@ -212,7 +357,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
@@ -221,15 +366,24 @@
"metadata": {},
"outputs": [],
"source": [
"local_run"
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
"## Retrieve the Best Model\n",
"Below we select the best model from all the training iterations using get_output method."
]
},
{
@@ -238,7 +392,7 @@
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"best_run, fitted_model = remote_run.get_output()\n",
"fitted_model.steps"
]
},
@@ -246,8 +400,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the time-series featurization."
"## Featurization\n",
"You can access the engineered feature names generated in time-series featurization."
]
},
{
@@ -263,13 +417,53 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"### View featurization summary\n",
"You can also see what featurization steps were performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:\n",
"\n",
"For forecasting, we will use the `forecast` function instead of the `predict` function. There are two reasons for this.\n",
"\n",
"We need to pass the recent values of the target variable `y`, whereas the scikit-compatible `predict` function only takes the non-target variables `X`. In our case, the test data immediately follows the training data, and we fill the `y` variable with `NaN`. The `NaN` serves as a question mark for the forecaster to fill with the actuals. Using the forecast function will produce forecasts using the shortest possible forecast horizon. The last time at which a definite (non-NaN) value is seen is the _forecast origin_ - the last time when the value of the target is known. \n",
"\n",
"Using the `predict` method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use."
"+ Raw feature name\n",
"+ Number of engineered features formed out of this raw feature\n",
"+ Type detected\n",
"+ If feature was dropped\n",
"+ List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get the featurization summary as a list of JSON\n",
"featurization_summary = fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()\n",
"# View the featurization summary as a pandas dataframe\n",
"pd.DataFrame.from_records(featurization_summary)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting\n",
"\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = test.to_pandas_dataframe().reset_index(drop=True)\n",
"y_test = X_test.pop(target_column_name).values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Forecast Function\n",
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see notebook on [high frequency forecasting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/automl-forecasting-function.ipynb)."
]
},
{
@@ -278,15 +472,20 @@
"metadata": {},
"outputs": [],
"source": [
"# Replace ALL values in y_pred by NaN. \n",
"# The forecast origin will be at the beginning of the first forecast period\n",
"# (which is the same time as the end of the last training period).\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_fcst, X_trans = fitted_model.forecast(X_test, y_query)"
"y_predictions, X_trans = fitted_model.forecast(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluate\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE).\n",
"\n",
"It is a good practice to always align the output explicitly to the input, as the count and order of the rows may have changed during transformations that span multiple rows."
]
},
{
@@ -295,40 +494,38 @@
"metadata": {},
"outputs": [],
"source": [
"# limit the evaluation to data where y_test has actuals\n",
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods\n",
" \"\"\"\n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"from forecasting_helper import align_outputs\n",
"\n",
" # X_test_full's does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
"from matplotlib import pyplot as plt\n",
"from automl.client.core.common import constants\n",
"\n",
"df_all = align_outputs(y_fcst, X_trans, X_test, y_test)\n",
"df_all.head()"
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
" print('{}: {:.3f}'.format(key, value))\n",
" \n",
"# Plot outputs\n",
"%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
@@ -351,70 +548,18 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate accuracy metrics\n"
"## Advanced Training <a id=\"advanced_training\"></a>\n",
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
]
},
{
"cell_type": "code",
"execution_count": null,
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"### Using lags and rolling window features\n",
"Now we will configure the target lags, that is the previous values of the target variables, meaning the prediction is no longer horizon-less. We therefore must still specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features.\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The distribution looks a little heavy tailed: we underestimate the excursions of the extremes. A normal-quantile transform of the target might help, but let's first try using some past data with the lags and rolling window transforms.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using lags and rolling window features to improve the forecast"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data.\n",
"\n",
"Now that we configured target lags, that is the previous values of the target variables, and the prediction is no longer horizon-less. We therefore must specify the `max_horizon` that the model will learn to forecast. The `target_lags` keyword specifies how far back we will construct the lags of the target variable, and the `target_rolling_window_size` specifies the size of the rolling window over which we will generate the `max`, `min` and `sum` features."
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the iteration_timeout_minutes parameter value to get results."
]
},
{
@@ -423,27 +568,31 @@
"metadata": {},
"outputs": [],
"source": [
"automl_settings_lags = {\n",
"automl_advanced_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'target_lags': 1,\n",
" 'target_rolling_window_size': 5,\n",
" # you MUST set the max_horizon when using lags and rolling windows\n",
" # it is optional when looking-back features are not used \n",
" 'max_horizon': len(y_test), # only one grain\n",
" 'max_horizon': max_horizon,\n",
" 'target_lags': 12,\n",
" 'target_rolling_window_size': 4,\n",
"}\n",
"\n",
"\n",
"automl_config_lags = AutoMLConfig(task = 'forecasting',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" n_cross_validations = 3,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings_lags)"
" blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
" enable_early_stopping = True,\n",
" n_cross_validations=3, \n",
" verbosity=logging.INFO,\n",
" **automl_advanced_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now start a new remote run, this time with lag and rolling window featurization. AutoML applies featurizations in the setup stage, prior to iterating over ML models. The full training set is featurized first, followed by featurization of each of the CV splits. Lag and rolling window features introduce additional complexity, so the run will take longer than in the previous example that lacked these featurizations."
]
},
{
@@ -452,7 +601,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run_lags = experiment.submit(automl_config_lags, show_output=True)"
"advanced_remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
@@ -461,10 +610,14 @@
"metadata": {},
"outputs": [],
"source": [
"best_run_lags, fitted_model_lags = local_run_lags.get_output()\n",
"y_fcst_lags, X_trans_lags = fitted_model_lags.forecast(X_test, y_query)\n",
"df_lags = align_outputs(y_fcst_lags, X_trans_lags, X_test, y_test)\n",
"df_lags.head()"
"advanced_remote_run.wait_for_completion()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model"
]
},
{
@@ -473,7 +626,15 @@
"metadata": {},
"outputs": [],
"source": [
"X_trans_lags"
"best_run_lags, fitted_model_lags = advanced_remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced Results<a id=\"advanced_results\"></a>\n",
"We did not use lags in the previous model specification. In effect, the prediction was the result of a simple regression on date, grain and any additional features. This is often a very good prediction as common time series patterns like seasonality and trends can be captured in this manner. Such simple regression is horizon-less: it doesn't matter how far into the future we are predicting, because we are not using past data. In the previous example, the horizon was only used to split the data for cross-validation."
]
},
{
@@ -482,60 +643,63 @@
"metadata": {},
"outputs": [],
"source": [
"print(\"Forecasting model with lags\")\n",
"rmse = np.sqrt(mean_squared_error(df_lags[target_column_name], df_lags['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_lags[target_column_name], df_lags['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_lags[target_column_name], df_lags['predicted']))\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_predictions, X_trans = fitted_model_lags.forecast(X_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from forecasting_helper import align_outputs\n",
"\n",
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
"from matplotlib import pyplot as plt\n",
"from automl.client.core.common import constants\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
" print('{}: {:.3f}'.format(key, value))\n",
" \n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(df_lags[target_column_name], df_lags['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What features matter for the forecast?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"# feature names are everything in the transformed data except the target\n",
"features = X_trans.columns[:-1]\n",
"expl = explain_model(fitted_model, X_train, X_test, features = features, best_run=best_run_lags, y_train = y_train)\n",
"# unpack the tuple\n",
"shap_values, expected_values, feat_overall_imp, feat_names, per_class_summary, per_class_imp = expl\n",
"best_run_lags"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please go to the Azure Portal's best run to see the top features chart.\n",
"\n",
"The informative features make all sorts of intuitive sense. Temperature is a strong driver of heating and cooling demand in NYC. Apart from that, the daily life cycle, expressed by `hour`, and the weekly cycle, expressed by `wday` drives people's energy use habits."
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga, tosingli"
"name": "erwright"
}
],
"categories": [
"how-to-use-azureml",
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
@@ -551,7 +715,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
"version": "3.6.8"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,11 @@
name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk
- numpy==1.16.2
- azureml-train-automl
- azureml-widgets
- matplotlib
- interpret
- azureml-explain-model
- azureml-contrib-interpret

View File

@@ -0,0 +1,44 @@
import pandas as pd
import numpy as np
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)

View File

@@ -0,0 +1,22 @@
import pandas as pd
import numpy as np
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))

