Compare commits

...

925 Commits

Author SHA1 Message Date
amlrelsa-ms
d48ea948c8 update samples from Release-132 as a part of SDK release 2022-03-30 19:50:19 +00:00
Harneet Virk
90e20a60e9 Merge pull request #1726 from Azure/release_update/Release-131
update samples from Release-131 as a part of  SDK release
2022-03-29 19:32:11 -07:00
amlrelsa-ms
33a4eacf1d update samples from Release-131 as a part of SDK release 2022-03-30 02:26:53 +00:00
Harneet Virk
e30b53fddc Merge pull request #1725 from Azure/release_update/Release-130
update samples from Release-130 as a part of  SDK release
2022-03-29 15:41:28 -07:00
amlrelsa-ms
95b0392ed2 update samples from Release-130 as a part of SDK release 2022-03-29 22:33:38 +00:00
Harneet Virk
796798cb49 Merge pull request #1724 from Azure/release_update/Release-129
update samples from Release-129 as a part of  1.40.0 SDK release
2022-03-29 12:18:30 -07:00
amlrelsa-ms
08b0ba7854 update samples from Release-129 as a part of SDK release 2022-03-29 18:28:35 +00:00
Harneet Virk
ceaf82acc6 Merge pull request #1720 from Azure/release_update/Release-128
update samples from Release-128 as a part of  SDK release
2022-03-21 17:56:06 -07:00
amlrelsa-ms
dadc93cfe5 update samples from Release-128 as a part of SDK release 2022-03-22 00:51:19 +00:00
Harneet Virk
c7076bf95c Merge pull request #1715 from Azure/release_update/Release-127
update samples from Release-127 as a part of  SDK release
2022-03-15 17:02:41 -07:00
amlrelsa-ms
ebdffd5626 update samples from Release-127 as a part of SDK release 2022-03-16 00:00:00 +00:00
Harneet Virk
d123880562 Merge pull request #1711 from Azure/release_update/Release-126
update samples from Release-126 as a part of  SDK release
2022-03-11 16:53:06 -08:00
amlrelsa-ms
4864e8ea60 update samples from Release-126 as a part of SDK release 2022-03-12 00:47:46 +00:00
Harneet Virk
c86db0d7fd Merge pull request #1707 from Azure/release_update/Release-124
update samples from Release-124 as a part of  SDK release
2022-03-08 09:15:45 -08:00
amlrelsa-ms
ccfbbb3b14 update samples from Release-124 as a part of SDK release 2022-03-08 00:37:35 +00:00
Harneet Virk
c42ba64b15 Merge pull request #1700 from Azure/release_update/Release-123
update samples from Release-123 as a part of  SDK release
2022-03-01 16:33:02 -08:00
amlrelsa-ms
6d8bf32243 update samples from Release-123 as a part of SDK release 2022-02-28 17:20:57 +00:00
Harneet Virk
9094da4085 Merge pull request #1684 from Azure/release_update/Release-122
update samples from Release-122 as a part of  SDK release
2022-02-14 11:38:49 -08:00
amlrelsa-ms
ebf9d2855c update samples from Release-122 as a part of SDK release 2022-02-14 19:24:27 +00:00
v-pbavanari
1bbd78eb33 update samples from Release-121 as a part of SDK release (#1678)
Co-authored-by: amlrelsa-ms <amlrelsa@microsoft.com>
2022-02-02 12:28:49 -05:00
v-pbavanari
77f5a69e04 update samples from Release-120 as a part of SDK release (#1676)
Co-authored-by: amlrelsa-ms <amlrelsa@microsoft.com>
2022-01-28 12:51:49 -05:00
raja7592
ce82af2ab0 update samples from Release-118 as a part of SDK release (#1673)
Co-authored-by: amlrelsa-ms <amlrelsa@microsoft.com>
2022-01-24 20:07:35 -05:00
Harneet Virk
2a2d2efa17 Merge pull request #1658 from Azure/release_update/Release-117
Update samples from Release sdk 1.37.0 as a part of  SDK release
2021-12-13 10:36:08 -08:00
amlrelsa-ms
dd494e9cac update samples from Release-117 as a part of SDK release 2021-12-13 16:57:22 +00:00
Harneet Virk
352adb7487 Merge pull request #1629 from Azure/release_update/Release-116
Update samples from Release as a part of SDK release 1.36.0
2021-11-08 09:48:25 -08:00
amlrelsa-ms
aebe34b4e8 update samples from Release-116 as a part of SDK release 2021-11-08 16:09:41 +00:00
Harneet Virk
c7e1241e20 Merge pull request #1612 from Azure/release_update/Release-115
Update samples from Release-115 as a part of  SDK release
2021-10-11 12:01:59 -07:00
amlrelsa-ms
6529298c24 update samples from Release-115 as a part of SDK release 2021-10-11 16:09:57 +00:00
Harneet Virk
e2dddfde85 Merge pull request #1601 from Azure/release_update/Release-114
update samples from Release-114 as a part of  SDK release
2021-09-29 14:21:59 -07:00
amlrelsa-ms
36d96f96ec update samples from Release-114 as a part of SDK release 2021-09-29 20:16:51 +00:00
Harneet Virk
7ebcfea5a3 Merge pull request #1600 from Azure/release_update/Release-113
update samples from Release-113 as a part of  SDK release
2021-09-28 12:53:57 -07:00
amlrelsa-ms
b20bfed33a update samples from Release-113 as a part of SDK release 2021-09-28 19:44:58 +00:00
Harneet Virk
a66a92e338 Merge pull request #1597 from Azure/release_update/Release-112
update samples from Release-112 as a part of  SDK release
2021-09-24 14:44:53 -07:00
amlrelsa-ms
c56c2c3525 update samples from Release-112 as a part of SDK release 2021-09-24 21:40:44 +00:00
Harneet Virk
4cac072fa4 Merge pull request #1588 from Azure/release_update/Release-111
Update samples from Release-111 as a part of SDK 1.34.0 release
2021-09-09 09:02:38 -07:00
amlrelsa-ms
aeab6b3e28 update samples from Release-111 as a part of SDK release 2021-09-07 17:32:15 +00:00
Harneet Virk
015e261f29 Merge pull request #1581 from Azure/release_update/Release-110
update samples from Release-110 as a part of  SDK release
2021-08-20 09:21:08 -07:00
amlrelsa-ms
d2a423dde9 update samples from Release-110 as a part of SDK release 2021-08-20 00:28:42 +00:00
Harneet Virk
3ecbfd6532 Merge pull request #1578 from Azure/release_update/Release-109
update samples from Release-109 as a part of  SDK release
2021-08-18 18:16:31 -07:00
amlrelsa-ms
02ecb2d755 update samples from Release-109 as a part of SDK release 2021-08-18 22:07:12 +00:00
Harneet Virk
122df6e846 Merge pull request #1576 from Azure/release_update/Release-108
update samples from Release-108 as a part of  SDK release
2021-08-18 09:47:34 -07:00
amlrelsa-ms
7d6a0a2051 update samples from Release-108 as a part of SDK release 2021-08-18 00:33:54 +00:00
Harneet Virk
6cc8af80a2 Merge pull request #1565 from Azure/release_update/Release-107
update samples from Release-107 as a part of  SDK release 1.33
2021-08-02 13:14:30 -07:00
amlrelsa-ms
f61898f718 update samples from Release-107 as a part of SDK release 2021-08-02 18:01:38 +00:00
Harneet Virk
5cb465171e Merge pull request #1556 from Azure/update-spark-notebook
updating spark notebook
2021-07-26 17:09:42 -07:00
Shivani Santosh Sambare
0ce37dd18f updating spark notebook 2021-07-26 15:51:54 -07:00
Cody
d835b183a5 update README.md (#1552) 2021-07-15 10:43:22 -07:00
Cody
d3cafebff9 add code of conduct (#1551) 2021-07-15 08:08:44 -07:00
Harneet Virk
354b194a25 Merge pull request #1543 from Azure/release_update/Release-106
update samples from Release-106 as a part of  SDK release
2021-07-06 11:05:55 -07:00
amlrelsa-ms
a52d67bb84 update samples from Release-106 as a part of SDK release 2021-07-06 17:17:27 +00:00
Harneet Virk
421ea3d920 Merge pull request #1530 from Azure/release_update/Release-105
update samples from Release-105 as a part of  SDK release
2021-06-25 09:58:05 -07:00
amlrelsa-ms
24f53f1aa1 update samples from Release-105 as a part of SDK release 2021-06-24 23:00:13 +00:00
Harneet Virk
6fc5d11de2 Merge pull request #1518 from Azure/release_update/Release-104
update samples from Release-104 as a part of  SDK release
2021-06-21 10:29:53 -07:00
amlrelsa-ms
d17547d890 update samples from Release-104 as a part of SDK release 2021-06-21 17:16:09 +00:00
Harneet Virk
928e0d4327 Merge pull request #1510 from Azure/release_update/Release-103
update samples from Release-103 as a part of  SDK release
2021-06-14 10:33:34 -07:00
amlrelsa-ms
05327cfbb9 update samples from Release-103 as a part of SDK release 2021-06-14 17:30:30 +00:00
Harneet Virk
8f7717014b Merge pull request #1506 from Azure/release_update/Release-102
update samples from Release-102 as a part of  SDK release 1.30.0
2021-06-07 11:14:02 -07:00
amlrelsa-ms
a47e50b79a update samples from Release-102 as a part of SDK release 2021-06-07 17:34:51 +00:00
Harneet Virk
8f89d88def Merge pull request #1505 from Azure/release_update/Release-101
update samples from Release-101 as a part of  SDK release
2021-06-04 19:54:53 -07:00
amlrelsa-ms
ec97207bb1 update samples from Release-101 as a part of SDK release 2021-06-05 02:54:13 +00:00
Harneet Virk
a2d20b0f47 Merge pull request #1493 from Azure/release_update/Release-98
update samples from Release-98 as a part of  SDK release
2021-05-28 08:04:58 -07:00
amlrelsa-ms
8180cebd75 update samples from Release-98 as a part of SDK release 2021-05-28 03:44:25 +00:00
Harneet Virk
700ab2d782 Merge pull request #1489 from Azure/release_update/Release-97
update samples from Release-97 as a part of  SDK  1.29.0 release
2021-05-25 07:43:14 -07:00
amlrelsa-ms
ec9a5a061d update samples from Release-97 as a part of SDK release 2021-05-24 17:39:23 +00:00
Harneet Virk
467630f955 Merge pull request #1466 from Azure/release_update/Release-96
update samples from Release-96 as a part of  SDK release 1.28.0
2021-05-10 22:48:19 -07:00
amlrelsa-ms
eac6b69bae update samples from Release-96 as a part of SDK release 2021-05-10 18:38:34 +00:00
Harneet Virk
441a5b0141 Merge pull request #1440 from Azure/release_update/Release-95
update samples from Release-95 as a part of  SDK 1.27 release
2021-04-19 11:51:21 -07:00
amlrelsa-ms
70902df6da update samples from Release-95 as a part of SDK release 2021-04-19 18:42:58 +00:00
nikAI77
6f893ff0b4 update samples from Release-94 as a part of SDK release (#1418)
Co-authored-by: amlrelsa-ms <amlrelsa@microsoft.com>
2021-04-06 12:36:12 -04:00
Harneet Virk
bda592a236 Merge pull request #1406 from Azure/release_update/Release-93
update samples from Release-93 as a part of  SDK release
2021-03-24 11:25:00 -07:00
amlrelsa-ms
8b32e8d5ad update samples from Release-93 as a part of SDK release 2021-03-24 16:45:36 +00:00
Harneet Virk
54a065c698 Merge pull request #1386 from yunjie-hub/master
Add synapse sample notebooks
2021-03-09 18:05:10 -08:00
yunjie-hub
b9718678b3 Add files via upload 2021-03-09 18:02:27 -08:00
Harneet Virk
3fa40d2c6d Merge pull request #1385 from Azure/release_update/Release-92
update samples from Release-92 as a part of  SDK release
2021-03-09 17:51:27 -08:00
amlrelsa-ms
883e4a4c59 update samples from Release-92 as a part of SDK release 2021-03-10 01:48:54 +00:00
Harneet Virk
e90826b331 Merge pull request #1384 from yunjie-hub/master
Add synapse sample notebooks
2021-03-09 12:40:33 -08:00
yunjie-hub
ac04172f6d Add files via upload 2021-03-09 12:38:23 -08:00
Harneet Virk
8c0000beb4 Merge pull request #1382 from Azure/release_update/Release-91
update samples from Release-91 as a part of  SDK release
2021-03-08 21:43:10 -08:00
amlrelsa-ms
35287ab0d8 update samples from Release-91 as a part of SDK release 2021-03-09 05:36:08 +00:00
Harneet Virk
3fe4f8b038 Merge pull request #1375 from Azure/release_update/Release-90
update samples from Release-90 as a part of  SDK release
2021-03-01 09:15:14 -08:00
amlrelsa-ms
1722678469 update samples from Release-90 as a part of SDK release 2021-03-01 17:13:25 +00:00
Harneet Virk
17da7e8706 Merge pull request #1364 from Azure/release_update/Release-89
update samples from Release-89 as a part of  SDK release
2021-02-23 17:27:27 -08:00
amlrelsa-ms
d2e7213ff3 update samples from Release-89 as a part of SDK release 2021-02-24 01:26:17 +00:00
mx-iao
882cb76e8a Merge pull request #1361 from Azure/minxia/distr-pytorch
Update distributed pytorch example
2021-02-23 12:07:20 -08:00
mx-iao
37f37a46c1 Delete pytorch_mnist.py 2021-02-23 11:19:39 -08:00
mx-iao
0cd1412421 Delete distributed-pytorch-with-nccl-gloo.ipynb 2021-02-23 11:19:33 -08:00
mx-iao
c3ae9f00f6 Add files via upload 2021-02-23 11:19:02 -08:00
mx-iao
11b02c650c Rename how-to-use-azureml/ml-frameworks/pytorch/distributed-pytorch-with-distributeddataparallel.ipynb to how-to-use-azureml/ml-frameworks/pytorch/distributed-pytorch-with-distributeddataparallel/distributed-pytorch-with-distributeddataparallel.ipynb 2021-02-23 11:18:43 -08:00
mx-iao
606048c71f Add files via upload 2021-02-23 11:18:10 -08:00
Harneet Virk
cb1c354d44 Merge pull request #1353 from Azure/release_update/Release-88
update samples from Release-88 as a part of  SDK release 1.23.0
2021-02-22 11:49:02 -08:00
amlrelsa-ms
c868fff5a2 update samples from Release-88 as a part of SDK release 2021-02-22 19:23:04 +00:00
Harneet Virk
bc4e6611c4 Merge pull request #1342 from Azure/release_update/Release-87
update samples from Release-87 as a part of  SDK release
2021-02-16 18:43:49 -08:00
amlrelsa-ms
0a58881b70 update samples from Release-87 as a part of SDK release 2021-02-17 02:13:51 +00:00
Harneet Virk
2544e85c5f Merge pull request #1333 from Azure/release_update/Release-85
SDK release 1.22.0
2021-02-10 07:59:22 -08:00
amlrelsa-ms
7fe27501d1 update samples from Release-85 as a part of SDK release 2021-02-10 15:27:28 +00:00
Harneet Virk
624c46e7f9 Merge pull request #1321 from Azure/release_update/Release-84
update samples from Release-84 as a part of  SDK release
2021-02-05 19:10:29 -08:00
amlrelsa-ms
40fbadd85c update samples from Release-84 as a part of SDK release 2021-02-06 03:09:22 +00:00
Harneet Virk
0c1fc25542 Merge pull request #1317 from Azure/release_update/Release-83
update samples from Release-83 as a part of  SDK release
2021-02-03 14:31:31 -08:00
amlrelsa-ms
e8e1357229 update samples from Release-83 as a part of SDK release 2021-02-03 05:22:32 +00:00
Harneet Virk
ad44f8fa2b Merge pull request #1313 from zronaghi/contrib-rapids
Update RAPIDS README
2021-01-29 10:33:47 -08:00
Zahra Ronaghi
ee63e759f0 Update RAPIDS README 2021-01-28 22:19:27 -06:00
Harneet Virk
b81d97ebbf Merge pull request #1303 from Azure/release_update/Release-82
update samples from Release-82 as a part of  SDK release 1.21.0
2021-01-25 11:09:12 -08:00
amlrelsa-ms
249fb6bbb5 update samples from Release-82 as a part of SDK release 2021-01-25 19:03:14 +00:00
Harneet Virk
cda1f3e4cf Merge pull request #1289 from Azure/release_update/Release-81
update samples from Release-81 as a part of  SDK release
2021-01-11 12:52:48 -07:00
amlrelsa-ms
1d05efaac2 update samples from Release-81 as a part of SDK release 2021-01-11 19:35:54 +00:00
Harneet Virk
3adebd1127 Merge pull request #1262 from Azure/release_update/Release-80
update samples from Release-80 as a part of  SDK release
2020-12-11 16:49:33 -08:00
amlrelsa-ms
a6817063df update samples from Release-80 as a part of SDK release 2020-12-12 00:45:42 +00:00
Harneet Virk
a79f8c254a Merge pull request #1255 from Azure/release_update/Release-79
update samples from Release-79 as a part of  SDK release
2020-12-07 11:11:32 -08:00
amlrelsa-ms
fb4f287458 update samples from Release-79 as a part of SDK release 2020-12-07 19:09:59 +00:00
Harneet Virk
41366a4af0 Merge pull request #1238 from Azure/release_update/Release-78
update samples from Release-78 as a part of  SDK release
2020-11-11 13:00:22 -08:00
amlrelsa-ms
74deb14fac update samples from Release-78 as a part of SDK release 2020-11-11 19:32:32 +00:00
Harneet Virk
4ed1d445ae Merge pull request #1236 from Azure/release_update/Release-77
update samples from Release-77 as a part of  SDK release
2020-11-10 10:52:23 -08:00
amlrelsa-ms
b5c15db0b4 update samples from Release-77 as a part of SDK release 2020-11-10 18:46:23 +00:00
Harneet Virk
91d43bade6 Merge pull request #1235 from Azure/release_update_stablev2/Release-44
update samples from Release-44 as a part of 1.18.0 SDK stable release
2020-11-10 08:52:24 -08:00
amlrelsa-ms
bd750f5817 update samples from Release-44 as a part of 1.18.0 SDK stable release 2020-11-10 03:42:03 +00:00
mx-iao
637bcc5973 Merge pull request #1229 from Azure/lostmygithubaccount-patch-3
Update README.md
2020-11-03 15:18:37 -10:00
Cody
ba741fb18d Update README.md 2020-11-03 17:16:28 -08:00
Harneet Virk
ac0ad8d487 Merge pull request #1228 from Azure/release_update/Release-76
update samples from Release-76 as a part of  SDK release
2020-11-03 16:12:15 -08:00
amlrelsa-ms
5019ad6c5a update samples from Release-76 as a part of SDK release 2020-11-03 22:31:02 +00:00
Cody
41a2ebd2b3 Merge pull request #1226 from Azure/lostmygithubaccount-patch-3
Update README.md
2020-11-03 11:25:10 -08:00
Cody
53e3283d1d Update README.md 2020-11-03 11:17:41 -08:00
Harneet Virk
ba9c4c5465 Merge pull request #1225 from Azure/release_update/Release-75
update samples from Release-75 as a part of  SDK release
2020-11-03 11:11:11 -08:00
amlrelsa-ms
a6c65f00ec update samples from Release-75 as a part of SDK release 2020-11-03 19:07:12 +00:00
Cody
95072eabc2 Merge pull request #1221 from Azure/lostmygithubaccount-patch-2
Update README.md
2020-11-02 11:52:05 -08:00
Cody
12905ef254 Update README.md 2020-11-02 06:59:44 -08:00
Harneet Virk
4cf56eee91 Merge pull request #1217 from Azure/release_update/Release-74
update samples from Release-74 as a part of  SDK release
2020-10-30 17:27:02 -07:00
amlrelsa-ms
d345ff6c37 update samples from Release-74 as a part of SDK release 2020-10-30 22:20:10 +00:00
Harneet Virk
560dcac0a0 Merge pull request #1214 from Azure/release_update/Release-73
update samples from Release-73 as a part of  SDK release
2020-10-29 23:38:02 -07:00
amlrelsa-ms
322087a58c update samples from Release-73 as a part of SDK release 2020-10-30 06:37:05 +00:00
Harneet Virk
e255c000ab Merge pull request #1211 from Azure/release_update/Release-72
update samples from Release-72 as a part of  SDK release
2020-10-28 14:30:50 -07:00
amlrelsa-ms
7871e37ec0 update samples from Release-72 as a part of SDK release 2020-10-28 21:24:40 +00:00
Cody
58e584e7eb Update README.md (#1209) 2020-10-27 21:00:38 -04:00
Harneet Virk
1b0d75cb45 Merge pull request #1206 from Azure/release_update/Release-71
update samples from Release-71 as a part of  SDK 1.17.0 release
2020-10-26 22:29:48 -07:00
amlrelsa-ms
5c38272fb4 update samples from Release-71 as a part of SDK release 2020-10-27 04:11:39 +00:00
Harneet Virk
e026c56f19 Merge pull request #1200 from Azure/cody/add-new-repo-link
update readme
2020-10-22 10:50:03 -07:00
Cody
4aad830f1c update readme 2020-10-22 09:13:20 -07:00
Harneet Virk
c1b125025a Merge pull request #1198 from harneetvirk/master
Fixing/Removing broken links
2020-10-20 12:30:46 -07:00
Harneet Virk
9f364f7638 Update README.md 2020-10-20 12:30:03 -07:00
Harneet Virk
4beb749a76 Fixing/Removing the broken links 2020-10-20 12:28:45 -07:00
Harneet Virk
04fe8c4580 Merge pull request #1191 from savitamittal1/patch-4
Update README.md
2020-10-17 08:48:20 -07:00
Harneet Virk
498018451a Merge pull request #1193 from savitamittal1/patch-6
Update automl-databricks-local-with-deployment.ipynb
2020-10-17 08:47:54 -07:00
savitamittal1
04305e33f0 Update automl-databricks-local-with-deployment.ipynb 2020-10-16 23:58:12 -07:00
savitamittal1
d22e76d5e0 Update README.md 2020-10-16 23:53:41 -07:00
Harneet Virk
d71c482f75 Merge pull request #1184 from Azure/release_update/Release-70
update samples from Release-70 as a part of  SDK 1.16.0 release
2020-10-12 22:24:25 -07:00
amlrelsa-ms
5775f8a78f update samples from Release-70 as a part of SDK release 2020-10-13 05:19:49 +00:00
Cody
aae823ecd8 Merge pull request #1181 from samuel100/quickstart-notebook
quickstart nb added
2020-10-09 10:54:32 -07:00
Sam Kemp
f1126e07f9 quickstart nb added 2020-10-09 10:35:19 +01:00
Harneet Virk
0e4b27a233 Merge pull request #1171 from savitamittal1/patch-2
Update automl-databricks-local-01.ipynb
2020-10-02 09:41:14 -07:00
Harneet Virk
0a3d5f68a1 Merge pull request #1172 from savitamittal1/patch-3
Update automl-databricks-local-with-deployment.ipynb
2020-10-02 09:41:02 -07:00
savitamittal1
a6fe2affcb Update automl-databricks-local-with-deployment.ipynb
fixed link to readme
2020-10-01 19:38:11 -07:00
savitamittal1
ce469ddf6a Update automl-databricks-local-01.ipynb
fixed link for readme
2020-10-01 19:36:06 -07:00
mx-iao
9fe459be79 Merge pull request #1166 from Azure/minxia/patch
patch for resume training notebook
2020-09-29 17:30:24 -07:00
mx-iao
89c35c8ed6 Update train-tensorflow-resume-training.ipynb 2020-09-29 17:28:17 -07:00
mx-iao
33168c7f5d Update train-tensorflow-resume-training.ipynb 2020-09-29 17:27:23 -07:00
Cody
1d0766bd46 Merge pull request #1165 from samuel100/quickstart-add
quickstart added
2020-09-29 13:13:36 -07:00
Sam Kemp
9903e56882 quickstart added 2020-09-29 21:09:55 +01:00
Harneet Virk
a039166b90 Merge pull request #1162 from Azure/release_update/Release-69
update samples from Release-69 as a part of  SDK 1.15.0 release
2020-09-28 23:54:05 -07:00
amlrelsa-ms
4e4bf48013 update samples from Release-69 as a part of SDK release 2020-09-29 06:48:31 +00:00
Harneet Virk
0a2408300a Merge pull request #1158 from Azure/release_update/Release-68
update samples from Release-68 as a part of  SDK release
2020-09-25 09:23:59 -07:00
amlrelsa-ms
d99c3f5470 update samples from Release-68 as a part of SDK release 2020-09-25 16:10:59 +00:00
Harneet Virk
3f62fe7d47 Merge pull request #1157 from Azure/release_update/Release-67
update samples from Release-67 as a part of  SDK release
2020-09-23 15:51:20 -07:00
amlrelsa-ms
6059c1dc0c update samples from Release-67 as a part of SDK release 2020-09-23 22:48:56 +00:00
Harneet Virk
8e2032fcde Merge pull request #1153 from Azure/release_update/Release-66
update samples from Release-66 as a part of  SDK release
2020-09-21 16:04:23 -07:00
amlrelsa-ms
824d844cd7 update samples from Release-66 as a part of SDK release 2020-09-21 23:02:01 +00:00
Harneet Virk
bb1c7db690 Merge pull request #1148 from Azure/release_update/Release-65
update samples from Release-65 as a part of  SDK release
2020-09-16 18:23:12 -07:00
amlrelsa-ms
8dad09a42f update samples from Release-65 as a part of SDK release 2020-09-17 01:14:32 +00:00
Harneet Virk
db2bf8ae93 Merge pull request #1137 from Azure/release_update/Release-64
update samples from Release-64 as a part of  SDK release
2020-09-09 15:31:51 -07:00
amlrelsa-ms
820c09734f update samples from Release-64 as a part of SDK release 2020-09-09 22:30:45 +00:00
Cody
a2a33c70a6 Merge pull request #1123 from oliverw1/patch-2
docs: bring docs in line with code
2020-09-02 11:12:31 -07:00
Cody
2ff791968a Merge pull request #1122 from oliverw1/patch-1
docs: Move unintended side columns below the main rows
2020-09-02 11:11:58 -07:00
Harneet Virk
7186127804 Merge pull request #1128 from Azure/release_update/Release-63
update samples from Release-63 as a part of  SDK release
2020-08-31 13:23:08 -07:00
amlrelsa-ms
b01c52bfd6 update samples from Release-63 as a part of SDK release 2020-08-31 20:00:07 +00:00
Oliver W
28be7bcf58 docs: bring docs in line with code
A non-existant name was being referred to, which only serves confusion.
2020-08-28 10:24:24 +02:00
Oliver W
37a9350fde Properly format markdown table
Remove the unintended two columns that appeared on the right side
2020-08-28 09:29:46 +02:00
Harneet Virk
5080053a35 Merge pull request #1120 from Azure/release_update/Release-62
update samples from Release-62 as a part of  SDK release
2020-08-27 17:12:05 -07:00
amlrelsa-ms
3c02102691 update samples from Release-62 as a part of SDK release 2020-08-27 23:28:05 +00:00
Sheri Gilley
07e1676762 Merge pull request #1010 from GinSiuCheng/patch-1
Include additional details on user authentication
2020-08-25 11:45:58 -05:00
Sheri Gilley
919a3c078f fix code blocks 2020-08-25 11:13:24 -05:00
Sheri Gilley
9b53c924ed add code block for better formatting 2020-08-25 11:09:56 -05:00
Sheri Gilley
04ad58056f fix quotes 2020-08-25 11:06:18 -05:00
Sheri Gilley
576bf386b5 fix quotes 2020-08-25 11:05:25 -05:00
Cody
7e62d1cfd6 Merge pull request #891 from Fokko/patch-1
Don't print the access token
2020-08-22 18:28:33 -07:00
Cody
ec67a569af Merge pull request #804 from omartin2010/patch-3
typo
2020-08-17 14:35:55 -07:00
Cody
6d1e80bcef Merge pull request #1031 from hyoshioka0128/patch-1
Typo "Mircosoft"→"Microsoft"
2020-08-17 14:32:44 -07:00
mx-iao
db00d9ad3c Merge pull request #1100 from Azure/lostmygithubaccount-patch-1
fix minor typo in how-to-use-azureml/README.md
2020-08-17 14:30:18 -07:00
Harneet Virk
d33c75abc3 Merge pull request #1104 from Azure/release_update/Release-61
update samples from Release-61 as a part of  SDK release
2020-08-17 10:59:39 -07:00
amlrelsa-ms
d0dc4836ae update samples from Release-61 as a part of SDK release 2020-08-17 17:45:26 +00:00
Cody
982f8fcc1d Update README.md 2020-08-14 15:25:39 -07:00
Akshaya Annavajhala
79739b5e1b Remove broken links (#1095)
* Remove broken links