View File

@@ -0,0 +1,748 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"\n",
"#### Forecasting away from training data\n",
"\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"2. [Setup](#Setup)\n",
"3. [Data](#Data)\n",
"4. [Prepare remote compute and data.](#prepare_remote)\n",
"4. [Create the configuration and train a forecaster](#train)\n",
"5. [Forecasting from the trained model](#forecasting)\n",
"6. [Forecasting away from training data](#forecasting_away)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This notebook demonstrates the full interface to the `forecast()` function. \n",
"\n",
"The best known and most frequent usage of `forecast` enables forecasting on test sets that immediately follows training data. \n",
"\n",
"However, in many use cases it is necessary to continue using the model for some time before retraining it. This happens especially in **high frequency forecasting** when forecasts need to be made more frequently than the model can be retrained. Examples are in Internet of Things and predictive cloud resource scaling.\n",
"\n",
"Here we show how to use the `forecast()` function when a time gap exists between training data and prediction period.\n",
"\n",
"Terminology:\n",
"* forecast origin: the last period when the target value is known\n",
"* forecast periods(s): the period(s) for which the value of the target is desired.\n",
"* forecast horizon: the number of forecast periods\n",
"* lookback: how many past periods (before forecast origin) the model function depends on. The larger of number of lags and length of rolling window.\n",
"* prediction context: `lookback` periods immediately preceding the forecast origin\n",
"\n",
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/automl-forecasting-function.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please make sure you have followed the `configuration.ipynb` notebook so that your ML workspace information is saved in the config file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"\n",
"from azureml.core.dataset import Dataset\n",
"from pandas.tseries.frequencies import to_offset\n",
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"np.set_printoptions(precision=4, suppress=True, linewidth=120)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"\n",
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-forecast-function-demo'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['SKU'] = ws.sku\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For the demonstration purposes we will generate the data artificially and use them for the forecasting."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TIME_COLUMN_NAME = 'date'\n",
"GRAIN_COLUMN_NAME = 'grain'\n",
"TARGET_COLUMN_NAME = 'y'\n",
"\n",
"def get_timeseries(train_len: int,\n",
" test_len: int,\n",
" time_column_name: str,\n",
" target_column_name: str,\n",
" grain_column_name: str,\n",
" grains: int = 1,\n",
" freq: str = 'H'):\n",
" \"\"\"\n",
" Return the time series of designed length.\n",
"\n",
" :param train_len: The length of training data (one series).\n",
" :type train_len: int\n",
" :param test_len: The length of testing data (one series).\n",
" :type test_len: int\n",
" :param time_column_name: The desired name of a time column.\n",
" :type time_column_name: str\n",
" :param\n",
" :param grains: The number of grains.\n",
" :type grains: int\n",
" :param freq: The frequency string representing pandas offset.\n",
" see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html\n",
" :type freq: str\n",
" :returns: the tuple of train and test data sets.\n",
" :rtype: tuple\n",
"\n",
" \"\"\"\n",
" data_train = [] # type: List[pd.DataFrame]\n",
" data_test = [] # type: List[pd.DataFrame]\n",
" data_length = train_len + test_len\n",
" for i in range(grains):\n",
" X = pd.DataFrame({\n",
" time_column_name: pd.date_range(start='2000-01-01',\n",
" periods=data_length,\n",
" freq=freq),\n",
" target_column_name: np.arange(data_length).astype(float) + np.random.rand(data_length) + i*5,\n",
" 'ext_predictor': np.asarray(range(42, 42 + data_length)),\n",
" grain_column_name: np.repeat('g{}'.format(i), data_length)\n",
" })\n",
" data_train.append(X[:train_len])\n",
" data_test.append(X[train_len:])\n",
" X_train = pd.concat(data_train)\n",
" y_train = X_train.pop(target_column_name).values\n",
" X_test = pd.concat(data_test)\n",
" y_test = X_test.pop(target_column_name).values\n",
" return X_train, y_train, X_test, y_test\n",
"\n",
"n_test_periods = 6\n",
"n_train_periods = 30\n",
"X_train, y_train, X_test, y_test = get_timeseries(train_len=n_train_periods,\n",
" test_len=n_test_periods,\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" target_column_name=TARGET_COLUMN_NAME,\n",
" grain_column_name=GRAIN_COLUMN_NAME,\n",
" grains=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see what the training data looks like."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train.tail()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot the example time series\n",
"import matplotlib.pyplot as plt\n",
"whole_data = X_train.copy()\n",
"target_label = 'y'\n",
"whole_data[target_label] = y_train\n",
"for g in whole_data.groupby('grain'): \n",
" plt.plot(g[1]['date'].values, g[1]['y'].values, label=g[0])\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare remote compute and data. <a id=\"prepare_remote\"></a>\n",
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace), is paired with the storage account, which contains the default data store. We will use it to upload the artificial data and create [tabular dataset](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We need to save thw artificial data and then upload them to default workspace datastore.\n",
"DATA_PATH = \"fc_fn_data\"\n",
"DATA_PATH_X = \"{}/data_train.csv\".format(DATA_PATH)\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
"pd.DataFrame(whole_data).to_csv(\"data/data_train.csv\", index=False)\n",
"# Upload saved data to the default data store.\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path=DATA_PATH, overwrite=True, show_progress=True)\n",
"train_data = Dataset.Tabular.from_delimited_files(path=ds.path(DATA_PATH_X))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"amlcompute_cluster_name = \"cpu-cluster-fcfn\"\n",
" \n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the configuration and train a forecaster <a id=\"train\"></a>\n",
"First generate the configuration, in which we:\n",
"* Set metadata columns: target, time column and grain column names.\n",
"* Validate our data using cross validation with rolling window method.\n",
"* Set normalized root mean squared error as a metric to select the best model.\n",
"* Set early termination to True, so the iterations through the models will stop when no improvements in accuracy score will be made.\n",
"* Set limitations on the length of experiment run to 15 minutes.\n",
"* Finally, we set the task to be forecasting.\n",
"* We apply the lag lead operator to the target value i.e. we use the previous values as a predictor for the future ones."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lags = [1,2,3]\n",
"max_horizon = n_test_periods\n",
"time_series_settings = { \n",
" 'time_column_name': TIME_COLUMN_NAME,\n",
" 'grain_column_names': [ GRAIN_COLUMN_NAME ],\n",
" 'max_horizon': max_horizon,\n",
" 'target_lags': lags\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the model selection and training process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_forecasting_function.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_hours=0.25,\n",
" enable_early_stopping=True,\n",
" training_data=train_data,\n",
" compute_target=compute_target,\n",
" n_cross_validations=3,\n",
" verbosity = logging.INFO,\n",
" max_concurrent_iterations=4,\n",
" max_cores_per_iteration=-1,\n",
" label_column_name=target_label,\n",
" **time_series_settings)\n",
"\n",
"remote_run = experiment.submit(automl_config, show_output=False)\n",
"remote_run.wait_for_completion()\n",
"\n",
"# Retrieve the best model to use it further.\n",
"_, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting from the trained model <a id=\"forecasting\"></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this section we will review the `forecast` interface for two main scenarios: forecasting right after the training data, and the more complex interface for forecasting when there is a gap (in the time sense) between training and testing data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### X_train is directly followed by the X_test\n",
"\n",
"Let's first consider the case when the prediction period immediately follows the training data. This is typical in scenarios where we have the time to retrain the model every time we wish to forecast. Forecasts that are made on daily and slower cadence typically fall into this category. Retraining the model every time benefits the accuracy because the most recent data is often the most informative.\n",
"\n",
"![Forecasting after training](forecast_function_at_train.png)\n",
"\n",
"We use `X_test` as a **forecast request** to generate the predictions."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Typical path: X_test is known, forecast all upcoming periods"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The data set contains hourly data, the training set ends at 01/02/2000 at 05:00\n",
"\n",
"# These are predictions we are asking the model to make (does not contain thet target column y),\n",
"# for 6 periods beginning with 2000-01-02 06:00, which immediately follows the training data\n",
"X_test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_no_gap, xy_nogap = fitted_model.forecast(X_test)\n",
"\n",
"# xy_nogap contains the predictions in the _automl_target_col column.\n",
"# Those same numbers are output in y_pred_no_gap\n",
"xy_nogap"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Confidence intervals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Forecasting model may be used for the prediction of forecasting intervals by running ```forecast_quantiles()```. \n",
"This method accepts the same parameters as forecast()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"quantiles = fitted_model.forecast_quantiles(X_test)\n",
"quantiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Distribution forecasts\n",
"\n",
"Often the figure of interest is not just the point prediction, but the prediction at some quantile of the distribution. \n",
"This arises when the forecast is used to control some kind of inventory, for example of grocery items or virtual machines for a cloud service. In such case, the control point is usually something like \"we want the item to be in stock and not run out 99% of the time\". This is called a \"service level\". Here is how you get quantile forecasts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# specify which quantiles you would like \n",
"fitted_model.quantiles = [0.01, 0.5, 0.95]\n",
"# use forecast_quantiles function, not the forecast() one\n",
"y_pred_quantiles = fitted_model.forecast_quantiles(X_test)\n",
"\n",
"# quantile forecasts returned in a Dataframe along with the time and grain columns \n",
"y_pred_quantiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Destination-date forecast: \"just do something\"\n",
"\n",
"In some scenarios, the X_test is not known. The forecast is likely to be weak, because it is missing contemporaneous predictors, which we will need to impute. If you still wish to predict forward under the assumption that the last known values will be carried forward, you can forecast out to \"destination date\". The destination date still needs to fit within the maximum horizon from training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We will take the destination date as a last date in the test set.\n",
"dest = max(X_test[TIME_COLUMN_NAME])\n",
"y_pred_dest, xy_dest = fitted_model.forecast(forecast_destination=dest)\n",
"\n",
"# This form also shows how we imputed the predictors which were not given. (Not so well! Use with caution!)\n",
"xy_dest"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Forecasting away from training data <a id=\"forecasting_away\"></a>\n",
"\n",
"Suppose we trained a model, some time passed, and now we want to apply the model without re-training. If the model \"looks back\" -- uses previous values of the target -- then we somehow need to provide those values to the model.\n",
"\n",
"![Forecasting after training](forecast_function_away_from_train.png)\n",
"\n",
"The notion of forecast origin comes into play: the forecast origin is **the last period for which we have seen the target value**. This applies per grain, so each grain can have a different forecast origin. \n",
"\n",
"The part of data before the forecast origin is the **prediction context**. To provide the context values the model needs when it looks back, we pass definite values in `y_test` (aligned with corresponding times in `X_test`)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate the same kind of test data we trained on, \n",
"# but now make the train set much longer, so that the test set will be in the future\n",
"X_context, y_context, X_away, y_away = get_timeseries(train_len=42, # train data was 30 steps long\n",
" test_len=4,\n",
" time_column_name=TIME_COLUMN_NAME,\n",
" target_column_name=TARGET_COLUMN_NAME,\n",
" grain_column_name=GRAIN_COLUMN_NAME,\n",
" grains=2)\n",
"\n",
"# end of the data we trained on\n",
"print(X_train.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].max())\n",
"# start of the data we want to predict on\n",
"print(X_away.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].min())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is a gap of 12 hours between end of training and beginning of `X_away`. (It looks like 13 because all timestamps point to the start of the one hour periods.) Using only `X_away` will fail without adding context data for the model to consume."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"try: \n",
" y_pred_away, xy_away = fitted_model.forecast(X_away)\n",
" xy_away\n",
"except Exception as e:\n",
" print(e)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How should we read that eror message? The forecast origin is at the last time the model saw an actual value of `y` (the target). That was at the end of the training data! The model is attempting to forecast from the end of training data. But the requested forecast periods are past the maximum horizon. We need to provide a define `y` value to establish the forecast origin.\n",
"\n",
"We will use this helper function to take the required amount of context from the data preceding the testing data. It's definition is intentionally simplified to keep the idea in the clear."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def make_forecasting_query(fulldata, time_column_name, target_column_name, forecast_origin, horizon, lookback):\n",
"\n",
" \"\"\"\n",
" This function will take the full dataset, and create the query\n",
" to predict all values of the grain from the `forecast_origin`\n",
" forward for the next `horizon` horizons. Context from previous\n",
" `lookback` periods will be included.\n",
"\n",
" \n",
"\n",
" fulldata: pandas.DataFrame a time series dataset. Needs to contain X and y.\n",
" time_column_name: string which column (must be in fulldata) is the time axis\n",
" target_column_name: string which column (must be in fulldata) is to be forecast\n",
" forecast_origin: datetime type the last time we (pretend to) have target values \n",
" horizon: timedelta how far forward, in time units (not periods)\n",
" lookback: timedelta how far back does the model look?\n",
"\n",
" Example:\n",
"\n",
"\n",
" ```\n",
"\n",
" forecast_origin = pd.to_datetime('2012-09-01') + pd.DateOffset(days=5) # forecast 5 days after end of training\n",
" print(forecast_origin)\n",
"\n",
" X_query, y_query = make_forecasting_query(data, \n",
" forecast_origin = forecast_origin,\n",
" horizon = pd.DateOffset(days=7), # 7 days into the future\n",
" lookback = pd.DateOffset(days=1), # model has lag 1 period (day)\n",
" )\n",
"\n",
" ```\n",
" \"\"\"\n",
"\n",
" X_past = fulldata[ (fulldata[ time_column_name ] > forecast_origin - lookback) &\n",
" (fulldata[ time_column_name ] <= forecast_origin)\n",
" ]\n",
"\n",
" X_future = fulldata[ (fulldata[ time_column_name ] > forecast_origin) &\n",
" (fulldata[ time_column_name ] <= forecast_origin + horizon)\n",
" ]\n",
"\n",
" y_past = X_past.pop(target_column_name).values.astype(np.float)\n",
" y_future = X_future.pop(target_column_name).values.astype(np.float)\n",
"\n",
" # Now take y_future and turn it into question marks\n",
" y_query = y_future.copy().astype(np.float) # because sometimes life hands you an int\n",
" y_query.fill(np.NaN)\n",
"\n",
"\n",
" print(\"X_past is \" + str(X_past.shape) + \" - shaped\")\n",
" print(\"X_future is \" + str(X_future.shape) + \" - shaped\")\n",
" print(\"y_past is \" + str(y_past.shape) + \" - shaped\")\n",
" print(\"y_query is \" + str(y_query.shape) + \" - shaped\")\n",
"\n",
"\n",
" X_pred = pd.concat([X_past, X_future])\n",
" y_pred = np.concatenate([y_past, y_query])\n",
" return X_pred, y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see where the context data ends - it ends, by construction, just before the testing data starts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(X_context.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"print(X_away.groupby(GRAIN_COLUMN_NAME)[TIME_COLUMN_NAME].agg(['min','max','count']))\n",
"X_context.tail(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Since the length of the lookback is 3, \n",
"# we need to add 3 periods from the context to the request\n",
"# so that the model has the data it needs\n",
"\n",
"# Put the X and y back together for a while. \n",
"# They like each other and it makes them happy.\n",
"X_context[TARGET_COLUMN_NAME] = y_context\n",
"X_away[TARGET_COLUMN_NAME] = y_away\n",
"fulldata = pd.concat([X_context, X_away])\n",
"\n",
"# forecast origin is the last point of data, which is one 1-hr period before test\n",
"forecast_origin = X_away[TIME_COLUMN_NAME].min() - pd.DateOffset(hours=1)\n",
"# it is indeed the last point of the context\n",
"assert forecast_origin == X_context[TIME_COLUMN_NAME].max()\n",
"print(\"Forecast origin: \" + str(forecast_origin))\n",
" \n",
"# the model uses lags and rolling windows to look back in time\n",
"n_lookback_periods = max(lags)\n",
"lookback = pd.DateOffset(hours=n_lookback_periods)\n",
"\n",
"horizon = pd.DateOffset(hours=max_horizon)\n",
"\n",
"# now make the forecast query from context (refer to figure)\n",
"X_pred, y_pred = make_forecasting_query(fulldata, TIME_COLUMN_NAME, TARGET_COLUMN_NAME,\n",
" forecast_origin, horizon, lookback)\n",
"\n",
"# show the forecast request aligned\n",
"X_show = X_pred.copy()\n",
"X_show[TARGET_COLUMN_NAME] = y_pred\n",
"X_show"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the forecast origin is at 17:00 for both grains, and periods from 18:00 are to be forecast."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Now everything works\n",
"y_pred_away, xy_away = fitted_model.forecast(X_pred, y_pred)\n",
"\n",
"# show the forecast aligned\n",
"X_show = xy_away.reset_index()\n",
"# without the generated features\n",
"X_show[['date', 'grain', 'ext_predictor', '_automl_target_col']]\n",
"# prediction is in _automl_target_col"
]
}
],
"metadata": {
"authors": [
{
"name": "erwright"
}
],
"category": "tutorial",
"compute": [
"Remote"
],
"datasets": [
"None"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"framework": [
"Azure ML AutoML"
],
"friendly_name": "Forecasting away from training data",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"tags": [
"Forecasting",
"Confidence Intervals"
],
"task": "Forecasting"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,10 @@
name: auto-ml-forecasting-function
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- numpy==1.16.2
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -9,6 +9,13 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -19,6 +26,7 @@
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Compute](#Compute)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Predict](#Predict)\n",
@@ -30,16 +38,10 @@
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we use AutoML to find and tune a time-series forecasting model.\n",
"In this example, we use AutoML to train, select, and operationalize a time-series forecasting model for multiple time-series.\n",
"\n",
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook, you will:\n",
"1. Create an Experiment in an existing Workspace\n",
"2. Instantiate an AutoMLConfig \n",
"3. Find and train a forecasting model using local compute\n",
"4. Evaluate the performance of the model\n",
"\n",
"The examples in the follow code samples use the University of Chicago's Dominick's Finer Foods dataset to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
]
},
@@ -60,22 +62,17 @@
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment corresponds to a prediction problem you are trying to solve, while a Run corresponds to a specific approach to the problem. "
]
},
{
@@ -88,8 +85,6 @@
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-ojforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-ojforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
@@ -97,15 +92,63 @@
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['SKU'] = ws.sku\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute\n",
"You will need to create a [compute target](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute) for your AutoML run. In this tutorial, you create AmlCompute as your training compute resource.\n",
"#### Creation of AmlCompute takes approximately 5 minutes. \n",
"If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read this article on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-oj\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
@@ -188,7 +231,61 @@
" df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])\n",
" return df_head, df_tail\n",
"\n",
"X_train, X_test = split_last_n_by_grain(data_subset, n_test_periods)"
"train, test = split_last_n_by_grain(data_subset, n_test_periods)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to datastore\n",
"The [Machine Learning service workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-workspace), is paired with the storage account, which contains the default data store. We will use it to upload the train and test data and create [tabular datasets](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) for training and testing. A tabular dataset defines a series of lazily-evaluated, immutable operations to load data from the data source into tabular representation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train.to_csv (r'./dominicks_OJ_train.csv', index = None, header=True)\n",
"test.to_csv (r'./dominicks_OJ_test.csv', index = None, header=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files = ['./dominicks_OJ_train.csv', './dominicks_OJ_test.csv'], target_path = 'dataset/', overwrite = True,show_progress = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create dataset for training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.dataset import Dataset\n",
"train_dataset = Dataset.Tabular.from_delimited_files(path=datastore.path('dataset/dominicks_OJ_train.csv'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_dataset.to_pandas_dataframe().tail()"
]
},
{
@@ -204,7 +301,7 @@
"* Create time-based features to assist in learning seasonal patterns\n",
"* Encode categorical variables to numeric quantities\n",
"\n",
"AutoML will currently train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series.\n",
"In this notebook, AutoML will train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series. If you're looking for training multiple models for different time-series, please check out the forecasting grouping notebook. \n",
"\n",
"You are almost ready to start an AutoML training job. First, we need to separate the target column from the rest of the DataFrame: "
]
@@ -215,8 +312,7 @@
"metadata": {},
"outputs": [],
"source": [
"target_column_name = 'Quantity'\n",
"y_train = X_train.pop(target_column_name).values"
"target_column_name = 'Quantity'"
]
},
{
@@ -229,9 +325,9 @@
"\n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time, the grain column names, and the maximum forecast horizon. A time column is required for forecasting, while the grain is optional. If a grain is not given, AutoML assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak.\n",
"\n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up-to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. \n",
"The forecast horizon is given in units of the time-series frequency; for instance, the OJ series frequency is weekly, so a horizon of 20 means that a trained model will estimate sales up to 20 weeks beyond the latest date in the training data for each series. In this example, we set the maximum horizon to the number of samples per series in the test set (n_test_periods). Generally, the value of this parameter will be dictated by business needs. For example, a demand planning organizaion that needs to estimate the next month of sales would set the horizon accordingly. Please see the [energy_demand notebook](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand) for more discussion of forecast horizon.\n",
"\n",
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *X_valid* and *y_valid* parameters of AutoMLConfig.\n",
"Finally, a note about the cross-validation (CV) procedure for time-series data. AutoML uses out-of-sample error estimates to select a best pipeline/model, so it is important that the CV fold splitting is done correctly. Time-series can violate the basic statistical assumptions of the canonical K-Fold CV strategy, so AutoML implements a [rolling origin validation](https://robjhyndman.com/hyndsight/tscv/) procedure to create CV folds for time-series data. To use this procedure, you just need to specify the desired number of CV folds in the AutoMLConfig object. It is also possible to bypass CV and use your own validation set by setting the *validation_data* parameter of AutoMLConfig.\n",
"\n",
"Here is a summary of AutoMLConfig parameters used for training the OJ model:\n",
"\n",
@@ -239,13 +335,15 @@
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**X**|Training matrix of features as a pandas DataFrame, shape = [n_training_samples, n_features]|\n",
"|**y**|Target values as a numpy.ndarray, shape = [n_training_samples, ]|\n",
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
"|**n_cross_validations**|Number of cross-validation folds to use for model/pipeline selection|\n",
"|**enable_ensembling**|Allow AutoML to create ensembles of the best performing models\n",
"|**debug_log**|Log file path for writing debugging information\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**enable_voting_ensemble**|Allow AutoML to create a Voting ensemble of the best performing models|\n",
"|**enable_stack_ensemble**|Allow AutoML to create a Stack ensemble of the best performing models|\n",
"|**debug_log**|Log file path for writing debugging information|\n",
"|**time_column_name**|Name of the datetime column in the input data|\n",
"|**grain_column_names**|Name(s) of the columns defining individual series in the input data|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
@@ -261,19 +359,19 @@
"time_series_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity'],\n",
" 'max_horizon': n_test_periods # optional\n",
" 'drop_column_names': ['logQuantity'], # 'logQuantity' is a leaky feature, so we remove it.\n",
" 'max_horizon': n_test_periods\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
" primary_metric='normalized_mean_absolute_error',\n",
" iterations=10,\n",
" X=X_train,\n",
" y=y_train,\n",
" n_cross_validations=5,\n",
" enable_ensembling=False,\n",
" path=project_folder,\n",
" experiment_timeout_hours=0.25,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
" enable_early_stopping=True,\n",
" n_cross_validations=3,\n",
" verbosity=logging.INFO,\n",
" **time_series_settings)"
]
@@ -282,7 +380,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now submit a new training run. For local runs, the execution is synchronous. Depending on the data and number of iterations this operation may take several minutes.\n",
"You can now submit a new training run. Depending on the data and number of iterations this operation may take several minutes.\n",
"Information from each iteration will be printed to the console."
]
},
@@ -292,7 +390,17 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
"remote_run = experiment.submit(automl_config, show_output=False)\n",
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
]
},
{
@@ -309,15 +417,17 @@
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_pipeline = local_run.get_output()\n",
"fitted_pipeline.steps"
"best_run, fitted_model = remote_run.get_output()\n",
"print(fitted_model.steps)\n",
"model_name = best_run.properties['model_name']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Predict\n",
"# Forecasting\n",
"\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
]
},
@@ -327,6 +437,7 @@
"metadata": {},
"outputs": [],
"source": [
"X_test = test\n",
"y_test = X_test.pop(target_column_name).values"
]
},
@@ -343,9 +454,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data. \n",
"\n",
"We will first create a query `y_query`, which is aligned index-for-index to `X_test`. This is a vector of target values where each `NaN` serves the function of the question mark to be replaced by forecast. Passing definite values in the `y` argument allows the `forecast` function to make predictions on data that does not immediately follow the train data which contains `y`. In each grain, the last time point where the model sees a definite value of `y` is that grain's _forecast origin_."
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data."
]
},
{
@@ -354,15 +463,10 @@
"metadata": {},
"outputs": [],
"source": [
"# Replace ALL values in y_pred by NaN.\n",
"# The forecast origin will be at the beginning of the first forecast period.\n",
"# (Which is the same time as the end of the last training period.)\n",
"y_query = y_test.copy().astype(np.float)\n",
"y_query.fill(np.nan)\n",
"# The featurized data, aligned to y, will also be returned.\n",
"# This contains the assumptions that were made in the forecast\n",
"# and helps align the forecast to the original data\n",
"y_pred, X_trans = fitted_pipeline.forecast(X_test, y_query)"
"y_predictions, X_trans = fitted_model.forecast(X_test)"
]
},
{
@@ -391,39 +495,9 @@
"metadata": {},
"outputs": [],
"source": [
"def align_outputs(y_predicted, X_trans, X_test, y_test, predicted_column_name = 'predicted'):\n",
" \"\"\"\n",
" Demonstrates how to get the output aligned to the inputs\n",
" using pandas indexes. Helps understand what happened if\n",
" the output's shape differs from the input shape, or if\n",
" the data got re-sorted by time and grain during forecasting.\n",
" \n",
" Typical causes of misalignment are:\n",
" * we predicted some periods that were missing in actuals -> drop from eval\n",
" * model was asked to predict past max_horizon -> increase max horizon\n",
" * data at start of X_test was needed for lags -> provide previous periods in y\n",
" \"\"\"\n",
" \n",
" df_fcst = pd.DataFrame({predicted_column_name : y_predicted})\n",
" # y and X outputs are aligned by forecast() function contract\n",
" df_fcst.index = X_trans.index\n",
" \n",
" # align original X_test to y_test \n",
" X_test_full = X_test.copy()\n",
" X_test_full[target_column_name] = y_test\n",
"from forecasting_helper import align_outputs\n",
"\n",
" # X_test_full's index does not include origin, so reset for merge\n",
" df_fcst.reset_index(inplace=True)\n",
" X_test_full = X_test_full.reset_index().drop(columns='index')\n",
" together = df_fcst.merge(X_test_full, how='right')\n",
" \n",
" # drop rows where prediction or actuals are nan \n",
" # happens because of missing actuals \n",
" # or at edges of time due to lags/rolling windows\n",
" clean = together[together[[target_column_name, predicted_column_name]].notnull().all(axis=1)]\n",
" return(clean)\n",
"\n",
"df_all = align_outputs(y_pred, X_trans, X_test, y_test)"
"df_all = align_outputs(y_predictions, X_trans, X_test, y_test, target_column_name)"
]
},
{
@@ -432,38 +506,25 @@
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Simple forecasting model\")\n",
"rmse = np.sqrt(mean_squared_error(df_all[target_column_name], df_all['predicted']))\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % rmse)\n",
"mae = mean_absolute_error(df_all[target_column_name], df_all['predicted'])\n",
"print('mean_absolute_error score: %.2f' % mae)\n",
"print('MAPE: %.2f' % MAPE(df_all[target_column_name], df_all['predicted']))\n",
"from azureml.automl.core._vendor.automl.client.core.common import metrics\n",
"from matplotlib import pyplot as plt\n",
"from automl.client.core.common import constants\n",
"\n",
"# use automl metrics module\n",
"scores = metrics.compute_metrics_regression(\n",
" df_all['predicted'],\n",
" df_all[target_column_name],\n",
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
" None, None, None)\n",
"\n",
"print(\"[Test data scores]\\n\")\n",
"for key, value in scores.items(): \n",
" print('{}: {:.3f}'.format(key, value))\n",
" \n",
"# Plot outputs\n",
"import matplotlib.pyplot as plt\n",
"\n",
"%matplotlib notebook\n",
"%matplotlib inline\n",
"test_pred = plt.scatter(df_all[target_column_name], df_all['predicted'], color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"test_test = plt.scatter(df_all[target_column_name], df_all[target_column_name], color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
@@ -490,9 +551,9 @@
"source": [
"description = 'AutoML OJ forecaster'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"model = remote_run.register_model(model_name = model_name, description = description, tags = tags)\n",
"\n",
"print(local_run.model_id)"
"print(remote_run.model_id)"
]
},
{
@@ -501,7 +562,7 @@
"source": [
"### Develop the scoring script\n",
"\n",
"Serializing and deserializing complex data frames may be tricky. We first develop the `run()` function of the scoring script locally, then write it into a scoring script. It is much easier to debug any quirks of the scoring function without crossing two compute environments. For this exercise, we handle a common quirk of how pandas dataframes serialize time stamp values."
"For the deployment we need a function which will run the forecast on serialized data. It can be obtained from the best_run."
]
},
{
@@ -510,70 +571,15 @@
"metadata": {},
"outputs": [],
"source": [
"# this is where we test the run function of the scoring script interactively\n",
"# before putting it in the scoring script\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# test the run function here before putting in the scoring script\n",
"import json\n",
"\n",
"test_sample = json.dumps({'X': X_test.to_json(), 'y' : y_query.tolist()})\n",
"response = run(test_sample, fitted_pipeline)\n",
"\n",
"# unpack the response, dealing with the timestamp serialization again\n",
"res_dict = json.loads(response)\n",
"y_fcst_all = pd.read_json(res_dict['index'])\n",
"y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
"y_fcst_all['forecast'] = res_dict['forecast']\n",
"y_fcst_all.head()"
"script_file_name = 'score_fcast.py'\n",
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', script_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that the function works locally in the notebook, let's write it down into the scoring script. The scoring script is authored by the data scientist. Adjust it to taste, adding inputs, outputs and processing as needed."
"### Deploy the model as a Web Service on Azure Container Instance"
]
},
{
@@ -582,173 +588,24 @@
"metadata": {},
"outputs": [],
"source": [
"%%writefile score_fcast.py\n",
"import pickle\n",
"import json\n",
"import numpy as np\n",
"import pandas as pd\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"timestamp_columns = ['WeekStarting']\n",
"\n",
"def run(rawdata, test_model = None):\n",
" \"\"\"\n",
" Intended to process 'rawdata' string produced by\n",
" \n",
" {'X': X_test.to_json(), y' : y_test.to_json()}\n",
" \n",
" Don't convert the X payload to numpy.array, use it as pandas.DataFrame\n",
" \"\"\"\n",
" try:\n",
" # unpack the data frame with timestamp \n",
" rawobj = json.loads(rawdata) # rawobj is now a dict of strings \n",
" X_pred = pd.read_json(rawobj['X'], convert_dates=False) # load the pandas DF from a json string\n",
" for col in timestamp_columns: # fix timestamps\n",
" X_pred[col] = pd.to_datetime(X_pred[col], unit='ms') \n",
" \n",
" y_pred = np.array(rawobj['y']) # reconstitute numpy array from serialized list\n",
" \n",
" if test_model is None:\n",
" result = model.forecast(X_pred, y_pred) # use the global model from init function\n",
" else:\n",
" result = test_model.forecast(X_pred, y_pred) # use the model on which we are testing\n",
" \n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" \n",
" # prepare to send over wire as json\n",
" forecast_as_list = result[0].tolist()\n",
" index_as_df = result[1].index.to_frame().reset_index(drop=True)\n",
" \n",
" return json.dumps({\"forecast\": forecast_as_list, # return the minimum over the wire: \n",
" \"index\": index_as_df.to_json() # no forecast and its featurized values\n",
" })"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the model\n",
"from azureml.train.automl.run import AutoMLRun\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)\n",
"best_iteration = int(str.split(best_run.id,'_')[-1]) # the iteration number is a postfix of the run ID."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get the best model's dependencies and write them into this file\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_env_file_name = 'fcast_env.yml'\n",
"\n",
"dependencies = ml_run.get_run_sdk_dependencies(iteration = best_iteration)\n",
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this is the script file name we wrote a few cells above\n",
"script_file_name = 'score_fcast.py'\n",
"\n",
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', local_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Image for automl forecasting sample\")\n",
"\n",
"image = Image.create(name = \"automl-fcast-image\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"inference_config = InferenceConfig(environment = best_run.get_environment(), \n",
" entry_script = script_file_name)\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 2, \n",
" tags = {'type': \"automl-forecasting\"},\n",
" description = \"Automl forecasting sample service\")"
" description = \"Automl forecasting sample service\")\n",
"\n",
"aci_service_name = 'automl-oj-forecast-01'\n",
"print(aci_service_name)\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
@@ -757,17 +614,7 @@
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-forecast-01'\n",
"print(aci_service_name)\n",
"\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
"aci_service.get_logs()"
]
},
{
@@ -783,14 +630,18 @@
"metadata": {},
"outputs": [],
"source": [
"# we send the data to the service serialized into a json string\n",
"test_sample = json.dumps({'X':X_test.to_json(), 'y' : y_query.tolist()})\n",
"import json\n",
"X_query = X_test.copy()\n",
"# We have to convert datetime to string, because Timestamps cannot be serialized to JSON.\n",
"X_query[time_column_name] = X_query[time_column_name].astype(str)\n",
"# The Service object accept the complex dictionary, which is internally converted to JSON string.\n",
"# The section 'data' contains the data frame in the form of dictionary.\n",
"test_sample = json.dumps({'data': X_query.to_dict(orient='records')})\n",
"response = aci_service.run(input_data = test_sample)\n",
"\n",
"# translate from networkese to datascientese\n",
"try: \n",
" res_dict = json.loads(response)\n",
" y_fcst_all = pd.read_json(res_dict['index'])\n",
" y_fcst_all = pd.DataFrame(res_dict['index'])\n",
" y_fcst_all[time_column_name] = pd.to_datetime(y_fcst_all[time_column_name], unit = 'ms')\n",
" y_fcst_all['forecast'] = res_dict['forecast'] \n",
"except:\n",
@@ -819,17 +670,34 @@
"metadata": {},
"outputs": [],
"source": [
"serv = Webservice(ws, 'automl-forecast-01')\n",
"# serv.delete() # don't do it accidentally"
"serv = Webservice(ws, 'automl-oj-forecast-01')\n",
"serv.delete() # don't do it accidentally"
]
}
],
"metadata": {
"authors": [
{
"name": "erwright, tosingli"
"name": "erwright"
}
],
"category": "tutorial",
"celltoolbar": "Raw Cell Format",
"compute": [
"Remote"
],
"datasets": [
"Orange Juice Sales"
],
"deployment": [
"Azure Container Instance"
],
"exclude_from_index": false,
"framework": [
"Azure ML AutoML"
],
"friendly_name": "Forecasting orange juice sales with deployment",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
@@ -845,8 +713,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
"version": "3.6.8"
},
"tags": [
"None"
],
"task": "Forecasting"
},
"nbformat": 4,
"nbformat_minor": 2