* Update README.md
2020-08-10 19:35:41 -04:00
Harneet Virk
aac4fa1fb9 Merge pull request #1081 from Azure/release_update/Release-60
update samples from Release-60 as a part of  SDK 1.11.0 release
2020-08-04 00:04:38 -07:00
amlrelsa-ms
5b684070e1 update samples from Release-60 as a part of SDK release 2020-08-04 06:12:06 +00:00
Harneet Virk
0ab8b141ee Merge pull request #1078 from Azure/release_update/Release-59
update samples from Release-59 as a part of  SDK release
2020-07-31 10:52:22 -07:00
amlrelsa-ms
b9ef23ad4b update samples from Release-59 as a part of SDK release 2020-07-31 17:23:17 +00:00
Harneet Virk
7e2c1ca152 Merge pull request #1063 from Azure/release_update/Release-58
update samples from Release-58 as a part of  SDK release
2020-07-20 13:46:37 -07:00
amlrelsa-ms
d096535e48 update samples from Release-58 as a part of SDK release 2020-07-20 20:44:42 +00:00
Harneet Virk
f80512a6db Merge pull request #1056 from wchill/wchill-patch-1
Update README.md with KeyError: brand workaround
2020-07-15 10:22:18 -07:00
Eric Ahn
b54111620e Update README.md 2020-07-14 17:47:23 -07:00
Harneet Virk
8dd52ee2df Merge pull request #1036 from Azure/release_update/Release-57
update samples from Release-57 as a part of  SDK release
2020-07-06 15:06:14 -07:00
amlrelsa-ms
6c629f1eda update samples from Release-57 as a part of SDK release 2020-07-06 22:05:24 +00:00
Hiroshi Yoshioka
9c32ca9db5 Typo "Mircosoft"→"Microsoft"
https://docs.microsoft.com/en-us/samples/azure/machinelearningnotebooks/azure-machine-learning-service-example-notebooks/
2020-06-29 12:21:23 +09:00
Harneet Virk
053efde8c9 Merge pull request #1022 from Azure/release_update/Release-56
update samples from Release-56 as a part of  SDK release
2020-06-22 11:12:31 -07:00
amlrelsa-ms
5189691f06 update samples from Release-56 as a part of SDK release 2020-06-22 18:11:40 +00:00
Gin
745b4f0624 Include additional details on user authentication
Additional details should be included for user authentication esp. for enterprise users who may have more than one single aad tenant linked to a user.
2020-06-13 21:24:56 -04:00
Harneet Virk
fb900916e3 Update README.md 2020-06-11 13:26:04 -07:00
Harneet Virk
738347f3da Merge pull request #996 from Azure/release_update/Release-55
update samples from Release-55 as a part of  SDK release
2020-06-08 15:31:35 -07:00
amlrelsa-ms
34a67c1f8b update samples from Release-55 as a part of SDK release 2020-06-08 22:28:25 +00:00
Harneet Virk
34898828be Merge pull request #992 from Azure/release_update/Release-54
update samples from Release-54 as a part of  SDK release
2020-06-02 14:42:02 -07:00
vizhur
a7c3a0fdb8 update samples from Release-54 as a part of SDK release 2020-06-02 21:34:10 +00:00
Harneet Virk
6d11cdfa0a Merge pull request #984 from Azure/release_update/Release-53
update samples from Release-53 as a part of  SDK release
2020-05-26 19:59:58 -07:00
vizhur
11e8ed2bab update samples from Release-53 as a part of SDK release 2020-05-27 02:45:07 +00:00
Harneet Virk
12c06a4168 Merge pull request #978 from ahcan76/patch-1
Fix image paths in tutorial-1st-experiment-sdk-train.ipynb
2020-05-18 12:58:21 -07:00
ahcan76
1f75dc9725 Update tutorial-1st-experiment-sdk-train.ipynb
Fix the image path
2020-05-18 22:40:54 +03:00
Harneet Virk
1a1a42d525 Merge pull request #977 from Azure/release_update/Release-52
update samples from Release-52 as a part of  SDK release
2020-05-18 12:22:48 -07:00
vizhur
879a272a8d update samples from Release-52 as a part of SDK release 2020-05-18 19:21:05 +00:00
Harneet Virk
bc65bde097 Merge pull request #971 from Azure/release_update/Release-51
update samples from Release-51 as a part of  SDK release
2020-05-13 22:17:45 -07:00
vizhur
690bdfbdbe update samples from Release-51 as a part of SDK release 2020-05-14 05:03:47 +00:00
Harneet Virk
3c02bd8782 Merge pull request #967 from Azure/release_update/Release-50
update samples from Release-50 as a part of  SDK release
2020-05-12 19:57:40 -07:00
vizhur
5c14610a1c update samples from Release-50 as a part of SDK release 2020-05-13 02:45:40 +00:00
Harneet Virk
4e3afae6fb Merge pull request #965 from Azure/release_update/Release-49
update samples from Release-49 as a part of  SDK release
2020-05-11 19:25:28 -07:00
vizhur
a2144aa083 update samples from Release-49 as a part of SDK release 2020-05-12 02:24:34 +00:00
Harneet Virk
0e6334178f Merge pull request #963 from Azure/release_update/Release-46
update samples from Release-46 as a part of  SDK release
2020-05-11 14:49:34 -07:00
vizhur
4ec9178d22 update samples from Release-46 as a part of SDK release 2020-05-11 21:48:31 +00:00
Harneet Virk
2aa7c53b0c Merge pull request #962 from Azure/release_update_stablev2/Release-11
update samples from Release-11 as a part of 1.5.0 SDK stable release
2020-05-11 12:42:32 -07:00
vizhur
553fa43e17 update samples from Release-11 as a part of 1.5.0 SDK stable release 2020-05-11 18:59:22 +00:00
Harneet Virk
e98131729e Merge pull request #949 from Azure/release_update_stablev2/Release-8
update samples from Release-8 as a part of 1.4.0 SDK stable release
2020-04-27 11:00:37 -07:00
vizhur
fd2b09e2c2 update samples from Release-8 as a part of 1.4.0 SDK stable release 2020-04-27 17:44:41 +00:00
Harneet Virk
7970209069 Merge pull request #930 from Azure/release_update/Release-44
update samples from Release-44 as a part of  SDK release
2020-04-17 12:46:29 -07:00
vizhur
24f8651bb5 update samples from Release-44 as a part of SDK release 2020-04-17 19:45:37 +00:00
Harneet Virk
b881f78e46 Merge pull request #918 from Azure/release_update_stablev2/Release-6
update samples from Release-6 as a part of 1.3.0 SDK stable release
2020-04-13 09:23:38 -07:00
vizhur
057e22b253 update samples from Release-6 as a part of 1.3.0 SDK stable release 2020-04-13 16:22:23 +00:00
Fokko Driesprong
119fd0a8f6 Don't print the access token
That's never a good idea, no exceptions :)
2020-03-31 08:14:05 +02:00
Harneet Virk
c520bd1d41 Merge pull request #884 from Azure/release_update/Release-43
update samples from Release-43 as a part of  SDK release
2020-03-23 16:49:27 -07:00
vizhur
d3f1212440 update samples from Release-43 as a part of SDK release 2020-03-23 23:39:45 +00:00
Harneet Virk
b95a65eef4 Merge pull request #883 from Azure/release_update_stablev2/Release-3
update samples from Release-3 as a part of 1.2.0 SDK stable release
2020-03-23 16:21:53 -07:00
vizhur
2218af619f update samples from Release-3 as a part of 1.2.0 SDK stable release 2020-03-23 23:11:53 +00:00
Harneet Virk
0401128638 Merge pull request #878 from Azure/release_update/Release-42
update samples from Release-42 as a part of  SDK release
2020-03-20 11:14:02 -07:00
vizhur
59fcb54998 update samples from Release-42 as a part of SDK release 2020-03-20 18:10:08 +00:00
Harneet Virk
e0ea99a6bb Merge pull request #862 from Azure/release_update/Release-41
update samples from Release-41 as a part of  SDK release
2020-03-13 14:57:58 -07:00
vizhur
b06f5ce269 update samples from Release-41 as a part of SDK release 2020-03-13 21:57:04 +00:00
Harneet Virk
ed0ce9e895 Merge pull request #856 from Azure/release_update/Release-40
update samples from Release-40 as a part of  SDK release
2020-03-12 12:28:18 -07:00
vizhur
71053d705b update samples from Release-40 as a part of SDK release 2020-03-12 19:25:26 +00:00
Harneet Virk
77f98bf75f Merge pull request #852 from Azure/release_update_stable/Release-6
update samples from Release-6 as a part of 1.1.5 SDK stable release
2020-03-11 15:37:59 -06:00
vizhur
e443fd1342 update samples from Release-6 as a part of 1.1.5rc0 SDK stable release 2020-03-11 19:51:02 +00:00
Harneet Virk
2165cf308e update samples from Release-25 as a part of 1.1.2rc0 SDK experimental release (#829)
Co-authored-by: vizhur <vizhur@live.com>
2020-03-02 15:42:04 -05:00
Olivier Martin
d4a486827d typo 2020-02-17 17:16:47 -05:00
Harneet Virk
3d6caa10a3 Merge pull request #801 from Azure/release_update/Release-39
update samples from Release-39 as a part of  SDK release
2020-02-13 19:03:36 -07:00
vizhur
4df079db1c update samples from Release-39 as a part of SDK release 2020-02-14 02:01:41 +00:00
Sander Vanhove
67d0b02ef9 Fix broken link in README (#797) 2020-02-13 08:20:28 -05:00
Harneet Virk
4e7b3784d5 Merge pull request #788 from Azure/release_update/Release-38
update samples from Release-38 as a part of  SDK release
2020-02-11 13:16:15 -07:00
vizhur
ed91e39d7e update samples from Release-38 as a part of SDK release 2020-02-11 20:00:16 +00:00
Harneet Virk
a09a1a16a7 Merge pull request #780 from Azure/release_update/Release-37
update samples from Release-37 as a part of  SDK release
2020-02-07 21:52:34 -07:00
vizhur
9662505517 update samples from Release-37 as a part of SDK release 2020-02-08 04:49:27 +00:00
Harneet Virk
8e103c02ff Merge pull request #779 from Azure/release_update/Release-36
update samples from Release-36 as a part of  SDK release
2020-02-07 21:40:57 -07:00
vizhur
ecb5157add update samples from Release-36 as a part of SDK release 2020-02-08 04:35:14 +00:00
Shané Winner
d7d23d5e7c Update index.md 2020-02-05 22:41:22 -08:00
Harneet Virk
83a21ba53a update samples from Release-35 as a part of SDK release (#765)
Co-authored-by: vizhur <vizhur@live.com>
2020-02-05 20:03:41 -05:00
Harneet Virk
3c9cb89c1a update samples from Release-18 as a part of 1.1.0rc0 SDK experimental release (#760)
Co-authored-by: vizhur <vizhur@live.com>
2020-02-04 22:19:52 -05:00
Sheri Gilley
cca7c2e26f add cell metadata 2020-02-04 11:31:07 -06:00
Harneet Virk
e895d7c2bf update samples - test (#758)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-31 15:19:58 -05:00
Shané Winner
3588eb9665 Update index.md 2020-01-23 15:46:43 -08:00
Harneet Virk
a09e726f31 update samples - test (#748)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-23 16:50:29 -05:00
Shané Winner
4fb1d9ee5b Update index.md 2020-01-22 11:38:24 -08:00
Harneet Virk
b05ff80e9d update samples from Release-169 as a part of 1.0.85 SDK release (#742)
Co-authored-by: vizhur <vizhur@live.com>
2020-01-21 18:00:15 -05:00
Shané Winner
512630472b Update index.md 2020-01-08 14:52:23 -08:00
vizhur
ae1337fe70 Merge pull request #724 from Azure/release_update/Release-167
update samples from Release-167 as a part of 1.0.83 SDK release
2020-01-06 15:38:25 -05:00
vizhur
c95f970dc8 update samples from Release-167 as a part of 1.0.83 SDK release 2020-01-06 20:16:21 +00:00
Shané Winner
9b9d112719 Update index.md 2019-12-24 07:40:48 -08:00
vizhur
fe8fcd4b48 Merge pull request #712 from Azure/release_update/Release-31
update samples - test
2019-12-23 20:28:02 -05:00
vizhur
296ae01587 update samples - test 2019-12-24 00:42:48 +00:00
Shané Winner
8f4efe15eb Update index.md 2019-12-10 09:05:23 -08:00
vizhur
d179080467 Merge pull request #690 from Azure/release_update/Release-163
update samples from Release-163 as a part of 1.0.79 SDK release
2019-12-09 15:41:03 -05:00
vizhur
0040644e7a update samples from Release-163 as a part of 1.0.79 SDK release 2019-12-09 20:09:30 +00:00
Shané Winner
8aa04307fb Update index.md 2019-12-03 10:24:18 -08:00
Shané Winner
a525da4488 Update index.md 2019-11-27 13:08:21 -08:00
Shané Winner
e149565a8a Merge pull request #679 from Azure/release_update/Release-30
update samples - test
2019-11-27 13:05:00 -08:00
vizhur
75610ec31c update samples - test 2019-11-27 21:02:21 +00:00
Shané Winner
0c2c450b6b Update index.md 2019-11-25 14:34:48 -08:00
Shané Winner
0d548eabff Merge pull request #677 from Azure/release_update/Release-29
update samples - test
2019-11-25 14:31:50 -08:00
vizhur
e4029801e6 update samples - test 2019-11-25 22:24:09 +00:00
Shané Winner
156974ee7b Update index.md 2019-11-25 11:42:53 -08:00
Shané Winner
1f05157d24 Merge pull request #676 from Azure/release_update/Release-160
update samples from Release-160 as a part of 1.0.76 SDK release
2019-11-25 11:39:27 -08:00
vizhur
2214ea8616 update samples from Release-160 as a part of 1.0.76 SDK release 2019-11-25 19:28:19 +00:00
Sheri Gilley
b54b2566de Merge pull request #667 from Azure/sdk-codetest
remove deprecated auto_prepare_environment
2019-11-21 09:25:15 -06:00
Sheri Gilley
57b0f701f8 remove deprecated auto_prepare_environment 2019-11-20 17:28:44 -06:00
Shané Winner
d658c85208 Update index.md 2019-11-12 14:59:15 -08:00
vizhur
a5f627a9b6 Merge pull request #655 from Azure/release_update/Release-28
update samples - test
2019-11-12 17:11:45 -05:00
vizhur
a8b08bdff0 update samples - test 2019-11-12 21:53:12 +00:00
Shané Winner
0dc3f34b86 Update index.md 2019-11-11 14:49:44 -08:00
Shané Winner
9ba7d5e5bb Update index.md 2019-11-11 14:48:05 -08:00
Shané Winner
c6ad2f8ec0 Merge pull request #654 from Azure/release_update/Release-158
update samples from Release-158 as a part of 1.0.74 SDK release
2019-11-11 10:25:18 -08:00
vizhur
33d6def8c3 update samples from Release-158 as a part of 1.0.74 SDK release 2019-11-11 16:57:02 +00:00
Shané Winner
69d4344dff Update index.md 2019-11-04 10:09:41 -08:00
Shané Winner
34aeec1439 Update index.md 2019-11-04 10:08:10 -08:00
Shané Winner
a9b9ebbf7d Merge pull request #641 from Azure/release_update/Release-27
update samples - test
2019-11-04 10:02:25 -08:00
vizhur
41fa508d53 update samples - test 2019-11-04 17:57:28 +00:00
Shané Winner
e1bfa98844 Update index.md 2019-11-04 08:41:15 -08:00
Shané Winner
2bcee9aa20 Update index.md 2019-11-04 08:40:29 -08:00
Shané Winner
37541b1071 Merge pull request #638 from Azure/release_update/Release-26
update samples - test
2019-11-04 08:31:59 -08:00
Shané Winner
4aff1310a7 Merge branch 'master' into release_update/Release-26 2019-11-04 08:31:37 -08:00
Shané Winner
51ecb7c54f Update index.md 2019-11-01 10:38:46 -07:00
Shané Winner
4e7fc7c82c Update index.md 2019-11-01 10:36:02 -07:00
vizhur
4ed3f0767a update samples - test 2019-11-01 14:48:01 +00:00
vizhur
46ec74f8df Merge pull request #627 from jingyanwangms/jingywa/lightgbm-notebook
add Lightgbm Estimator notebook
2019-10-22 20:54:33 -04:00
Jingyan Wang
8d2e362a10 add Lightgbm notebook 2019-10-22 17:40:32 -07:00
vizhur
86c1b3d760 adding missing files for rapids 2019-10-21 12:20:15 -04:00
Shané Winner
41dc05952f Update index.md 2019-10-15 16:37:53 -07:00
vizhur
df2e08e4a3 Merge pull request #622 from Azure/release_update/Release-25
update samples - test
2019-10-15 18:34:28 -04:00
vizhur
828a976907 update samples - test 2019-10-15 22:01:55 +00:00
vizhur
1a373f11a0 Merge pull request #621 from Azure/ak/revert-db-overwrite
Revert automatic overwrite of databricks content
2019-10-15 16:07:37 -04:00
Akshaya Annavajhala (AK)
60de701207 revert overwrites 2019-10-15 12:33:31 -07:00
Akshaya Annavajhala (AK)
5841fa4a42 revert overwrites 2019-10-15 12:27:56 -07:00
Shané Winner
659fb7abc3 Merge pull request #619 from Azure/release_update/Release-153
update samples from Release-153 as a part of 1.0.69 SDK release
2019-10-14 15:39:40 -07:00
vizhur
2e404cfc3a update samples from Release-153 as a part of 1.0.69 SDK release 2019-10-14 22:30:58 +00:00
Shané Winner
5fcf4887bc Update index.md 2019-10-06 11:44:35 -07:00
Shané Winner
1e7f3117ae Update index.md 2019-10-06 11:44:01 -07:00
Shané Winner
bbb3f85da9 Update README.md 2019-10-06 11:33:56 -07:00
Shané Winner
c816dfb479 Update index.md 2019-10-06 11:29:58 -07:00
Shané Winner
8c128640b1 Update index.md 2019-10-06 11:28:34 -07:00
vizhur
4d2b937846 Merge pull request #600 from Azure/release_update/Release-24
Fix for Tensorflow 2.0 related Notebook Failures
2019-10-02 16:27:31 -04:00
vizhur
5492f52faf update samples - test 2019-10-02 20:23:54 +00:00
Shané Winner
735db9ebe7 Update index.md 2019-10-01 09:59:10 -07:00
Shané Winner
573030b990 Update README.md 2019-10-01 09:52:10 -07:00
Shané Winner
392a059000 Update index.md 2019-10-01 09:44:37 -07:00
Shané Winner
3580e54fbb Update index.md 2019-10-01 09:42:20 -07:00
Shané Winner
2017bcd716 Update index.md 2019-10-01 09:41:33 -07:00
Roope Astala
4a3f8e7025 Merge pull request #594 from Azure/release_update/Release-149
update samples from Release-149 as a part of 1.0.65 SDK release
2019-09-30 13:29:57 -04:00
vizhur
45880114db update samples from Release-149 as a part of 1.0.65 SDK release 2019-09-30 17:08:52 +00:00
Roope Astala
314bad72a4 Merge pull request #588 from skaarthik/rapids
updating to use AML base image and system managed dependencies
2019-09-25 07:44:31 -04:00
Kaarthik Sivashanmugam
f252308005 updating to use AML base image and system managed dependencies 2019-09-24 20:47:15 -07:00
Kaarthik Sivashanmugam
6622a6c5f2 Merge pull request #1 from Azure/master
merge latest changes from Azure/MLNB repo
2019-09-24 20:40:43 -07:00
Roope Astala
6b19e2f263 Merge pull request #587 from Azure/akshaya-a-patch-3
Update README.md to remove confusing reference
2019-09-24 16:13:16 -04:00
Akshaya Annavajhala
42fd4598cb Update README.md 2019-09-24 15:28:30 -04:00
Roope Astala
476d945439 Merge pull request #580 from akshaya-a/master
Add documentation on the preview ADB linking experience
2019-09-24 09:31:45 -04:00
Shané Winner
e96bb9bef2 Delete manage-runs.yml 2019-09-22 20:37:17 -07:00
Shané Winner
2be4a5e54d Delete manage-runs.ipynb 2019-09-22 20:37:07 -07:00
Shané Winner
247a25f280 Delete hello_with_delay.py 2019-09-22 20:36:50 -07:00
Shané Winner
5d9d8eade6 Delete hello_with_children.py 2019-09-22 20:36:39 -07:00
Shané Winner
dba978e42a Delete hello.py 2019-09-22 20:36:29 -07:00
Shané Winner
7f4101c33e Delete run_details.PNG 2019-09-22 20:36:12 -07:00
Shané Winner
62b0d5df69 Delete run_history.png 2019-09-22 20:36:01 -07:00
Shané Winner
f10b55a1bc Delete logging-api.ipynb 2019-09-22 20:35:47 -07:00
Shané Winner
da9e86635e Delete logging-api.yml 2019-09-22 20:35:36 -07:00
Shané Winner
9ca6388996 Delete datasets-diff.ipynb 2019-09-19 14:14:59 -07:00
Akshaya Annavajhala
3ce779063b address PR feedback 2019-09-18 15:48:42 -04:00
Akshaya Annavajhala
ce635ce4fe add the word mlflow 2019-09-18 13:25:41 -04:00
Akshaya Annavajhala
f08e68c8e9 add linking docs 2019-09-18 11:08:46 -04:00
Shané Winner
93a1d232db Update index.md 2019-09-17 10:00:57 -07:00
Shané Winner
923483528c Update index.md 2019-09-17 09:59:23 -07:00
Shané Winner
cbeacb2ab2 Delete sklearn_regression_model.pkl 2019-09-17 09:37:44 -07:00
Shané Winner
c928c50707 Delete score.py 2019-09-17 09:37:34 -07:00
Shané Winner
efb42bacf9 Delete register-model-deploy-local.ipynb 2019-09-17 09:37:26 -07:00
Shané Winner
d8f349a1ae Delete register-model-deploy-local-advanced.ipynb 2019-09-17 09:37:17 -07:00
Shané Winner
96a61fdc78 Delete myenv.yml 2019-09-17 09:37:08 -07:00
Shané Winner
ff8128f023 Delete helloworld.txt 2019-09-17 09:36:59 -07:00
Shané Winner
8260302a68 Delete dockerSharedDrive.JPG 2019-09-17 09:36:50 -07:00
Shané Winner
fbd7f4a55b Delete README.md 2019-09-17 09:36:41 -07:00
Shané Winner
d4e4206179 Delete helloworld.txt 2019-09-17 09:35:38 -07:00
Shané Winner
a98b918feb Delete model-register-and-deploy.ipynb 2019-09-17 09:35:29 -07:00
Shané Winner
890490ec70 Delete model-register-and-deploy.yml 2019-09-17 09:35:17 -07:00
Shané Winner
c068c9b979 Delete myenv.yml 2019-09-17 09:34:54 -07:00
Shané Winner
f334a3516f Delete score.py 2019-09-17 09:34:44 -07:00
Shané Winner
96248d8dff Delete sklearn_regression_model.pkl 2019-09-17 09:34:27 -07:00
Shané Winner
c42e865700 Delete README.md 2019-09-17 09:29:20 -07:00
vizhur
9233ce089a Merge pull request #577 from Azure/release_update/Release-146
update samples from Release-146 as a part of 1.0.62 SDK release
2019-09-16 19:44:43 -04:00
vizhur
6bb1e2a3e3 update samples from Release-146 as a part of 1.0.62 SDK release 2019-09-16 23:21:57 +00:00
Shané Winner
e1724c8a89 Merge pull request #573 from lostmygithubaccount/master
adding timeseries dataset example notebook
2019-09-16 11:00:30 -07:00
Shané Winner
446e0768cc Delete datasets-diff.ipynb 2019-09-16 10:53:16 -07:00
Cody Peterson
8a2f114a16 adding timeseries dataset example notebook 2019-09-13 08:30:26 -07:00
Shané Winner
80c0d4d30f Merge pull request #570 from trevorbye/master
new pipeline tutorial
2019-09-11 09:28:40 -07:00
Trevor Bye
e8f4708a5a adding index metadata 2019-09-11 09:24:41 -07:00
Trevor Bye
fbaeb84204 adding tutorial 2019-09-11 09:02:06 -07:00
Trevor Bye
da1fab0a77 removing dprep file from old deleted tutorial 2019-09-10 12:31:57 -07:00
Shané Winner
94d2890bb5 Update index.md 2019-09-06 06:37:35 -07:00
Shané Winner
4d1ec4f7d4 Update index.md 2019-09-06 06:30:54 -07:00
Shané Winner
ace3153831 Update index.md 2019-09-06 06:28:50 -07:00
Shané Winner
58bbfe57b2 Update index.md 2019-09-06 06:15:36 -07:00
vizhur
11ea00b1d9 Update index.md 2019-09-06 09:14:30 -04:00
Shané Winner
b81efca3e5 Update index.md 2019-09-06 06:13:03 -07:00
vizhur
d7ceb9bca2 Update index.md 2019-09-06 09:08:02 -04:00
Shané Winner
17730dc69a Merge pull request #564 from MayMSFT/patch-1
Update file-dataset-img-classification.ipynb
2019-09-04 13:31:08 -07:00
May Hu
3a029d48a2 Update file-dataset-img-classification.ipynb
made edit on the sdk version
2019-09-04 13:25:10 -07:00
vizhur
06d43956f3 Merge pull request #558 from Azure/release_update/Release-144
update samples from Release-144 as a part of 1.0.60 SDK release
2019-09-03 22:09:33 -04:00
vizhur
a1cb9b33a5 update samples from Release-144 as a part of 1.0.60 SDK release 2019-09-03 22:39:55 +00:00
Shané Winner
fdc3fe2a53 Delete README.md 2019-08-29 10:22:24 -07:00
Shané Winner
628b35912c Delete train-remote.yml 2019-08-29 10:22:15 -07:00
Shané Winner
3f4cc22e94 Delete train-remote.ipynb 2019-08-29 10:22:07 -07:00
Shané Winner
18d7afb707 Delete train_diabetes.py 2019-08-29 10:21:59 -07:00
Shané Winner
cd35ca30d4 Delete train-local.ipynb 2019-08-29 10:21:48 -07:00
Shané Winner
30eae0b46c Delete train-local.yml 2019-08-29 10:21:40 -07:00
Shané Winner
f16951387f Delete train.py 2019-08-29 10:21:27 -07:00
Shané Winner
0d8de29147 Delete train-and-deploy-pytorch.ipynb 2019-08-29 10:21:16 -07:00
Shané Winner
836354640c Delete train-and-deploy-pytorch.yml 2019-08-29 10:21:08 -07:00
Shané Winner
6162e80972 Delete deploy-model.yml 2019-08-29 10:20:55 -07:00
Shané Winner
fe9fe3392d Delete deploy-model.ipynb 2019-08-29 10:20:46 -07:00
Shané Winner
5ec6d8861b Delete auto-ml-dataprep-remote-execution.yml 2019-08-27 11:19:38 -07:00
Shané Winner
ae188f324e Delete auto-ml-dataprep-remote-execution.ipynb 2019-08-27 11:19:27 -07:00
Shané Winner
4c30c2bdb9 Delete auto-ml-dataprep.yml 2019-08-27 11:19:00 -07:00
Shané Winner
b891440e2d Delete auto-ml-dataprep.ipynb 2019-08-27 11:18:50 -07:00
Shané Winner
784827cdd2 Update README.md 2019-08-27 09:23:40 -07:00
vizhur
0957af04ca Merge pull request #545 from Azure/imatiach-msft-patch-1
add dataprep dependency to notebook
2019-08-23 13:14:30 -04:00
Ilya Matiach
a3bdd193d1 add dataprep dependency to notebook
add dataprep dependency to train-explain-model-on-amlcompute-and-deploy.ipynb notebook for azureml-explain-model package
2019-08-23 13:11:36 -04:00
Shané Winner
dff09970ac Update README.md 2019-08-23 08:38:01 -07:00
Shané Winner
abc7d21711 Update README.md 2019-08-23 05:28:45 +00:00
Shané Winner
ec12ef635f Delete azure-ml-datadrift.ipynb 2019-08-21 10:32:40 -07:00
Shané Winner
81b3e6f09f Delete azure-ml-datadrift.yml 2019-08-21 10:32:32 -07:00
Shané Winner
cc167dceda Delete score.py 2019-08-21 10:32:23 -07:00
Shané Winner