View File

@@ -0,0 +1,11 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- numpy==1.16.2
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -0,0 +1,98 @@
import pandas as pd
import numpy as np
from pandas.tseries.frequencies import to_offset
def align_outputs(y_predicted, X_trans, X_test, y_test, target_column_name,
predicted_column_name='predicted',
horizon_colname='horizon_origin'):
"""
Demonstrates how to get the output aligned to the inputs
using pandas indexes. Helps understand what happened if
the output's shape differs from the input shape, or if
the data got re-sorted by time and grain during forecasting.
Typical causes of misalignment are:
* we predicted some periods that were missing in actuals -> drop from eval
* model was asked to predict past max_horizon -> increase max horizon
* data at start of X_test was needed for lags -> provide previous periods
"""
if (horizon_colname in X_trans):
df_fcst = pd.DataFrame({predicted_column_name: y_predicted,
horizon_colname: X_trans[horizon_colname]})
else:
df_fcst = pd.DataFrame({predicted_column_name: y_predicted})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
X_test_full[target_column_name] = y_test
# X_test_full's index does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns='index')
together = df_fcst.merge(X_test_full, how='right')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[target_column_name,
predicted_column_name]].notnull().all(axis=1)]
return(clean)
def do_rolling_forecast(fitted_model, X_test, y_test, target_column_name, time_column_name, max_horizon, freq='D'):
"""
Produce forecasts on a rolling origin over the given test set.
Each iteration makes a forecast for the next 'max_horizon' periods
with respect to the current origin, then advances the origin by the
horizon time duration. The prediction context for each forecast is set so
that the forecaster uses the actual target values prior to the current
origin time for constructing lag features.
This function returns a concatenated DataFrame of rolling forecasts.
"""
df_list = []
origin_time = X_test[time_column_name].min()
while origin_time <= X_test[time_column_name].max():
# Set the horizon time - end date of the forecast
horizon_time = origin_time + max_horizon * to_offset(freq)
# Extract test data from an expanding window up-to the horizon
expand_wind = (X_test[time_column_name] < horizon_time)
X_test_expand = X_test[expand_wind]
y_query_expand = np.zeros(len(X_test_expand)).astype(np.float)
y_query_expand.fill(np.NaN)
if origin_time != X_test[time_column_name].min():
# Set the context by including actuals up-to the origin time
test_context_expand_wind = (X_test[time_column_name] < origin_time)
context_expand_wind = (
X_test_expand[time_column_name] < origin_time)
y_query_expand[context_expand_wind] = y_test[
test_context_expand_wind]
# Make a forecast out to the maximum horizon
y_fcst, X_trans = fitted_model.forecast(X_test_expand, y_query_expand)
# Align forecast with test set for dates within the
# current rolling window
trans_tindex = X_trans.index.get_level_values(time_column_name)
trans_roll_wind = (trans_tindex >= origin_time) & (
trans_tindex < horizon_time)
test_roll_wind = expand_wind & (
X_test[time_column_name] >= origin_time)
df_list.append(align_outputs(y_fcst[trans_roll_wind],
X_trans[trans_roll_wind],
X_test[test_roll_wind],
y_test[test_roll_wind],
target_column_name))
# Advance the origin time
origin_time = horizon_time
return pd.concat(df_list, ignore_index=True)

View File

@@ -0,0 +1,22 @@
import pandas as pd
import numpy as np
def APE(actual, pred):
"""
Calculate absolute percentage error.
Returns a vector of APE values with same length as actual/pred.
"""
return 100 * np.abs((actual - pred) / actual)
def MAPE(actual, pred):
"""
Calculate mean absolute percentage error.
Remove NA and values where actual is close to zero
"""
not_na = ~(np.isnan(actual) | np.isnan(pred))
not_zero = ~np.isclose(actual, 0.0)
actual_safe = actual[not_na & not_zero]
pred_safe = pred[not_na & not_zero]
return np.mean(APE(actual_safe, pred_safe))

View File

@@ -0,0 +1,411 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification of credit card fraudulent transactions with local run **_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"1. [Acknowledgements](#Acknowledgements)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the associated credit card dataset to showcase how you can use AutoML for a simple classification problem. The goal is to predict if a credit card transaction is considered a fraudulent charge.\n",
"\n",
"This notebook is using the local machine compute to train the model.\n",
"\n",
"If you are using an Azure Machine Learning [Notebook VM](https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-1st-experiment-sdk-setup), you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model.\n",
"4. Explore the results.\n",
"5. Test the fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"import os\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-classification-ccard-local'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"\n",
"Load the credit card dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/creditcard.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)\n",
"label_column_name = 'Class'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**enable_early_stopping**|Stop the run if the metric score is not showing improvement.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'average_precision_score_weighted',\n",
" \"experiment_timeout_hours\": 0.25, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ability to find the best model possible\n",
" \"verbosity\": logging.INFO,\n",
" \"enable_stack_ensemble\": False\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" training_data = training_data,\n",
" label_column_name = label_column_name,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# If you need to retrieve a run that already started, use the following code\n",
"#from azureml.train.automl.run import AutoMLRun\n",
"#local_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze results\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the fitted model\n",
"\n",
"Now that the model is trained, split the data in the same way the data was split for training (The difference here is the data is being split locally) and then run the test data through the trained model to get the predicted values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# convert the test data to dataframe\n",
"X_test_df = validation_data.drop_columns(columns=[label_column_name]).to_pandas_dataframe()\n",
"y_test_df = validation_data.keep_columns(columns=[label_column_name], validate=True).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# call the predict functions on the model\n",
"y_pred = fitted_model.predict(X_test_df)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n",
"\n",
"Now visualize the data on a scatter plot to show what our truth (actual) values are compared to the predicted values \n",
"from the trained model that was returned."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"import numpy as np\n",
"import itertools\n",
"\n",
"cf =confusion_matrix(y_test_df.values,y_pred)\n",
"plt.imshow(cf,cmap=plt.cm.Blues,interpolation='nearest')\n",
"plt.colorbar()\n",
"plt.title('Confusion Matrix')\n",
"plt.xlabel('Predicted')\n",
"plt.ylabel('Actual')\n",
"class_labels = ['False','True']\n",
"tick_marks = np.arange(len(class_labels))\n",
"plt.xticks(tick_marks,class_labels)\n",
"plt.yticks([-0.5,0,1,1.5],['','False','True',''])\n",
"# plotting text value inside cells\n",
"thresh = cf.max() / 2.\n",
"for i,j in itertools.product(range(cf.shape[0]),range(cf.shape[1])):\n",
" plt.text(j,i,format(cf[i,j],'d'),horizontalalignment='center',color='white' if cf[i,j] >thresh else 'black')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Acknowledgements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Credit Card fraud Detection dataset is made available under the Open Database License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individual contents of the database are licensed under the Database Contents License: http://opendatacommons.org/licenses/dbcl/1.0/ and is available at: https://www.kaggle.com/mlg-ulb/creditcardfraud\n",
"\n",
"\n",
"The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Universit\u00c3\u0192\u00c2\u00a9 Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud project\n",
"Please cite the following works: \n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tAndrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Caelen, Olivier; Le Borgne, Yann-Ael; Waterschoot, Serge; Bontempi, Gianluca. Learned lessons in credit card fraud detection from a practitioner perspective, Expert systems with applications,41,10,4915-4928,2014, Pergamon\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tDal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca. Credit card fraud detection: a realistic modeling and a novel learning strategy, IEEE transactions on neural networks and learning systems,29,8,3784-3797,2018,IEEE\n",
"o\tDal Pozzolo, Andrea Adaptive Machine learning for credit card fraud detection ULB MLG PhD thesis (supervised by G. Bontempi)\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Dal Pozzolo, Andrea; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Mazzer, Yannis; Bontempi, Gianluca. Scarff: a scalable framework for streaming credit card fraud detection with Spark, Information fusion,41, 182-194,2018,Elsevier\n",
"\u00c3\u00a2\u00e2\u201a\u00ac\u00c2\u00a2\tCarcillo, Fabrizio; Le Borgne, Yann-A\u00c3\u0192\u00c2\u00abl; Caelen, Olivier; Bontempi, Gianluca. Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization, International Journal of Data Science and Analytics, 5,4,285-300,2018,Springer International Publishing"
]
}
],
"metadata": {
"authors": [
{
"name": "tzvikei"
}
],
"category": "tutorial",
"compute": [
"Local"
],
"datasets": [
"creditcard"
],
"deployment": [
"None"
],
"exclude_from_index": true,
"file_extension": ".py",
"framework": [
"None"
],
"friendly_name": "Classification of credit card fraudulent transactions using Automated ML",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"tags": [
"local_run",
"AutomatedML"
],
"task": "Classification",
"version": "3.6.7"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,9 @@
name: auto-ml-classification-credit-card-fraud-local
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- interpret
- azureml-explain-model

View File

@@ -1,417 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Blacklisting Models, Early Termination, and Handling Missing Data**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for handling missing values in data. We also provide a stopping metric indicating a target for the primary metrics so that AutoML can terminate the run without necessarly going through all the iterations. Finally, if you want to avoid a certain pipeline, we allow you to specify a blacklist of algorithms that AutoML will ignore for this run.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model.\n",
"4. Explore the results.\n",
"5. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Blacklisting** certain pipelines\n",
"- Specifying **target metrics** to indicate stopping criteria\n",
"- Handling **missing data** in the input"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-local-missing-data'\n",
"project_folder = './sample_projects/automl-local-missing-data'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[10:,:]\n",
"y_train = digits.target[10:]\n",
"\n",
"# Add missing values in 75% of the lines.\n",
"missing_rate = 0.75\n",
"n_missing_samples = int(np.floor(X_train.shape[0] * missing_rate))\n",
"missing_samples = np.hstack((np.zeros(X_train.shape[0] - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool)))\n",
"rng = np.random.RandomState(0)\n",
"rng.shuffle(missing_samples)\n",
"missing_features = rng.randint(0, X_train.shape[1], n_missing_samples)\n",
"X_train[np.where(missing_samples)[0], missing_features] = np.nan"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data = X_train)\n",
"df['Label'] = pd.Series(y_train, index=df.index)\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment. This includes setting `experiment_exit_score`, which should cause the run to complete before the `iterations` count is reached.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 20,\n",
" preprocess = True,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = local_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 3\n",
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]\n",
"\n",
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()\n"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,350 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Explain classification model and visualize the explanation**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the sklearn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) to showcase how you can use the AutoML Classifier for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig\n",
"3. Training the Model using local compute and explain the model\n",
"4. Visualization model's feature importance in widget\n",
"5. Explore best model's explanation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-model-explanation'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-model-explanation'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"iris = datasets.load_iris()\n",
"y = iris.target\n",
"X = iris.data\n",
"\n",
"features = iris.feature_names\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
" y,\n",
" test_size=0.1,\n",
" random_state=100,\n",
" stratify=y)\n",
"\n",
"X_train = pd.DataFrame(X_train, columns=features)\n",
"X_test = pd.DataFrame(X_test, columns=features)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**max_time_sec**|Time limit in minutes for each iterations|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**model_explainability**|Indicate to explain each trained pipeline or not |\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. |"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 200,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" X_valid = X_test,\n",
" y_valid = y_test,\n",
" model_explainability=True,\n",
" path=project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
"You will see the currently running iterations printing to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method on automl_classifier returns the best run and the fitted model for the last *fit* invocation. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Best Model 's explanation\n",
"\n",
"Retrieve the explanation from the best_run. And explanation information includes:\n",
"\n",
"1.\tshap_values: The explanation information generated by shap lib\n",
"2.\texpected_values: The expected value of the model applied to set of X_train data.\n",
"3.\toverall_summary: The model level feature importance values sorted in descending order\n",
"4.\toverall_imp: The feature names sorted in the same order as in overall_summary\n",
"5.\tper_class_summary: The class level feature importance values sorted in descending order. Only available for the classification case\n",
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case\n",
"\n",
"Note:- The **retrieve_model_explanation()** API only works in case AutoML has been configured with **'model_explainability'** flag set to **True**. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import retrieve_model_explanation\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" retrieve_model_explanation(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(overall_summary)\n",
"print(overall_imp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(per_class_summary)\n",
"print(per_class_imp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Beside retrieve the existed model explanation information, explain the model with different train/test data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" explain_model(fitted_model, X_train, X_test, features=features)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(overall_summary)\n",
"print(overall_imp)"
]
}
],
"metadata": {
"authors": [
{
"name": "xif"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,979 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression-car-price-model-explaination-and-featurization/auto-ml-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Aml Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
"After training AutoML models for this regression data set, we show how you can compute model explanations on your remote compute using a sample explainer script.\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"An Enterprise workspace is required for this notebook. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade) \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Instantiating AutoMLConfig with FeaturizationConfig for customization\n",
"3. Train the model using remote compute.\n",
"4. Explore the results and featurization transparency options\n",
"5. Setup remote compute for computing the model explanations for a given AutoML model.\n",
"6. Start an AzureML experiment on your remote compute to compute explanations for an AutoML model.\n",
"7. Download the feature importance for engineered features and visualize the explanations for engineered features. \n",
"8. Download the feature importance for raw features and visualize the explanations for raw features. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.automl.core.featurization import FeaturizationConfig\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.core.dataset import Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-regression-hardware-explain'\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"cpu-cluster-5\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
"\n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 4)\n",
"\n",
" # Create the cluster.\\n\",\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
"\n",
"print('Checking cluster status...')\n",
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
"\n",
"# For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup Training and Test Data for AutoML experiment\n",
"\n",
"Load the hardware dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model. We also register the datasets in your workspace using a name so that these datasets may be accessed from the remote compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = 'https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/machineData.csv'\n",
"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"\n",
"# Split the dataset into train and test datasets\n",
"train_data, test_data = dataset.random_split(percentage=0.8, seed=223)\n",
"\n",
"\n",
"# Register the train dataset with your workspace\n",
"train_data.register(workspace = ws, name = 'machineData_train_dataset',\n",
" description = 'hardware performance training data',\n",
" create_new_version=True)\n",
"\n",
"# Register the test dataset with your workspace\n",
"test_data.register(workspace = ws, name = 'machineData_test_dataset', description = 'hardware performance test data', create_new_version=True)\n",
"\n",
"label =\"ERP\"\n",
"\n",
"train_data.to_pandas_dataframe().head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification, regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Setting this enables AutoML to perform featurization on the input to handle *missing data*, and to perform some common *feature extraction*. Note: If the input data is sparse, featurization cannot be turned on.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Customization\n",
"\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
"\n",
"Supported customization includes:\n",
"1. Column purpose update: Override feature type for the specified column.\n",
"2. Transformer parameter update: Update parameters for the specified transformer. Currently supports Imputer and HashOneHotEncoder.\n",
"3. Drop columns: Columns to drop from being featurized.\n",
"4. Block transformers: Allow/Block transformers to be used on featurization process."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create FeaturizationConfig object using API calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"featurization_config = FeaturizationConfig()\n",
"featurization_config.blocked_transformers = ['LabelEncoder']\n",
"#featurization_config.drop_columns = ['MMIN']\n",
"featurization_config.add_column_purpose('MYCT', 'Numeric')\n",
"featurization_config.add_column_purpose('VendorName', 'CategoricalHash')\n",
"#default strategy mean, add transformer param for for 3 columns\n",
"featurization_config.add_transformer_params('Imputer', ['CACH'], {\"strategy\": \"median\"})\n",
"featurization_config.add_transformer_params('Imputer', ['CHMIN'], {\"strategy\": \"median\"})\n",
"featurization_config.add_transformer_params('Imputer', ['PRP'], {\"strategy\": \"most_frequent\"})\n",
"#featurization_config.add_transformer_params('HashOneHotEncoder', [], {\"number_of_bits\": 3})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"enable_early_stopping\": True, \n",
" \"experiment_timeout_hours\" : 0.25,\n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'normalized_root_mean_squared_error',\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" debug_log = 'automl_errors.log',\n",
" compute_target=compute_target,\n",
" featurization=featurization_config,\n",
" training_data = train_data,\n",
" label_column_name = label,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run the following cell to access previous runs. Uncomment the cell below and update the run_id."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from azureml.train.automl.run import AutoMLRun\n",
"#experiment_name = 'automl-regression-hardware'\n",
"#experiment = Experiment(ws, experiment_name)\n",
"#remote_run = AutoMLRun(experiment=experiment, run_id='<run_ID_goes_here')\n",
"#remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.wait_for_completion()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run_customized, fitted_model_customized = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Transparency\n",
"\n",
"View updated featurization summary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_featurizer = fitted_model_customized.named_steps['datatransformer']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_featurizer.get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"is_user_friendly=False allows for more detailed summary for transforms being applied"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_featurizer.get_featurization_summary(is_user_friendly=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"custom_featurizer.get_stats_feature_type_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explanations\n",
"This step requires an Enterprise workspace to gain access to this feature. To learn more about creating an Enterprise workspace or upgrading to an Enterprise workspace from the Azure portal, please visit our [Workspace page.](https://docs.microsoft.com/azure/machine-learning/service/concept-workspace#upgrade). \n",
"This section will walk you through the workflow to compute model explanations for an AutoML model on your remote compute.\n",
"\n",
"### Retrieve any AutoML Model for explanations\n",
"\n",
"Below we select the some AutoML pipeline from our iterations. The `get_output` method returns the a AutoML run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_run, fitted_model = remote_run.get_output(metric='r2_score')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setup model explanation run on the remote compute\n",
"The following section provides details on how to setup an AzureML experiment to run model explanations for an AutoML model on your remote compute."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Sample script used for computing explanations\n",
"View the sample script for computing the model explanations for your AutoML model on remote compute."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('train_explainer.py', 'r') as cefr:\n",
" print(cefr.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Substitute values in your sample script\n",
"The following cell shows how you change the values in the sample script so that you can change the sample script according to your experiment and dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"import os\n",
"\n",
"# create script folder\n",
"script_folder = './sample_projects/automl-regression-hardware'\n",
"if not os.path.exists(script_folder):\n",
" os.makedirs(script_folder)\n",
"\n",
"# Copy the sample script to script folder.\n",
"shutil.copy('train_explainer.py', script_folder)\n",
"\n",
"# Create the explainer script that will run on the remote compute.\n",
"script_file_name = script_folder + '/train_explainer.py'\n",
"\n",
"# Open the sample script for modification\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"# Replace the values in train_explainer.py file with the appropriate values\n",
"content = content.replace('<<experiment_name>>', automl_run.experiment.name) # your experiment name.\n",
"content = content.replace('<<run_id>>', automl_run.id) # Run-id of the AutoML run for which you want to explain the model.\n",
"content = content.replace('<<target_column_name>>', 'ERP') # Your target column name\n",
"content = content.replace('<<task>>', 'regression') # Training task type\n",
"# Name of your training dataset register with your workspace\n",
"content = content.replace('<<train_dataset_name>>', 'machineData_train_dataset') \n",
"# Name of your test dataset register with your workspace\n",
"content = content.replace('<<test_dataset_name>>', 'machineData_test_dataset')\n",
"\n",
"# Write sample file into your script folder.\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create conda configuration for model explanations experiment from automl_run object"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"\n",
"# specify CondaDependencies obj\n",
"conda_run_config.environment.python.conda_dependencies = automl_run.get_environment().python.conda_dependencies"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Submit the experiment for model explanations\n",
"Submit the experiment with the above `run_config` and the sample script for computing explanations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Now submit a run on AmlCompute for model explanations\n",
"from azureml.core.script_run_config import ScriptRunConfig\n",
"\n",
"script_run_config = ScriptRunConfig(source_directory=script_folder,\n",
" script='train_explainer.py',\n",
" run_config=conda_run_config)\n",
"\n",
"run = experiment.submit(script_run_config)\n",
"\n",
"# Show run details\n",
"run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"# Shows output of the run on stdout.\n",
"run.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feature importance and explanation dashboard\n",
"In this section we describe how you can download the explanation results from the explanations experiment and visualize the feature importance for your AutoML model. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Setup for visualizing the model explanation results\n",
"For visualizing the explanation results for the *fitted_model* we need to perform the following steps:-\n",
"1. Featurize test data samples.\n",
"\n",
"The *automl_explainer_setup_obj* contains all the structures from above list. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test = test_data.drop_columns([label]).to_pandas_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, automl_setup_model_explanations\n",
"explainer_setup_class = automl_setup_model_explanations(fitted_model, 'regression', X_test=X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download engineered feature importance from artifact store\n",
"You can use *ExplanationClient* to download the engineered feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the engineered features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.explain.model._internal.explanation_client import ExplanationClient\n",
"from interpret_community.widget import ExplanationDashboard\n",
"client = ExplanationClient.from_run(automl_run)\n",
"engineered_explanations = client.download_model_explanation(raw=False)\n",
"print(engineered_explanations.get_feature_importance_dict())\n",
"ExplanationDashboard(engineered_explanations, explainer_setup_class.automl_estimator, datasetX=explainer_setup_class.X_test_transform)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download raw feature importance from artifact store\n",
"You can use *ExplanationClient* to download the raw feature explanations from the artifact store of the *automl_run*. You can also use ExplanationDashboard to view the dash board visualization of the feature importance values of the raw features."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_explanations = client.download_model_explanation(raw=True)\n",
"print(raw_explanations.get_feature_importance_dict())\n",
"ExplanationDashboard(raw_explanations, explainer_setup_class.automl_pipeline, datasetX=explainer_setup_class.X_test_raw)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operationailze\n",
"In this section we will show how you can operationalize an AutoML model and the explainer which was used to compute the explanations in the previous section.\n",
"\n",
"### Register the AutoML model and the scoring explainer\n",
"We use the *TreeScoringExplainer* from *azureml.explain.model* package to create the scoring explainer which will be used to compute the raw and engineered feature importances at the inference time. \n",
"In the cell below, we register the AutoML model and the scoring explainer with the Model Management Service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Register trained automl model present in the 'outputs' folder in the artifacts\n",
"original_model = automl_run.register_model(model_name='automl_model', \n",
" model_path='outputs/model.pkl')\n",
"scoring_explainer_model = automl_run.register_model(model_name='scoring_explainer',\n",
" model_path='outputs/scoring_explainer.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the conda dependencies for setting up the service\n",
"We need to create the conda dependencies comprising of the *azureml-explain-model*, *azureml-train-automl* and *azureml-defaults* packages. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"conda_dep = automl_run.get_environment().python.conda_dependencies\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(conda_dep.serialize_to_string())\n",
"\n",
"with open(\"myenv.yml\",\"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View your scoring file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open(\"score_explain.py\",\"r\") as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the service\n",
"In the cell below, we deploy the service using the conda file and the scoring file from the previous steps. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"from azureml.core.model import Model\n",
"from azureml.core.environment import Environment\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, \n",
" memory_gb=1, \n",
" tags={\"data\": \"Machine Data\", \n",
" \"method\" : \"local_explanation\"}, \n",
" description='Get local explanations for Machine test data')\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score_explain.py\", environment=myenv)\n",
"\n",
"# Use configs and models generated above\n",
"service = Model.deploy(ws, 'model-scoring', [scoring_explainer_model, original_model], inference_config, aciconfig)\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View the service logs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Inference using some test data\n",
"Inference using some test data to see the predicted value from autml model, view the engineered feature importance for the predicted value and raw feature importance for the predicted value."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if service.state == 'Healthy':\n",
" # Serialize the first row of the test data into json\n",
" X_test_json = X_test[:1].to_json(orient='records')\n",
" print(X_test_json)\n",
" # Call the service to get the predictions and the engineered and raw explanations\n",
" output = service.run(X_test_json)\n",
" # Print the predicted value\n",
" print(output['predictions'])\n",
" # Print the engineered feature importances for the predicted value\n",
" print(output['engineered_local_importance_values'])\n",
" # Print the raw feature importances for the predicted value\n",
" print(output['raw_local_importance_values'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete the service\n",
"Delete the service once you have finished inferencing."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# preview the first 3 rows of the dataset\n",
"\n",
"test_data = test_data.to_pandas_dataframe()\n",
"y_test = test_data['ERP'].fillna(0)\n",
"test_data = test_data.drop('ERP', 1)\n",
"test_data = test_data.fillna(0)\n",
"\n",
"\n",
"train_data = train_data.to_pandas_dataframe()\n",
"y_train = train_data['ERP'].fillna(0)\n",
"train_data = train_data.drop('ERP', 1)\n",
"train_data = train_data.fillna(0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(train_data)\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(test_data)\n",
"y_residual_test = y_test - y_pred_test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"# Set up a multi-plot chart.\n",
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
"f.set_figheight(6)\n",
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -100, 100])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)),fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -100, 100])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)),fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"test_pred = plt.scatter(y_test, y_pred_test, color='')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "anumamah"
}
],
"categories": [
"how-to-use-azureml",
"automated-machine-learning"
],
"category": "tutorial",
"compute": [
"AML"
],
"datasets": [
"MachineData"
],
"deployment": [
"ACI"
],
"exclude_from_index": false,
"framework": [
"None"
],
"friendly_name": "Automated ML run with featurization and model explainability.",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"tags": [
"featurization",
"explainability",
"remote_run",
"AutomatedML"
],
"task": "Regression"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,11 @@
name: auto-ml-regression-hardware-performance-explanation-and-featurization
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- interpret
- azureml-explain-model
- azureml-explain-model
- azureml-contrib-interpret