bc52a6d8ee Delete datasets-diff.ipynb 2019-08-21 10:31:50 -07:00
Shané Winner
5bbbdbe73c Delete Titanic.csv 2019-08-21 10:31:38 -07:00
Shané Winner
fd4de05ddd Delete train.py 2019-08-21 10:31:26 -07:00
Shané Winner
9eaab2189d Delete datasets-tutorial.ipynb 2019-08-21 10:31:15 -07:00
Shané Winner
12147754b2 Delete datasets-diff.ipynb 2019-08-21 10:31:05 -07:00
Shané Winner
90ef263823 Delete README.md 2019-08-21 10:30:54 -07:00
Shané Winner
143590cfb4 Delete new-york-taxi_scale-out.ipynb 2019-08-21 10:30:39 -07:00
Shané Winner
40379014ad Delete new-york-taxi.ipynb 2019-08-21 10:30:29 -07:00
Shané Winner
f7b0e99fa1 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-08-21 10:30:18 -07:00
Shané Winner
7a7ac48411 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-08-21 10:30:04 -07:00
Shané Winner
50107c5b1e Delete part-00007-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:51 -07:00
Shané Winner
e41d7e6819 Delete part-00006-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:36 -07:00
Shané Winner
691e038e84 Delete part-00005-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:18 -07:00
Shané Winner
426e79d635 Delete part-00004-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:29:02 -07:00
Shané Winner
326677e87f Delete part-00003-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:45 -07:00
Shané Winner
44988e30ae Delete part-00002-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:31 -07:00
Shané Winner
646ae37384 Delete part-00001-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:18 -07:00
Shané Winner
457e29a663 Delete part-00000-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-08-21 10:28:03 -07:00
Shané Winner
2771edfb2c Delete _SUCCESS 2019-08-21 10:27:45 -07:00
Shané Winner
f0001ec322 Delete adls-dpreptestfiles.crt 2019-08-21 10:27:31 -07:00
Shané Winner
d3e02a017d Delete chicago-aldermen-2015.csv 2019-08-21 10:27:05 -07:00
Shané Winner
a0ebed6876 Delete crime-dirty.csv 2019-08-21 10:26:55 -07:00
Shané Winner
dc0ab6db47 Delete crime-spring.csv 2019-08-21 10:26:45 -07:00
Shané Winner
ea7900f82c Delete crime-winter.csv 2019-08-21 10:26:35 -07:00
Shané Winner
0cb3fd180d Delete crime.parquet 2019-08-21 10:26:26 -07:00
Shané Winner
b05c3e46bb Delete crime.txt 2019-08-21 10:26:17 -07:00
Shané Winner
a1b7d298d3 Delete crime.xlsx 2019-08-21 10:25:41 -07:00
Shané Winner
cc5516c3b3 Delete crime_duplicate_headers.csv 2019-08-21 10:25:32 -07:00
Shané Winner
4fb6070b89 Delete crime.zip 2019-08-21 10:25:23 -07:00
Shané Winner
1b926cdf53 Delete crime-full.csv 2019-08-21 10:25:13 -07:00
Shané Winner
72fc00fb65 Delete crime.dprep 2019-08-21 10:24:56 -07:00
Shané Winner
ddc6b57253 Delete ADLSgen2-datapreptest.crt 2019-08-21 10:24:47 -07:00
Shané Winner
e8b3b98338 Delete crime_fixed_width_file.txt 2019-08-21 10:24:38 -07:00
Shané Winner
66325a1405 Delete crime_multiple_separators.csv 2019-08-21 10:24:29 -07:00
Shané Winner
0efbeaf4b8 Delete json.json 2019-08-21 10:24:12 -07:00
Shané Winner
11d487fb28 Merge pull request #542 from Azure/sgilley/update-deploy
change deployment to model-centric approach
2019-08-21 10:22:13 -07:00
Shané Winner
073e319ef9 Delete large_dflow.json 2019-08-21 10:21:41 -07:00
Shané Winner
3ed75f28d1 Delete map_func.py 2019-08-21 10:21:23 -07:00
Shané Winner
bfc0367f54 Delete median_income.csv 2019-08-21 10:21:14 -07:00
Shané Winner
075eeb583f Delete median_income_transformed.csv 2019-08-21 10:21:05 -07:00
Shané Winner
b7531d3b9e Delete parquet.parquet 2019-08-21 10:20:55 -07:00
Shané Winner
41dc3bd1cf Delete secrets.dprep 2019-08-21 10:20:45 -07:00
Shané Winner
b790b385a4 Delete stream-path.csv 2019-08-21 10:20:36 -07:00
Shané Winner
8700328fe9 Delete summarize.ipynb 2019-08-21 10:17:21 -07:00
Shané Winner
adbd2c8200 Delete subsetting-sampling.ipynb 2019-08-21 10:17:12 -07:00
Shané Winner
7d552effb0 Delete split-column-by-example.ipynb 2019-08-21 10:17:01 -07:00
Shané Winner
bc81d2a5a7 Delete semantic-types.ipynb 2019-08-21 10:16:52 -07:00
Shané Winner
7620de2d91 Delete secrets.ipynb 2019-08-21 10:16:42 -07:00
Shané Winner
07a43a0444 Delete replace-fill-error.ipynb 2019-08-21 10:16:33 -07:00
Shané Winner
f4d5874e09 Delete replace-datasource-replace-reference.ipynb 2019-08-21 10:16:23 -07:00
Shané Winner
8a0b4d24bd Delete random-split.ipynb 2019-08-21 10:16:14 -07:00
Shané Winner
636f19be1f Delete quantile-transformation.ipynb 2019-08-21 10:16:04 -07:00
Shané Winner
0fd7f7d9b2 Delete open-save-dataflows.ipynb 2019-08-21 10:15:54 -07:00
Shané Winner
ab6c66534f Delete one-hot-encoder.ipynb 2019-08-21 10:15:45 -07:00
Shané Winner
faccf13759 Delete min-max-scaler.ipynb 2019-08-21 10:15:36 -07:00
Shané Winner
4c6a28e4ed Delete label-encoder.ipynb 2019-08-21 10:15:25 -07:00
Shané Winner
64ad88e2cb Delete join.ipynb 2019-08-21 10:15:17 -07:00
Shané Winner
969ac90d39 Delete impute-missing-values.ipynb 2019-08-21 10:12:12 -07:00
Shané Winner
fb977c1e95 Delete fuzzy-group.ipynb 2019-08-21 10:12:03 -07:00
Shané Winner
d5ba3916f7 Delete filtering.ipynb 2019-08-21 10:11:53 -07:00
Shané Winner
f7f1087337 Delete external-references.ipynb 2019-08-21 10:11:43 -07:00
Shané Winner
47ea2dbc03 Delete derive-column-by-example.ipynb 2019-08-21 10:11:33 -07:00
Shané Winner
bd2cf534e5 Delete datastore.ipynb 2019-08-21 10:11:24 -07:00
Shané Winner
65f1668d69 Delete data-profile.ipynb 2019-08-21 10:11:16 -07:00
Shané Winner
e0fb7df0aa Delete data-ingestion.ipynb 2019-08-21 10:11:06 -07:00
Shané Winner
7047f76299 Delete custom-python-transforms.ipynb 2019-08-21 10:10:56 -07:00
Shané Winner
c39f2d5eb6 Delete column-type-transforms.ipynb 2019-08-21 10:10:45 -07:00
Shané Winner
5fda69a388 Delete column-manipulations.ipynb 2019-08-21 10:10:36 -07:00
Shané Winner
87ce954eef Delete cache.ipynb 2019-08-21 10:10:26 -07:00
Shané Winner
ebbeac413a Delete auto-read-file.ipynb 2019-08-21 10:10:15 -07:00
Shané Winner
a68bbaaab4 Delete assertions.ipynb 2019-08-21 10:10:05 -07:00
Shané Winner
8784dc979f Delete append-columns-and-rows.ipynb 2019-08-21 10:09:55 -07:00
Shané Winner
f8047544fc Delete add-column-using-expression.ipynb 2019-08-21 10:09:44 -07:00
Shané Winner
eeb2a05e4f Delete working-with-file-streams.ipynb 2019-08-21 10:09:33 -07:00
Shané Winner
6db9d7bd8b Delete writing-data.ipynb 2019-08-21 10:09:19 -07:00
Shané Winner
80e2fde734 Delete getting-started.ipynb 2019-08-21 10:09:04 -07:00
Shané Winner
ae4f5d40ee Delete README.md 2019-08-21 10:08:53 -07:00
Shané Winner
5516edadfd Delete README.md 2019-08-21 10:08:13 -07:00
Sheri Gilley
475afbf44b change deployment to model-centric approach 2019-08-21 09:50:49 -05:00
Shané Winner
197eaf1aab Merge pull request #541 from Azure/sdgilley/update-tutorial
Update img-classification-part1-training.ipynb
2019-08-20 15:59:24 -07:00
Sheri Gilley
184680f1d2 Update img-classification-part1-training.ipynb
updated explanation of datastore
2019-08-20 17:52:45 -05:00
Shané Winner
474f58bd0b Merge pull request #540 from trevorbye/master
removing tutorials for single combined tutorial
2019-08-20 15:22:47 -07:00
Trevor Bye
22c8433897 removing tutorials for single combined tutorial 2019-08-20 12:09:21 -07:00
Josée Martens
822cdd0f01 Update issue templates 2019-08-20 08:35:00 -05:00
Josée Martens
6e65d42986 Update issue templates 2019-08-20 08:26:45 -05:00
Harneet Virk
4c0cbac834 Merge pull request #537 from Azure/release_update/Release-141
update samples from Release-141 as a part of 1.0.57 SDK release
2019-08-19 18:32:44 -07:00
vizhur
44a7481ed1 update samples from Release-141 as a part of 1.0.57 SDK release 2019-08-19 23:33:44 +00:00
Ilya Matiach
8f418b216d Merge pull request #526 from imatiach-msft/ilmat/remove-old-explain-dirs
removing old explain model directories
2019-08-13 12:37:00 -04:00
Ilya Matiach
2d549ecad3 removing old directories 2019-08-13 12:31:51 -04:00
Josée Martens
4dbb024529 Update issue templates 2019-08-11 18:02:17 -05:00
Josée Martens
142a1a510e Update issue templates 2019-08-11 18:00:12 -05:00
vizhur
2522486c26 Merge pull request #519 from wamartin-aml/master
Add dataprep dependency
2019-08-08 09:34:36 -04:00
Walter Martin
6d5226e47c Add dataprep dependency 2019-08-08 09:31:18 -04:00
Shané Winner
e7676d7cdc Delete README.md 2019-08-07 13:14:39 -07:00
Shané Winner
a84f6636f1 Delete README.md 2019-08-07 13:14:24 -07:00
Roope Astala
41be10d1c1 Delete authentication-in-azure-ml.ipynb 2019-08-07 10:12:48 -04:00
vizhur
429eb43914 Merge pull request #513 from Azure/release_update/Release-139
update samples from Release-139 as a part of 1.0.55 SDK release
2019-08-05 16:22:25 -04:00
vizhur
c0dae0c645 update samples from Release-139 as a part of 1.0.55 SDK release 2019-08-05 18:39:19 +00:00
Shané Winner
e4d9a2b4c5 Delete score.py 2019-07-29 09:33:11 -07:00
Shané Winner
7648e8f516 Delete readme.md 2019-07-29 09:32:55 -07:00
Shané Winner
b5ed94b4eb Delete azure-ml-datadrift.ipynb 2019-07-29 09:32:47 -07:00
Shané Winner
85e487f74f Delete new-york-taxi_scale-out.ipynb 2019-07-28 00:38:05 -07:00
Shané Winner
c0a5b2de79 Delete new-york-taxi.ipynb 2019-07-28 00:37:56 -07:00
Shané Winner
0a9e076e5f Delete stream-path.csv 2019-07-28 00:37:44 -07:00
Shané Winner
e3b974811d Delete secrets.dprep 2019-07-28 00:37:33 -07:00
Shané Winner
381d1a6f35 Delete parquet.parquet 2019-07-28 00:37:20 -07:00
Shané Winner
adaa55675e Delete median_income_transformed.csv 2019-07-28 00:37:12 -07:00
Shané Winner
5e3c592d4b Delete median_income.csv 2019-07-28 00:37:02 -07:00
Shané Winner
9c6f1e2571 Delete map_func.py 2019-07-28 00:36:52 -07:00
Shané Winner
bd1bedd563 Delete large_dflow.json 2019-07-28 00:36:43 -07:00
Shané Winner
9716f3614e Delete json.json 2019-07-28 00:36:30 -07:00
Shané Winner
d2c72ca149 Delete crime_multiple_separators.csv 2019-07-28 00:36:19 -07:00
Shané Winner
4f62f64207 Delete crime_fixed_width_file.txt 2019-07-28 00:36:10 -07:00
Shané Winner
16473eb33e Delete crime_duplicate_headers.csv 2019-07-28 00:36:01 -07:00
Shané Winner
d10474c249 Delete crime.zip 2019-07-28 00:35:51 -07:00
Shané Winner
6389cc16f9 Delete crime.xlsx 2019-07-28 00:35:41 -07:00
Shané Winner
bc0a8e0152 Delete crime.txt 2019-07-28 00:35:30 -07:00
Shané Winner
39384aea52 Delete crime.parquet 2019-07-28 00:35:20 -07:00
Shané Winner
5bf4b0bafe Delete crime.dprep 2019-07-28 00:35:11 -07:00
Shané Winner
f22adb7949 Delete crime-winter.csv 2019-07-28 00:35:00 -07:00
Shané Winner
8409ab7133 Delete crime-spring.csv 2019-07-28 00:34:50 -07:00
Shané Winner
32acd55774 Delete crime-full.csv 2019-07-28 00:34:39 -07:00
Shané Winner
7f65c1a255 Delete crime-dirty.csv 2019-07-28 00:34:27 -07:00
Shané Winner
bc7ccc7ef3 Delete chicago-aldermen-2015.csv 2019-07-28 00:34:17 -07:00
Shané Winner
1cc79a71e9 Delete adls-dpreptestfiles.crt 2019-07-28 00:34:05 -07:00
Shané Winner
c0bec5f110 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:51 -07:00
Shané Winner
77e5664482 Delete part-00000-34f8a7a7-c3cd-4926-92b2-ba2dcd3f95b7.gz.parquet 2019-07-28 00:33:38 -07:00
Shané Winner
e2eb64372a Delete part-00007-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:23 -07:00
Shané Winner
03cbb6a3a2 Delete part-00006-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:12 -07:00
Shané Winner
44d3d998a8 Delete part-00005-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:33:00 -07:00
Shané Winner
c626f37057 Delete part-00004-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:48 -07:00
Shané Winner
0175574864 Delete part-00003-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:37 -07:00
Shané Winner
f6e8d57da3 Delete part-00002-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:25 -07:00
Shané Winner
01cd31ce44 Delete part-00001-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:13 -07:00
Shané Winner
eb2024b3e0 Delete part-00000-0b08e77b-f17a-4c20-972c-aa382e830fca-c000.csv 2019-07-28 00:32:01 -07:00
Shané Winner
6bce41b3d7 Delete _SUCCESS 2019-07-28 00:31:49 -07:00
Shané Winner
bbdabbb552 Delete writing-data.ipynb 2019-07-28 00:31:32 -07:00
Shané Winner
65343fc263 Delete working-with-file-streams.ipynb 2019-07-28 00:31:22 -07:00
Shané Winner
b6b27fded6 Delete summarize.ipynb 2019-07-28 00:26:56 -07:00
Shané Winner
7e492cbeb6 Delete subsetting-sampling.ipynb 2019-07-28 00:26:41 -07:00
Shané Winner
4cc8f4c6af Delete split-column-by-example.ipynb 2019-07-28 00:26:25 -07:00
Shané Winner
9fba46821b Delete semantic-types.ipynb 2019-07-28 00:26:11 -07:00
Shané Winner
a45954a58f Delete secrets.ipynb 2019-07-28 00:25:58 -07:00
Shané Winner
f16dfb0e5b Delete replace-fill-error.ipynb 2019-07-28 00:25:45 -07:00
Shané Winner
edabbf9031 Delete replace-datasource-replace-reference.ipynb 2019-07-28 00:25:32 -07:00
Shané Winner
63d1d57dfb Delete random-split.ipynb 2019-07-28 00:25:21 -07:00
Shané Winner
10f7004161 Delete quantile-transformation.ipynb 2019-07-28 00:25:10 -07:00
Shané Winner
86ba4e7406 Delete open-save-dataflows.ipynb 2019-07-28 00:24:54 -07:00
Shané Winner
33bda032b8 Delete one-hot-encoder.ipynb 2019-07-28 00:24:43 -07:00
Shané Winner
0fd4bfbc56 Delete min-max-scaler.ipynb 2019-07-28 00:24:32 -07:00
Shané Winner
3fe08c944e Delete label-encoder.ipynb 2019-07-28 00:24:21 -07:00
Shané Winner
d587ea5676 Delete join.ipynb 2019-07-28 00:24:08 -07:00
Shané Winner
edd8562102 Delete impute-missing-values.ipynb 2019-07-28 00:23:55 -07:00
Shané Winner
5ac2c63336 Delete fuzzy-group.ipynb 2019-07-28 00:23:41 -07:00
Shané Winner
1f4e4cdda2 Delete filtering.ipynb 2019-07-28 00:23:28 -07:00
Shané Winner
2e245c1691 Delete external-references.ipynb 2019-07-28 00:23:11 -07:00
Shané Winner
e1b09f71fa Delete derive-column-by-example.ipynb 2019-07-28 00:22:54 -07:00
Shané Winner
8e2220d397 Delete datastore.ipynb 2019-07-28 00:22:43 -07:00
Shané Winner
f74ccf5048 Delete data-profile.ipynb 2019-07-28 00:22:32 -07:00
Shané Winner
97a6d9ca43 Delete data-ingestion.ipynb 2019-07-28 00:22:21 -07:00
Shané Winner
a0ff1c6b64 Delete custom-python-transforms.ipynb 2019-07-28 00:22:11 -07:00
Shané Winner
08f15ef4cf Delete column-type-transforms.ipynb 2019-07-28 00:21:58 -07:00
Shané Winner
7160416c0b Delete column-manipulations.ipynb 2019-07-28 00:21:47 -07:00
Shané Winner
218fed3d65 Delete cache.ipynb 2019-07-28 00:21:35 -07:00
Shané Winner
b8499dfb98 Delete auto-read-file.ipynb 2019-07-28 00:21:22 -07:00
Shané Winner
6bfd472cc2 Delete assertions.ipynb 2019-07-28 00:20:55 -07:00
Shané Winner
ecefb229e9 Delete append-columns-and-rows.ipynb 2019-07-28 00:20:40 -07:00
Shané Winner
883ad806ba Delete add-column-using-expression.ipynb 2019-07-28 00:20:22 -07:00
Shané Winner
848b5bc302 Delete getting-started.ipynb 2019-07-28 00:19:59 -07:00
Shané Winner
58087b53a0 Delete README.md 2019-07-28 00:19:45 -07:00
Shané Winner
ff4d5450a7 Delete README.md 2019-07-28 00:19:29 -07:00
Shané Winner
e2b2b89842 Delete datasets-tutorial.ipynb 2019-07-28 00:19:13 -07:00
Shané Winner
390be2ba24 Delete train.py 2019-07-28 00:19:00 -07:00
Shané Winner
cd1258f81d Delete Titanic.csv 2019-07-28 00:18:41 -07:00
Shané Winner
8a0b48ea48 Delete README.md 2019-07-28 00:18:14 -07:00
Roope Astala
b0dc904189 Merge pull request #502 from msdavx/patch-1
Add demo notebook for datasets diff attribute.
2019-07-26 19:16:13 -04:00
msdavx
82bede239a Add demo notebook for datasets diff attribute. 2019-07-26 11:10:37 -07:00
vizhur
774517e173 Merge pull request #500 from Azure/release_update/Release-137
update samples from Release-137 as a part of 1.0.53 SDK release
2019-07-25 16:36:25 -04:00
Shané Winner
c3ce2bc7fe Delete README.md 2019-07-25 13:28:15 -07:00
Shané Winner
5dd09a1f7c Delete README.md 2019-07-25 13:28:01 -07:00
vizhur
ee1da0ee19 update samples from Release-137 as a part of 1.0.53 SDK release 2019-07-24 22:37:36 +00:00
Paula Ledgerwood
ddfce6b24c Merge pull request #498 from Azure/revert-461-master
Revert "Finetune SSD VGG"
2019-07-24 14:25:43 -07:00
Paula Ledgerwood
31dfc3dc55 Revert "Finetune SSD VGG" 2019-07-24 14:08:00 -07:00
Paula Ledgerwood
168c45b188 Merge pull request #461 from borisneal/master
Finetune SSD VGG
2019-07-24 14:07:15 -07:00
fierval
159948db67 moving notice.txt 2019-07-24 08:50:41 -07:00
fierval
d842731a3b remove tf prereq item 2019-07-23 14:58:51 -07:00
fierval
7822fd4c13 notice + attribution for anchors 2019-07-23 14:49:20 -07:00
fierval
d9fbe4cd87 new folder structure 2019-07-22 10:31:22 -07:00
Shané Winner
a64f4d331a Merge pull request #488 from trevorbye/master
adding new notebook
2019-07-18 10:40:36 -07:00
Trevor Bye
c41f449208 adding new notebook 2019-07-18 10:27:21 -07:00
vizhur
4fe8c1702d Merge pull request #486 from Azure/release_update/Release-22
Fix for automl remote env
2019-07-12 19:18:13 -04:00
vizhur
18cd152591 update samples - test 2019-07-12 22:51:17 +00:00
vizhur
4170a394ed Merge pull request #474 from Azure/release_update/Release-132
update samples from Release-132 as a part of 1.0.48 SDK release
2019-07-09 19:14:29 -04:00
vizhur
475ea36106 update samples from Release-132 as a part of 1.0.48 SDK release 2019-07-09 22:02:57 +00:00
Roope Astala
9e0fc4f0e7 Merge pull request #459 from datashinobi/yassine/datadrift2
fix link to config nb & settingwithcopywarning
2019-07-03 12:41:31 -04:00
fierval
b025816c92 remove config.json 2019-07-02 17:32:56 -07:00
fierval
c75e820107 ssd vgg 2019-07-02 17:23:56 -07:00
Yassine Khelifi
e97e4742ba fix link to config nb & settingwithcopywarning 2019-07-02 16:56:21 +00:00
Roope Astala
14ecfb0bf3 Merge pull request #448 from jeff-shepherd/master
Update new notebooks to use dataprep and add sql files
2019-06-27 09:07:47 -04:00
Jeff Shepherd
61b396be4f Added sql files 2019-06-26 14:26:01 -07:00
Jeff Shepherd
3d2552174d Updated notebooks to use dataprep 2019-06-26 14:23:20 -07:00
Roope Astala
cd3c980a6e Merge pull request #447 from Azure/release-1.0.45
Merged notebook changes from release 1.0.45
2019-06-26 16:32:09 -04:00
Heather Shapiro
249bcac3c7 Merged notebook changes from release 1.0.45 2019-06-26 14:39:09 -04:00
Roope Astala
4a6bcebccc Update configuration.ipynb 2019-06-21 09:35:13 -04:00
Roope Astala
56e0ebc5ac Merge pull request #438 from rastala/master
add pipeline scripts
2019-06-19 18:56:42 -04:00
rastala
2aa39f2f4a add pipeline scripts 2019-06-19 18:55:32 -04:00
Roope Astala
4d247c1877 Merge pull request #437 from rastala/master
pytorch with mlflow
2019-06-19 17:23:06 -04:00
rastala
f6682f6f6d pytorch with mlflow 2019-06-19 17:21:52 -04:00
Roope Astala
26ecf25233 Merge pull request #436 from rastala/master
Update readme
2019-06-19 11:52:23 -04:00
Roope Astala
44c3a486c0 update readme 2019-06-19 11:49:49 -04:00
Roope Astala
c574f429b8 update readme 2019-06-19 11:48:52 -04:00
Roope Astala
77d557a5dc Merge pull request #435 from ganzhi/jamgan/drift
Add demo notebook for AML Data Drift
2019-06-17 16:39:46 -04:00
James Gan
13dedec4a4 Make it in same folder as internal repo 2019-06-17 13:38:27 -07:00
James Gan
6f5c52676f Add notebook to demo data drift 2019-06-17 13:33:30 -07:00
James Gan
90c105537c Add demo notebook for AML Data Drift 2019-06-17 13:31:08 -07:00
Roope Astala
ef264b1073 Merge pull request #434 from rastala/master
update pytorch
2019-06-17 11:57:29 -04:00
Roope Astala
824ac5e021 update pytorch 2019-06-17 11:56:42 -04:00
Roope Astala
e9a7b95716 Merge pull request #421 from csteegz/csteegz-add-warning
Add warning for using prediction client on azure notebooks
2019-06-13 20:27:34 -04:00
Roope Astala
789ee26357 Merge pull request #431 from jeff-shepherd/master
Fixed path for auto-ml-remote-amlcompute notebook
2019-06-13 16:56:25 -04:00
Jeff Shepherd
fc541706e7 Fixed path for auto-ml-remote-amlcompute 2019-06-13 13:12:32 -07:00
Roope Astala
64b8aa2a55 Merge pull request #429 from jeff-shepherd/master
Removed deprecated notebooks from readme
2019-06-13 14:40:57 -04:00
Jeff Shepherd
d3dc35dbb6 Removed deprecated notebooks from readme 2019-06-13 11:03:25 -07:00
Roope Astala
b55ac368e7 Merge pull request #428 from rastala/master
update cluster creation
2019-06-13 12:16:30 -04:00
Roope Astala
de162316d7 update cluster creation 2019-06-13 12:14:58 -04:00
Roope Astala
4ecc58dfe2 Merge pull request #427 from rastala/master
dockerfile
2019-06-12 10:24:34 -04:00
Roope Astala
daf27a76e4 dockerfile 2019-06-12 10:23:34 -04:00
Roope Astala
a05444845b Merge pull request #426 from rastala/master
version 1.0.43
2019-06-12 10:09:08 -04:00
Roope Astala
79c9f50c15 version 1.0.43 2019-06-12 10:08:35 -04:00
Roope Astala
67e10e0f6b Merge pull request #417 from lan-tang/patch-1
Create readme.md in data-drift
2019-06-11 13:47:55 -04:00
Roope Astala
1ef0331a0f Merge pull request #423 from rastala/master
add sklearn estimator
2019-06-11 11:30:37 -04:00
Roope Astala
5e91c836b9 add sklearn estimator 2019-06-11 11:29:56 -04:00
Colin Versteeg
661762854a add warning to training 2019-06-10 16:51:33 -07:00
Colin Versteeg
fbc90ba74f add to quickstart 2019-06-10 16:50:59 -07:00
Colin Versteeg
0d9c83d0a8 Update accelerated-models-object-detection.ipynb 2019-06-10 16:48:17 -07:00
Colin Versteeg
ca4cab1de9 Merge pull request #1 from Azure/master
pull from master
2019-06-10 16:45:12 -07:00
Roope Astala
ddbb3c45f6 Merge pull request #420 from rastala/master
mlflow integration preview
2019-06-10 15:12:36 -04:00
rastala
8eed4e39d0 mlflow integration preview 2019-06-10 15:10:57 -04:00
Lan Tang
b37c0297db Create readme.md 2019-06-07 12:32:32 -07:00
Roope Astala
968cc798d0 Update README.md 2019-06-05 12:15:33 -04:00
Roope Astala
5c9ca452fb Create README.md 2019-06-05 12:15:19 -04:00
Shané Winner
5e82680272 Update README.md 2019-05-31 10:58:39 -07:00
Roope Astala
41841fc8c0 Update README.md 2019-05-31 13:00:41 -04:00
Roope Astala
896bf63736 Merge pull request #397 from rastala/master
dockerfile
2019-05-29 11:05:18 -04:00
Roope Astala
d4751bf6ec dockerfile 2019-05-29 11:04:19 -04:00
Roope Astala
3531fe8a21 Merge pull request #396 from rastala/master
version 1.0.41
2019-05-29 11:01:15 -04:00
Roope Astala
db6ae67940 version 1.0.41 2019-05-29 10:59:59 -04:00
Shané Winner
2a479bb01e Merge pull request #395 from imatiach-msft/ilmat/fix-typo
fix typo
2019-05-28 14:02:33 -07:00
Ilya Matiach
d05eec92af fix typo 2019-05-28 16:59:59 -04:00
Josée Martens
70fdab0a28 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:45:04 -05:00
Josée Martens
7ce5a43b58 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:44:35 -05:00
Josée Martens
d2a9dbb582 Update auto-ml-classification-with-deployment.ipynb 2019-05-24 13:43:38 -05:00
Roope Astala
a5d774683d Merge pull request #390 from rastala/master
fix default cluster creation in config notebook
2019-05-23 12:30:09 -04:00
Roope Astala
0e850f0917 fix default cluster creation in config notebook 2019-05-23 12:27:53 -04:00
Shané Winner
59f34b7179 Delete configtest.ipynb 2019-05-22 10:47:50 -07:00
Shané Winner
2a3cb69004 Create configtest.ipynb 2019-05-22 10:41:16 -07:00
Shané Winner
42894ff81a Delete LICENSE.txt 2019-05-22 10:22:05 -07:00
Shané Winner
2163cab50b Delete LICENSE.txt 2019-05-22 10:21:42 -07:00
Shané Winner
255edb04c0 Rename LICENSE.txt to LICENSE 2019-05-22 10:13:08 -07:00
Shané Winner
cfce079278 Rename LICENSES to LICENSE.txt 2019-05-22 10:06:31 -07:00
Shané Winner
ae6f067c81 Deleted index.html
cleaning up root directory
2019-05-22 10:04:23 -07:00
Shané Winner
1b7ff724f3 Deleted pr.md
Contents of this file moved to the README in the root directory.
2019-05-22 10:03:40 -07:00