View File

@@ -0,0 +1,43 @@
import json
import numpy as np
import pandas as pd
import os
import pickle
import azureml.train.automl
import azureml.explain.model
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations
from sklearn.externals import joblib
from azureml.core.model import Model
def init():
global automl_model
global scoring_explainer
# Retrieve the path to the model file using the model name
# Assume original model is named original_prediction_model
automl_model_path = Model.get_model_path('automl_model')
scoring_explainer_path = Model.get_model_path('scoring_explainer')
automl_model = joblib.load(automl_model_path)
scoring_explainer = joblib.load(scoring_explainer_path)
def run(raw_data):
# Get predictions and explanations for each data point
data = pd.read_json(raw_data, orient='records')
# Make prediction
predictions = automl_model.predict(data)
# Setup for inferencing explanations
automl_explainer_setup_obj = automl_setup_model_explanations(automl_model,
X_test=data, task='regression')
# Retrieve model explanations for engineered explanations
engineered_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform)
# Retrieve model explanations for raw explanations
raw_local_importance_values = scoring_explainer.explain(automl_explainer_setup_obj.X_test_transform, get_raw=True)
# You can return any data type as long as it is JSON-serializable
return {'predictions': predictions.tolist(),
'engineered_local_importance_values': engineered_local_importance_values,
'raw_local_importance_values': raw_local_importance_values}

View File

@@ -0,0 +1,81 @@
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license.
import os
from azureml.core.run import Run
from azureml.core.experiment import Experiment
from sklearn.externals import joblib
from azureml.core.dataset import Dataset
from azureml.train.automl.runtime.automl_explain_utilities import AutoMLExplainerSetupClass, \
automl_setup_model_explanations, automl_check_model_if_explainable
from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
from azureml.explain.model.mimic_wrapper import MimicWrapper
from automl.client.core.common.constants import MODEL_PATH
from azureml.explain.model.scoring.scoring_explainer import TreeScoringExplainer, save
OUTPUT_DIR = './outputs/'
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Get workspace from the run context
run = Run.get_context()
ws = run.experiment.workspace
# Get the AutoML run object from the experiment name and the workspace
experiment = Experiment(ws, '<<experiment_name>>')
automl_run = Run(experiment=experiment, run_id='<<run_id>>')
# Check if this AutoML model is explainable
if not automl_check_model_if_explainable(automl_run):
raise Exception("Model explanations is currently not supported for " + automl_run.get_properties().get(
'run_algorithm'))
# Download the best model from the artifact store
automl_run.download_file(name=MODEL_PATH, output_file_path='model.pkl')
# Load the AutoML model into memory
fitted_model = joblib.load('model.pkl')
# Get the train dataset from the workspace
train_dataset = Dataset.get_by_name(workspace=ws, name='<<train_dataset_name>>')
# Drop the lablled column to get the training set.
X_train = train_dataset.drop_columns(columns=['<<target_column_name>>'])
y_train = train_dataset.keep_columns(columns=['<<target_column_name>>'], validate=True)
# Get the train dataset from the workspace
test_dataset = Dataset.get_by_name(workspace=ws, name='<<test_dataset_name>>')
# Drop the lablled column to get the testing set.
X_test = test_dataset.drop_columns(columns=['<<target_column_name>>'])
# Setup the class for explaining the AtuoML models
automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, '<<task>>',
X=X_train, X_test=X_test,
y=y_train)
# Initialize the Mimic Explainer
explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,
features=automl_explainer_setup_obj.engineered_feature_names,
feature_maps=[automl_explainer_setup_obj.feature_map],
classes=automl_explainer_setup_obj.classes)
# Compute the engineered explanations
engineered_explanations = explainer.explain(['local', 'global'],
eval_dataset=automl_explainer_setup_obj.X_test_transform)
# Compute the raw explanations
raw_explanations = explainer.explain(['local', 'global'], get_raw=True,
raw_feature_names=automl_explainer_setup_obj.raw_feature_names,
eval_dataset=automl_explainer_setup_obj.X_test_transform)
print("Engineered and raw explanations computed successfully")
# Initialize the ScoringExplainer
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=[automl_explainer_setup_obj.feature_map])
# Pickle scoring explainer locally
save(scoring_explainer, exist_ok=True)
# Upload the scoring explainer to the automl run
automl_run.upload_file('outputs/scoring_explainer.pkl', 'scoring_explainer.pkl')

View File

@@ -9,12 +9,19 @@
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Local Compute**_\n",
"_**Regression with Aml Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
@@ -22,7 +29,8 @@
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
"1. [Test](#Test)\n",
"\n"
]
},
{
@@ -30,9 +38,9 @@
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [diabetes dataset](http://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) to showcase how you can use AutoML for a simple regression problem.\n",
"In this example we use the Hardware Performance Dataset to showcase how you can use AutoML for a simple regression problem. The Regression goal is to predict the performance of certain combinations of hardware parts.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook first if you haven't already to establish your connection to the AzureML Workspace. \n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
@@ -48,7 +56,7 @@
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
@@ -62,10 +70,12 @@
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
" \n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.train.automl import AutoMLConfig"
]
},
@@ -77,20 +87,18 @@
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-regression'\n",
"project_folder = './sample_projects/automl-local-regression'\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-regression'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
@@ -100,8 +108,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"This uses scikit-learn's [load_diabetes](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html) method."
"### Using AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you use `AmlCompute` as your training compute resource."
]
},
{
@@ -110,15 +118,52 @@
"metadata": {},
"outputs": [],
"source": [
"# Load the diabetes dataset, a well-known built-in small dataset that comes with scikit-learn.\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.model_selection import train_test_split\n",
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"X, y = load_diabetes(return_X_y = True)\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster-2\"\n",
"\n",
"columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',\n",
" max_nodes=4)\n",
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"
"compute_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data\n",
"Load the hardware dataset from a csv file containing both training features and labels. The features are inputs to the model, while the training labels represent the expected output of the model. Next, we'll split the data using random_split and extract the training data for the model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/machineData.csv\"\n",
"dataset = Dataset.Tabular.from_delimited_files(data)\n",
"\n",
"# Split the dataset into train and test datasets\n",
"train_data, test_data = dataset.random_split(percentage=0.8, seed=223)\n",
"\n",
"label = \"ERP\"\n"
]
},
{
@@ -131,40 +176,48 @@
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**task**|classification, regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
"|**training_data**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**label_column_name**|(sparse) array-like, shape = [n_samples, ], targets values.|\n",
"\n",
"**_You can find more information about primary metrics_** [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#primary-metric)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"tags": [
"automlconfig-remarks-sample"
]
},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n",
" \"enable_early_stopping\": True, \n",
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"verbosity\": logging.INFO,\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'regression',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 10,\n",
" primary_metric = 'spearman_correlation',\n",
" n_cross_validations = 5,\n",
" debug_log = 'automl.log',\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
" compute_target = compute_target,\n",
" training_data = train_data,\n",
" label_column_name = label,\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
"Call the `submit` method on the experiment object and pass the run configuration. Execution of remote runs is asynchronous. Depending on the data and the number of iterations this can run for a while."
]
},
{
@@ -173,7 +226,7 @@
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
@@ -182,7 +235,18 @@
"metadata": {},
"outputs": [],
"source": [
"local_run"
"# If you need to retrieve a run that already started, use the following code\n",
"#from azureml.train.automl.run import AutoMLRun\n",
"#remote_run = AutoMLRun(experiment = experiment, run_id = '<replace with your run id>')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
@@ -210,16 +274,7 @@
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
"RunDetails(remote_run).show() "
]
},
{
@@ -228,15 +283,7 @@
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
"remote_run.wait_for_completion()"
]
},
{
@@ -254,7 +301,7 @@
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
@@ -274,7 +321,7 @@
"outputs": [],
"source": [
"lookup_metric = \"root_mean_squared_error\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
@@ -294,7 +341,7 @@
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
@@ -307,10 +354,23 @@
]
},
{
"cell_type": "markdown",
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Predict on training and test set, and calculate residual values."
"# preview the first 3 rows of the dataset\n",
"\n",
"test_data = test_data.to_pandas_dataframe()\n",
"y_test = test_data['ERP'].fillna(0)\n",
"test_data = test_data.drop('ERP', 1)\n",
"test_data = test_data.fillna(0)\n",
"\n",
"\n",
"train_data = train_data.to_pandas_dataframe()\n",
"y_train = train_data['ERP'].fillna(0)\n",
"train_data = train_data.drop('ERP', 1)\n",
"train_data = train_data.fillna(0)\n"
]
},
{
@@ -319,10 +379,10 @@
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(X_train)\n",
"y_pred_train = fitted_model.predict(train_data)\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(X_test)\n",
"y_pred_test = fitted_model.predict(test_data)\n",
"y_residual_test = y_test - y_pred_test"
]
},
@@ -342,41 +402,57 @@
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -200, 200])\n",
"a0.axis([0, 360, -100, 100])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)),fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot a histogram.\n",
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step')\n",
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -200, 200])\n",
"a1.axis([0, 90, -100, 100])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)),fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"# Plot a histogram.\n",
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step')\n",
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"test_pred = plt.scatter(y_test, y_pred_test, color='')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "savitam"
"name": "rakellam"
}
],
"categories": [
"how-to-use-azureml",
"automated-machine-learning"
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
@@ -392,7 +468,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.2"
}
},
"nbformat": 4,

View File

@@ -0,0 +1,8 @@
name: auto-ml-regression
dependencies:
- pip:
- azureml-sdk
- pandas==0.23.4
- azureml-train-automl
- azureml-widgets
- matplotlib

View File

@@ -1,555 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using AmlCompute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Create or Attach existing AmlCompute to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AmlCompute\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bai_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='bai_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading executed runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration=iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,558 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using attach**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML to handle text data with remote attach.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Viewing the engineered names for featurized data and featurization summary for all raw features.\n",
"7. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`\n",
"- Handling **text** data using the `preprocess` flag"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-attach'\n",
"project_folder = './sample_projects/automl-remote-attach'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Attach a Remote Linux DSVM\n",
"To use a remote Docker compute target:\n",
"1. Create a Linux DSVM in Azure, following these [instructions](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
"2. Enter the IP address, user name and password below.\n",
"\n",
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on changing SSH ports for security reasons."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
"import time\n",
"\n",
"# Add your VM information below\n",
"# If a compute with the specified compute_name already exists, it will be used and the dsvm_ip_addr, dsvm_ssh_port, \n",
"# dsvm_username and dsvm_password will be ignored.\n",
"compute_name = 'mydsvmb'\n",
"dsvm_ip_addr = '<<ip_addr>>'\n",
"dsvm_ssh_port = 22\n",
"dsvm_username = '<<username>>'\n",
"dsvm_password = '<<password>>'\n",
"\n",
"if compute_name in ws.compute_targets:\n",
" print('Using existing compute.')\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
"else:\n",
" attach_config = RemoteCompute.attach_configuration(address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
" ComputeTarget.attach(workspace=ws, name=compute_name, attach_configuration=attach_config)\n",
"\n",
" while ws.compute_targets[compute_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
"\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
" \n",
" if dsvm_compute.provisioning_state == 'Failed':\n",
" print('Attached failed.')\n",
" print(dsvm_compute.provisioning_errors)\n",
" dsvm_compute.detach()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"pandas_dependency = 'pandas==' + pkg_resources.get_distribution(\"pandas\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80',pandas_dependency])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns a [dictionary](README.md#getdata)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import numpy as np\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"def get_data():\n",
" remove = ('headers', 'footers', 'quotes')\n",
" categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
" data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
" X_train = np.array(data_train.data).reshape((len(data_train.data),1))\n",
" y_train = np.array(data_train.target)\n",
" \n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.\n",
"|**max_cores_per_iteration**|Indicates how many cores on the compute target would be used to train a single pipeline.<br>Default is *1*; you can set it to *-1* to use all cores.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 2\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the engineered names for featurized data\n",
"Below we display the engineered feature names generated for the featurized data using the preprocessing featurization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_engineered_feature_names()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### View the featurization summary\n",
"Below we display the featurization that was performed on different raw features in the user data. For each raw feature in the user data, the following information is displayed:-\n",
"- Raw feature name\n",
"- Number of engineered features formed out of this raw feature\n",
"- Type detected\n",
"- If feature was dropped\n",
"- List of feature transformations for the raw feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fitted_model.named_steps['datatransformer'].get_featurization_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"zero_run, zero_model = remote_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,555 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using AmlCompute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Create or Attach existing AmlCompute to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AmlCompute\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='bai_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='bai_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/bai_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 2,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading executed runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration=iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,586 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution with DataStore**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
"1. DataStore secures the access details.\n",
"2. DataStore supports read, write to blob and file store\n",
"3. AutoML natively supports copying data from DataStore to DSVM\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Storing data in DataStore.\n",
"2. get_data returning data from DataStore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-remote-datastore-file'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-remote-datastore-file'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
"\n",
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/detailed-troubleshoot-ssh-connection) on this."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[compute_target_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(workspace=ws, name=compute_target_name)\n",
" print('found existing:', dsvm_compute.name)\n",
"except:\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size=\"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output=True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"### Copy data file to local\n",
"\n",
"Download the data file.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"import csv\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to the cloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The datastore is a convenient construct associated with your workspace for you to upload/download data, and interact with it from your remote compute targets. It is backed by Azure blob storage account.\n",
"\n",
"The data.tsv files are uploaded into a directory named data at the root of the datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#blob_datastore = Datastore(ws, blob_datastore_name)\n",
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ds.upload_files(\"data.tsv\")\n",
"ds.upload(src_dir='./data', target_path='data', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run\n",
"\n",
"First let's create a DataReferenceConfigruation object to inform the system what data folder to download to the compute target.\n",
"The path_on_compute should be an absolute path to ensure that the data files are downloaded only once. The get_data method should use this same path to access the data files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"import pkg_resources\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"pandas_dependency = 'pandas==' + pkg_resources.get_distribution(\"pandas\").version\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80',pandas_dependency])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Get Data File\n",
"For remote executions you should author a get_data.py file containing a get_data() function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"\n",
"The *get_data()* function returns a [dictionary](README.md#getdata).\n",
"\n",
"The read_csv uses the path_on_compute value specified in the DataReferenceConfiguration call plus the path_on_datastore folder and then the actual file name."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
"\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to AutoMLConfig.</i>\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains a specific pipeline with the data|\n",
"|**n_cross_validations**|Number of cross validation splits|\n",
"|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM\n",
"|**preprocess**| *True/False* <br>Setting this to *True* enables Auto ML to perform preprocessing <br>on the input to handle *missing data*, and perform some common *feature extraction*|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.|\n",
"|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> Default is *1*, you can set it to *-1* to use all cores|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 1,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path=project_folder,\n",
" run_configuration=conda_run_config,\n",
" #compute_target = dsvm_compute,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under /tmp/azureml_run/{iterationid}/azureml-logs\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use sdk methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Canceling Runs\n",
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method returns the best run and the fitted model. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model based on any other metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric=lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a specific iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 1\n",
"# best_run, fitted_model = remote_run.get_output(iteration=iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,527 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using DSVM (Ubuntu)**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you wiil learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition, this notebook showcases the following features:\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"import csv\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-dsvm'\n",
"project_folder = './project'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"**Note:** If creation fails with a message about Marketplace purchase eligibilty, start creation of a DSVM through the [Azure portal](https://portal.azure.com), and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled this setting, you can exit the portal without actually creating the DSVM, and creation of the DSVM through the notebook should work.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import DsvmCompute\n",
"\n",
"dsvm_name = 'mydsvma'\n",
"try:\n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found an existing DSVM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2s_v3\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions, you need to make the data accessible from the remote compute.\n",
"This can be done by uploading the data to DataStore.\n",
"In this example, we upload scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_train = datasets.load_digits()\n",
"\n",
"if not os.path.isdir('data'):\n",
" os.mkdir('data')\n",
" \n",
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")\n",
"\n",
"ds = ws.get_default_datastore()\n",
"ds.upload(src_dir='./data', target_path='re_data', overwrite=True, show_progress=True)\n",
"\n",
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='re_data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy','py-xgboost<=0.80'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/re_data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/re_data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 2,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder, \n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** The first run on a new DSVM may take several minutes to prepare the environment."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading Executed Runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment=experiment, run_id = 'AutoML_480d3ed6-fc94-44aa-8f4e-0b945db9d3ef')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,240 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Sample Weight**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use sample weight with AutoML. Sample weight is used where some sample values are more important than others.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to configure AutoML to use `sample_weight` and you will see the difference sample weight makes to the test results."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose names for the regular and the sample weight experiments.\n",
"experiment_name = 'non_sample_weight_experiment'\n",
"sample_weight_experiment_name = 'sample_weight_experiment'\n",
"\n",
"project_folder = './sample_projects/sample_weight'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"sample_weight_experiment=Experiment(ws, sample_weight_experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate two `AutoMLConfig` objects. One will be used with `sample_weight` and one without."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]\n",
"\n",
"# The example makes the sample weight 0.9 for the digit 4 and 0.1 for all other digits.\n",
"# This makes the model more likely to classify as 4 if the image it not clear.\n",
"sample_weight = np.array([(0.9 if x == 4 else 0.01) for x in y_train])\n",
"\n",
"automl_classifier = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)\n",
"\n",
"automl_sample_weight = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" sample_weight = sample_weight,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment objects and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_classifier, show_output = True)\n",
"sample_weight_run = sample_weight_experiment.submit(automl_sample_weight, show_output = True)\n",
"\n",
"best_run, fitted_model = local_run.get_output()\n",
"best_run_sample_weight, fitted_model_sample_weight = sample_weight_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:100, :]\n",
"y_test = digits.target[:100]\n",
"images = digits.images[:100]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Compare the Models\n",
"The prediction from the sample weight model is more likely to correctly predict 4's. However, it is also more likely to predict 4 for some images that are not labelled as 4."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in range(0,len(y_test)):\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" predicted_sample_weight = fitted_model_sample_weight.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" if predicted == 4 or predicted_sample_weight == 4 or label == 4:\n",
" title = \"Label value = %d Predicted value = %d Prediced with sample weight = %d\" % (label, predicted, predicted_sample_weight)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,380 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Train Test Split and Handling Sparse Data**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML for handling sparse data and how to specify custom cross validations splits.\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- Explicit train test splits \n",
"- Handling **sparse data** in the input"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the experiment\n",
"experiment_name = 'sparse-data-train-test-split'\n",
"# project folder\n",
"project_folder = './sample_projects/sparse-data-train-test-split'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"from sklearn.feature_extraction.text import HashingVectorizer\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
"]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_train, X_valid, y_train, y_valid = train_test_split(data_train.data, data_train.target, test_size = 0.33, random_state = 42)\n",
"\n",
"\n",
"vectorizer = HashingVectorizer(stop_words = 'english', alternate_sign = False,\n",
" n_features = 2**16)\n",
"X_train = vectorizer.transform(X_train)\n",
"X_valid = vectorizer.transform(X_valid)\n",
"\n",
"summary_df = pd.DataFrame(index = ['No of Samples', 'No of Features'])\n",
"summary_df['Train Set'] = [X_train.shape[0], X_train.shape[1]]\n",
"summary_df['Validation Set'] = [X_valid.shape[0], X_valid.shape[1]]\n",
"summary_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.<br>**Note:** If input data is sparse, you cannot use *True*.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features] for the custom validation set.|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], Multi-class targets.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 5,\n",
" preprocess = False,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" X_valid = X_valid, \n",
" y_valid = y_valid, \n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = local_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 3\n",
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = vectorizer.transform(data_test.data)\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,113 @@
# Table of Contents
1. [Introduction](#introduction)
1. [Setup using Azure Data Studio](#azuredatastudiosetup)
1. [Energy demand example using Azure Data Studio](#azuredatastudioenergydemand)
1. [Set using SQL Server Management Studio for SQL Server 2017 on Windows](#ssms2017)
1. [Set using SQL Server Management Studio for SQL Server 2019 on Linux](#ssms2019)
1. [Energy demand example using SQL Server Management Studio](#ssmsenergydemand)
<a name="introduction"></a>
# Introduction
SQL Server 2017 or 2019 can call Azure ML automated machine learning to create models trained on data from SQL Server.
This uses the sp_execute_external_script stored procedure, which can call Python scripts.
SQL Server 2017 and SQL Server 2019 can both run on Windows or Linux.
However, this integration is not available for SQL Server 2017 on Linux.
This folder shows how to setup the integration and has a sample that uses the integration to train and predict based on an energy demand dataset.
This integration is part of SQL Server and so can be used from any SQL client.
These instructions show using it from Azure Data Studio or SQL Server Managment Studio.
<a name="azuredatastudiosetup"></a>
## Setup using Azure Data Studio
These step show setting up the integration using Azure Data Studio.
1. If you don't already have SQL Server, you can install it from [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
1. Install Azure Data Studio from [https://docs.microsoft.com/en-us/sql/azure-data-studio/download?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/azure-data-studio/download?view=sql-server-2017)
1. Start Azure Data Studio and connect to SQL Server. [https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/azure-data-studio/sql-notebooks?view=sql-server-2017)
1. Create a database named "automl".
1. Open the notebook how-to-use-azureml\automated-machine-learning\sql-server\setup\auto-ml-sql-setup.ipynb and follow the instructions in it.
<a name="azuredatastudioenergydemand"></a>
## Energy demand example using Azure Data Studio
Once you have completed the setup, you can try the energy demand sample in the notebook energy-demand\auto-ml-sql-energy-demand.ipynb.
This has cells to train a model, predict based on the model and show metrics for each pipeline run in training the model.
<a name="ssms2017"></a>
## Setup using SQL Server Management Studio for SQL Server 2017 on Windows
These instruction setup the integration for SQL Server 2017 on Windows.
1. If you don't already have SQL Server, you can install it from [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
2. Enable external scripts with the following commands:
```sh
sp_configure 'external scripts enabled',1
reconfigure with override
```
3. Stop SQL Server.
4. Install the automated machine learning libraries using the following commands from Administrator command prompt (If you are using a non-default SQL Server instance name, replace MSSQLSERVER in the second command with the instance name)
```sh
cd "C:\Program Files\Microsoft SQL Server"
cd "MSSQL14.MSSQLSERVER\PYTHON_SERVICES"
python.exe -m pip install azureml-sdk[automl]
python.exe -m pip install --upgrade numpy
python.exe -m pip install --upgrade sklearn
```
5. Start SQL Server and the service "SQL Server Launchpad service".
6. In Windows Firewall, click on advanced settings and in Outbound Rules, disable "Block network access for R local user accounts in SQL Server instance xxxx".
7. Execute the files in the setup folder in SQL Server Management Studio: aml_model.sql, aml_connection.sql, AutoMLGetMetrics.sql, AutoMLPredict.sql and AutoMLTrain.sql
8. Create an Azure Machine Learning Workspace. You can use the instructions at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace ](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace)
9. Create a config.json file file using the subscription id, resource group name and workspace name that you used to create the workspace. The file is described at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace)
10. Create an Azure service principal. You can do this with the commands:
```sh
az login
az account set --subscription subscriptionid
az ad sp create-for-rbac --name principlename --password password
```
11. Insert the values \<tenant\>, \<AppId\> and \<password\> returned by create-for-rbac above into the aml_connection table. Set \<path\> as the absolute path to your config.json file. Set the name to <20>Default<6C>.
<a name="ssms2019"></a>
## Setup using SQL Server Management Studio for SQL Server 2019 on Linux
1. Install SQL Server 2019 from: [https://www.microsoft.com/en-us/sql-server/sql-server-downloads](https://www.microsoft.com/en-us/sql-server/sql-server-downloads)
2. Install machine learning support from: [https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproducts-allversions#ubuntu](https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sqlallproducts-allversions#ubuntu)
3. Then install SQL Server management Studio from [https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017](https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017)
4. Enable external scripts with the following commands:
```sh
sp_configure 'external scripts enabled',1
reconfigure with override
```
5. Stop SQL Server.
6. Install the automated machine learning libraries using the following commands from Administrator command (If you are using a non-default SQL Server instance name, replace MSSQLSERVER in the second command with the instance name):
```sh
sudo /opt/mssql/mlservices/bin/python/python -m pip install azureml-sdk[automl]
sudo /opt/mssql/mlservices/bin/python/python -m pip install --upgrade numpy
sudo /opt/mssql/mlservices/bin/python/python -m pip install --upgrade sklearn
```
7. Start SQL Server.
8. Execute the files aml_model.sql, aml_connection.sql, AutoMLGetMetrics.sql, AutoMLPredict.sql, AutoMLForecast.sql and AutoMLTrain.sql in SQL Server Management Studio.
9. Create an Azure Machine Learning Workspace. You can use the instructions at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace)
10. Create a config.json file file using the subscription id, resource group name and workspace name that you use to create the workspace. The file is described at: [https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#workspace)
11. Create an Azure service principal. You can do this with the commands:
```sh
az login
az account set --subscription subscriptionid
az ad sp create-for-rbac --name principlename --password password
```
12. Insert the values \<tenant\>, \<AppId\> and \<password\> returned by create-for-rbac above into the aml_connection table. Set \<path\> as the absolute path to your config.json file. Set the name to <20>Default<6C>.
<a name="ssmsenergydemand"></a>
## Energy demand example using SQL Server Management Studio
Once you have completed the setup, you can try the energy demand sample queries.
First you need to load the sample data in the database.
1. In SQL Server Management Studio, you can right-click the database, select Tasks, then Import Flat file.
1. Select the file MachineLearningNotebooks\notebooks\how-to-use-azureml\automated-machine-learning\forecasting-energy-demand\nyc_energy.csv.
1. When you get to the column definition page, allow nulls for all columns.
You can then run the queries in the energy-demand folder:
* TrainEnergyDemand.sql runs AutoML, trains multiple models on data and selects the best model.
* ForecastEnergyDemand.sql forecasts based on the most recent training run.
* GetMetrics.sql returns all the metrics for each model in the most recent training run.

View File

@@ -0,0 +1,23 @@
-- This shows using the AutoMLForecast stored procedure to predict using a forecasting model for the nyc_energy dataset.
DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model
WHERE ExperimentName = 'automl-sql-forecast'
ORDER BY CreatedDate DESC)
DECLARE @max_horizon INT = 48
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
DECLARE @TestDataQuery NVARCHAR(MAX) = '
SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,
demand,
precip,
temp
FROM nyc_energy
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
AND timeStamp > ''' + @split_time + ''''
EXEC dbo.AutoMLForecast @input_query=@TestDataQuery,
@label_column='demand',
@time_column_name='timeStamp',
@model=@model
WITH RESULT SETS ((timeStamp DATETIME, grain NVARCHAR(255), predicted_demand FLOAT, precip FLOAT, temp FLOAT, actual_demand FLOAT))

View File

@@ -0,0 +1,10 @@
-- This lists all the metrics for all iterations for the most recent run.
DECLARE @RunId NVARCHAR(43)
DECLARE @ExperimentName NVARCHAR(255)
SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)
FROM aml_model
ORDER BY CreatedDate DESC
EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName

View File

@@ -0,0 +1,25 @@
-- This shows using the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset.
DECLARE @max_horizon INT = 48
DECLARE @split_time NVARCHAR(22) = (SELECT DATEADD(hour, -@max_horizon, MAX(timeStamp)) FROM nyc_energy WHERE demand IS NOT NULL)
DECLARE @TrainDataQuery NVARCHAR(MAX) = '
SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,
demand,
precip,
temp
FROM nyc_energy
WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL
and timeStamp < ''' + @split_time + ''''
INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
EXEC dbo.AutoMLTrain @input_query= @TrainDataQuery,
@label_column='demand',
@task='forecasting',
@iterations=10,
@iteration_timeout_minutes=5,
@time_column_name='timeStamp',
@max_horizon=@max_horizon,
@experiment_name='automl-sql-forecast',
@primary_metric='normalized_root_mean_squared_error'

View File

@@ -0,0 +1,161 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train a model and use it for prediction\r\n",
"\r\n",
"Before running this notebook, run the auto-ml-sql-setup.ipynb notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the default database"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"USE [automl]\r\n",
"GO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use the AutoMLTrain stored procedure to create a forecasting model for the nyc_energy dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"INSERT INTO dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"EXEC dbo.AutoMLTrain @input_query='\r\n",
"SELECT CAST(timeStamp as NVARCHAR(30)) as timeStamp,\r\n",
" demand,\r\n",
"\t precip,\r\n",
"\t temp,\r\n",
"\t CASE WHEN timeStamp < ''2017-01-01'' THEN 0 ELSE 1 END AS is_validate_column\r\n",
"FROM nyc_energy\r\n",
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
"and timeStamp < ''2017-02-01''',\r\n",
"@label_column='demand',\r\n",
"@task='forecasting',\r\n",
"@iterations=10,\r\n",
"@iteration_timeout_minutes=5,\r\n",
"@time_column_name='timeStamp',\r\n",
"@is_validate_column='is_validate_column',\r\n",
"@experiment_name='automl-sql-forecast',\r\n",
"@primary_metric='normalized_root_mean_squared_error'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use the AutoMLPredict stored procedure to predict using the forecasting model for the nyc_energy dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DECLARE @Model NVARCHAR(MAX) = (SELECT TOP 1 Model FROM dbo.aml_model\r\n",
" WHERE ExperimentName = 'automl-sql-forecast'\r\n",
"\t\t\t\t\t\t\t\tORDER BY CreatedDate DESC)\r\n",
"\r\n",
"EXEC dbo.AutoMLPredict @input_query='\r\n",
"SELECT CAST(timeStamp AS NVARCHAR(30)) AS timeStamp,\r\n",
" demand,\r\n",
"\t precip,\r\n",
"\t temp\r\n",
"FROM nyc_energy\r\n",
"WHERE demand IS NOT NULL AND precip IS NOT NULL AND temp IS NOT NULL\r\n",
"AND timeStamp >= ''2017-02-01''',\r\n",
"@label_column='demand',\r\n",
"@model=@model\r\n",
"WITH RESULT SETS ((timeStamp NVARCHAR(30), actual_demand FLOAT, precip FLOAT, temp FLOAT, predicted_demand FLOAT))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## List all the metrics for all iterations for the most recent training run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DECLARE @RunId NVARCHAR(43)\r\n",
"DECLARE @ExperimentName NVARCHAR(255)\r\n",
"\r\n",
"SELECT TOP 1 @ExperimentName=ExperimentName, @RunId=SUBSTRING(RunId, 1, 43)\r\n",
"FROM aml_model\r\n",
"ORDER BY CreatedDate DESC\r\n",
"\r\n",
"EXEC dbo.AutoMLGetMetrics @RunId, @ExperimentName"
]
}
],
"metadata": {
"authors": [
{
"name": "jeffshep"
}
],
"category": "tutorial",
"compute": [
"Local"
],
"datasets": [
"NYC Energy"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"framework": [
"Azure ML AutoML"
],
"tags": [
""
],
"friendly_name": "Forecasting with automated ML SQL integration",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"language": "sql",
"name": "python36"
},
"language_info": {
"name": "sql",
"version": ""
},
"task": "Forecasting"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,92 @@
-- This procedure forecast values based on a forecasting model returned by AutoMLTrain.
-- It returns a dataset with the forecasted values.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLForecast]
(
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
@label_column NVARCHAR(255)='', -- Optional name of the column from input_query, which should be ignored when predicting
@y_query_column NVARCHAR(255)='', -- Optional value column that can be used for predicting.
-- If specified, this can contain values for past times (after the model was trained)
-- and contain Nan for future times.
@forecast_column_name NVARCHAR(255) = 'predicted'
-- The name of the output column containing the forecast value.
) AS
BEGIN
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import azureml.core
import numpy as np
from azureml.train.automl import AutoMLConfig
import pickle
import codecs
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
test_data = input_data.copy()
if label_column != "" and label_column is not None:
y_test = test_data.pop(label_column).values
else:
y_test = None
if y_query_column != "" and y_query_column is not None:
y_query = test_data.pop(y_query_column).values
else:
y_query = np.repeat(np.nan, len(test_data))
X_test = test_data
if time_column_name != "" and time_column_name is not None:
X_test[time_column_name] = pd.to_datetime(X_test[time_column_name])
y_fcst, X_trans = model_obj.forecast(X_test, y_query)
def align_outputs(y_forecast, X_trans, X_test, y_test, forecast_column_name):
# Demonstrates how to get the output aligned to the inputs
# using pandas indexes. Helps understand what happened if
# the output shape differs from the input shape, or if
# the data got re-sorted by time and grain during forecasting.
# Typical causes of misalignment are:
# * we predicted some periods that were missing in actuals -> drop from eval
# * model was asked to predict past max_horizon -> increase max horizon
# * data at start of X_test was needed for lags -> provide previous periods
df_fcst = pd.DataFrame({forecast_column_name : y_forecast})
# y and X outputs are aligned by forecast() function contract
df_fcst.index = X_trans.index
# align original X_test to y_test
X_test_full = X_test.copy()
if y_test is not None:
X_test_full[label_column] = y_test
# X_test_full does not include origin, so reset for merge
df_fcst.reset_index(inplace=True)
X_test_full = X_test_full.reset_index().drop(columns=''index'')
together = df_fcst.merge(X_test_full, how=''right'')
# drop rows where prediction or actuals are nan
# happens because of missing actuals
# or at edges of time due to lags/rolling windows
clean = together[together[[label_column, forecast_column_name]].notnull().all(axis=1)]
return(clean)
combined_output = align_outputs(y_fcst, X_trans, X_test, y_test, forecast_column_name)
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'combined_output'
, @params = N'@model NVARCHAR(MAX), @time_column_name NVARCHAR(255), @label_column NVARCHAR(255), @y_query_column NVARCHAR(255), @forecast_column_name NVARCHAR(255)'
, @model = @model
, @time_column_name = @time_column_name
, @label_column = @label_column
, @y_query_column = @y_query_column
, @forecast_column_name = @forecast_column_name
END