Shané Winner
8bba850db1 moved the content in the pr.md file
moved the content in the pr.md file to under 'Projects using Azure Machine Learning'
2019-05-21 07:51:28 -07:00
Shané Winner
b9e35ea0cb Create LICENSE 2019-05-21 07:44:10 -07:00
Shané Winner
ffa28aa89c Delete sdk 2019-05-21 07:43:06 -07:00
Shané Winner
6ab85a20e3 Create LICENSES 2019-05-21 07:42:07 -07:00
Shané Winner
486c44d157 Create sdk 2019-05-21 07:39:43 -07:00
Shané Winner
cd80040dd8 Delete Licenses 2019-05-21 07:39:03 -07:00
Shané Winner
465a5b13b1 Create Licenses 2019-05-21 07:38:52 -07:00
Shané Winner
dcd2d58880 Added notice on the data/telemetry 2019-05-20 14:44:43 -07:00
Roope Astala
93bf4393f2 Merge pull request #381 from jeff-shepherd/master
Revert change to default amlcompute cluster
2019-05-16 15:35:43 -04:00
Jeff Shepherd
d6ebb484a6 Revert change to default amlcomputecluster to support existing resource
groups
2019-05-16 12:27:23 -07:00
Roope Astala
35afd43193 Merge pull request #372 from rogerhe/master
adding macOS specific yml. Install nomkl to workaround openmp issue
2019-05-14 19:07:42 -04:00
Roope Astala
2d68535de2 Merge pull request #376 from rastala/master
version 1.0.39
2019-05-14 16:04:09 -04:00
Roope Astala
0d448892a3 version check 2019-05-14 16:03:39 -04:00
Roope Astala
2d41c00488 version 1.0.39 2019-05-14 16:01:14 -04:00
Roger He
22597ac684 adding macOS specific yml. Install nomkl to workaround openmp issue 2019-05-09 16:51:51 -07:00
Josée Martens
8b1bffc200 Update README.md 2019-05-08 12:36:49 -05:00
Josée Martens
a240ac319f Update README.md 2019-05-08 12:27:57 -05:00
Josée Martens
83cfe3b9b3 Update README.md 2019-05-08 12:25:41 -05:00
Paula Ledgerwood
dcce6f227f Merge pull request #360 from Azure/paledger/update-readme
Update readme/cluster location from PM's instructions
2019-05-06 10:08:22 -07:00
Paula Ledgerwood
5328186d68 Update python kernel version 2019-05-06 09:45:20 -07:00
Paula Ledgerwood
7ccaa2cf57 Update readme from PM's instructions 2019-05-06 09:41:54 -07:00
Shané Winner
56b0664b6b Update img-classification-part1-training.ipynb 2019-05-05 17:47:31 -07:00
Shané Winner
4c1167edc4 Update img-classification-part1-training.ipynb 2019-05-05 17:45:48 -07:00
Shané Winner
eb643fe213 Update README.md 2019-05-05 17:26:29 -07:00
Shané Winner
5faa9d293c Update README.md 2019-05-05 15:34:27 -07:00
Shané Winner
32e2b5f647 Update train-hyperparameter-tune-deploy-with-tensorflow.ipynb 2019-05-05 15:32:19 -07:00
Shané Winner
ae25654882 Update train-hyperparameter-tune-deploy-with-pytorch.ipynb 2019-05-05 15:29:42 -07:00
Shané Winner
0ca05093bd Update train-hyperparameter-tune-deploy-with-keras.ipynb 2019-05-05 15:28:16 -07:00
Shané Winner
5e39582de3 Update train-hyperparameter-tune-deploy-with-chainer.ipynb 2019-05-05 15:24:14 -07:00
Shané Winner
6b6a6da9dc Update tensorboard.ipynb 2019-05-05 15:22:28 -07:00
Shané Winner
cba2c6b9e2 Update how-to-use-estimator.ipynb 2019-05-05 15:20:50 -07:00
Shané Winner
58557abd20 Update export-run-history-to-tensorboard.ipynb 2019-05-05 15:18:48 -07:00
Shané Winner
59452a3141 Update distributed-tensorflow-with-parameter-server.ipynb 2019-05-05 15:17:15 -07:00
Shané Winner
463718e26b Update distributed-tensorflow-with-horovod.ipynb 2019-05-05 15:15:13 -07:00
Shané Winner
9ea0ba5131 Update distributed-pytorch-with-horovod.ipynb 2019-05-05 15:13:28 -07:00
Shané Winner
2804a8d859 Update distributed-cntk-with-custom-docker.ipynb 2019-05-05 15:11:51 -07:00
Shané Winner
4761b668ff Update distributed-chainer.ipynb 2019-05-05 15:09:28 -07:00
Shané Winner
c4163017c2 Update using-environments.ipynb 2019-05-05 00:11:40 -07:00
Shané Winner
71e8e9bd23 Update train-within-notebook.ipynb 2019-05-05 00:09:26 -07:00
Shané Winner
6ff06dd137 Update train-on-remote-vm.ipynb 2019-05-05 00:06:23 -07:00
Shané Winner
73db8ae04d Update train-on-local.ipynb 2019-05-04 23:52:01 -07:00
Shané Winner
3637dce58a Update train-on-amlcompute.ipynb 2019-05-04 23:48:16 -07:00
Shané Winner
23771fc599 added tracking pixel and edited config text 2019-05-04 21:08:10 -07:00
Shané Winner
5f04a467b7 added tracking pixel 2019-05-04 21:03:08 -07:00
Shané Winner
532f65c998 added tracking pixel and edited config text 2019-05-04 20:59:50 -07:00
Shané Winner
f36dda0c2d added tracking pixel and edited the config text 2019-05-04 20:54:32 -07:00
Shané Winner
c7b56929bc added tracking pixel and edited config text 2019-05-04 20:50:57 -07:00
Shané Winner
5f19d75a42 added tracking pixel and edited the config text 2019-05-04 20:48:04 -07:00
Shané Winner
a1968aafa2 updated config text and added tracking pixel 2019-05-04 20:43:54 -07:00
Shané Winner
6b82991017 edited config text and added tracking pixel 2019-05-04 20:40:23 -07:00
Shané Winner
725013511e added tracking pixel 2019-05-04 20:34:58 -07:00
Shané Winner
6a20160173 added tracking pixel 2019-05-04 20:02:01 -07:00
Shané Winner
137db8aec0 added tracking pixel 2019-05-04 19:49:50 -07:00
Shané Winner
b7b10c394b added tracking pixel 2019-05-04 19:47:28 -07:00
Shané Winner
46206716a4 added tracking pixel 2019-05-04 19:44:23 -07:00
Shané Winner
92bb98ac62 added tracking pixel 2019-05-04 19:41:33 -07:00
Shané Winner
b398c24262 added tracking pixel 2019-05-04 19:38:28 -07:00
Shané Winner
e0618302e3 added tracking pixel 2019-05-04 19:35:57 -07:00
Shané Winner
b6cddafa3e edited config text and added the pixel tracker 2019-05-04 19:31:59 -07:00
Shané Winner
4188bd2474 updated the config text and added the tracking pixel 2019-05-04 19:25:26 -07:00
Shané Winner
69126edfcb update config text and added tracking pixel 2019-05-04 19:20:46 -07:00
Shané Winner
4e14c35b9b added pixel tracker 2019-05-04 16:31:07 -07:00
Shané Winner
1608c19aa6 updated tracking pixel and and config text 2019-05-04 15:12:53 -07:00
Shané Winner
46b8611b74 tracking pixel and edited config text 2019-05-04 15:08:57 -07:00
Shané Winner
fbb01bde70 update the config text and added pixel tracker server 2019-05-04 15:01:35 -07:00
Shané Winner
cefe2f0811 updated the config text and added the tracking pixel 2019-05-04 14:58:45 -07:00
Shané Winner
42e0a31f88 updated the config text and the tracking pixel 2019-05-04 14:54:37 -07:00
Shané Winner
8b0998ac9f updated the config text and the tracking pixel 2019-05-04 14:49:29 -07:00
Shané Winner
046c6051fb updated config text and added tracking pixel 2019-05-04 14:38:39 -07:00
Shané Winner
bdb7db15ef updated tracking pixel and the config text 2019-05-04 14:35:28 -07:00
Shané Winner
b13139f103 update the config text and the tracking pixel 2019-05-04 14:31:25 -07:00
Shané Winner
8adb206ae3 updated config text and pixel tracker 2019-05-04 13:56:09 -07:00
Shané Winner
484b6bbb7a updated the config text and pixel server 2019-05-04 13:51:12 -07:00
Shané Winner
55ef0bda6a updated config text 2019-05-04 13:46:43 -07:00
Shané Winner
1401cdef33 updated config text 2019-05-04 13:41:34 -07:00
Shané Winner
5d02206cbd updated with tracking pixel 2019-05-04 13:34:11 -07:00
Shané Winner
c24b65d4ae updated with tracking pixel 2019-05-04 13:32:14 -07:00
Shané Winner
57c5ef318f updated with pixel tracker 2019-05-04 13:25:11 -07:00
Shané Winner
ba033d72f8 Update train-in-spark.ipynb 2019-05-04 09:33:07 -07:00
Shané Winner
aa657ac528 Update manage-runs.ipynb 2019-05-04 09:29:00 -07:00
Shané Winner
7d8289679d added the tracking pixel and the edited the config text 2019-05-04 08:40:18 -07:00
Shané Winner
a7c3db0560 Update model-register-and-deploy.ipynb 2019-05-03 23:21:58 -07:00
Shané Winner
e548847881 pixel text and config text update 2019-05-03 23:20:57 -07:00
Shané Winner
08c6b1f4ed tracking pixel test 2019-05-03 23:15:28 -07:00
Shané Winner
78abb65f5e updated configuration text 2019-05-03 23:08:55 -07:00
Shané Winner
3c6c090732 Update README.md 2019-05-03 22:54:31 -07:00
Shané Winner
513e36d9b2 updated the config verbiage and tracking pixel 2019-05-03 22:54:02 -07:00
Ilya Matiach
9db91a7fb8 Merge pull request #351 from imatiach-msft/ilmat/update-raw-features-notebook
Update raw features explanation notebook
2019-05-03 12:47:28 -04:00
Roope Astala
d9b26b655b Merge pull request #356 from rastala/master
how to use environments
2019-05-03 10:27:33 -04:00
Roope Astala
cb8dc41766 how to use environments 2019-05-03 10:25:39 -04:00
Ilya Matiach
9c9b4bb122 Update raw features explanation notebook 2019-05-02 14:29:53 -04:00
Roope Astala
f5c896c70f Merge pull request #345 from csteegz/add-gpu-deploy
Create production-deploy-to-aks-gpu.ipynb
2019-05-02 14:13:50 -04:00
Colleen Forbes
3b572eddb2 Merge pull request #350 from MayMSFT/master
add dataset tutorial
2019-05-02 09:33:25 -07:00
May Hu
51523db294 add dataset tutorial 2019-05-02 09:07:11 -07:00
Ilya Matiach
3b4998941c Merge pull request #348 from imatiach-msft/ilmat/update-explain-model-nb
updating model explanation notebooks
2019-04-30 17:27:44 -04:00
Ilya Matiach
6cdbfb8722 updating model explanation notebooks 2019-04-30 17:12:54 -04:00
Colin Versteeg
c086bd69c7 Create production-deploy-to-aks-gpu.ipynb
Add deploy to aks GPU notebook
2019-04-29 16:26:42 -07:00
Shané Winner
279c9b8dc4 Pixel Tracker 2019-04-29 11:27:03 -07:00
Shané Winner
98589fe335 Testing Pixel Tracker 2019-04-29 11:16:08 -07:00
Shané Winner
77f21058a2 Testing Pixel Tracker 2019-04-29 11:04:05 -07:00
Roope Astala
baa65d0886 Merge pull request #343 from Azure/paledger/add-accel-models
Initial commit to add AccelModels notebooks from AzureMlCli repo
2019-04-29 13:56:06 -04:00
Paula Ledgerwood
0fffa11b2a Update links and code formatting 2019-04-29 10:20:55 -07:00
Paula Ledgerwood
20ec225343 Initial commit to add notebooks from AzureMlCli repo 2019-04-26 11:16:33 -07:00
Roope Astala
845e9d653e Merge pull request #342 from rastala/master
dockerfile 1.0.33
2019-04-26 14:01:55 -04:00
Roope Astala
639ef81636 dockerfile 1.0.33 2019-04-26 13:57:46 -04:00
Roope Astala
60158bf41a Merge pull request #341 from rastala/master
version 1.0.33
2019-04-26 13:45:47 -04:00
Roope Astala
8dbbb01b8a version 1.0.33 2019-04-26 13:44:15 -04:00
Roope Astala
6e6b2b0c48 Merge pull request #340 from rastala/master
add readme
2019-04-26 09:41:49 -04:00
Roope Astala
85f5721bf8 add readme 2019-04-26 09:40:24 -04:00
Shané Winner
6a7dd741e7 Pixel server added 2019-04-23 13:48:23 -07:00
Shané Winner
314218fc89 Added pixel server 2019-04-23 13:47:06 -07:00
Shané Winner
b50d2725c7 Added pixel server 2019-04-23 13:46:06 -07:00
Shané Winner
9a2f448792 Added pixel server 2019-04-23 13:45:05 -07:00
Shané Winner
dd620f19fd Pixel server added 2019-04-23 13:43:41 -07:00
Shané Winner
8116d31da4 Pixel Server added 2019-04-23 13:40:26 -07:00
Shané Winner
ef29dc1fa5 Added Pixel Server 2019-04-23 13:39:18 -07:00
Shané Winner
97b345cb33 Implemented Pixel Server 2019-04-23 13:37:41 -07:00
Shané Winner
282250e670 Implementing Pixel Server 2019-04-23 13:36:24 -07:00
Shané Winner
acef60c5b3 Testing pixel web app 2019-04-23 13:15:04 -07:00
Shané Winner
bfb444eb15 Testing Pixel Tracker 2019-04-23 13:07:48 -07:00
Shané Winner
6277659bf2 Testing Pixel Server 2019-04-23 11:48:55 -07:00
Shané Winner
1645e12712 Testing Tracking Pixel 2019-04-23 11:15:53 -07:00
Roope Astala
cc4a32e70b Merge pull request #337 from jeff-shepherd/master
Updated automl_setup scripts
2019-04-23 13:50:09 -04:00
Jeff Shepherd
997a35aed5 Updated automl_setup scripts 2019-04-23 10:40:33 -07:00
Roope Astala
dd6317a4a0 Merge pull request #336 from rastala/master
adding work-with-data
2019-04-23 10:05:08 -04:00
Roope Astala
82d8353d54 adding work-with-data 2019-04-23 10:04:32 -04:00
Shané Winner
59a01c17a0 Testing the pixel tracker 2019-04-22 14:45:09 -07:00
Shané Winner
e31e1d9af3 Implemented a test pixel tracker 2019-04-22 14:41:32 -07:00
Roope Astala
d38b9db255 Merge pull request #334 from rastala/master
docker update
2019-04-22 15:43:28 -04:00
Roope Astala
761ad88c93 docker update 2019-04-22 15:43:02 -04:00
Roope Astala
644729e5db Merge pull request #333 from rastala/master
version 1.0.30
2019-04-22 15:40:11 -04:00
Roope Astala
e2b1b3fcaa version 1.0.30 2019-04-22 15:39:18 -04:00
Roope Astala
dc692589a9 Merge pull request #326 from rastala/master
update aks notebook
2019-04-18 16:19:51 -04:00
Roope Astala
624b4595b5 update aks notebook 2019-04-18 16:18:33 -04:00
Roope Astala
0ed85c33c2 Delete release.json 2019-04-18 10:01:50 -04:00
Roope Astala
5b01de605f Merge pull request #318 from savitamittal1/hdinotebook
Sample HDI notebook
2019-04-18 10:01:26 -04:00
Savitam
c351ac988a Sample HDI notebook
sample HDI notebook
2019-04-15 12:35:34 -07:00
Josée Martens
759ec3934c Delete yt_cover.png 2019-04-15 12:06:25 -05:00
Josée Martens
b499b88a85 Delete python36.png 2019-04-15 12:06:16 -05:00
Josée Martens
5f4edac3c1 Update NBSETUP.md 2019-04-15 12:00:31 -05:00
Josée Martens
edfce0d936 Update README.md 2019-04-12 17:28:16 -05:00
Josée Martens
1516c7fc24 Update README.md
testing for search
2019-04-12 17:19:55 -05:00
Roope Astala
389fb668ce Add files via upload 2019-04-10 11:12:55 -04:00
Josée Martens
647d5e72a5 Merge pull request #307 from Azure/vizhur-patch-2
Create googled8147fb6c0788258.html
2019-04-09 15:21:51 -05:00
vizhur
43ac4c84bb Create googled8147fb6c0788258.html 2019-04-09 16:19:47 -04:00
Roope Astala
8a1a82b50a Merge pull request #303 from rastala/master
dockerfile and missing config update
2019-04-08 15:38:13 -04:00
Roope Astala
72f386298c dockerfile and missing config update 2019-04-08 15:37:48 -04:00
Roope Astala
41d697e298 Merge pull request #302 from rastala/master
version 1.0.23
2019-04-08 15:35:50 -04:00
Roope Astala
c3ce932029 version 1.0.23 2019-04-08 15:34:51 -04:00
Roope Astala
a956162114 Merge pull request #290 from rastala/master
update aks deployment notebook
2019-04-03 10:53:51 -04:00
Roope Astala
cb5a178e40 Merge branch 'master' of github.com:rastala/MachineLearningNotebooks 2019-04-03 10:52:40 -04:00
Roope Astala
d81c336c59 update production deploy to aks 2019-04-03 10:52:15 -04:00
Roope Astala
4244a24d81 Merge pull request #287 from jeff-shepherd/master
Fixed line termination on automl_setup_linux.sh
2019-04-03 09:21:35 -04:00
Jeff Shepherd
3b488555e5 Added back automl_setup_linux.sh with correct line termination 2019-04-02 16:24:05 -07:00
Jeff Shepherd
6abc478f33 Removed automl_setup_linux.sh 2019-04-02 16:23:11 -07:00
Roope Astala
666c2579eb Merge pull request #285 from jeff-shepherd/master
Corrected line termination for automl_setup_mac.sh
2019-04-02 09:19:53 -04:00
Jeff Shepherd
5af3aa4231 Fixed line termination 2019-04-01 16:19:00 -07:00
Jeff Shepherd
e48d828ab0 Removed automl_setup_mac.sh 2019-04-01 16:17:56 -07:00
Jeff Shepherd
44aa636c21 Merge branch 'master' of https://github.com/Azure/MachineLearningNotebooks 2019-04-01 16:07:11 -07:00
Jeff Shepherd
4678f9adc3 Merge branch 'master' of https://github.com/jeff-shepherd/MachineLearningNotebooks 2019-04-01 16:04:46 -07:00
Jeff Shepherd
5bf85edade Added automl_setup_mac.sh with correct line termination 2019-04-01 16:03:39 -07:00
Jeff Shepherd
94f381e884 Removed automl_setup_mac.sh 2019-04-01 16:02:53 -07:00
Roope Astala
ea1b7599c3 Merge pull request #267 from rastala/master
add automl files
2019-03-25 19:26:07 -04:00
Roope Astala
6b8a6befde add automl files 2019-03-25 19:25:38 -04:00
Roope Astala
c1511b7b74 Merge pull request #266 from rastala/master
1.0.21 dockerfile
2019-03-25 15:10:05 -04:00
Roope Astala
8f007a3333 1.0.21 dockerfile 2019-03-25 15:09:39 -04:00
Roope Astala
5ad3ca00e8 Merge pull request #265 from rastala/master
version 1.0.21
2019-03-25 15:07:09 -04:00
Roope Astala
556a41e223 version 1.0.21 2019-03-25 15:06:08 -04:00
Roope Astala
407b8929d0 Merge pull request #259 from jeff-shepherd/master
Added example of printing model hyperparameters
2019-03-19 09:40:25 -04:00
Jeff Shepherd
18a11bbd8d Added model printing example 2019-03-18 16:31:48 -07:00
Roope Astala
8b439a9f7c Merge pull request #256 from rastala/master
update RAPIDS 2
2019-03-18 12:09:33 -04:00
rastala
75c393a221 update RAPIDS 2 2019-03-18 12:08:10 -04:00
Roope Astala
be7176fe06 Merge pull request #255 from rastala/master
update RAPIDS sample
2019-03-18 11:42:51 -04:00
rastala
7b41675355 update RAPIDS sample 2019-03-18 11:40:43 -04:00
Jeff Shepherd
fa7685f6fa Added example of printing model hyperparameters 2019-03-15 13:18:17 -07:00
Roope Astala
6b444b1467 Merge pull request #248 from rastala/master
dockerfile 1.0.18
2019-03-11 15:33:07 -04:00
Roope Astala
c9767473ae dockerfile 1.0.18 2019-03-11 15:32:30 -04:00
Roope Astala
648b48fc0c Merge pull request #247 from rastala/master
version 1.0.18
2019-03-11 15:23:44 -04:00
Roope Astala
04db5d93e2 version 1.0.18 2019-03-11 15:22:38 -04:00
Roope Astala
4e10935701 version 1.0.18 2019-03-11 15:21:35 -04:00
Roope Astala
f737db499d Delete googleade5d7141b3f2910.html 2019-03-05 17:01:36 -05:00
Roope Astala
6b66da1558 Merge pull request #238 from rastala/master
fix link in configuration notebook
2019-03-05 17:00:31 -05:00
Roope Astala
8647aea9d9 fix link in configuration notebook 2019-03-05 16:59:38 -05:00
Roope Astala
3ee2dc3258 Merge pull request #233 from jeff-shepherd/master
Setup updated to fix remote run
2019-02-26 15:34:15 -05:00
Jeff Shepherd
9f7c4ce668 Setup updated to fix remote run 2019-02-26 11:59:20 -08:00
hning86
036ca6ac75 dockerfile 1.0.17 2019-02-26 10:57:07 -05:00
Roope Astala
0b8817ee1c Merge pull request #229 from rastala/master
version 1.0.17
2019-02-25 16:12:51 -05:00
Roope Astala
b7b5576b15 version 1.0.17 2019-02-25 16:12:02 -05:00
Hai Ning
c082b72b71 Update pr.md 2019-02-23 21:55:59 -05:00
Hai Ning
673e76d431 Merge pull request #186 from gison93/master
Fix typos
2019-02-20 23:18:15 -05:00
Hai Ning
c518a04a19 Merge pull request #203 from davidefiocco/patch-1
Typo fix
2019-02-20 23:17:14 -05:00
Hai Ning
2f34888716 Update README.md 2019-02-20 07:52:14 -05:00
Roope Astala
6ca0088991 Merge pull request #218 from jeff-shepherd/master
Fixed broken links to configuration notebook
2019-02-15 14:47:49 -05:00
Jeff Shepherd
40e3856786 Removed subsampling reference, which is not published yet 2019-02-15 11:35:45 -08:00
Jeff Shepherd
ddd025e83e Fixed links to configuration notebook. 2019-02-15 11:31:10 -08:00
Hai Ning
ece4242c8f Update README.md 2019-02-15 12:57:08 -05:00
Hai Ning
4bca2bd7db Merge pull request #217 from nishankgu/patch-1
Update README.md
2019-02-15 12:52:59 -05:00
Nishank
a927dbfa31 Update README.md 2019-02-14 14:22:05 -08:00
hning86
280c718f53 keras sample 2019-02-14 16:59:08 -05:00
Hai Ning
bf1ac2b26a Update NBSETUP.md 2019-02-14 11:02:01 -05:00
Roope Astala
954c2afbce Merge pull request #214 from rongduan-zhu/master
Updated Azure Databricks Automated ML notebook from master
2019-02-13 14:06:48 -05:00
Rongduan Zhu
fbf1ea5f1a updated notebook from latest master 2019-02-13 11:02:27 -08:00
Roope Astala
84b72d904b Merge pull request #210 from rastala/master
tutorial update
2019-02-11 16:07:47 -05:00
Roope Astala
82bb9fcac3 tutorial update 2019-02-11 16:07:10 -05:00
Roope Astala
5c6bbacd47 Merge pull request #209 from rastala/master
adb readme update
2019-02-11 15:52:34 -05:00
Roope Astala
90aaeea113 adb readme update 2019-02-11 15:51:50 -05:00
Roope Astala
eeab7284c9 Merge pull request #208 from rastala/master
few missing files
2019-02-11 15:48:22 -05:00
Roope Astala
02fd9b685c few missing files 2019-02-11 15:47:37 -05:00
hning86
d5c923b446 dockerfile updated 2019-02-11 15:21:56 -05:00
Roope Astala
f16bf27e26 Merge pull request #207 from rastala/master
release 1.0.15
2019-02-11 15:18:00 -05:00
Roope Astala
c7bec58593 update version 2019-02-11 15:17:40 -05:00
Roope Astala
cca3996eb4 release 1.0.15 2019-02-11 15:12:30 -05:00
Davide Fiocco
210efe022a Typo fix 2019-02-08 20:23:12 +01:00
Roope Astala
5fd14bac30 Merge pull request #199 from rastala/master
update automl databricks
2019-02-06 11:53:35 -05:00
Roope Astala
3fa409543b update automl databricks 2019-02-06 11:53:00 -05:00
Josée Martens
42f2822b61 Adding file to enable search performance tracking.
@rastala
2019-02-04 14:36:40 -06:00
Roope Astala
48afbe1cab Delete release.json 2019-01-31 16:07:08 -05:00
Roope Astala
1298c55dd4 Merge pull request #193 from rastala/master
fix broken link
2019-01-31 15:45:01 -05:00
Roope Astala
0aa1b248f4 fix broken link 2019-01-31 15:44:22 -05:00
Roope Astala
3012b8f5a8 Merge pull request #192 from rastala/master
add authentication notebook
2019-01-31 15:41:40 -05:00
Roope Astala
501c55bcaf add authentication notebook 2019-01-31 15:40:51 -05:00
hning86
1a38f50221 docker instructions 2019-01-31 15:16:36 -05:00
hning86
cc64be8d6f text update 2019-01-31 14:29:31 -05:00
hning86
a0127a2a64 dockerfile instruction 2019-01-31 11:46:06 -05:00
Hai Ning
7eb966bf79 Merge pull request #191 from Azure/dockerfiles
Dockerfiles
2019-01-31 10:54:55 -05:00
Roope Astala
9118f2c7ce Merge pull request #190 from rastala/master
fix NBSETUP
2019-01-31 09:33:17 -05:00
Roope Astala
0e3198f311 fix NBSETUP 2019-01-31 09:32:30 -05:00
Roope Astala
3d0c7990ff Merge pull request #189 from rastala/master
update tutorial readme
2019-01-30 14:28:24 -05:00
Roope Astala
6e1ce29a94 Merge remote-tracking branch 'upstream/master' 2019-01-30 14:26:25 -05:00
Roope Astala
0d26c9986a update tutorials README 2019-01-30 14:25:17 -05:00
gison93
100ab10797 add pipeline validation 2019-01-29 14:50:00 +01:00
gison93
1307efe7bc fix typo
remove trailing \u00c2\u00a0 from variable and notebook_path
2019-01-29 14:34:07 +01:00
gison93
08d0b8cf08 fix typo
Bloband -> Blob and
2019-01-29 12:42:48 +01:00
Sheri Gilley
7db93bcb1d update comments 2019-01-22 17:18:19 -06:00
Sheri Gilley
fcbe925640 Merge branch 'sdk-codetest' of https://github.com/Azure/MachineLearningNotebooks into sdk-codetest 2019-01-07 13:06:12 -06:00
Sheri Gilley
bedfbd649e fix files 2019-01-07 13:06:02 -06:00
Sheri Gilley
fb760f648d Delete temp.py 2019-01-07 12:58:32 -06:00
Sheri Gilley
a9a0713d2f Delete donotupload.py 2019-01-07 12:57:58 -06:00
Sheri Gilley
c9d018b52c remove prepare environment 2019-01-07 12:56:54 -06:00
Sheri Gilley
53dbd0afcf hdi run config code 2019-01-07 11:29:40 -06:00
Sheri Gilley
e3a64b1f16 code for remote vm 2019-01-04 12:51:11 -06:00
Sheri Gilley
732eecfc7c update names 2019-01-04 12:45:28 -06:00
Sheri Gilley
6995c086ff change snippet names 2019-01-03 22:39:06 -06:00
Sheri Gilley
80bba4c7ae code for amlcompute section 2019-01-03 18:55:31 -06:00
Sheri Gilley
3c581b533f for local computer 2019-01-03 18:07:12 -06:00
Sheri Gilley
cc688caa4e change names 2019-01-03 08:53:49 -06:00
Sheri Gilley
da225e116e new code 2019-01-03 08:02:35 -06:00
Sheri Gilley
73c5d02880 Update quickstart.py 2018-12-17 12:23:03 -06:00
Sheri Gilley
e472b54f1b Update quickstart.py 2018-12-17 12:22:40 -06:00
Sheri Gilley
716c6d8bb1 add quickstart code 2018-11-06 11:27:58 -06:00
Sheri Gilley
23189c6f40 move folder 2018-10-17 16:24:46 -05:00
Sheri Gilley
361b57ed29 change all names to camelCase 2018-10-17 11:47:09 -05:00
Sheri Gilley
3f531fd211 try camelCase 2018-10-17 11:09:46 -05:00
Sheri Gilley
111f5e8d73 playing around 2018-10-17 10:46:33 -05:00
Sheri Gilley
96c59d5c2b testing 2018-10-17 09:56:04 -05:00
Sheri Gilley
ce3214b7c6 fix name 2018-10-16 17:33:24 -05:00
Sheri Gilley
53199d17de add delete 2018-10-16 16:54:08 -05:00
Sheri Gilley
54c883412c add test service 2018-10-16 16:49:41 -05:00
266 changed files with 30214 additions and 112662 deletions

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.15"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.15" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.17"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.17" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.18"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.18" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.21"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.21" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.23"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.23" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.30"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.30" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.33"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.33" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.41"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.41" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

View File

@@ -0,0 +1,29 @@
FROM continuumio/miniconda:4.5.11
# install git
RUN apt-get update && apt-get upgrade -y && apt-get install -y git
# create a new conda environment named azureml
RUN conda create -n azureml -y -q Python=3.6
# install additional packages used by sample notebooks. this is optional
RUN ["/bin/bash", "-c", "source activate azureml && conda install -y tqdm cython matplotlib scikit-learn"]
# install azurmel-sdk components
RUN ["/bin/bash", "-c", "source activate azureml && pip install azureml-sdk[notebooks]==1.0.43"]
# clone Azure ML GitHub sample notebooks
RUN cd /home && git clone -b "azureml-sdk-1.0.43" --single-branch https://github.com/Azure/MachineLearningNotebooks.git
# generate jupyter configuration file
RUN ["/bin/bash", "-c", "source activate azureml && mkdir ~/.jupyter && cd ~/.jupyter && jupyter notebook --generate-config"]
# set an emtpy token for Jupyter to remove authentication.
# this is NOT recommended for production environment
RUN echo "c.NotebookApp.token = ''" >> ~/.jupyter/jupyter_notebook_config.py
# open up port 8887 on the container
EXPOSE 8887
# start Jupyter notebook server on port 8887 when the container starts
CMD /bin/bash -c "cd /home/MachineLearningNotebooks && source activate azureml && jupyter notebook --port 8887 --no-browser --ip 0.0.0.0 --allow-root"

21
LICENSE
View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) Microsoft Corporation. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE

View File

@@ -1,34 +0,0 @@
# Notebook setup
---
To run the notebooks in this repository use one of these methods:
## Use Azure Notebooks - Jupyter based notebooks in the Azure cloud
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
1. Open one of the sample notebooks
**Make sure the Azure Notebook kernel is set to `Python 3.6`** when you open a notebook
![set kernel to Python 3.6](images/python36.png)
## **Use your own notebook server**
Video walkthrough:
[![Get Started video](images/yt_cover.png)](https://youtu.be/VIsXeTuW3FU)
1. Setup a Jupyter Notebook server and [install the Azure Machine Learning SDK](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python)
1. Clone [this repository](https://aka.ms/aml-notebooks)
1. You may need to install other packages for specific notebook
- For example, to run the Azure Machine Learning Data Prep notebooks, install the extra dataprep SDK:
```bash
pip install azureml-dataprep
```
1. Start your notebook server
1. Follow the instructions in the [Configuration](configuration.ipynb) notebook to create and connect to a workspace
1. Open one of the sample notebooks

View File

@@ -1,58 +0,0 @@
# Azure Machine Learning service example notebooks
This repository contains example notebooks demonstrating the [Azure Machine Learning](https://azure.microsoft.com/en-us/services/machine-learning-service/) Python SDK
which allows you to build, train, deploy and manage machine learning solutions using Azure. The AML SDK
allows you the choice of using local or cloud compute resources, while managing
and maintaining the complete data science workflow from the cloud.
![Azure ML workflow](https://raw.githubusercontent.com/MicrosoftDocs/azure-docs/master/articles/machine-learning/service/media/overview-what-is-azure-ml/aml.png)
## Quick installation
```sh
pip install azureml-sdk
```
Read more detailed instructions on [how to set up your environment](./NBSETUP.md).
## How to navigate and use the example notebooks?
You should always run the [Configuration](./configuration.ipynb) notebook first when setting up a notebook library on a new machine or in a new environment. It configures your notebook library to connect to an Azure Machine Learning workspace, and sets up your workspace and compute to be used by many of the other examples.
If you want to...
* ...try out and explore Azure ML, start with image classification tutorials [part 1 training](./tutorials/img-classification-part1-training.ipynb) and [part 2 deployment](./tutorials/img-classification-part2-deploy.ipynb).
* ...learn about experimentation and tracking run history, first [train within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then try [training on remote VM](./how-to-use-azureml/training/train-on-remote-vm/train-on-remote-vm.ipynb) and [using logging APIs](./how-to-use-azureml/training/logging-api/logging-api.ipynb).
* ...train deep learning models at scale, first learn about [Machine Learning Compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and then try [distributed hyperparameter tuning](./how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) and [distributed training](./how-to-use-azureml/training-with-deep-learning/distributed-pytorch-with-horovod/distributed-pytorch-with-horovod.ipynb).
* ...deploy model as realtime scoring service, first learn the basics by [training within Notebook and deploying to Azure Container Instance](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), then learn how to [register and manage models, and create Docker images](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), and [production deploy models on Azure Kubernetes Cluster](./how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.ipynb).
* ...deploy models as batch scoring service, first [train a model within Notebook](./how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb), learn how to [register and manage models](./how-to-use-azureml/deployment/register-model-create-image-deploy-service/register-model-create-image-deploy-service.ipynb), then [create Machine Learning Compute for scoring compute](./how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb), and [use Machine Learning Pipelines to deploy your model](./how-to-use-azureml/machine-learning-pipelines/pipeline-mpi-batch-prediction.ipynb).
* ...monitor your deployed models, learn about using [App Insights](./how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb) and [model data collection](./how-to-use-azureml/deployment/enable-data-collection-for-models-in-aks/enable-data-collection-for-models-in-aks.ipynb).
## Tutorials
The [Tutorials](./tutorials) folder contains notebooks for the tutorials described in the [Azure Machine Learning documentation](https://aka.ms/aml-docs)
## How to use Azure ML
The [How to use Azure ML](./how-to-use-azureml) folder contains specific examples demonstrating the features of the Azure Machine Learning SDK
- [Training](./how-to-use-azureml/training) - Examples of how to build models using Azure ML's logging and execution capabilities on local and remote compute targets.
- [Training with Deep Learning](./how-to-use-azureml/training-with-deep-learning) - Examples demonstrating how to build deep learning models using estimators and parameter sweeps
- [Automated Machine Learning](./how-to-use-azureml/automated-machine-learning) - Examples using Automated Machine Learning to automatically generate optimal machine learning pipelines and models
- [Machine Learning Pipelines](./how-to-use-azureml/machine-learning-pipelines) - Examples showing how to create and use reusable pipelines for training and batch scoring
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
---
## Documentation
* Quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).
* [Python SDK reference]( https://docs.microsoft.com/en-us/python/api/overview/azure/ml/intro?view=azure-ml-py)
---
## Projects using Azure Machine Learning
Visit following repos to see projects contributed by Azure ML users:
- [Fine tune natural language processing models using Azure Machine Learning service](https://github.com/Microsoft/AzureML-BERT)
- [Fashion MNIST with Azure ML SDK](https://github.com/amynic/azureml-sdk-fashion)

View File

@@ -1,376 +1,389 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Configuration\n",
"\n",
"_**Setting up your Azure Machine Learning services workspace and configuring your notebook library**_\n",
"\n",
"---\n",
"---\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
" 1. What is an Azure Machine Learning workspace\n",
"1. [Setup](#Setup)\n",
" 1. Azure subscription\n",
" 1. Azure ML SDK and other library installation\n",
" 1. Azure Container Instance registration\n",
"1. [Configure your Azure ML Workspace](#Configure%20your%20Azure%20ML%20workspace)\n",
" 1. Workspace parameters\n",
" 1. Access your workspace\n",
" 1. Create a new workspace\n",
" 1. Create compute resources\n",
"1. [Next steps](#Next%20steps)\n",
"\n",
"---\n",
"\n",
"## Introduction\n",
"\n",
"This notebook configures your library of notebooks to connect to an Azure Machine Learning (ML) workspace. In this case, a library contains all of the notebooks in the current folder and any nested folders. You can configure this notebook library to use an existing workspace or create a new workspace.\n",
"\n",
"Typically you will need to run this notebook only once per notebook library as all other notebooks will use connection information that is written here. If you want to redirect your notebook library to work with a different workspace, then you should re-run this notebook.\n",
"\n",
"In this notebook you will\n",
"* Learn about getting an Azure subscription\n",
"* Specify your workspace parameters\n",
"* Access or create your workspace\n",
"* Add a default compute cluster for your workspace\n",
"\n",
"### What is an Azure Machine Learning workspace\n",
"\n",
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inferencing, and the monitoring of deployed models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"This section describes activities required before you can access any Azure ML services functionality."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Azure Subscription\n",
"\n",
"In order to create an Azure ML Workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com). Later in this notebook you will need information such as your subscription ID in order to create and access AML workspaces.\n",
"\n",
"### 2. Azure ML SDK and other library installation\n",
"\n",
"If you are running in your own environment, follow [SDK installation instructions](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment). If you are running in Azure Notebooks or another Microsoft managed environment, the SDK is already installed.\n",
"\n",
"Also install following libraries to your environment. Many of the example notebooks depend on them\n",
"\n",
"```\n",
"(myenv) $ conda install -y matplotlib tqdm scikit-learn\n",
"```\n",
"\n",
"Once installation is complete, the following cell checks the Azure ML SDK version:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"install"
]
},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.10 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you are using an older version of the SDK then this notebook was created using, you should upgrade your SDK.\n",
"\n",
"### 3. Azure Container Instance registration\n",
"Azure Machine Learning uses of [Azure Container Instance (ACI)](https://azure.microsoft.com/services/container-instances) to deploy dev/test web services. An Azure subscription needs to be registered to use ACI. If you or the subscription owner have not yet registered ACI on your subscription, you will need to use the [Azure CLI](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest) and execute the following commands. Note that if you ran through the AML [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) you have already registered ACI. \n",
"\n",
"```shell\n",
"# check to see if ACI is already registered\n",
"(myenv) $ az provider show -n Microsoft.ContainerInstance -o table\n",
"\n",
"# if ACI is not registered, run this command.\n",
"# note you need to be the subscription owner in order to execute this command successfully.\n",
"(myenv) $ az provider register -n Microsoft.ContainerInstance\n",
"```\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure your Azure ML workspace\n",
"\n",
"### Workspace parameters\n",
"\n",
"To use an AML Workspace, you will need to import the Azure ML SDK and supply the following information:\n",
"* Your subscription id\n",
"* A resource group name\n",
"* (optional) The region that will host your workspace\n",
"* A name for your workspace\n",
"\n",
"You can get your subscription ID from the [Azure portal](https://portal.azure.com).\n",
"\n",
"You will also need access to a [_resource group_](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the [Azure portal](https://portal.azure.com). If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
"\n",
"The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.\n",
"\n",
"The name for your workspace is unique within the subscription and should be descriptive enough to discern among other AML Workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.\n",
"\n",
"The following cell allows you to specify your workspace parameters. This cell uses the python method `os.getenv` to read values from environment variables which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. \n",
"\n",
"If you ran the Azure Machine Learning [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) in Azure Notebooks, you already have a configured workspace! You can go to your Azure Machine Learning Getting Started library, view *config.json* file, and copy-paste the values for subscription ID, resource group and workspace name below.\n",
"\n",
"Replace the default values in the cell below with your workspace parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"subscription_id = os.getenv(\"SUBSCRIPTION_ID\", default=\"<my-subscription-id>\")\n",
"resource_group = os.getenv(\"RESOURCE_GROUP\", default=\"<my-resource-group>\")\n",
"workspace_name = os.getenv(\"WORKSPACE_NAME\", default=\"<my-workspace-name>\")\n",
"workspace_region = os.getenv(\"WORKSPACE_REGION\", default=\"eastus2\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Access your workspace\n",
"\n",
"The following cell uses the Azure ML SDK to attempt to load the workspace specified by your parameters. If this cell succeeds, your notebook library will be configured to access the workspace from all notebooks using the `Workspace.from_config()` method. The cell can fail if the specified workspace doesn't exist or you don't have permissions to access it. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"try:\n",
" ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name)\n",
" # write the details of the workspace to a configuration file to the notebook library\n",
" ws.write_config()\n",
" print(\"Workspace configuration succeeded. Skip the workspace creation steps below\")\n",
"except:\n",
" print(\"Workspace not accessible. Change your parameters or create a new workspace below\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a new workspace\n",
"\n",
"If you don't have an existing workspace and are the owner of the subscription or resource group, you can create a new workspace. If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
"\n",
"**Note**: As with other Azure services, there are limits on certain resources (for example AmlCompute quota) associated with the Azure ML service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota.\n",
"\n",
"This cell will create an Azure ML workspace for you in a subscription provided you have the correct permissions.\n",
"\n",
"This will fail if:\n",
"* You do not have permission to create a workspace in the resource group\n",
"* You do not have permission to create a resource group if it's non-existing.\n",
"* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
"\n",
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"# Create the workspace using the specified parameters\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" create_resource_group = True,\n",
" exist_ok = True)\n",
"ws.get_details()\n",
"\n",
"# write the details of the workspace to a configuration file to the notebook library\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create compute resources for your training experiments\n",
"\n",
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
"\n",
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
"\n",
"The cluster parameters are:\n",
"* vm_size - this describes the virtual machine type and size used in the cluster. All machines in the cluster are the same type. You can get the list of vm sizes available in your region by using the CLI command\n",
"\n",
"```shell\n",
"az vm list-skus -o tsv\n",
"```\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while note in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
"\n",
"\n",
"To create a **CPU** cluster now, run the cell below. The autoscale settings mean that the cluster will scale down to 0 nodes when inactive and up to 4 nodes when busy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cpucluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new cpucluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
"\n",
" # Create the cluster with the specified name and configuration\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
" \n",
" # Wait for the cluster to complete, show the output log\n",
" cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To create a **GPU** cluster, run the cell below. Note that your subscription must have sufficient quota for GPU VMs or the command will fail. To increase quota, see [these instructions](https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpucluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
" # Create the cluster with the specified name and configuration\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
"\n",
" # Wait for the cluster to complete, show the output log\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"\n",
"## Next steps\n",
"\n",
"In this notebook you configured this notebook library to connect easily to an Azure ML workspace. You can copy this notebook to your own libraries to connect them to you workspace, or use it to bootstrap new workspaces completely.\n",
"\n",
"If you came here from another notebook, you can return there and complete that exercise, or you can try out the [Tutorials](./tutorials) or jump into \"how-to\" notebooks and start creating and deploying models. A good place to start is the [train in notebook](./how-to-use-azureml/training/train-in-notebook) example that walks through a simplified but complete end to end machine learning process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "roastala"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
"nbformat": 4,
"nbformat_minor": 2
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/configuration.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Configuration\n",
"\n",
"_**Setting up your Azure Machine Learning services workspace and configuring your notebook library**_\n",
"\n",
"---\n",
"---\n",
"\n",
"## Table of Contents\n",
"\n",
"1. [Introduction](#Introduction)\n",
" 1. What is an Azure Machine Learning workspace\n",
"1. [Setup](#Setup)\n",
" 1. Azure subscription\n",
" 1. Azure ML SDK and other library installation\n",
" 1. Azure Container Instance registration\n",
"1. [Configure your Azure ML Workspace](#Configure%20your%20Azure%20ML%20workspace)\n",
" 1. Workspace parameters\n",
" 1. Access your workspace\n",
" 1. Create a new workspace\n",
" 1. Create compute resources\n",
"1. [Next steps](#Next%20steps)\n",
"\n",
"---\n",
"\n",
"## Introduction\n",
"\n",
"This notebook configures your library of notebooks to connect to an Azure Machine Learning (ML) workspace. In this case, a library contains all of the notebooks in the current folder and any nested folders. You can configure this notebook library to use an existing workspace or create a new workspace.\n",
"\n",
"Typically you will need to run this notebook only once per notebook library as all other notebooks will use connection information that is written here. If you want to redirect your notebook library to work with a different workspace, then you should re-run this notebook.\n",
"\n",
"In this notebook you will\n",
"* Learn about getting an Azure subscription\n",
"* Specify your workspace parameters\n",
"* Access or create your workspace\n",
"* Add a default compute cluster for your workspace\n",
"\n",
"### What is an Azure Machine Learning workspace\n",
"\n",
"An Azure ML Workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML Workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, deployment, inference, and the monitoring of deployed models."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"This section describes activities required before you can access any Azure ML services functionality."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Azure Subscription\n",
"\n",
"In order to create an Azure ML Workspace, first you need access to an Azure subscription. An Azure subscription allows you to manage storage, compute, and other assets in the Azure cloud. You can [create a new subscription](https://azure.microsoft.com/en-us/free/) or access existing subscription information from the [Azure portal](https://portal.azure.com). Later in this notebook you will need information such as your subscription ID in order to create and access AML workspaces.\n",
"\n",
"### 2. Azure ML SDK and other library installation\n",
"\n",
"If you are running in your own environment, follow [SDK installation instructions](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment). If you are running in Azure Notebooks or another Microsoft managed environment, the SDK is already installed.\n",
"\n",
"Also install following libraries to your environment. Many of the example notebooks depend on them\n",
"\n",
"```\n",
"(myenv) $ conda install -y matplotlib tqdm scikit-learn\n",
"```\n",
"\n",
"Once installation is complete, the following cell checks the Azure ML SDK version:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"install"
]
},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version AZUREML-SDK-VERSION of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you are using an older version of the SDK then this notebook was created using, you should upgrade your SDK.\n",
"\n",
"### 3. Azure Container Instance registration\n",
"Azure Machine Learning uses of [Azure Container Instance (ACI)](https://azure.microsoft.com/services/container-instances) to deploy dev/test web services. An Azure subscription needs to be registered to use ACI. If you or the subscription owner have not yet registered ACI on your subscription, you will need to use the [Azure CLI](https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest) and execute the following commands. Note that if you ran through the AML [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) you have already registered ACI. \n",
"\n",
"```shell\n",
"# check to see if ACI is already registered\n",
"(myenv) $ az provider show -n Microsoft.ContainerInstance -o table\n",
"\n",
"# if ACI is not registered, run this command.\n",
"# note you need to be the subscription owner in order to execute this command successfully.\n",
"(myenv) $ az provider register -n Microsoft.ContainerInstance\n",
"```\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure your Azure ML workspace\n",
"\n",
"### Workspace parameters\n",
"\n",
"To use an AML Workspace, you will need to import the Azure ML SDK and supply the following information:\n",
"* Your subscription id\n",
"* A resource group name\n",
"* (optional) The region that will host your workspace\n",
"* A name for your workspace\n",
"\n",
"You can get your subscription ID from the [Azure portal](https://portal.azure.com).\n",
"\n",
"You will also need access to a [_resource group_](https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups), which organizes Azure resources and provides a default region for the resources in a group. You can see what resource groups to which you have access, or create a new one in the [Azure portal](https://portal.azure.com). If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
"\n",
"The region to host your workspace will be used if you are creating a new workspace. You do not need to specify this if you are using an existing workspace. You can find the list of supported regions [here](https://azure.microsoft.com/en-us/global-infrastructure/services/?products=machine-learning-service). You should pick a region that is close to your location or that contains your data.\n",
"\n",
"The name for your workspace is unique within the subscription and should be descriptive enough to discern among other AML Workspaces. The subscription may be used only by you, or it may be used by your department or your entire enterprise, so choose a name that makes sense for your situation.\n",
"\n",
"The following cell allows you to specify your workspace parameters. This cell uses the python method `os.getenv` to read values from environment variables which is useful for automation. If no environment variable exists, the parameters will be set to the specified default values. \n",
"\n",
"If you ran the Azure Machine Learning [quickstart](https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-get-started) in Azure Notebooks, you already have a configured workspace! You can go to your Azure Machine Learning Getting Started library, view *config.json* file, and copy-paste the values for subscription ID, resource group and workspace name below.\n",
"\n",
"Replace the default values in the cell below with your workspace parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"subscription_id = os.getenv(\"SUBSCRIPTION_ID\", default=\"<my-subscription-id>\")\n",
"resource_group = os.getenv(\"RESOURCE_GROUP\", default=\"<my-resource-group>\")\n",
"workspace_name = os.getenv(\"WORKSPACE_NAME\", default=\"<my-workspace-name>\")\n",
"workspace_region = os.getenv(\"WORKSPACE_REGION\", default=\"eastus2\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Access your workspace\n",
"\n",
"The following cell uses the Azure ML SDK to attempt to load the workspace specified by your parameters. If this cell succeeds, your notebook library will be configured to access the workspace from all notebooks using the `Workspace.from_config()` method. The cell can fail if the specified workspace doesn't exist or you don't have permissions to access it. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"try:\n",
" ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name = workspace_name)\n",
" # write the details of the workspace to a configuration file to the notebook library\n",
" ws.write_config()\n",
" print(\"Workspace configuration succeeded. Skip the workspace creation steps below\")\n",
"except:\n",
" print(\"Workspace not accessible. Change your parameters or create a new workspace below\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a new workspace\n",
"\n",
"If you don't have an existing workspace and are the owner of the subscription or resource group, you can create a new workspace. If you don't have a resource group, the create workspace command will create one for you using the name you provide.\n",
"\n",
"**Note**: As with other Azure services, there are limits on certain resources (for example AmlCompute quota) associated with the Azure ML service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota.\n",
"\n",
"This cell will create an Azure ML workspace for you in a subscription provided you have the correct permissions.\n",
"\n",
"This will fail if:\n",
"* You do not have permission to create a workspace in the resource group\n",
"* You do not have permission to create a resource group if it's non-existing.\n",
"* You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription\n",
"\n",
"If workspace creation fails, please work with your IT admin to provide you with the appropriate permissions or to provision the required resources.\n",
"\n",
"**Note**: A Basic workspace is created by default. If you would like to create an Enterprise workspace, please specify sku = 'enterprise'.\n",
"Please visit our [pricing page](https://azure.microsoft.com/en-us/pricing/details/machine-learning/) for more details on our Enterprise edition.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"# Create the workspace using the specified parameters\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" create_resource_group = True,\n",
" sku = 'basic',\n",
" exist_ok = True)\n",
"ws.get_details()\n",
"\n",
"# write the details of the workspace to a configuration file to the notebook library\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create compute resources for your training experiments\n",
"\n",
"Many of the sample notebooks use Azure ML managed compute (AmlCompute) to train models using a dynamically scalable pool of compute. In this section you will create default compute clusters for use by the other notebooks and any other operations you choose.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"To create a cluster, you need to specify a compute configuration that specifies the type of machine to be used and the scalability behaviors. Then you choose a name for the cluster that is unique within the workspace that can be used to address the cluster later.\n",
"\n",
"The cluster parameters are:\n",
"* vm_size - this describes the virtual machine type and size used in the cluster. All machines in the cluster are the same type. You can get the list of vm sizes available in your region by using the CLI command\n",
"\n",
"```shell\n",
"az vm list-skus -o tsv\n",
"```\n",
"* min_nodes - this sets the minimum size of the cluster. If you set the minimum to 0 the cluster will shut down all nodes while not in use. Setting this number to a value higher than 0 will allow for faster start-up times, but you will also be billed when the cluster is not in use.\n",
"* max_nodes - this sets the maximum size of the cluster. Setting this to a larger number allows for more concurrency and a greater distributed processing of scale-out jobs.\n",
"\n",
"\n",
"To create a **CPU** cluster now, run the cell below. The autoscale settings mean that the cluster will scale down to 0 nodes when inactive and up to 4 nodes when busy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your CPU cluster\n",
"cpu_cluster_name = \"cpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
" print(\"Found existing cpu-cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new cpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_D2_V2\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
"\n",
" # Create the cluster with the specified name and configuration\n",
" cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
" \n",
" # Wait for the cluster to complete, show the output log\n",
" cpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To create a **GPU** cluster, run the cell below. Note that your subscription must have sufficient quota for GPU VMs or the command will fail. To increase quota, see [these instructions](https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"gpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AmlCompute.provisioning_configuration(vm_size=\"STANDARD_NC6\",\n",
" min_nodes=0,\n",
" max_nodes=4)\n",
" # Create the cluster with the specified name and configuration\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
"\n",
" # Wait for the cluster to complete, show the output log\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"\n",
"## Next steps\n",
"\n",
"In this notebook you configured this notebook library to connect easily to an Azure ML workspace. You can copy this notebook to your own libraries to connect them to you workspace, or use it to bootstrap new workspaces completely.\n",
"\n",
"If you came here from another notebook, you can return there and complete that exercise, or you can try out the [Tutorials](./tutorials) or jump into \"how-to\" notebooks and start creating and deploying models. A good place to start is the [train within notebook](./how-to-use-azureml/training/train-within-notebook) example that walks through a simplified but complete end to end machine learning process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "ninhu"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