View File

@@ -0,0 +1,70 @@
-- This procedure returns a list of metrics for each iteration of a run.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]
(
@run_id NVARCHAR(250), -- The RunId
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
@connection_name NVARCHAR(255)='default' -- The AML connection to use.
) AS
BEGIN
DECLARE @tenantid NVARCHAR(255)
DECLARE @appid NVARCHAR(255)
DECLARE @password NVARCHAR(255)
DECLARE @config_file NVARCHAR(255)
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
FROM aml_connection
WHERE ConnectionName = @connection_name;
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import logging
import azureml.core
import numpy as np
from azureml.core.experiment import Experiment
from azureml.train.automl.run import AutoMLRun
from azureml.core.authentication import ServicePrincipalAuthentication
from azureml.core.workspace import Workspace
auth = ServicePrincipalAuthentication(tenantid, appid, password)
ws = Workspace.from_config(path=config_file, auth=auth)
experiment = Experiment(ws, experiment_name)
ml_run = AutoMLRun(experiment = experiment, run_id = run_id)
children = list(ml_run.get_children())
iterationlist = []
metricnamelist = []
metricvaluelist = []
for run in children:
properties = run.get_properties()
if "iteration" in properties:
iteration = int(properties["iteration"])
for metric_name, metric_value in run.get_metrics().items():
if isinstance(metric_value, float):
iterationlist.append(iteration)
metricnamelist.append(metric_name)
metricvaluelist.append(metric_value)
metrics = pd.DataFrame({"iteration": iterationlist, "metric_name": metricnamelist, "metric_value": metricvaluelist})
'
, @output_data_1_name = N'metrics'
, @params = N'@run_id NVARCHAR(250),
@experiment_name NVARCHAR(32),
@tenantid NVARCHAR(255),
@appid NVARCHAR(255),
@password NVARCHAR(255),
@config_file NVARCHAR(255)'
, @run_id = @run_id
, @experiment_name = @experiment_name
, @tenantid = @tenantid
, @appid = @appid
, @password = @password
, @config_file = @config_file
WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))
END

View File

@@ -0,0 +1,41 @@
-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.
-- It returns the dataset with a new column added, which is the predicted value.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]
(
@input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.
@model NVARCHAR(MAX), -- A model returned from AutoMLTrain.
@label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting
) AS
BEGIN
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import azureml.core
import numpy as np
from azureml.train.automl import AutoMLConfig
import pickle
import codecs
model_obj = pickle.loads(codecs.decode(model.encode(), "base64"))
test_data = input_data.copy()
if label_column != "" and label_column is not None:
y_test = test_data.pop(label_column).values
X_test = test_data
predicted = model_obj.predict(X_test)
combined_output = input_data.assign(predicted=predicted)
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'combined_output'
, @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)'
, @model = @model
, @label_column = @label_column
END

View File

@@ -0,0 +1,240 @@
-- This stored procedure uses automated machine learning to train several models
-- and returns the best model.
--
-- The result set has several columns:
-- best_run - iteration ID for the best model
-- experiment_name - experiment name pass in with the @experiment_name parameter
-- fitted_model - best model found
-- log_file_text - AutoML debug_log contents
-- workspace - name of the Azure ML workspace where run history is stored
--
-- An example call for a classification problem is:
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
-- exec dbo.AutoMLTrain @input_query='
-- SELECT top 100000
-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime
-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime
-- ,[passenger_count]
-- ,[trip_time_in_secs]
-- ,[trip_distance]
-- ,[payment_type]
-- ,[tip_class]
-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',
-- @label_column = 'tip_class',
-- @iterations=10
--
-- An example call for forecasting is:
-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)
-- exec dbo.AutoMLTrain @input_query='
-- select cast(timeStamp as nvarchar(30)) as timeStamp,
-- demand,
-- precip,
-- temp,
-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column
-- from nyc_energy
-- where demand is not null and precip is not null and temp is not null
-- and timeStamp < ''2017-02-01''',
-- @label_column='demand',
-- @task='forecasting',
-- @iterations=10,
-- @iteration_timeout_minutes=5,
-- @time_column_name='timeStamp',
-- @is_validate_column='is_validate_column',
-- @experiment_name='automl-sql-forecast',
-- @primary_metric='normalized_root_mean_squared_error'
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]
(
@input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.
@label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.
@primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.
@iterations INT=100, -- The maximum number of pipelines to train.
@task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.
@experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.
@iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline.
@experiment_timeout_hours FLOAT = 1, -- The maximum time in hours for training all pipelines.
@n_cross_validations INT = 3, -- The number of cross validations.
@blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.
-- The list of possible models can be found at:
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
@whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.
-- The list of possible models can be found at:
-- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings
@experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.
@sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.
@is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.
-- In the values of the column, 0 means for training and 1 means for validation.
@time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.
@connection_name NVARCHAR(255)='default', -- The AML connection to use.
@max_horizon INT = 0 -- A forecast horizon is a time span into the future (or just beyond the latest date in the training data)
-- where forecasts of the target quantity are needed.
-- For example, if data is recorded daily and max_horizon is 5, we will predict 5 days ahead.
) AS
BEGIN
DECLARE @tenantid NVARCHAR(255)
DECLARE @appid NVARCHAR(255)
DECLARE @password NVARCHAR(255)
DECLARE @config_file NVARCHAR(255)
SELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile
FROM aml_connection
WHERE ConnectionName = @connection_name;
EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd
import logging
import azureml.core
import pandas as pd
import numpy as np
from azureml.core.experiment import Experiment
from azureml.train.automl import AutoMLConfig
from sklearn import datasets
import pickle
import codecs
from azureml.core.authentication import ServicePrincipalAuthentication
from azureml.core.workspace import Workspace
if __name__.startswith("sqlindb"):
auth = ServicePrincipalAuthentication(tenantid, appid, password)
ws = Workspace.from_config(path=config_file, auth=auth)
project_folder = "./sample_projects/" + experiment_name
experiment = Experiment(ws, experiment_name)
data_train = input_data
X_valid = None
y_valid = None
sample_weight_valid = None
if is_validate_column != "" and is_validate_column is not None:
data_train = input_data[input_data[is_validate_column] <= 0]
data_valid = input_data[input_data[is_validate_column] > 0]
data_train.pop(is_validate_column)
data_valid.pop(is_validate_column)
y_valid = data_valid.pop(label_column).values
if sample_weight_column != "" and sample_weight_column is not None:
sample_weight_valid = data_valid.pop(sample_weight_column).values
X_valid = data_valid
n_cross_validations = None
y_train = data_train.pop(label_column).values
sample_weight = None
if sample_weight_column != "" and sample_weight_column is not None:
sample_weight = data_train.pop(sample_weight_column).values
X_train = data_train
if experiment_timeout_hours == 0:
experiment_timeout_hours = None
if experiment_exit_score == 0:
experiment_exit_score = None
if blacklist_models == "":
blacklist_models = None
if blacklist_models is not None:
blacklist_models = blacklist_models.replace(" ", "").split(",")
if whitelist_models == "":
whitelist_models = None
if whitelist_models is not None:
whitelist_models = whitelist_models.replace(" ", "").split(",")
automl_settings = {}
preprocess = True
if time_column_name != "" and time_column_name is not None:
automl_settings = { "time_column_name": time_column_name }
preprocess = False
if max_horizon > 0:
automl_settings["max_horizon"] = max_horizon
log_file_name = "automl_sqlindb_errors.log"
automl_config = AutoMLConfig(task = task,
debug_log = log_file_name,
primary_metric = primary_metric,
iteration_timeout_minutes = iteration_timeout_minutes,
experiment_timeout_hours = experiment_timeout_hours,
iterations = iterations,
n_cross_validations = n_cross_validations,
preprocess = preprocess,
verbosity = logging.INFO,
X = X_train,
y = y_train,
path = project_folder,
blacklist_models = blacklist_models,
whitelist_models = whitelist_models,
experiment_exit_score = experiment_exit_score,
sample_weight = sample_weight,
X_valid = X_valid,
y_valid = y_valid,
sample_weight_valid = sample_weight_valid,
**automl_settings)
local_run = experiment.submit(automl_config, show_output = True)
best_run, fitted_model = local_run.get_output()
pickled_model = codecs.encode(pickle.dumps(fitted_model), "base64").decode()
log_file_text = ""
try:
with open(log_file_name, "r") as log_file:
log_file_text = log_file.read()
except:
log_file_text = "Log file not found"
returned_model = pd.DataFrame({"best_run": [best_run.id], "experiment_name": [experiment_name], "fitted_model": [pickled_model], "log_file_text": [log_file_text], "workspace": [ws.name]}, dtype=np.dtype(np.str))
'
, @input_data_1 = @input_query
, @input_data_1_name = N'input_data'
, @output_data_1_name = N'returned_model'
, @params = N'@label_column NVARCHAR(255),
@primary_metric NVARCHAR(40),
@iterations INT, @task NVARCHAR(40),
@experiment_name NVARCHAR(32),
@iteration_timeout_minutes INT,
@experiment_timeout_hours FLOAT,
@n_cross_validations INT,
@blacklist_models NVARCHAR(MAX),
@whitelist_models NVARCHAR(MAX),
@experiment_exit_score FLOAT,
@sample_weight_column NVARCHAR(255),
@is_validate_column NVARCHAR(255),
@time_column_name NVARCHAR(255),
@tenantid NVARCHAR(255),
@appid NVARCHAR(255),
@password NVARCHAR(255),
@config_file NVARCHAR(255),
@max_horizon INT'
, @label_column = @label_column
, @primary_metric = @primary_metric
, @iterations = @iterations
, @task = @task
, @experiment_name = @experiment_name
, @iteration_timeout_minutes = @iteration_timeout_minutes
, @experiment_timeout_hours = @experiment_timeout_hours
, @n_cross_validations = @n_cross_validations
, @blacklist_models = @blacklist_models
, @whitelist_models = @whitelist_models
, @experiment_exit_score = @experiment_exit_score
, @sample_weight_column = @sample_weight_column
, @is_validate_column = @is_validate_column
, @time_column_name = @time_column_name
, @tenantid = @tenantid
, @appid = @appid
, @password = @password
, @config_file = @config_file
, @max_horizon = @max_horizon
WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))
END

View File

@@ -0,0 +1,18 @@
-- This is a table to store the Azure ML connection information.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[aml_connection](
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
[ConnectionName] [nvarchar](255) NULL,
[TenantId] [nvarchar](255) NULL,
[AppId] [nvarchar](255) NULL,
[Password] [nvarchar](255) NULL,
[ConfigFile] [nvarchar](255) NULL
) ON [PRIMARY]
GO

View File

@@ -0,0 +1,22 @@
-- This is a table to hold the results from the AutoMLTrain procedure.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[aml_model](
[Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,
[Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.
[RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.
[CreatedDate] [datetime] NULL,
[ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name
[WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name
[LogFileText] [nvarchar](max) NULL
)
GO
ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]
GO