4
configuration.yml Normal file
View File

@@ -0,0 +1,4 @@
name: configuration
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,409 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA RAPIDS in Azure Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [RAPIDS](https://www.developer.nvidia.com/rapids) suite of software libraries from NVIDIA enables the execution of end-to-end data science and analytics pipelines entirely on GPUs. In many machine learning projects, a significant portion of the model training time is spent in setting up the data; this stage of the process is known as Extraction, Transformation and Loading, or ETL. By using the DataFrame API for ETL and GPU-capable ML algorithms in RAPIDS, data preparation and training models can be done in GPU-accelerated end-to-end pipelines without incurring serialization costs between the pipeline stages. This notebook demonstrates how to use NVIDIA RAPIDS to prepare data and train model in Azure.\n",
" \n",
"In this notebook, we will do the following:\n",
" \n",
"* Create an Azure Machine Learning Workspace\n",
"* Create an AMLCompute target\n",
"* Use a script to process our data and train a model\n",
"* Obtain the data required to run this sample\n",
"* Create an AML run configuration to launch a machine learning job\n",
"* Run the script to prepare data for training and train the model\n",
" \n",
"Prerequisites:\n",
"* An Azure subscription to create a Machine Learning Workspace\n",
"* Familiarity with the Azure ML SDK (refer to [notebook samples](https://github.com/Azure/MachineLearningNotebooks))\n",
"* A Jupyter notebook environment with Azure Machine Learning SDK installed. Refer to instructions to [setup the environment](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#local)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Verify if Azure ML SDK is installed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azureml.core import Workspace, Experiment\n",
"from azureml.core.compute import AmlCompute, ComputeTarget\n",
"from azureml.data.data_reference import DataReference\n",
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core import ScriptRunConfig\n",
"from azureml.widgets import RunDetails"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Azure ML Workspace"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following step is optional if you already have a workspace. If you want to use an existing workspace, then\n",
"skip this workspace creation step and move on to the next step to load the workspace.\n",
" \n",
"<font color='red'>Important</font>: in the code cell below, be sure to set the correct values for the subscription_id, \n",
"resource_group, workspace_name, region before executing this code cell."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = os.environ.get(\"SUBSCRIPTION_ID\", \"<subscription_id>\")\n",
"resource_group = os.environ.get(\"RESOURCE_GROUP\", \"<resource_group>\")\n",
"workspace_name = os.environ.get(\"WORKSPACE_NAME\", \"<workspace_name>\")\n",
"workspace_region = os.environ.get(\"WORKSPACE_REGION\", \"<region>\")\n",
"\n",
"ws = Workspace.create(workspace_name, subscription_id=subscription_id, resource_group=resource_group, location=workspace_region)\n",
"\n",
"# write config to a local directory for future use\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load existing Workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"# if a locally-saved configuration file for the workspace is not available, use the following to load workspace\n",
"# ws = Workspace(subscription_id=subscription_id, resource_group=resource_group, workspace_name=workspace_name)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"\n",
"scripts_folder = \"scripts_folder\"\n",
"\n",
"if not os.path.isdir(scripts_folder):\n",
" os.mkdir(scripts_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML Compute Target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because NVIDIA RAPIDS requires P40 or V100 GPUs, the user needs to specify compute targets from one of [NC_v3](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv3-series), [NC_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ncv2-series), [ND](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#nd-series) or [ND_v2](https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu#ndv2-series-preview) virtual machine types in Azure; these are the families of virtual machines in Azure that are provisioned with these GPUs.\n",
" \n",
"Pick one of the supported VM SKUs based on the number of GPUs you want to use for ETL and training in RAPIDS.\n",
" \n",
"The script in this notebook is implemented for single-machine scenarios. An example supporting multiple nodes will be published later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gpu_cluster_name = \"gpucluster\"\n",
"\n",
"if gpu_cluster_name in ws.compute_targets:\n",
" gpu_cluster = ws.compute_targets[gpu_cluster_name]\n",
" if gpu_cluster and type(gpu_cluster) is AmlCompute:\n",
" print('found compute target. just use it. ' + gpu_cluster_name)\n",
"else:\n",
" print(\"creating new cluster\")\n",
" # vm_size parameter below could be modified to one of the RAPIDS-supported VM types\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_NC6s_v2\", min_nodes=1, max_nodes = 1)\n",
"\n",
" # create the cluster\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, provisioning_config)\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Script to process data and train model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _process&#95;data.py_ script used in the step below is a slightly modified implementation of [RAPIDS E2E example](https://github.com/rapidsai/notebooks/blob/master/mortgage/E2E.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# copy process_data.py into the script folder\n",
"import shutil\n",
"shutil.copy('./process_data.py', os.path.join(scripts_folder, 'process_data.py'))\n",
"\n",
"with open(os.path.join(scripts_folder, './process_data.py'), 'r') as process_data_script:\n",
" print(process_data_script.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data required to run this sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This sample uses [Fannie Mae\u00e2\u20ac\u2122s Single-Family Loan Performance Data](http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html). Refer to the 'Available mortgage datasets' section in [instructions](https://rapidsai.github.io/demos/datasets/mortgage-data) to get sample data.\n",
"\n",
"Once you obtain access to the data, you will need to make this data available in an [Azure Machine Learning Datastore](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-access-data), for use in this sample."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<font color='red'>Important</font>: The following step assumes the data is uploaded to the Workspace's default data store under a folder named 'mortgagedata2000_01'. Note that uploading data to the Workspace's default data store is not necessary and the data can be referenced from any datastore, e.g., from Azure Blob or File service, once it is added as a datastore to the workspace. The path_on_datastore parameter needs to be updated, depending on where the data is available. The directory where the data is available should have the following folder structure, as the process_data.py script expects this directory structure:\n",
"* _&lt;data directory>_/acq\n",
"* _&lt;data directory>_/perf\n",
"* _names.csv_\n",
"\n",
"The 'acq' and 'perf' refer to directories containing data files. The _&lt;data directory>_ is the path specified in _path&#95;on&#95;datastore_ parameter in the step below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ds = ws.get_default_datastore()\n",
"\n",
"# download and uncompress data in a local directory before uploading to data store\n",
"# directory specified in src_dir parameter below should have the acq, perf directories with data and names.csv file\n",
"# ds.upload(src_dir='<local directory that has data>', target_path='mortgagedata2000_01', overwrite=True, show_progress=True)\n",
"\n",
"# data already uploaded to the datastore\n",
"data_ref = DataReference(data_reference_name='data', datastore=ds, path_on_datastore='mortgagedata2000_01')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AML run configuration to launch a machine learning job"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"AML allows the option of using existing Docker images with prebuilt conda environments. The following step use an existing image from [Docker Hub](https://hub.docker.com/r/rapidsai/rapidsai/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_config = RunConfiguration()\n",
"run_config.framework = 'python'\n",
"run_config.environment.python.user_managed_dependencies = True\n",
"# use conda environment named 'rapids' available in the Docker image\n",
"# this conda environment does not include azureml-defaults package that is required for using AML functionality like metrics tracking, model management etc.\n",
"run_config.environment.python.interpreter_path = '/conda/envs/rapids/bin/python'\n",
"run_config.target = gpu_cluster_name\n",
"run_config.environment.docker.enabled = True\n",
"run_config.environment.docker.gpu_support = True\n",
"# if registry is not mentioned the image is pulled from Docker Hub\n",
"run_config.environment.docker.base_image = \"rapidsai/rapidsai:cuda9.2_ubuntu16.04_root\"\n",
"run_config.environment.spark.precache_packages = False\n",
"run_config.data_references={'data':data_ref.to_config()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wrapper function to submit Azure Machine Learning experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameter cpu_predictor indicates if training should be done on CPU. If set to true, GPUs are used *only* for ETL and *not* for training\n",
"# parameter num_gpu indicates number of GPUs to use among the GPUs available in the VM for ETL and if cpu_predictor is false, for training as well \n",
"def run_rapids_experiment(cpu_training, gpu_count):\n",
" # any value between 1-4 is allowed here depending the type of VMs available in gpu_cluster\n",
" if gpu_count not in [1, 2, 3, 4]:\n",
" raise Exception('Value specified for the number of GPUs to use {0} is invalid'.format(gpu_count))\n",
"\n",
" # following data partition mapping is empirical (specific to GPUs used and current data partitioning scheme) and may need to be tweaked\n",
" gpu_count_data_partition_mapping = {1: 2, 2: 4, 3: 5, 4: 7}\n",
" part_count = gpu_count_data_partition_mapping[gpu_count]\n",
"\n",
" end_year = 2000\n",
" if gpu_count > 2:\n",
" end_year = 2001 # use more data with more GPUs\n",
"\n",
" src = ScriptRunConfig(source_directory=scripts_folder, \n",
" script='process_data.py', \n",
" arguments = ['--num_gpu', gpu_count, '--data_dir', str(data_ref),\n",
" '--part_count', part_count, '--end_year', end_year,\n",
" '--cpu_predictor', cpu_training\n",
" ],\n",
" run_config=run_config\n",
" )\n",
"\n",
" exp = Experiment(ws, 'rapidstest')\n",
" run = exp.submit(config=src)\n",
" RunDetails(run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL & training on GPU)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = False\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1 \n",
"# train using CPU, use GPU for both ETL and training\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Submit experiment (ETL on GPU, training on CPU)\n",
"\n",
"To observe performance difference between GPU-accelerated RAPIDS based training with CPU-only training, set 'cpu_predictor' predictor to 'True' and rerun the experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cpu_predictor = True\n",
"# the value for num_gpu should be less than or equal to the number of GPUs available in the VM\n",
"num_gpu = 1\n",
"# train using CPU, use GPU for ETL\n",
"run_rapids_experiment(cpu_predictor, num_gpu)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# delete the cluster\n",
"# gpu_cluster.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "ksivas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,500 +0,0 @@
# License Info: https://github.com/rapidsai/notebooks/blob/master/LICENSE
import numpy as np
import datetime
import dask_xgboost as dxgb_gpu
import dask
import dask_cudf
from dask.delayed import delayed
from dask.distributed import Client, wait
import xgboost as xgb
import cudf
from cudf.dataframe import DataFrame
from collections import OrderedDict
import gc
from glob import glob
import os
import argparse
parser = argparse.ArgumentParser("rapidssample")
parser.add_argument("--data_dir", type=str, help="location of data")
parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
args = parser.parse_args()
data_dir = args.data_dir
num_gpu = args.num_gpu
part_count = args.part_count
end_year = args.end_year
cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')
print('data_dir = {0}'.format(data_dir))
print('num_gpu = {0}'.format(num_gpu))
print('part_count = {0}'.format(part_count))
part_count = part_count + 1 # adding one because the usage below is not inclusive
print('end_year = {0}'.format(end_year))
print('cpu_predictor = {0}'.format(cpu_predictor))
import subprocess
cmd = "hostname --all-ip-addresses"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
IPADDR = str(output.decode()).split()[0]
print('IPADDR is {0}'.format(IPADDR))
cmd = "/rapids/notebooks/utils/dask-setup.sh 0"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
cmd = "/rapids/notebooks/utils/dask-setup.sh rapids " + str(num_gpu) + " 8786 8787 8790 " + str(IPADDR) + " MASTER"
process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
print(output.decode())
import dask
from dask.delayed import delayed
from dask.distributed import Client, wait
_client = IPADDR + str(":8786")
client = dask.distributed.Client(_client)
def initialize_rmm_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = True
#rmm_cfg.initial_pool_size = 2<<30 # set to 2GiB. Default is 1/2 total GPU memory
import cudf
return cudf._gdf.rmm_initialize()
def initialize_rmm_no_pool():
from librmm_cffi import librmm_config as rmm_cfg
rmm_cfg.use_pool_allocator = False
import cudf
return cudf._gdf.rmm_initialize()
def run_dask_task(func, **kwargs):
task = func(**kwargs)
return task
def process_quarter_gpu(year=2000, quarter=1, perf_file=""):
ml_arrays = run_dask_task(delayed(run_gpu_workflow),
quarter=quarter,
year=year,
perf_file=perf_file)
return client.compute(ml_arrays,
optimize_graph=False,
fifo_timeout="0ms"
)
def null_workaround(df, **kwargs):
for column, data_type in df.dtypes.items():
if str(data_type) == "category":
df[column] = df[column].astype('int32').fillna(-1)
if str(data_type) in ['int8', 'int16', 'int32', 'int64', 'float32', 'float64']:
df[column] = df[column].fillna(-1)
return df
def run_gpu_workflow(quarter=1, year=2000, perf_file="", **kwargs):
names = gpu_load_names()
acq_gdf = gpu_load_acquisition_csv(acquisition_path= acq_data_path + "/Acquisition_"
+ str(year) + "Q" + str(quarter) + ".txt")
acq_gdf = acq_gdf.merge(names, how='left', on=['seller_name'])
acq_gdf.drop_column('seller_name')
acq_gdf['seller_name'] = acq_gdf['new']
acq_gdf.drop_column('new')
perf_df_tmp = gpu_load_performance_csv(perf_file)
gdf = perf_df_tmp
everdf = create_ever_features(gdf)
delinq_merge = create_delinq_features(gdf)
everdf = join_ever_delinq_features(everdf, delinq_merge)
del(delinq_merge)
joined_df = create_joined_df(gdf, everdf)
testdf = create_12_mon_features(joined_df)
joined_df = combine_joined_12_mon(joined_df, testdf)
del(testdf)
perf_df = final_performance_delinquency(gdf, joined_df)
del(gdf, joined_df)
final_gdf = join_perf_acq_gdfs(perf_df, acq_gdf)
del(perf_df)
del(acq_gdf)
final_gdf = last_mile_cleaning(final_gdf)
return final_gdf
def gpu_load_performance_csv(performance_path, **kwargs):
""" Loads performance data
Returns
-------
GPU DataFrame
"""
cols = [
"loan_id", "monthly_reporting_period", "servicer", "interest_rate", "current_actual_upb",
"loan_age", "remaining_months_to_legal_maturity", "adj_remaining_months_to_maturity",
"maturity_date", "msa", "current_loan_delinquency_status", "mod_flag", "zero_balance_code",
"zero_balance_effective_date", "last_paid_installment_date", "foreclosed_after",
"disposition_date", "foreclosure_costs", "prop_preservation_and_repair_costs",
"asset_recovery_costs", "misc_holding_expenses", "holding_taxes", "net_sale_proceeds",
"credit_enhancement_proceeds", "repurchase_make_whole_proceeds", "other_foreclosure_proceeds",
"non_interest_bearing_upb", "principal_forgiveness_upb", "repurchase_make_whole_proceeds_flag",
"foreclosure_principal_write_off_amount", "servicing_activity_indicator"
]
dtypes = OrderedDict([
("loan_id", "int64"),
("monthly_reporting_period", "date"),
("servicer", "category"),
("interest_rate", "float64"),
("current_actual_upb", "float64"),
("loan_age", "float64"),
("remaining_months_to_legal_maturity", "float64"),
("adj_remaining_months_to_maturity", "float64"),
("maturity_date", "date"),
("msa", "float64"),
("current_loan_delinquency_status", "int32"),
("mod_flag", "category"),
("zero_balance_code", "category"),
("zero_balance_effective_date", "date"),
("last_paid_installment_date", "date"),
("foreclosed_after", "date"),
("disposition_date", "date"),
("foreclosure_costs", "float64"),
("prop_preservation_and_repair_costs", "float64"),
("asset_recovery_costs", "float64"),
("misc_holding_expenses", "float64"),
("holding_taxes", "float64"),
("net_sale_proceeds", "float64"),
("credit_enhancement_proceeds", "float64"),
("repurchase_make_whole_proceeds", "float64"),
("other_foreclosure_proceeds", "float64"),
("non_interest_bearing_upb", "float64"),
("principal_forgiveness_upb", "float64"),
("repurchase_make_whole_proceeds_flag", "category"),
("foreclosure_principal_write_off_amount", "float64"),
("servicing_activity_indicator", "category")
])
print(performance_path)
return cudf.read_csv(performance_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def gpu_load_acquisition_csv(acquisition_path, **kwargs):
""" Loads acquisition data
Returns
-------
GPU DataFrame
"""
cols = [
'loan_id', 'orig_channel', 'seller_name', 'orig_interest_rate', 'orig_upb', 'orig_loan_term',
'orig_date', 'first_pay_date', 'orig_ltv', 'orig_cltv', 'num_borrowers', 'dti', 'borrower_credit_score',
'first_home_buyer', 'loan_purpose', 'property_type', 'num_units', 'occupancy_status', 'property_state',
'zip', 'mortgage_insurance_percent', 'product_type', 'coborrow_credit_score', 'mortgage_insurance_type',
'relocation_mortgage_indicator'
]
dtypes = OrderedDict([
("loan_id", "int64"),
("orig_channel", "category"),
("seller_name", "category"),
("orig_interest_rate", "float64"),
("orig_upb", "int64"),
("orig_loan_term", "int64"),
("orig_date", "date"),
("first_pay_date", "date"),
("orig_ltv", "float64"),
("orig_cltv", "float64"),
("num_borrowers", "float64"),
("dti", "float64"),
("borrower_credit_score", "float64"),
("first_home_buyer", "category"),
("loan_purpose", "category"),
("property_type", "category"),
("num_units", "int64"),
("occupancy_status", "category"),
("property_state", "category"),
("zip", "int64"),
("mortgage_insurance_percent", "float64"),
("product_type", "category"),
("coborrow_credit_score", "float64"),
("mortgage_insurance_type", "float64"),
("relocation_mortgage_indicator", "category")
])
print(acquisition_path)
return cudf.read_csv(acquisition_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def gpu_load_names(**kwargs):
""" Loads names used for renaming the banks
Returns
-------
GPU DataFrame
"""
cols = [
'seller_name', 'new'
]
dtypes = OrderedDict([
("seller_name", "category"),
("new", "category"),
])
return cudf.read_csv(col_names_path, names=cols, delimiter='|', dtype=list(dtypes.values()), skiprows=1)
def create_ever_features(gdf, **kwargs):
everdf = gdf[['loan_id', 'current_loan_delinquency_status']]
everdf = everdf.groupby('loan_id', method='hash').max()
del(gdf)
everdf['ever_30'] = (everdf['max_current_loan_delinquency_status'] >= 1).astype('int8')
everdf['ever_90'] = (everdf['max_current_loan_delinquency_status'] >= 3).astype('int8')
everdf['ever_180'] = (everdf['max_current_loan_delinquency_status'] >= 6).astype('int8')
everdf.drop_column('max_current_loan_delinquency_status')
return everdf
def create_delinq_features(gdf, **kwargs):
delinq_gdf = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status']]
del(gdf)
delinq_30 = delinq_gdf.query('current_loan_delinquency_status >= 1')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_30['delinquency_30'] = delinq_30['min_monthly_reporting_period']
delinq_30.drop_column('min_monthly_reporting_period')
delinq_90 = delinq_gdf.query('current_loan_delinquency_status >= 3')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_90['delinquency_90'] = delinq_90['min_monthly_reporting_period']
delinq_90.drop_column('min_monthly_reporting_period')
delinq_180 = delinq_gdf.query('current_loan_delinquency_status >= 6')[['loan_id', 'monthly_reporting_period']].groupby('loan_id', method='hash').min()
delinq_180['delinquency_180'] = delinq_180['min_monthly_reporting_period']
delinq_180.drop_column('min_monthly_reporting_period')
del(delinq_gdf)
delinq_merge = delinq_30.merge(delinq_90, how='left', on=['loan_id'], type='hash')
delinq_merge['delinquency_90'] = delinq_merge['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
delinq_merge = delinq_merge.merge(delinq_180, how='left', on=['loan_id'], type='hash')
delinq_merge['delinquency_180'] = delinq_merge['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
del(delinq_30)
del(delinq_90)
del(delinq_180)
return delinq_merge
def join_ever_delinq_features(everdf_tmp, delinq_merge, **kwargs):
everdf = everdf_tmp.merge(delinq_merge, on=['loan_id'], how='left', type='hash')
del(everdf_tmp)
del(delinq_merge)
everdf['delinquency_30'] = everdf['delinquency_30'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
everdf['delinquency_90'] = everdf['delinquency_90'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
everdf['delinquency_180'] = everdf['delinquency_180'].fillna(np.dtype('datetime64[ms]').type('1970-01-01').astype('datetime64[ms]'))
return everdf
def create_joined_df(gdf, everdf, **kwargs):
test = gdf[['loan_id', 'monthly_reporting_period', 'current_loan_delinquency_status', 'current_actual_upb']]
del(gdf)
test['timestamp'] = test['monthly_reporting_period']
test.drop_column('monthly_reporting_period')
test['timestamp_month'] = test['timestamp'].dt.month
test['timestamp_year'] = test['timestamp'].dt.year
test['delinquency_12'] = test['current_loan_delinquency_status']
test.drop_column('current_loan_delinquency_status')
test['upb_12'] = test['current_actual_upb']
test.drop_column('current_actual_upb')
test['upb_12'] = test['upb_12'].fillna(999999999)
test['delinquency_12'] = test['delinquency_12'].fillna(-1)
joined_df = test.merge(everdf, how='left', on=['loan_id'], type='hash')
del(everdf)
del(test)
joined_df['ever_30'] = joined_df['ever_30'].fillna(-1)
joined_df['ever_90'] = joined_df['ever_90'].fillna(-1)
joined_df['ever_180'] = joined_df['ever_180'].fillna(-1)
joined_df['delinquency_30'] = joined_df['delinquency_30'].fillna(-1)
joined_df['delinquency_90'] = joined_df['delinquency_90'].fillna(-1)
joined_df['delinquency_180'] = joined_df['delinquency_180'].fillna(-1)
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int32')
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int32')
return joined_df
def create_12_mon_features(joined_df, **kwargs):
testdfs = []
n_months = 12
for y in range(1, n_months + 1):
tmpdf = joined_df[['loan_id', 'timestamp_year', 'timestamp_month', 'delinquency_12', 'upb_12']]
tmpdf['josh_months'] = tmpdf['timestamp_year'] * 12 + tmpdf['timestamp_month']
tmpdf['josh_mody_n'] = ((tmpdf['josh_months'].astype('float64') - 24000 - y) / 12).floor()
tmpdf = tmpdf.groupby(['loan_id', 'josh_mody_n'], method='hash').agg({'delinquency_12': 'max','upb_12': 'min'})
tmpdf['delinquency_12'] = (tmpdf['max_delinquency_12']>3).astype('int32')
tmpdf['delinquency_12'] +=(tmpdf['min_upb_12']==0).astype('int32')
tmpdf.drop_column('max_delinquency_12')
tmpdf['upb_12'] = tmpdf['min_upb_12']
tmpdf.drop_column('min_upb_12')
tmpdf['timestamp_year'] = (((tmpdf['josh_mody_n'] * n_months) + 24000 + (y - 1)) / 12).floor().astype('int16')
tmpdf['timestamp_month'] = np.int8(y)
tmpdf.drop_column('josh_mody_n')
testdfs.append(tmpdf)
del(tmpdf)
del(joined_df)
return cudf.concat(testdfs)
def combine_joined_12_mon(joined_df, testdf, **kwargs):
joined_df.drop_column('delinquency_12')
joined_df.drop_column('upb_12')
joined_df['timestamp_year'] = joined_df['timestamp_year'].astype('int16')
joined_df['timestamp_month'] = joined_df['timestamp_month'].astype('int8')
return joined_df.merge(testdf, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
def final_performance_delinquency(gdf, joined_df, **kwargs):
merged = null_workaround(gdf)
joined_df = null_workaround(joined_df)
merged['timestamp_month'] = merged['monthly_reporting_period'].dt.month
merged['timestamp_month'] = merged['timestamp_month'].astype('int8')
merged['timestamp_year'] = merged['monthly_reporting_period'].dt.year
merged['timestamp_year'] = merged['timestamp_year'].astype('int16')
merged = merged.merge(joined_df, how='left', on=['loan_id', 'timestamp_year', 'timestamp_month'], type='hash')
merged.drop_column('timestamp_year')
merged.drop_column('timestamp_month')
return merged
def join_perf_acq_gdfs(perf, acq, **kwargs):
perf = null_workaround(perf)
acq = null_workaround(acq)
return perf.merge(acq, how='left', on=['loan_id'], type='hash')
def last_mile_cleaning(df, **kwargs):
drop_list = [
'loan_id', 'orig_date', 'first_pay_date', 'seller_name',
'monthly_reporting_period', 'last_paid_installment_date', 'maturity_date', 'ever_30', 'ever_90', 'ever_180',
'delinquency_30', 'delinquency_90', 'delinquency_180', 'upb_12',
'zero_balance_effective_date','foreclosed_after', 'disposition_date','timestamp'
]
for column in drop_list:
df.drop_column(column)
for col, dtype in df.dtypes.iteritems():
if str(dtype)=='category':
df[col] = df[col].cat.codes
df[col] = df[col].astype('float32')
df['delinquency_12'] = df['delinquency_12'] > 0
df['delinquency_12'] = df['delinquency_12'].fillna(False).astype('int32')
for column in df.columns:
df[column] = df[column].fillna(-1)
return df.to_arrow(index=False)
# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
start_year = 2000
#end_year = 2000 # end_year is inclusive -- converted to parameter
#part_count = 2 # the number of data files to train against -- converted to parameter
client.run(initialize_rmm_pool)
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
print("Reading ...")
t1 = datetime.datetime.now()
gpu_dfs = []
gpu_time = 0
quarter = 1
year = start_year
count = 0
while year <= end_year:
for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
if count < part_count:
gpu_dfs.append(process_quarter_gpu(year=year, quarter=quarter, perf_file=file))
count += 1
print('file: {0}'.format(file))
print('count: {0}'.format(count))
quarter += 1
if quarter == 5:
year += 1
quarter = 1
wait(gpu_dfs)
t2 = datetime.datetime.now()
print("Reading time ...")
print(t2-t1)
print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
client.run(cudf._gdf.rmm_finalize)
client.run(initialize_rmm_no_pool)
dxgb_gpu_params = {
'nround': 100,
'max_depth': 8,
'max_leaves': 2**8,
'alpha': 0.9,
'eta': 0.1,
'gamma': 0.1,
'learning_rate': 0.1,
'subsample': 1,
'reg_lambda': 1,
'scale_pos_weight': 2,
'min_child_weight': 30,
'tree_method': 'gpu_hist',
'n_gpus': 1,
'distributed_dask': True,
'loss': 'ls',
'objective': 'gpu:reg:linear',
'max_features': 'auto',
'criterion': 'friedman_mse',
'grow_policy': 'lossguide',
'verbose': True
}
if cpu_predictor:
print('Training using CPUs')
dxgb_gpu_params['predictor'] = 'cpu_predictor'
dxgb_gpu_params['tree_method'] = 'hist'
dxgb_gpu_params['objective'] = 'reg:linear'
else:
print('Training using GPUs')
print('Training parameters are {0}'.format(dxgb_gpu_params))
gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
wait(gpu_dfs)
tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
new_map = {}
for key, value in tmp_map:
if value not in new_map:
new_map[value] = [key]
else:
new_map[value].append(key)
del(tmp_map)
gpu_dfs = []
for list_delayed in new_map.values():
gpu_dfs.append(delayed(cudf.concat)(list_delayed))
del(new_map)
gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
gc.collect()
labels = None
print('str(gpu_dfs) is {0}'.format(str(gpu_dfs)))
wait(gpu_dfs)
t1 = datetime.datetime.now()
bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
t2 = datetime.datetime.now()
print("Training time ...")
print(t2-t1)
print('str(bst) is {0}'.format(str(bst)))
print('Exiting script')

View File

@@ -1,16 +0,0 @@
## Examples to get started with Azure Machine Learning service
Learn how to use Azure Machine Learning services for experimentation and model management.
As a pre-requisite, run the [configuration Notebook](../configuration.ipynb) notebook first to set up your Azure ML Workspace. Then, run the notebooks in following recommended order.
* [train-within-notebook](./training/train-within-notebook): Train a model hile tracking run history, and learn how to deploy the model as web service to Azure Container Instance.
* [train-on-local](./training/train-on-local): Learn how to submit a run and use Azure ML managed run configuration.
* [train-on-remote-vm](./training/train-on-remote-vm): Use Data Science Virtual Machine as a target for remote runs.
* [logging-api](./training/logging-api): Learn about the details of logging metrics to run history.
* [register-model-create-image-deploy-service](./deployment/register-model-create-image-deploy-service): Learn about the details of model management.
* [production-deploy-to-aks](./deployment/production-deploy-to-aks) Deploy a model to production at scale on Azure Kubernetes Service.
* [enable-data-collection-for-models-in-aks](./deployment/enable-data-collection-for-models-in-aks) Learn about data collection APIs for deployed model.
* [enable-app-insights-in-production-service](./deployment/enable-app-insights-in-production-service) Learn how to use App Insights with production web service.
Find quickstarts, end-to-end tutorials, and how-tos on the [official documentation site for Azure Machine Learning service](https://docs.microsoft.com/en-us/azure/machine-learning/service/).

View File

@@ -1,261 +0,0 @@
# Table of Contents
1. [Automated ML Introduction](#introduction)
1. [Running samples in Azure Notebooks](#jupyter)
1. [Running samples in Azure Databricks](#databricks)
1. [Running samples in a Local Conda environment](#localconda)
1. [Automated ML SDK Sample Notebooks](#samples)
1. [Documentation](#documentation)
1. [Running using python command](#pythoncommand)
1. [Troubleshooting](#troubleshooting)
<a name="introduction"></a>
# Automated ML introduction
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
If you are new to Data Science, AutoML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
If you are an experienced data scientist, AutoML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. AutoML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
Below are the three execution environments supported by AutoML.
<a name="jupyter"></a>
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
1. [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://aka.ms/aml-clone-azure-notebooks)
[Import sample notebooks ](https://aka.ms/aml-clone-azure-notebooks) into Azure Notebooks.
1. Follow the instructions in the [configuration](configuration.ipynb) notebook to create and connect to a workspace.
1. Open one of the sample notebooks.
<a name="databricks"></a>
## Running samples in Azure Databricks
**NOTE**: Please create your Azure Databricks cluster as v4.x (high concurrency preferred) with **Python 3** (dropdown).
**NOTE**: You should at least have contributor access to your Azure subcription to run the notebook.
- Please remove the previous SDK version if there is any and install the latest SDK by installing **azureml-sdk[automl_databricks]** as a PyPi library in Azure Databricks workspace.
- You can find the detail Readme instructions at [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks).
- Download the sample notebook automl-databricks-local-01.ipynb from [GitHub](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks) and import into the Azure databricks workspace.
- Attach the notebook to the cluster.
<a name="localconda"></a>
## Running samples in a Local Conda environment
To run these notebook on your own notebook server, use these installation instructions.
The instructions below will install everything you need and then start a Jupyter notebook. To start your Jupyter notebook manually, use:
```
conda activate azure_automl
jupyter notebook
```
or on Mac:
```
source activate azure_automl
jupyter notebook
```
### 1. Install mini-conda from [here](https://conda.io/miniconda.html), choose 64-bit Python 3.7 or higher.
- **Note**: if you already have conda installed, you can keep using it but it should be version 4.4.10 or later (as shown by: conda -V). If you have a previous version installed, you can update it using the command: conda update conda.
There's no need to install mini-conda specifically.
### 2. Downloading the sample notebooks
- Download the sample notebooks from [GitHub](https://github.com/Azure/MachineLearningNotebooks) as zip and extract the contents to a local directory. The AutoML sample notebooks are in the "automl" folder.
### 3. Setup a new conda environment
The **automl/automl_setup** script creates a new conda environment, installs the necessary packages, configures the widget and starts a jupyter notebook.
It takes the conda environment name as an optional parameter. The default conda environment name is azure_automl. The exact command depends on the operating system. See the specific sections below for Windows, Mac and Linux. It can take about 10 minutes to execute.
## Windows
Start an **Anaconda Prompt** window, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
```
automl_setup
```
## Mac
Install "Command line developer tools" if it is not already installed (you can use the command: `xcode-select --install`).
Start a Terminal windows, cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
```
bash automl_setup_mac.sh
```
## Linux
cd to the **how-to-use-azureml/automated-machine-learning** folder where the sample notebooks were extracted and then run:
```
bash automl_setup_linux.sh
```
### 4. Running configuration.ipynb
- Before running any samples you next need to run the configuration notebook. Click on configuration.ipynb notebook
- Execute the cells in the notebook to Register Machine Learning Services Resource Provider and create a workspace. (*instructions in notebook*)
### 5. Running Samples
- Please make sure you use the Python [conda env:azure_automl] kernel when trying the sample Notebooks.
- Follow the instructions in the individual notebooks to explore various features in AutoML
<a name="samples"></a>
# Automated ML SDK Sample Notebooks
- [configuration.ipynb](configuration.ipynb)
- Create new Azure ML Workspace
- Save Workspace configuration file
- [auto-ml-classification.ipynb](classification/auto-ml-classification.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Uses local compute for training
- [auto-ml-regression.ipynb](regression/auto-ml-regression.ipynb)
- Dataset: scikit learn's [diabetes dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html)
- Simple example of using Auto ML for regression
- Uses local compute for training
- [auto-ml-remote-execution.ipynb](remote-execution/auto-ml-remote-execution.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using Auto ML for classification using a remote linux DSVM for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- [auto-ml-remote-batchai.ipynb](remote-batchai/auto-ml-remote-batchai.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Example of using automated ML for classification using remote AmlCompute for training
- Parallel execution of iterations
- Async tracking of progress
- Cancelling individual iterations or entire run
- Retrieving models for any iteration or logged metric
- Specify automl settings as kwargs
- [auto-ml-remote-attach.ipynb](remote-attach/auto-ml-remote-attach.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- handling text data with preprocess flag
- Reading data from a blob store for remote executions
- using pandas dataframes for reading data
- [auto-ml-missing-data-blacklist-early-termination.ipynb](missing-data-blacklist-early-termination/auto-ml-missing-data-blacklist-early-termination.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Blacklist certain pipelines
- Specify a target metrics to indicate stopping criteria
- Handling Missing Data in the input
- [auto-ml-sparse-data-train-test-split.ipynb](sparse-data-train-test-split/auto-ml-sparse-data-train-test-split.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- Handle sparse datasets
- Specify custom train and validation set
- [auto-ml-exploring-previous-runs.ipynb](exploring-previous-runs/auto-ml-exploring-previous-runs.ipynb)
- List all projects for the workspace
- List all AutoML Runs for a given project
- Get details for a AutoML Run. (Automl settings, run widget & all metrics)
- Download fitted pipeline for any iteration
- [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
- Dataset: Scikit learn's [20newsgroup](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
- Download the data and store it in DataStore.
- [auto-ml-classification-with-deployment.ipynb](classification-with-deployment/auto-ml-classification-with-deployment.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification
- Registering the model
- Creating Image and creating aci service
- Testing the aci service
- [auto-ml-sample-weight.ipynb](sample-weight/auto-ml-sample-weight.ipynb)
- How to specifying sample_weight
- The difference that it makes to test results
- [auto-ml-dataprep.ipynb](dataprep/auto-ml-dataprep.ipynb)
- Using DataPrep for reading data
- [auto-ml-dataprep-remote-execution.ipynb](dataprep-remote-execution/auto-ml-dataprep-remote-execution.ipynb)
- Using DataPrep for reading data with remote execution
- [auto-ml-classification-with-whitelisting.ipynb](classification-with-whitelisting/auto-ml-classification-with-whitelisting.ipynb)
- Dataset: scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)
- Simple example of using Auto ML for classification with whitelisting tensorflow models.
- Uses local compute for training
- [auto-ml-forecasting-energy-demand.ipynb](forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb)
- Dataset: [NYC energy demand data](forecasting-a/nyc_energy.csv)
- Example of using AutoML for training a forecasting model
- [auto-ml-forecasting-orange-juice-sales.ipynb](forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)
- Dataset: [Dominick's grocery sales of orange juice](forecasting-b/dominicks_OJ.csv)
- Example of training an AutoML forecasting model on multiple time-series
<a name="documentation"></a>
See [Configure automated machine learning experiments](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-auto-train) to learn how more about the the settings and features available for automated machine learning experiments.
<a name="pythoncommand"></a>
# Running using python command
Jupyter notebook provides a File / Download as / Python (.py) option for saving the notebook as a Python file.
You can then run this file using the python command.
However, on Windows the file needs to be modified before it can be run.
The following condition must be added to the main code in the file:
if __name__ == "__main__":
The main code of the file must be indented so that it is under this condition.
<a name="troubleshooting"></a>
# Troubleshooting
## automl_setup fails
1. On windows, make sure that you are running automl_setup from an Anconda Prompt window rather than a regular cmd window. You can launch the "Anaconda Prompt" window by hitting the Start button and typing "Anaconda Prompt". If you don't see the application "Anaconda Prompt", you might not have conda or mini conda installed. In that case, you can install it [here](https://conda.io/miniconda.html)
2. Check that you have conda 64-bit installed rather than 32-bit. You can check this with the command `conda info`. The `platform` should be `win-64` for Windows or `osx-64` for Mac.
3. Check that you have conda 4.4.10 or later. You can check the version with the command `conda -V`. If you have a previous version installed, you can update it using the command: `conda update conda`.
4. Pass a new name as the first parameter to automl_setup so that it creates a new conda environment. You can view existing conda environments using `conda env list` and remove them with `conda env remove -n <environmentname>`.
## configuration.ipynb fails
1) For local conda, make sure that you have susccessfully run automl_setup first.
2) Check that the subscription_id is correct. You can find the subscription_id in the Azure Portal by selecting All Service and then Subscriptions. The characters "<" and ">" should not be included in the subscription_id value. For example, `subscription_id = "12345678-90ab-1234-5678-1234567890abcd"` has the valid format.
3) Check that you have Contributor or Owner access to the Subscription.
4) Check that the region is one of the supported regions: `eastus2`, `eastus`, `westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`
5) Check that you have access to the region using the Azure Portal.
## workspace.from_config fails
If the call `ws = Workspace.from_config()` fails:
1) Make sure that you have run the `configuration.ipynb` notebook successfully.
2) If you are running a notebook from a folder that is not under the folder where you ran `configuration.ipynb`, copy the folder aml_config and the file config.json that it contains to the new folder. Workspace.from_config reads the config.json for the notebook folder or it parent folder.
3) If you are switching to a new subscription, resource group, workspace or region, make sure that you run the `configuration.ipynb` notebook again. Changing config.json directly will only work if the workspace already exists in the specified resource group under the specified subscription.
4) If you want to change the region, please change the workspace, resource group or subscription. `Workspace.create` will not create or update a workspace if it already exists, even if the region specified is different.
## Sample notebook fails
If a sample notebook fails with an error that property, method or library does not exist:
1) Check that you have selected correct kernel in jupyter notebook. The kernel is displayed in the top right of the notebook page. It can be changed using the `Kernel | Change Kernel` menu option. For Azure Notebooks, it should be `Python 3.6`. For local conda environments, it should be the conda envioronment name that you specified in automl_setup. The default is azure_automl. Note that the kernel is saved as part of the notebook. So, if you switch to a new conda environment, you will have to select the new kernel in the notebook.
2) Check that the notebook is for the SDK version that you are using. You can check the SDK version by executing `azureml.core.VERSION` in a jupyter notebook cell. You can download previous version of the sample notebooks from GitHub by clicking the `Branch` button, selecting the `Tags` tab and then selecting the version.
## Remote run: DsvmCompute.create fails
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.
2) `The requested VM size xxxxx is not available in the current region.` You can select a different region or vm_size.
## Remote run: Unable to establish SSH connection
AutoML uses the SSH protocol to communicate with remote DSVMs. This defaults to port 22. Possible causes for this error are:
1) The DSVM is not ready for SSH connections. When DSVM creation completes, the DSVM might still not be ready to acceept SSH connections. The sample notebooks have a one minute delay to allow for this.
2) Your Azure Subscription may restrict the IP address ranges that can access the DSVM on port 22. You can check this in the Azure Portal by selecting the Virtual Machine and then clicking Networking. The Virtual Machine name is the name that you provided in the notebook plus 10 alpha numeric characters to make the name unique. The Inbound Port Rules define what can access the VM on specific ports. Note that there is a priority priority order. So, a Deny entry with a low priority number will override a Allow entry with a higher priority number.
## Remote run: setup iteration fails
This is often an issue with the `get_data` method.
1) Check that the `get_data` method is valid by running it locally.
2) Make sure that `get_data` isn't referring to any local files. `get_data` is executed on the remote DSVM. So, it doesn't have direct access to local data files. Instead you can store the data files with DataStore. See [auto-ml-remote-execution-with-datastore.ipynb](remote-execution-with-datastore/auto-ml-remote-execution-with-datastore.ipynb)
3) You can get to the error log for the setup iteration by clicking the `Click here to see the run in Azure portal` link, click `Back to Experiment`, click on the highest run number and then click on Logs.
## Remote run: disk full
AutoML creates files under /tmp/azureml_runs for each iteration that it runs. It creates a folder with the iteration id. For example: AutoML_9a038a18-77cc-48f1-80fb-65abdbc33abe_93. Under this, there is a azureml-logs folder, which contains logs. If you run too many iterations on the same DSVM, these files can fill the disk.
You can delete the files under /tmp/azureml_runs or just delete the VM and create a new one.
If your get_data downloads files, make sure the delete them or they can use disk space as well.
When using DataStore, it is good to specify an absolute path for the files so that they are downloaded just once. If you specify a relative path, it will download a file for each iteration.
## Remote run: Iterations fail and the log contains "MemoryError"
This can be caused by insufficient memory on the DSVM. AutoML loads all training data into memory. So, the available memory should be more than the training data size.
If you are using a remote DSVM, memory is needed for each concurrent iteration. The max_concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and max_concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
To resolve this issue, allocate a DSVM with more memory or reduce the value specified for max_concurrent_iterations.
## Remote run: Iterations show as "Not Responding" in the RunDetails widget.
This can be caused by too many concurrent iterations for a remote DSVM. Each concurrent iteration usually takes 100% of a core when it is running. Some iterations can use multiple cores. So, the max_concurrent_iterations setting should always be less than the number of cores of the DSVM.
To resolve this issue, try reducing the value specified for the max_concurrent_iterations setting.

View File

@@ -1,32 +0,0 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python=3.6
- nb_conda
- matplotlib==2.1.0
- numpy>=1.11.0,<1.15.0
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.18.0,<=0.19.1
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
# Required for azuremlftk
- dill
- pyodbc
- statsmodels
- numexpr
- keras
- distributed>=1.21.5,<1.24
- pip:
# Required for azuremlftk
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- pandas_ml

View File

@@ -1,33 +0,0 @@
name: azure_automl
dependencies:
# The python interpreter version.
# Currently Azure ML only supports 3.5.2 and later.
- python=3.6
- nb_conda
- matplotlib==2.1.0
- numpy>=1.15.3
- cython
- urllib3<1.24
- scipy>=1.0.0,<=1.1.0
- scikit-learn>=0.18.0,<=0.19.1
- pandas>=0.22.0,<0.23.0
- tensorflow>=1.12.0
# Required for azuremlftk
- dill
- pyodbc
- statsmodels
- numexpr
- keras
- distributed>=1.21.5,<1.24
- pip:
# Required for azuremlftk
- https://azuremlpackages.blob.core.windows.net/forecasting/azuremlftk-0.1.18323.5a1-py3-none-any.whl
# Required packages for AzureML execution, history, and data preparation.
- azureml-sdk[automl,notebooks,explain]
- pandas_ml

View File

@@ -1,51 +0,0 @@
@echo off
set conda_env_name=%1
set automl_env_file=%2
set options=%3
set PIP_NO_WARN_SCRIPT_LOCATION=0
IF "%conda_env_name%"=="" SET conda_env_name="azure_automl"
IF "%automl_env_file%"=="" SET automl_env_file="automl_env.yml"
IF NOT EXIST %automl_env_file% GOTO YmlMissing
call conda activate %conda_env_name% 2>nul:
if not errorlevel 1 (
echo Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment %conda_env_name%
call pip install --upgrade azureml-sdk[automl,notebooks,explain]
if errorlevel 1 goto ErrorExit
) else (
call conda env create -f %automl_env_file% -n %conda_env_name%
)
call conda activate %conda_env_name% 2>nul:
if errorlevel 1 goto ErrorExit
call python -m ipykernel install --user --name %conda_env_name% --display-name "Python (%conda_env_name%)"
REM azureml.widgets is now installed as part of the pip install under the conda env.
REM Removing the old user install so that the notebooks will use the latest widget.
call jupyter nbextension uninstall --user --py azureml.widgets
echo.
echo.
echo ***************************************
echo * AutoML setup completed successfully *
echo ***************************************
IF NOT "%options%"=="nolaunch" (
echo.
echo Starting jupyter notebook - please run the configuration notebook
echo.
jupyter notebook --log-level=50 --notebook-dir='..\..'
)
goto End
:YmlMissing
echo File %automl_env_file% not found.
:ErrorExit
echo Install failed
:End

View File

@@ -1,52 +0,0 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -1,55 +0,0 @@
#!/bin/bash
CONDA_ENV_NAME=$1
AUTOML_ENV_FILE=$2
OPTIONS=$3
PIP_NO_WARN_SCRIPT_LOCATION=0
if [ "$CONDA_ENV_NAME" == "" ]
then
CONDA_ENV_NAME="azure_automl"
fi
if [ "$AUTOML_ENV_FILE" == "" ]
then
AUTOML_ENV_FILE="automl_env_mac.yml"
fi
if [ ! -f $AUTOML_ENV_FILE ]; then
echo "File $AUTOML_ENV_FILE not found"
exit 1
fi
if source activate $CONDA_ENV_NAME 2> /dev/null
then
echo "Upgrading azureml-sdk[automl,notebooks,explain] in existing conda environment" $CONDA_ENV_NAME
pip install --upgrade azureml-sdk[automl,notebooks,explain] &&
jupyter nbextension uninstall --user --py azureml.widgets
else
conda env create -f $AUTOML_ENV_FILE -n $CONDA_ENV_NAME &&
source activate $CONDA_ENV_NAME &&
conda install lightgbm -c conda-forge -y &&
python -m ipykernel install --user --name $CONDA_ENV_NAME --display-name "Python ($CONDA_ENV_NAME)" &&
jupyter nbextension uninstall --user --py azureml.widgets &&
pip install numpy==1.15.3 &&
echo "" &&
echo "" &&
echo "***************************************" &&
echo "* AutoML setup completed successfully *" &&
echo "***************************************" &&
if [ "$OPTIONS" != "nolaunch" ]
then
echo "" &&
echo "Starting jupyter notebook - please run the configuration notebook" &&
echo "" &&
jupyter notebook --log-level=50 --notebook-dir '../..'
fi
fi
if [ $? -gt 0 ]
then
echo "Installation failed"
fi