View File

@@ -0,0 +1,581 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Set up Azure ML Automated Machine Learning on SQL Server 2019 CTP 2.4 big data cluster\r\n",
"\r\n",
"\\# Prerequisites: \r\n",
"\\# - An Azure subscription and resource group \r\n",
"\\# - An Azure Machine Learning workspace \r\n",
"\\# - A SQL Server 2019 CTP 2.4 big data cluster with Internet access and a database named 'automl' \r\n",
"\\# - Azure CLI \r\n",
"\\# - kubectl command \r\n",
"\\# - The https://github.com/Azure/MachineLearningNotebooks repository downloaded (cloned) to your local machine\r\n",
"\r\n",
"\\# In the 'automl' database, create a table named 'dbo.nyc_energy' as follows: \r\n",
"\\# - In SQL Server Management Studio, right-click the 'automl' database, select Tasks, then Import Flat File. \r\n",
"\\# - Select the file AzureMlCli\\notebooks\\how-to-use-azureml\\automated-machine-learning\\forecasting-energy-demand\\nyc_energy.csv. \r\n",
"\\# - Using the \"Modify Columns\" page, allow nulls for all columns. \r\n",
"\r\n",
"\\# Create an Azure Machine Learning Workspace using the instructions at https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace \r\n",
"\r\n",
"\\# Create an Azure service principal. You can do this with the following commands: \r\n",
"\r\n",
"az login \r\n",
"az account set --subscription *subscriptionid* \r\n",
"\r\n",
"\\# The following command prints out the **appId** and **tenant**, \r\n",
"\\# which you insert into the indicated cell later in this notebook \r\n",
"\\# to allow AutoML to authenticate with Azure: \r\n",
"\r\n",
"az ad sp create-for-rbac --name *principlename* --password *password*\r\n",
"\r\n",
"\\# Log into the master instance of SQL Server 2019 CTP 2.4: \r\n",
"kubectl exec -it mssql-master-pool-0 -n *clustername* -c mssql-server -- /bin/bash\r\n",
"\r\n",
"mkdir /tmp/aml\r\n",
"\r\n",
"cd /tmp/aml\r\n",
"\r\n",
"\\# **Modify** the following with your subscription_id, resource_group, and workspace_name: \r\n",
"cat > config.json << EOF \r\n",
"{ \r\n",
" \"subscription_id\": \"123456ab-78cd-0123-45ef-abcd12345678\", \r\n",
" \"resource_group\": \"myrg1\", \r\n",
" \"workspace_name\": \"myws1\" \r\n",
"} \r\n",
"EOF\r\n",
"\r\n",
"\\# The directory referenced below is appropriate for the master instance of SQL Server 2019 CTP 2.4.\r\n",
"\r\n",
"cd /opt/mssql/mlservices/runtime/python/bin\r\n",
"\r\n",
"./python -m pip install azureml-sdk[automl]\r\n",
"\r\n",
"./python -m pip install --upgrade numpy \r\n",
"\r\n",
"./python -m pip install --upgrade sklearn\r\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.png)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Enable external scripts to allow invoking Python\r\n",
"sp_configure 'external scripts enabled',1 \r\n",
"reconfigure with override \r\n",
"GO\r\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Use database 'automl'\r\n",
"USE [automl]\r\n",
"GO"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This is a table to hold the Azure ML connection information.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"\r\n",
"CREATE TABLE [dbo].[aml_connection](\r\n",
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
"\t[ConnectionName] [nvarchar](255) NULL,\r\n",
"\t[TenantId] [nvarchar](255) NULL,\r\n",
"\t[AppId] [nvarchar](255) NULL,\r\n",
"\t[Password] [nvarchar](255) NULL,\r\n",
"\t[ConfigFile] [nvarchar](255) NULL\r\n",
") ON [PRIMARY]\r\n",
"GO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Copy the values from create-for-rbac above into the cell below"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- Use the following values:\r\n",
"-- Leave the name as 'Default'\r\n",
"-- Insert <tenant> returned by create-for-rbac above\r\n",
"-- Insert <AppId> returned by create-for-rbac above\r\n",
"-- Insert <password> used in create-for-rbac above\r\n",
"-- Leave <path> as '/tmp/aml/config.json'\r\n",
"INSERT INTO [dbo].[aml_connection] \r\n",
"VALUES (\r\n",
" N'Default', -- Name\r\n",
" N'11111111-2222-3333-4444-555555555555', -- Tenant\r\n",
" N'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', -- AppId\r\n",
" N'insertpasswordhere', -- Password\r\n",
" N'/tmp/aml/config.json' -- Path\r\n",
" );\r\n",
"GO"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This is a table to hold the results from the AutoMLTrain procedure.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"\r\n",
"CREATE TABLE [dbo].[aml_model](\r\n",
" [Id] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY,\r\n",
" [Model] [varchar](max) NOT NULL, -- The model, which can be passed to AutoMLPredict for testing or prediction.\r\n",
" [RunId] [nvarchar](250) NULL, -- The RunId, which can be used to view the model in the Azure Portal.\r\n",
" [CreatedDate] [datetime] NULL,\r\n",
" [ExperimentName] [nvarchar](100) NULL, -- Azure ML Experiment Name\r\n",
" [WorkspaceName] [nvarchar](100) NULL, -- Azure ML Workspace Name\r\n",
"\t[LogFileText] [nvarchar](max) NULL\r\n",
") \r\n",
"GO\r\n",
"\r\n",
"ALTER TABLE [dbo].[aml_model] ADD DEFAULT (getutcdate()) FOR [CreatedDate]\r\n",
"GO\r\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This stored procedure uses automated machine learning to train several models\r\n",
"-- and return the best model.\r\n",
"--\r\n",
"-- The result set has several columns:\r\n",
"-- best_run - ID of the best model found\r\n",
"-- experiment_name - training run name\r\n",
"-- fitted_model - best model found\r\n",
"-- log_file_text - console output\r\n",
"-- workspace - name of the Azure ML workspace where run history is stored\r\n",
"--\r\n",
"-- An example call for a classification problem is:\r\n",
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"-- exec dbo.AutoMLTrain @input_query='\r\n",
"-- SELECT top 100000 \r\n",
"-- CAST([pickup_datetime] AS NVARCHAR(30)) AS pickup_datetime\r\n",
"-- ,CAST([dropoff_datetime] AS NVARCHAR(30)) AS dropoff_datetime\r\n",
"-- ,[passenger_count]\r\n",
"-- ,[trip_time_in_secs]\r\n",
"-- ,[trip_distance]\r\n",
"-- ,[payment_type]\r\n",
"-- ,[tip_class]\r\n",
"-- FROM [dbo].[nyctaxi_sample] order by [hack_license] ',\r\n",
"-- @label_column = 'tip_class',\r\n",
"-- @iterations=10\r\n",
"-- \r\n",
"-- An example call for forecasting is:\r\n",
"-- insert into dbo.aml_model(RunId, ExperimentName, Model, LogFileText, WorkspaceName)\r\n",
"-- exec dbo.AutoMLTrain @input_query='\r\n",
"-- select cast(timeStamp as nvarchar(30)) as timeStamp,\r\n",
"-- demand,\r\n",
"-- \t precip,\r\n",
"-- \t temp,\r\n",
"-- case when timeStamp < ''2017-01-01'' then 0 else 1 end as is_validate_column\r\n",
"-- from nyc_energy\r\n",
"-- where demand is not null and precip is not null and temp is not null\r\n",
"-- and timeStamp < ''2017-02-01''',\r\n",
"-- @label_column='demand',\r\n",
"-- @task='forecasting',\r\n",
"-- @iterations=10,\r\n",
"-- @iteration_timeout_minutes=5,\r\n",
"-- @time_column_name='timeStamp',\r\n",
"-- @is_validate_column='is_validate_column',\r\n",
"-- @experiment_name='automl-sql-forecast',\r\n",
"-- @primary_metric='normalized_root_mean_squared_error'\r\n",
"\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLTrain]\r\n",
" (\r\n",
" @input_query NVARCHAR(MAX), -- The SQL Query that will return the data to train and validate the model.\r\n",
" @label_column NVARCHAR(255)='Label', -- The name of the column in the result of @input_query that is the label.\r\n",
" @primary_metric NVARCHAR(40)='AUC_weighted', -- The metric to optimize.\r\n",
" @iterations INT=100, -- The maximum number of pipelines to train.\r\n",
" @task NVARCHAR(40)='classification', -- The type of task. Can be classification, regression or forecasting.\r\n",
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
" @iteration_timeout_minutes INT = 15, -- The maximum time in minutes for training a single pipeline. \r\n",
" @experiment_timeout_hours FLOAT = 1, -- The maximum time in hours for training all pipelines.\r\n",
" @n_cross_validations INT = 3, -- The number of cross validations.\r\n",
" @blacklist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that will not be used.\r\n",
" -- The list of possible models can be found at:\r\n",
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
" @whitelist_models NVARCHAR(MAX) = '', -- A comma separated list of algos that can be used.\r\n",
" -- The list of possible models can be found at:\r\n",
" -- https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings\r\n",
" @experiment_exit_score FLOAT = 0, -- Stop the experiment if this score is acheived.\r\n",
" @sample_weight_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that gives a sample weight.\r\n",
" @is_validate_column NVARCHAR(255)='', -- The name of the column in the result of @input_query that indicates if the row is for training or validation.\r\n",
"\t -- In the values of the column, 0 means for training and 1 means for validation.\r\n",
" @time_column_name NVARCHAR(255)='', -- The name of the timestamp column for forecasting.\r\n",
"\t@connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
" ) AS\r\n",
"BEGIN\r\n",
"\r\n",
" DECLARE @tenantid NVARCHAR(255)\r\n",
" DECLARE @appid NVARCHAR(255)\r\n",
" DECLARE @password NVARCHAR(255)\r\n",
" DECLARE @config_file NVARCHAR(255)\r\n",
"\r\n",
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
"\tFROM aml_connection\r\n",
"\tWHERE ConnectionName = @connection_name;\r\n",
"\r\n",
"\tEXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
"import logging \r\n",
"import azureml.core \r\n",
"import pandas as pd\r\n",
"import numpy as np\r\n",
"from azureml.core.experiment import Experiment \r\n",
"from azureml.train.automl import AutoMLConfig \r\n",
"from sklearn import datasets \r\n",
"import pickle\r\n",
"import codecs\r\n",
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
"from azureml.core.workspace import Workspace \r\n",
"\r\n",
"if __name__.startswith(\"sqlindb\"):\r\n",
" auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
" \r\n",
" ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
" \r\n",
" project_folder = \"./sample_projects/\" + experiment_name\r\n",
" \r\n",
" experiment = Experiment(ws, experiment_name) \r\n",
"\r\n",
" data_train = input_data\r\n",
" X_valid = None\r\n",
" y_valid = None\r\n",
" sample_weight_valid = None\r\n",
"\r\n",
" if is_validate_column != \"\" and is_validate_column is not None:\r\n",
" data_train = input_data[input_data[is_validate_column] <= 0]\r\n",
" data_valid = input_data[input_data[is_validate_column] > 0]\r\n",
" data_train.pop(is_validate_column)\r\n",
" data_valid.pop(is_validate_column)\r\n",
" y_valid = data_valid.pop(label_column).values\r\n",
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
" sample_weight_valid = data_valid.pop(sample_weight_column).values\r\n",
" X_valid = data_valid\r\n",
" n_cross_validations = None\r\n",
"\r\n",
" y_train = data_train.pop(label_column).values\r\n",
"\r\n",
" sample_weight = None\r\n",
" if sample_weight_column != \"\" and sample_weight_column is not None:\r\n",
" sample_weight = data_train.pop(sample_weight_column).values\r\n",
"\r\n",
" X_train = data_train\r\n",
"\r\n",
" if experiment_timeout_hours == 0:\r\n",
" experiment_timeout_hours = None\r\n",
"\r\n",
" if experiment_exit_score == 0:\r\n",
" experiment_exit_score = None\r\n",
"\r\n",
" if blacklist_models == \"\":\r\n",
" blacklist_models = None\r\n",
"\r\n",
" if blacklist_models is not None:\r\n",
" blacklist_models = blacklist_models.replace(\" \", \"\").split(\",\")\r\n",
"\r\n",
" if whitelist_models == \"\":\r\n",
" whitelist_models = None\r\n",
"\r\n",
" if whitelist_models is not None:\r\n",
" whitelist_models = whitelist_models.replace(\" \", \"\").split(\",\")\r\n",
"\r\n",
" automl_settings = {}\r\n",
" preprocess = True\r\n",
" if time_column_name != \"\" and time_column_name is not None:\r\n",
" automl_settings = { \"time_column_name\": time_column_name }\r\n",
" preprocess = False\r\n",
"\r\n",
" log_file_name = \"automl_errors.log\"\r\n",
"\t \r\n",
" automl_config = AutoMLConfig(task = task, \r\n",
" debug_log = log_file_name, \r\n",
" primary_metric = primary_metric, \r\n",
" iteration_timeout_minutes = iteration_timeout_minutes, \r\n",
" experiment_timeout_hours = experiment_timeout_hours,\r\n",
" iterations = iterations, \r\n",
" n_cross_validations = n_cross_validations, \r\n",
" preprocess = preprocess,\r\n",
" verbosity = logging.INFO, \r\n",
" X = X_train, \r\n",
" y = y_train, \r\n",
" path = project_folder,\r\n",
" blacklist_models = blacklist_models,\r\n",
" whitelist_models = whitelist_models,\r\n",
" experiment_exit_score = experiment_exit_score,\r\n",
" sample_weight = sample_weight,\r\n",
" X_valid = X_valid,\r\n",
" y_valid = y_valid,\r\n",
" sample_weight_valid = sample_weight_valid,\r\n",
" **automl_settings) \r\n",
" \r\n",
" local_run = experiment.submit(automl_config, show_output = True) \r\n",
"\r\n",
" best_run, fitted_model = local_run.get_output()\r\n",
"\r\n",
" pickled_model = codecs.encode(pickle.dumps(fitted_model), \"base64\").decode()\r\n",
"\r\n",
" log_file_text = \"\"\r\n",
"\r\n",
" try:\r\n",
" with open(log_file_name, \"r\") as log_file:\r\n",
" log_file_text = log_file.read()\r\n",
" except:\r\n",
" log_file_text = \"Log file not found\"\r\n",
"\r\n",
" returned_model = pd.DataFrame({\"best_run\": [best_run.id], \"experiment_name\": [experiment_name], \"fitted_model\": [pickled_model], \"log_file_text\": [log_file_text], \"workspace\": [ws.name]}, dtype=np.dtype(np.str))\r\n",
"'\r\n",
"\t, @input_data_1 = @input_query\r\n",
"\t, @input_data_1_name = N'input_data'\r\n",
"\t, @output_data_1_name = N'returned_model'\r\n",
"\t, @params = N'@label_column NVARCHAR(255), \r\n",
"\t @primary_metric NVARCHAR(40),\r\n",
"\t\t\t\t @iterations INT, @task NVARCHAR(40),\r\n",
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
"\t\t\t\t @iteration_timeout_minutes INT,\r\n",
"\t\t\t\t @experiment_timeout_hours FLOAT,\r\n",
"\t\t\t\t @n_cross_validations INT,\r\n",
"\t\t\t\t @blacklist_models NVARCHAR(MAX),\r\n",
"\t\t\t\t @whitelist_models NVARCHAR(MAX),\r\n",
"\t\t\t\t @experiment_exit_score FLOAT,\r\n",
"\t\t\t\t @sample_weight_column NVARCHAR(255),\r\n",
"\t\t\t\t @is_validate_column NVARCHAR(255),\r\n",
"\t\t\t\t @time_column_name NVARCHAR(255),\r\n",
"\t\t\t\t @tenantid NVARCHAR(255),\r\n",
"\t\t\t\t @appid NVARCHAR(255),\r\n",
"\t\t\t\t @password NVARCHAR(255),\r\n",
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
"\t, @label_column = @label_column\r\n",
"\t, @primary_metric = @primary_metric\r\n",
"\t, @iterations = @iterations\r\n",
"\t, @task = @task\r\n",
"\t, @experiment_name = @experiment_name\r\n",
"\t, @iteration_timeout_minutes = @iteration_timeout_minutes\r\n",
"\t, @experiment_timeout_hours = @experiment_timeout_hours\r\n",
"\t, @n_cross_validations = @n_cross_validations\r\n",
"\t, @blacklist_models = @blacklist_models\r\n",
"\t, @whitelist_models = @whitelist_models\r\n",
"\t, @experiment_exit_score = @experiment_exit_score\r\n",
"\t, @sample_weight_column = @sample_weight_column\r\n",
"\t, @is_validate_column = @is_validate_column\r\n",
"\t, @time_column_name = @time_column_name\r\n",
"\t, @tenantid = @tenantid\r\n",
"\t, @appid = @appid\r\n",
"\t, @password = @password\r\n",
"\t, @config_file = @config_file\r\n",
"WITH RESULT SETS ((best_run NVARCHAR(250), experiment_name NVARCHAR(100), fitted_model VARCHAR(MAX), log_file_text NVARCHAR(MAX), workspace NVARCHAR(100)))\r\n",
"END"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This procedure returns a list of metrics for each iteration of a training run.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLGetMetrics]\r\n",
" (\r\n",
"\t@run_id NVARCHAR(250), -- The RunId\r\n",
" @experiment_name NVARCHAR(32)='automl-sql-test', -- This can be used to find the experiment in the Azure Portal.\r\n",
" @connection_name NVARCHAR(255)='default' -- The AML connection to use.\r\n",
" ) AS\r\n",
"BEGIN\r\n",
" DECLARE @tenantid NVARCHAR(255)\r\n",
" DECLARE @appid NVARCHAR(255)\r\n",
" DECLARE @password NVARCHAR(255)\r\n",
" DECLARE @config_file NVARCHAR(255)\r\n",
"\r\n",
"\tSELECT @tenantid=TenantId, @appid=AppId, @password=Password, @config_file=ConfigFile\r\n",
"\tFROM aml_connection\r\n",
"\tWHERE ConnectionName = @connection_name;\r\n",
"\r\n",
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd\r\n",
"import logging \r\n",
"import azureml.core \r\n",
"import numpy as np\r\n",
"from azureml.core.experiment import Experiment \r\n",
"from azureml.train.automl.run import AutoMLRun\r\n",
"from azureml.core.authentication import ServicePrincipalAuthentication \r\n",
"from azureml.core.workspace import Workspace \r\n",
"\r\n",
"auth = ServicePrincipalAuthentication(tenantid, appid, password) \r\n",
" \r\n",
"ws = Workspace.from_config(path=config_file, auth=auth) \r\n",
" \r\n",
"experiment = Experiment(ws, experiment_name) \r\n",
"\r\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\r\n",
"\r\n",
"children = list(ml_run.get_children())\r\n",
"iterationlist = []\r\n",
"metricnamelist = []\r\n",
"metricvaluelist = []\r\n",
"\r\n",
"for run in children:\r\n",
" properties = run.get_properties()\r\n",
" if \"iteration\" in properties:\r\n",
" iteration = int(properties[\"iteration\"])\r\n",
" for metric_name, metric_value in run.get_metrics().items():\r\n",
" if isinstance(metric_value, float):\r\n",
" iterationlist.append(iteration)\r\n",
" metricnamelist.append(metric_name)\r\n",
" metricvaluelist.append(metric_value)\r\n",
" \r\n",
"metrics = pd.DataFrame({\"iteration\": iterationlist, \"metric_name\": metricnamelist, \"metric_value\": metricvaluelist})\r\n",
"'\r\n",
" , @output_data_1_name = N'metrics'\r\n",
"\t, @params = N'@run_id NVARCHAR(250), \r\n",
"\t\t\t\t @experiment_name NVARCHAR(32),\r\n",
" \t\t\t\t @tenantid NVARCHAR(255),\r\n",
"\t\t\t\t @appid NVARCHAR(255),\r\n",
"\t\t\t\t @password NVARCHAR(255),\r\n",
"\t\t\t\t @config_file NVARCHAR(255)'\r\n",
" , @run_id = @run_id\r\n",
"\t, @experiment_name = @experiment_name\r\n",
"\t, @tenantid = @tenantid\r\n",
"\t, @appid = @appid\r\n",
"\t, @password = @password\r\n",
"\t, @config_file = @config_file\r\n",
"WITH RESULT SETS ((iteration INT, metric_name NVARCHAR(100), metric_value FLOAT))\r\n",
"END"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"-- This procedure predicts values based on a model returned by AutoMLTrain and a dataset.\r\n",
"-- It returns the dataset with a new column added, which is the predicted value.\r\n",
"SET ANSI_NULLS ON\r\n",
"GO\r\n",
"SET QUOTED_IDENTIFIER ON\r\n",
"GO\r\n",
"CREATE OR ALTER PROCEDURE [dbo].[AutoMLPredict]\r\n",
" (\r\n",
" @input_query NVARCHAR(MAX), -- A SQL query returning data to predict on.\r\n",
" @model NVARCHAR(MAX), -- A model returned from AutoMLTrain.\r\n",
" @label_column NVARCHAR(255)='' -- Optional name of the column from input_query, which should be ignored when predicting\r\n",
" ) AS \r\n",
"BEGIN \r\n",
" \r\n",
" EXEC sp_execute_external_script @language = N'Python', @script = N'import pandas as pd \r\n",
"import azureml.core \r\n",
"import numpy as np \r\n",
"from azureml.train.automl import AutoMLConfig \r\n",
"import pickle \r\n",
"import codecs \r\n",
" \r\n",
"model_obj = pickle.loads(codecs.decode(model.encode(), \"base64\")) \r\n",
" \r\n",
"test_data = input_data.copy() \r\n",
"\r\n",
"if label_column != \"\" and label_column is not None:\r\n",
" y_test = test_data.pop(label_column).values \r\n",
"X_test = test_data \r\n",
" \r\n",
"predicted = model_obj.predict(X_test) \r\n",
" \r\n",
"combined_output = input_data.assign(predicted=predicted)\r\n",
" \r\n",
"' \r\n",
" , @input_data_1 = @input_query \r\n",
" , @input_data_1_name = N'input_data' \r\n",
" , @output_data_1_name = N'combined_output' \r\n",
" , @params = N'@model NVARCHAR(MAX), @label_column NVARCHAR(255)' \r\n",
" , @model = @model \r\n",
"\t, @label_column = @label_column\r\n",
"END"
]
}
],
"metadata": {
"authors": [
{
"name": "jeffshep"
}
],
"category": "tutorial",
"compute": [
"None"
],
"datasets": [
"None"
],
"deployment": [
"None"
],
"exclude_from_index": false,
"framework": [
"Azure ML AutoML"
],
"friendly_name": "Setup automated ML SQL integration",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"language": "sql",
"name": "python36"
},
"language_info": {
"name": "sql",
"version": ""
},
"tags": [
""
],
"task": "None"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,201 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we will explore AutoML's subsampling feature. This is useful for training on large datasets to speed up the convergence.\n",
"\n",
"The setup is quiet similar to a normal classification, with the exception of the `enable_subsampling` option. Keep in mind that even with the `enable_subsampling` flag set, subsampling will only be run for large datasets (>= 50k rows) and large (>= 85) or no iteration restrictions.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-subsampling'\n",
"project_folder = './sample_projects/automl-subsampling'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"We will create a simple dataset using the numpy sin function just for this example. We need just over 50k rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"base = np.arange(60000)\n",
"cos = np.cos(base)\n",
"y = np.round(np.sin(base)).astype('int')\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = np.hstack((base.reshape(-1, 1), cos.reshape(-1, 1)))\n",
"y_train = y"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**enable_subsampling**|This enables subsampling as an option. However it does not guarantee subsampling will be used. It also depends on how large the dataset is and how many iterations it's expected to run at a minimum.|\n",
"|**iterations**|Number of iterations. Subsampling requires a lot of iterations at smaller percent so in order for subsampling to be used we need to set iterations to be a high number.|\n",
"|**experiment_timeout_minutes**|The experiment timeout, it's set to 5 right now to shorten the demo but it should probably be higher if we want to finish all the iterations.|\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'accuracy',\n",
" iterations = 85,\n",
" experiment_timeout_minutes = 5,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_subsampling=True,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "rogehe"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Some files were not shown because too many files have changed in this diff Show More