View File

@@ -1,522 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Deployment**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Deploy](#Deploy)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit learn's [digit dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) to showcase how you can use AutoML for a simple classification problem and deploy it to an Azure Container Instance (ACI).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an experiment using an existing workspace.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Register the model.\n",
"6. Create a container image.\n",
"7. Create an Azure Container Instance (ACI) service.\n",
"8. Test the ACI service."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-local-classification'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[10:,:]\n",
"y_train = digits.target[10:]\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" name = experiment_name,\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 20,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy\n",
"\n",
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method on `automl_classifier` returns the best run and the fitted model for the last invocation. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Fitted Model for Deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"\n",
"print(local_run.model_id) # This will be written to the script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Scoring Script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a YAML File for the Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To ensure the fit results are consistent with the training results, the SDK dependency versions need to be the same as the environment that trains the model. Details about retrieving the versions can be found in notebook [12.auto-ml-retrieve-the-training-sdk-versions](12.auto-ml-retrieve-the-training-sdk-versions.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = local_run.id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dependencies = ml_run.get_run_sdk_dependencies(iteration = 7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for p in ['azureml-train-automl', 'azureml-sdk', 'azureml-core']:\n",
" print('{}\\t{}'.format(p, dependencies[p]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'myenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Substitute the actual version number in the environment file.\n",
"# This is not strictly needed in this notebook because the model should have been generated using the current SDK version.\n",
"# However, we include this in case this code is used on an experiment from a previous SDK version.\n",
"\n",
"with open(conda_env_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(conda_env_file_name, 'w') as cefw:\n",
" cefw.write(content.replace(azureml.core.VERSION, dependencies['azureml-sdk']))\n",
"\n",
"# Substitute the actual model id in the script file.\n",
"\n",
"script_file_name = 'score.py'\n",
"\n",
"with open(script_file_name, 'r') as cefr:\n",
" content = cefr.read()\n",
"\n",
"with open(script_file_name, 'w') as cefw:\n",
" cefw.write(content.replace('<<modelid>>', local_run.model_id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Container Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script = script_file_name,\n",
" conda_file = conda_env_file_name,\n",
" tags = {'area': \"digits\", 'type': \"automl_classification\"},\n",
" description = \"Image for automl classification sample\")\n",
"\n",
"image = Image.create(name = \"automlsampleimage\",\n",
" # this is the model object \n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)\n",
"\n",
"if image.creation_state == 'Failed':\n",
" print(\"Image build log at: \" + image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the Image as a Web Service on Azure Container Instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"digits\", 'type': \"automl_classification\"}, \n",
" description = 'sample service for Automl Classification')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'automl-sample-01'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete a Web Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get Logs from a Deployed Web Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]\n",
"\n",
"for index in np.random.choice(len(y_test), 3, replace = False):\n",
" print(index)\n",
" test_sample = json.dumps({'data':X_test[index:index + 1].tolist()})\n",
" predicted = aci_service.run(input_data = test_sample)\n",
" label = y_test[index]\n",
" predictedDict = json.loads(predicted)\n",
" title = \"Label value = %d Predicted value = %s \" % ( label,predictedDict['result'][0])\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,398 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification using whitelist models**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"This notebooks shows how can automl can be trained on a a selected list of models,see the readme.md for the models.\n",
"This trains the model exclusively on tensorflow based models.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model on a whilelisted models using local compute. \n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-whitelist'\n",
"project_folder = './sample_projects/automl-local-whitelist'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**whitelist_models**|List of models that AutoML should use. The possible values are listed [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-auto-train#configure-your-experiment-settings).|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_tf=True,\n",
" whitelist_models=[\"TensorFlowLinearClassifier\", \"TensorFlowDNN\"],\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,413 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Classification with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"This uses scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"\n",
"# Exclude the first 100 rows from training so that they can be used for test.\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 25,\n",
" n_cross_validations = 3,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Optionally, you can continue an interrupted local run by calling `continue_experiment` without the `iterations` parameter, or run more iterations for a completed run by specifying the `iterations` parameter:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = local_run.continue_experiment(X = X_train, \n",
" y = y_train, \n",
" show_output = True,\n",
" iterations = 5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test \n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,515 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Prepare Data using `azureml.dataprep` for Remote Execution (DSVM)**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
"2. Pass the `Dataflow` to AutoML for a local run.\n",
"3. Pass the `Dataflow` to AutoML for a remote run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import time\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
" \n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataprep-remote-dsvm'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataprep-remote-dsvm'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"This creates a general AutoML settings object applicable for both local and remote runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach a Remote Linux DSVM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dsvm_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[dsvm_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found existing DVSM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pass Data with `Dataflow` Objects\n",
"\n",
"The `Dataflow` objects captured above can also be passed to the `submit` method for a remote run. AutoML will serialize the `Dataflow` object and send it to the remote compute target. The `Dataflow` will not be evaluated locally."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" X = X,\n",
" y = y,\n",
" **automl_settings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the first iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"best_run, fitted_model = remote_run.get_output(iteration = iteration)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,466 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Prepare Data using `azureml.dataprep` for Local Execution**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we showcase how you can use the `azureml.dataprep` SDK to load and prepare data for AutoML. `azureml.dataprep` can also be used standalone; full documentation can be found [here](https://github.com/Microsoft/PendletonDocs).\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Define data loading and preparation steps in a `Dataflow` using `azureml.dataprep`.\n",
"2. Pass the `Dataflow` to AutoML for a local run.\n",
"3. Pass the `Dataflow` to AutoML for a remote run."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"Currently, Data Prep only supports __Ubuntu 16__ and __Red Hat Enterprise Linux 7__. We are working on supporting more linux distros."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"import azureml.dataprep as dprep\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
" \n",
"# choose a name for experiment\n",
"experiment_name = 'automl-dataprep-local'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-dataprep-local'\n",
" \n",
"experiment = Experiment(ws, experiment_name)\n",
" \n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Review the Data Preparation Result\n",
"\n",
"You can peek the result of a Dataflow at any range using `skip(i)` and `head(j)`. Doing so evaluates only `j` records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"This creates a general AutoML settings object applicable for both local and remote runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\" : 10,\n",
" \"iterations\" : 2,\n",
" \"primary_metric\" : 'AUC_weighted',\n",
" \"preprocess\" : False,\n",
" \"verbosity\" : logging.INFO,\n",
" \"n_cross_validations\": 3\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pass Data with `Dataflow` Objects\n",
"\n",
"The `Dataflow` objects captured above can be passed to the `submit` method for a local run. AutoML will retrieve the results from the `Dataflow` for model training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" X = X,\n",
" y = y,\n",
" **automl_settings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the first iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"best_run, fitted_model = local_run.get_output(iteration = iteration)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict 2 digits and see how our model works."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Randomly select digits and test\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capture the `Dataflow` Objects for Later Use in AutoML\n",
"\n",
"`Dataflow` objects are immutable and are composed of a list of data preparation steps. A `Dataflow` object can be branched at any point for further usage."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# sklearn.digits.data + target\n",
"digits_complete = dprep.auto_read_file('https://dprepdata.blob.core.windows.net/automl-notebook-data/digits-complete.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`digits_complete` (sourced from `sklearn.datasets.load_digits()`) is forked into `dflow_X` to capture all the feature columns and `dflow_y` to capture the label column."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(digits_complete.to_pandas_dataframe().shape)\n",
"labels_column = 'Column64'\n",
"dflow_X = digits_complete.drop_columns(columns = [labels_column])\n",
"dflow_y = digits_complete.keep_columns(columns = [labels_column])"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,359 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Exploring Previous Runs**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Explore](#Explore)\n",
"1. [Download](#Download)\n",
"1. [Register](#Register)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we present some examples on navigating previously executed runs. We also show how you can download a fitted model for any previous run.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. List all experiments in a workspace.\n",
"2. List all AutoML runs in an experiment.\n",
"3. Get details for an AutoML run, including settings, run widget, and all metrics.\n",
"4. Download a fitted pipeline for any iteration."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import json\n",
"\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### List Experiments"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_list = Experiment.list(workspace=ws)\n",
"\n",
"summary_df = pd.DataFrame(index = ['No of Runs'])\n",
"for experiment in experiment_list:\n",
" automl_runs = list(experiment.get_runs(type='automl'))\n",
" summary_df[experiment.name] = [len(automl_runs)]\n",
" \n",
"pd.set_option('display.max_colwidth', -1)\n",
"summary_df.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### List runs for an experiment\n",
"Set `experiment_name` to any experiment name from the result of the Experiment.list cell to load the AutoML runs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment_name = 'automl-local-classification' # Replace this with any project name from previous cell.\n",
"\n",
"proj = ws.experiments[experiment_name]\n",
"summary_df = pd.DataFrame(index = ['Type', 'Status', 'Primary Metric', 'Iterations', 'Compute', 'Name'])\n",
"automl_runs = list(proj.get_runs(type='automl'))\n",
"automl_runs_project = []\n",
"for run in automl_runs:\n",
" properties = run.get_properties()\n",
" tags = run.get_tags()\n",
" amlsettings = json.loads(properties['AMLSettingsJsonString'])\n",
" if 'iterations' in tags:\n",
" iterations = tags['iterations']\n",
" else:\n",
" iterations = properties['num_iterations']\n",
" summary_df[run.id] = [amlsettings['task_type'], run.get_details()['status'], properties['primary_metric'], iterations, properties['target'], amlsettings['name']]\n",
" if run.get_details()['status'] == 'Completed':\n",
" automl_runs_project.append(run.id)\n",
" \n",
"from IPython.display import HTML\n",
"projname_html = HTML(\"<h3>{}</h3>\".format(proj.name))\n",
"\n",
"from IPython.display import display\n",
"display(projname_html)\n",
"display(summary_df.T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get details for a run\n",
"\n",
"Copy the project name and run id from the previous cell output to find more details on a particular run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"run_id = automl_runs_project[0] # Replace with your own run_id from above run ids\n",
"assert (run_id in summary_df.keys()), \"Run id not found! Please set run id to a value from above run ids\"\n",
"\n",
"from azureml.widgets import RunDetails\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"ml_run = AutoMLRun(experiment = experiment, run_id = run_id)\n",
"\n",
"summary_df = pd.DataFrame(index = ['Type', 'Status', 'Primary Metric', 'Iterations', 'Compute', 'Name', 'Start Time', 'End Time'])\n",
"properties = ml_run.get_properties()\n",
"tags = ml_run.get_tags()\n",
"status = ml_run.get_details()\n",
"amlsettings = json.loads(properties['AMLSettingsJsonString'])\n",
"if 'iterations' in tags:\n",
" iterations = tags['iterations']\n",
"else:\n",
" iterations = properties['num_iterations']\n",
"start_time = None\n",
"if 'startTimeUtc' in status:\n",
" start_time = status['startTimeUtc']\n",
"end_time = None\n",
"if 'endTimeUtc' in status:\n",
" end_time = status['endTimeUtc']\n",
"summary_df[ml_run.id] = [amlsettings['task_type'], status['status'], properties['primary_metric'], iterations, properties['target'], amlsettings['name'], start_time, end_time]\n",
"display(HTML('<h3>Runtime Details</h3>'))\n",
"display(summary_df)\n",
"\n",
"#settings_df = pd.DataFrame(data = amlsettings, index = [''])\n",
"display(HTML('<h3>AutoML Settings</h3>'))\n",
"display(amlsettings)\n",
"\n",
"display(HTML('<h3>Iterations</h3>'))\n",
"RunDetails(ml_run).show() \n",
"\n",
"children = list(ml_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"display(HTML('<h3>Metrics</h3>'))\n",
"display(rundata)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the Best Model for Any Given Metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metric = 'AUC_weighted' # Replace with a metric name.\n",
"best_run, fitted_model = ml_run.get_output(metric = metric)\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download the Model for Any Given Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 1 # Replace with an iteration number.\n",
"best_run, fitted_model = ml_run.get_output(iteration = iteration)\n",
"fitted_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register fitted model for deployment\n",
"If neither `metric` nor `iteration` are specified in the `register_model` call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Best Model for Any Given Metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metric = 'AUC_weighted' # Replace with a metric name.\n",
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags, metric = metric)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register the Model for Any Given Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 1 # Replace with an iteration number.\n",
"description = 'AutoML Model'\n",
"tags = None\n",
"ml_run.register_model(description = description, tags = tags, iteration = iteration)\n",
"print(ml_run.model_id) # Use this id to deploy the model as a web service in Azure."
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,405 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Energy Demand Forecasting**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we show how AutoML can be used for energy demand forecasting.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig with new task type \"forecasting\" for timeseries data training, and other timeseries related settings: for this dataset we use the basic one: \"time_column_name\" \n",
"3. Training the Model using local compute\n",
"4. Exploring the results\n",
"5. Testing the fitted model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the *forecasting* task in AutoML, you need to have the **azuremlftk** package installed in your environment. The following cell tests whether this package is installed locally and, if not, gives you instructions for installing it. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" import ftk\n",
" print('Using FTK version ' + ftk.__version__)\n",
"except ImportError:\n",
" print(\"Unable to import forecasting package. This notebook does not work without this package.\\n\"\n",
" + \"Please open a command prompt and run `pip install azuremlftk` to install the package. \\n\"\n",
" + \"Make sure you install the package into AutoML's Python environment.\\n\\n\"\n",
" + \"For instance, if AutoML is installed in a conda environment called `python36`, run:\\n\"\n",
" + \"> activate python36\\n> pip install azuremlftk\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from matplotlib import pyplot as plt\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-energydemandforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-energydemandforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"Read energy demanding data from file, and preview data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = pd.read_csv(\"nyc_energy.csv\", parse_dates=['timeStamp'])\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the data to train and test\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train = data[data['timeStamp'] < '2017-02-01']\n",
"test = data[data['timeStamp'] >= '2017-02-01']\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare the test data, we will feed X_test to the fitted model and get prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_test = test.pop('demand').values\n",
"X_test = test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split the train data to train and valid\n",
"\n",
"Use one month's data as valid data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train = train[train['timeStamp'] < '2017-01-01']\n",
"X_valid = train[train['timeStamp'] >= '2017-01-01']\n",
"y_train = X_train.pop('demand').values\n",
"y_valid = X_valid.pop('demand').values\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_valid.shape)\n",
"print(y_valid.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**X_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|Data used to evaluate a model in a iteration. (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'timeStamp'\n",
"automl_settings = {\n",
" \"time_column_name\": time_column_name,\n",
"}\n",
"\n",
"\n",
"automl_config = AutoMLConfig(task = 'forecasting',\n",
" debug_log = 'automl_nyc_energy_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations = 10,\n",
" iteration_timeout_minutes = 5,\n",
" X = X_train,\n",
" y = y_train,\n",
" X_valid = X_valid,\n",
" y_valid = y_valid,\n",
" path=project_folder,\n",
" verbosity = logging.INFO,\n",
" **automl_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
"You will see the currently running iterations printing to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Below we select the best pipeline from our iterations. The get_output method on automl_classifier returns the best run and the fitted model for the last fit invocation. There are overloads on get_output that allow you to retrieve the best run and fitted model for any logged metric or a particular iteration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"fitted_model.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"Predict on training and test set, and calculate residual values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_model.predict(X_test)\n",
"y_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use the Check Data Function to remove the nan values from y_test to avoid error when calculate metrics "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if len(y_test) != len(y_pred):\n",
" raise ValueError(\n",
" 'the true values and prediction values do not have equal length.')\n",
"elif len(y_test) == 0:\n",
" raise ValueError(\n",
" 'y_true and y_pred are empty.')\n",
"\n",
"# if there is any non-numeric element in the y_true or y_pred,\n",
"# the ValueError exception will be thrown.\n",
"y_test_f = np.array(y_test).astype(float)\n",
"y_pred_f = np.array(y_pred).astype(float)\n",
"\n",
"# remove entries both in y_true and y_pred where at least\n",
"# one element in y_true or y_pred is missing\n",
"y_test = y_test_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]\n",
"y_pred = y_pred_f[~(np.isnan(y_test_f) | np.isnan(y_pred_f))]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate metrics for the prediction\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"# Explained variance score: 1 is perfect prediction\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('R2 score: %.2f' % r2_score(y_test, y_pred))\n",
"\n",
"\n",
"\n",
"# Plot outputs\n",
"%matplotlib notebook\n",
"test_pred = plt.scatter(y_test, y_pred, color='b')\n",
"test_test = plt.scatter(y_test, y_test, color='g')\n",
"plt.legend((test_pred, test_test), ('prediction', 'truth'), loc='upper left', fontsize=8)\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "xiaga"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,441 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Orange Juice Sales Forecasting**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example, we use AutoML to find and tune a time-series forecasting model.\n",
"\n",
"Make sure you have executed the [configuration notebook](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook, you will:\n",
"1. Create an Experiment in an existing Workspace\n",
"2. Instantiate an AutoMLConfig \n",
"3. Find and train a forecasting model using local compute\n",
"4. Evaluate the performance of the model\n",
"\n",
"The examples in the follow code samples use the [University of Chicago's Dominick's Finer Foods dataset](https://research.chicagobooth.edu/kilts/marketing-databases/dominicks) to forecast orange juice sales. Dominick's was a grocery chain in the Chicago metropolitan area."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the *forecasting* task in AutoML, you need to have the **azuremlftk** package installed in your environment. The following cell tests whether this package is installed locally and, if not, gives you instructions for installing it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" import ftk\n",
" print('Using FTK version ' + ftk.__version__)\n",
"except ImportError:\n",
" print(\"Unable to import forecasting package. This notebook does not work without this package.\\n\"\n",
" + \"Please open a command prompt and run `pip install azuremlftk` to install the package. \\n\"\n",
" + \"Make sure you install the package into AutoML's Python environment.\\n\\n\"\n",
" + \"For instance, if AutoML is installed in a conda environment called `python36`, run:\\n\"\n",
" + \"> activate python36\\n> pip install azuremlftk\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import pandas as pd\n",
"import numpy as np\n",
"import logging\n",
"import warnings\n",
"# Squash warning messages for cleaner output in the notebook\n",
"warnings.showwarning = lambda *args, **kwargs: None\n",
"\n",
"\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.train.automl import AutoMLConfig\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As part of the setup you have already created a <b>Workspace</b>. To run AutoML, you also need to create an <b>Experiment</b>. An Experiment is a named object in a Workspace which represents a predictive task, the output of which is a trained model and a set of evaluation metrics for the model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the run history container in the workspace\n",
"experiment_name = 'automl-ojsalesforecasting'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-ojsalesforecasting'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Run History Name'] = experiment_name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"You are now ready to load the historical orange juice sales data. We will load the CSV file into a plain pandas DataFrame; the time column in the CSV is called _WeekStarting_, so it will be specially parsed into the datetime type."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"time_column_name = 'WeekStarting'\n",
"data = pd.read_csv(\"dominicks_OJ.csv\", parse_dates=[time_column_name])\n",
"data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Each row in the DataFrame holds a quantity of weekly sales for an OJ brand at a single store. The data also includes the sales price, a flag indicating if the OJ brand was advertised in the store that week, and some customer demographic information based on the store location. For historical reasons, the data also include the logarithm of the sales quantity. The Dominick's grocery data is commonly used to illustrate econometric modeling techniques where logarithms of quantities are generally preferred. \n",
"\n",
"The task is now to build a time-series model for the _Quantity_ column. It is important to note that this dataset is comprised of many individual time-series - one for each unique combination of _Store_ and _Brand_. To distinguish the individual time-series, we thus define the **grain** - the columns whose values determine the boundaries between time-series: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grain_column_names = ['Store', 'Brand']\n",
"nseries = data.groupby(grain_column_names).ngroups\n",
"print('Data contains {0} individual time-series.'.format(nseries))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Splitting\n",
"For the purposes of demonstration and later forecast evaluation, we now split the data into a training and a testing set. The test set will contain the final 20 weeks of observed sales for each time-series."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ntest_periods = 20\n",
"\n",
"def split_last_n_by_grain(df, n):\n",
" \"\"\"\n",
" Group df by grain and split on last n rows for each group\n",
" \"\"\"\n",
" df_grouped = (df.sort_values(time_column_name) # Sort by ascending time\n",
" .groupby(grain_column_names, group_keys=False))\n",
" df_head = df_grouped.apply(lambda dfg: dfg.iloc[:-n])\n",
" df_tail = df_grouped.apply(lambda dfg: dfg.iloc[-n:])\n",
" return df_head, df_tail\n",
"\n",
"X_train, X_test = split_last_n_by_grain(data, ntest_periods)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modeling\n",
"\n",
"For forecasting tasks, AutoML uses pre-processing and estimation steps that are specific to time-series. AutoML will undertake the following pre-processing steps:\n",
"* Detect time-series sample frequency (e.g. hourly, daily, weekly) and create new records for absent time points to make the series regular. A regular time series has a well-defined frequency and has a value at every sample point in a contiguous time span \n",
"* Impute missing values in the target (via forward-fill) and feature columns (using median column values) \n",
"* Create grain-based features to enable fixed effects across different series\n",
"* Create time-based features to assist in learning seasonal patterns\n",
"* Encode categorical variables to numeric quantities\n",
"\n",
"AutoML will currently train a single, regression-type model across **all** time-series in a given training set. This allows the model to generalize across related series.\n",
"\n",
"You are almost ready to start an AutoML training job. We will first need to create a validation set from the existing training set (i.e. for hyper-parameter tuning): "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nvalidation_periods = 20\n",
"X_train, X_validate = split_last_n_by_grain(X_train, nvalidation_periods)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also need to separate the target column from the rest of the DataFrame: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_column_name = 'Quantity'\n",
"y_train = X_train.pop(target_column_name).values\n",
"y_validate = X_validate.pop(target_column_name).values "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"The AutoMLConfig object defines the settings and data for an AutoML training job. Here, we set necessary inputs like the task type, the number of AutoML iterations to try, and the training and validation data. \n",
"\n",
"For forecasting tasks, there are some additional parameters that can be set: the name of the column holding the date/time and the grain column names. A time column is required for forecasting, while the grain is optional. If a grain is not given, the forecaster assumes that the whole dataset is a single time-series. We also pass a list of columns to drop prior to modeling. The _logQuantity_ column is completely correlated with the target quantity, so it must be removed to prevent a target leak. \n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**iterations**|Number of iterations. In each iteration, Auto ML trains a specific pipeline on the given data|\n",
"|**X**|Training matrix of features, shape = [n_training_samples, n_features]|\n",
"|**y**|Target values, shape = [n_training_samples, ]|\n",
"|**X_valid**|Validation matrix of features, shape = [n_validation_samples, n_features]|\n",
"|**y_valid**|Target values for validation, shape = [n_validation_samples, ]\n",
"|**enable_ensembling**|Allow AutoML to create ensembles of the best performing models\n",
"|**debug_log**|Log file path for writing debugging information\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" 'time_column_name': time_column_name,\n",
" 'grain_column_names': grain_column_names,\n",
" 'drop_column_names': ['logQuantity']\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" iterations=10,\n",
" X=X_train,\n",
" y=y_train,\n",
" X_valid=X_validate,\n",
" y_valid=y_validate,\n",
" enable_ensembling=False,\n",
" path=project_folder,\n",
" verbosity=logging.INFO,\n",
" **automl_settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now submit a new training run. For local runs, the execution is synchronous. Depending on the data and number of iterations this operation may take several minutes.\n",
"Information from each iteration will be printed to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"Each run within an Experiment stores serialized (i.e. pickled) pipelines from the AutoML iterations. We can now retrieve the pipeline with the best performance on the validation dataset:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_pipeline = local_run.get_output()\n",
"fitted_pipeline.steps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make Predictions from the Best Fitted Model\n",
"Now that we have retrieved the best pipeline/model, it can be used to make predictions on test data. First, we remove the target values from the test set:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_test = X_test.pop(target_column_name).values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_test.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To produce predictions on the test set, we need to know the feature values at all dates in the test set. This requirement is somewhat reasonable for the OJ sales data since the features mainly consist of price, which is usually set in advance, and customer demographics which are approximately constant for each store over the 20 week forecast horizon in the testing data. \n",
"\n",
"The target predictions can be retrieved by calling the `predict` method on the best model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred = fitted_pipeline.predict(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Calculate evaluation metrics for the prediction\n",
"To evaluate the accuracy of the forecast, we'll compare against the actual sales quantities for some select metrics, included the mean absolute percentage error (MAPE)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def MAPE(actual, pred):\n",
" \"\"\"\n",
" Calculate mean absolute percentage error.\n",
" Remove NA and values where actual is close to zero\n",
" \"\"\"\n",
" not_na = ~(np.isnan(actual) | np.isnan(pred))\n",
" not_zero = ~np.isclose(actual, 0.0)\n",
" actual_safe = actual[not_na & not_zero]\n",
" pred_safe = pred[not_na & not_zero]\n",
" APE = 100*np.abs((actual_safe - pred_safe)/actual_safe)\n",
" return np.mean(APE)\n",
"\n",
"print(\"[Test Data] \\nRoot Mean squared error: %.2f\" % np.sqrt(mean_squared_error(y_test, y_pred)))\n",
"print('mean_absolute_error score: %.2f' % mean_absolute_error(y_test, y_pred))\n",
"print('MAPE: %.2f' % MAPE(y_test, y_pred))"
]
}
],
"metadata": {
"authors": [
{
"name": "erwright"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,396 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Blacklisting Models, Early Termination, and Handling Missing Data**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for handling missing values in data. We also provide a stopping metric indicating a target for the primary metrics so that AutoML can terminate the run without necessarly going through all the iterations. Finally, if you want to avoid a certain pipeline, we allow you to specify a blacklist of algorithms that AutoML will ignore for this run.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Blacklisting** certain pipelines\n",
"- Specifying **target metrics** to indicate stopping criteria\n",
"- Handling **missing data** in the input"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment.\n",
"experiment_name = 'automl-local-missing-data'\n",
"project_folder = './sample_projects/automl-local-missing-data'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[10:,:]\n",
"y_train = digits.target[10:]\n",
"\n",
"# Add missing values in 75% of the lines.\n",
"missing_rate = 0.75\n",
"n_missing_samples = int(np.floor(X_train.shape[0] * missing_rate))\n",
"missing_samples = np.hstack((np.zeros(X_train.shape[0] - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool)))\n",
"rng = np.random.RandomState(0)\n",
"rng.shuffle(missing_samples)\n",
"missing_features = rng.randint(0, X_train.shape[1], n_missing_samples)\n",
"X_train[np.where(missing_samples)[0], missing_features] = np.nan"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data = X_train)\n",
"df['Label'] = pd.Series(y_train, index=df.index)\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment. This includes setting `experiment_exit_score`, which should cause the run to complete before the `iterations` count is reached.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**experiment_exit_score**|*double* value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
"|**blacklist_models**|*List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i>|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 20,\n",
" n_cross_validations = 5,\n",
" preprocess = True,\n",
" experiment_exit_score = 0.9984,\n",
" blacklist_models = ['KNN','LinearSVM'],\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = local_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 3\n",
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]\n",
"\n",
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()\n"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,365 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Explain classification model and visualize the explanation**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the sklearn's [iris dataset](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html) to showcase how you can use the AutoML Classifier for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Creating an Experiment in an existing Workspace\n",
"2. Instantiating AutoMLConfig\n",
"3. Training the Model using local compute and explain the model\n",
"4. Visualization model's feature importance in widget\n",
"5. Explore best model's explanation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-local-classification'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-classification-model-explanation'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"\n",
"iris = datasets.load_iris()\n",
"y = iris.target\n",
"X = iris.data\n",
"\n",
"features = iris.feature_names\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X,\n",
" y,\n",
" test_size=0.1,\n",
" random_state=100,\n",
" stratify=y)\n",
"\n",
"X_train = pd.DataFrame(X_train, columns=features)\n",
"X_test = pd.DataFrame(X_test, columns=features)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate a AutoMLConfig object. This defines the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**max_time_sec**|Time limit in minutes for each iterations|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains the data with a specific pipeline|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers. |\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]|\n",
"|**model_explainability**|Indicate to explain each trained pipeline or not |\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder. |"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 200,\n",
" iterations = 10,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" X_valid = X_test,\n",
" y_valid = y_test,\n",
" model_explainability=True,\n",
" path=project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can call the submit method on the experiment object and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and number of iterations this can run for while.\n",
"You will see the currently running iterations printing to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method on automl_classifier returns the best run and the fitted model for the last *fit* invocation. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Best Model 's explanation\n",
"\n",
"Retrieve the explanation from the best_run. And explanation information includes:\n",
"\n",
"1.\tshap_values: The explanation information generated by shap lib\n",
"2.\texpected_values: The expected value of the model applied to set of X_train data.\n",
"3.\toverall_summary: The model level feature importance values sorted in descending order\n",
"4.\toverall_imp: The feature names sorted in the same order as in overall_summary\n",
"5.\tper_class_summary: The class level feature importance values sorted in descending order. Only available for the classification case\n",
"6.\tper_class_imp: The feature names sorted in the same order as in per_class_summary. Only available for the classification case"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import retrieve_model_explanation\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" retrieve_model_explanation(best_run)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(overall_summary)\n",
"print(overall_imp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(per_class_summary)\n",
"print(per_class_imp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Beside retrieve the existed model explanation information, explain the model with different train/test data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.train.automl.automlexplainer import explain_model\n",
"\n",
"shap_values, expected_values, overall_summary, overall_imp, per_class_summary, per_class_imp = \\\n",
" explain_model(fitted_model, X_train, X_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(overall_summary)\n",
"print(overall_imp)"
]
}
],
"metadata": {
"authors": [
{
"name": "xif"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,417 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Regression with Local Compute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [diabetes dataset](http://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) to showcase how you can use AutoML for a simple regression problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"3. Train the model using local compute.\n",
"4. Explore the results.\n",
"5. Test the best fitted model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-regression'\n",
"project_folder = './sample_projects/automl-local-regression'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"This uses scikit-learn's [load_diabetes](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load the diabetes dataset, a well-known built-in small dataset that comes with scikit-learn.\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"X, y = load_diabetes(return_X_y = True)\n",
"\n",
"columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'regression',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 10,\n",
" primary_metric = 'spearman_correlation',\n",
" n_cross_validations = 5,\n",
" debug_log = 'automl.log',\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model that has the smallest `root_mean_squared_error` value (which turned out to be the same as the one with largest `spearman_correlation` value):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"root_mean_squared_error\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = local_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Predict on training and test set, and calculate residual values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_train = fitted_model.predict(X_train)\n",
"y_residual_train = y_train - y_pred_train\n",
"\n",
"y_pred_test = fitted_model.predict(X_test)\n",
"y_residual_test = y_test - y_pred_test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"# Set up a multi-plot chart.\n",
"f, (a0, a1) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[1, 1], 'wspace':0, 'hspace': 0})\n",
"f.suptitle('Regression Residual Values', fontsize = 18)\n",
"f.set_figheight(6)\n",
"f.set_figwidth(16)\n",
"\n",
"# Plot residual values of training set.\n",
"a0.axis([0, 360, -200, 200])\n",
"a0.plot(y_residual_train, 'bo', alpha = 0.5)\n",
"a0.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a0.text(16,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_train, y_pred_train))), fontsize = 12)\n",
"a0.text(16,140,'R2 score = {0:.2f}'.format(r2_score(y_train, y_pred_train)), fontsize = 12)\n",
"a0.set_xlabel('Training samples', fontsize = 12)\n",
"a0.set_ylabel('Residual Values', fontsize = 12)\n",
"\n",
"# Plot a histogram.\n",
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step')\n",
"a0.hist(y_residual_train, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10)\n",
"\n",
"# Plot residual values of test set.\n",
"a1.axis([0, 90, -200, 200])\n",
"a1.plot(y_residual_test, 'bo', alpha = 0.5)\n",
"a1.plot([-10,360],[0,0], 'r-', lw = 3)\n",
"a1.text(5,170,'RMSE = {0:.2f}'.format(np.sqrt(mean_squared_error(y_test, y_pred_test))), fontsize = 12)\n",
"a1.text(5,140,'R2 score = {0:.2f}'.format(r2_score(y_test, y_pred_test)), fontsize = 12)\n",
"a1.set_xlabel('Test samples', fontsize = 12)\n",
"a1.set_yticklabels([])\n",
"\n",
"# Plot a histogram.\n",
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', bins = 10, histtype = 'step')\n",
"a1.hist(y_residual_test, orientation = 'horizontal', color = 'b', alpha = 0.2, bins = 10)\n",
"\n",
"plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,532 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using attach**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML to handle text data with remote attach.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`\n",
"- Handling **text** data using the `preprocess` flag"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-attach'\n",
"project_folder = './sample_projects/automl-remote-attach'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Attach a Remote Linux DSVM\n",
"To use a remote Docker compute target:\n",
"1. Create a Linux DSVM in Azure, following these [quick instructions](https://docs.microsoft.com/en-us/azure/machine-learning/desktop-workbench/how-to-create-dsvm-hdi). Make sure you use the Ubuntu flavor (not CentOS). Make sure that disk space is available under `/tmp` because AutoML creates files under `/tmp/azureml_run`s. The DSVM should have more cores than the number of parallel runs that you plan to enable. It should also have at least 4GB per core.\n",
"2. Enter the IP address, user name and password below.\n",
"\n",
"**Note:** By default, SSH runs on port 22 and you don't need to change the port number below. If you've configured SSH to use a different port, change `dsvm_ssh_port` accordinglyaddress. [Read more](https://render.githubusercontent.com/documentation/sdk/ssh-issue.md) on changing SSH ports for security reasons."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, RemoteCompute\n",
"import time\n",
"\n",
"# Add your VM information below\n",
"# If a compute with the specified compute_name already exists, it will be used and the dsvm_ip_addr, dsvm_ssh_port, \n",
"# dsvm_username and dsvm_password will be ignored.\n",
"compute_name = 'mydsvmb'\n",
"dsvm_ip_addr = '<<ip_addr>>'\n",
"dsvm_ssh_port = 22\n",
"dsvm_username = '<<username>>'\n",
"dsvm_password = '<<password>>'\n",
"\n",
"if compute_name in ws.compute_targets:\n",
" print('Using existing compute.')\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
"else:\n",
" attach_config = RemoteCompute.attach_configuration(address=dsvm_ip_addr, username=dsvm_username, password=dsvm_password, ssh_port=dsvm_ssh_port)\n",
" ComputeTarget.attach(workspace=ws, name=compute_name, attach_configuration=attach_config)\n",
"\n",
" while ws.compute_targets[compute_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
"\n",
" dsvm_compute = ws.compute_targets[compute_name]\n",
" \n",
" if dsvm_compute.provisioning_state == 'Failed':\n",
" print('Attached failed.')\n",
" print(dsvm_compute.provisioning_errors)\n",
" dsvm_compute.detach()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns a [dictionary](README.md#getdata)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import numpy as np\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"def get_data():\n",
" remove = ('headers', 'footers', 'quotes')\n",
" categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
" data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
" X_train = np.array(data_train.data).reshape((len(data_train.data),1))\n",
" y_train = np.array(data_train.target)\n",
" \n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.\n",
"|**max_cores_per_iteration**|Indicates how many cores on the compute target would be used to train a single pipeline.<br>Default is *1*; you can set it to *-1* to use all cores.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 2\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 0\n",
"zero_run, zero_model = remote_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,546 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using AmlCompute**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Create or Attach existing AmlCompute to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AmlCompute\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-amlcompute'\n",
"project_folder = './sample_projects/automl-remote-amlcompute'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create or Attach existing AmlCompute\n",
"You will need to create a [compute target](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture#compute-target) for your AutoML run. In this tutorial, you create `AmlCompute` as your training compute resource.\n",
"\n",
"**Creation of AmlCompute takes approximately 5 minutes.** If the AmlCompute with that name is already in your workspace this code will skip the creation process.\n",
"\n",
"As with other Azure services, there are limits on certain resources (e.g. AmlCompute) associated with the Azure Machine Learning service. Please read [this article](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-quotas) on the default limits and how to request more quota."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AmlCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"\n",
"# Choose a name for your cluster.\n",
"amlcompute_cluster_name = \"automlcl\"\n",
"\n",
"found = False\n",
"# Check if this compute target already exists in the workspace.\n",
"cts = ws.compute_targets\n",
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':\n",
" found = True\n",
" print('Found existing compute target.')\n",
" compute_target = cts[amlcompute_cluster_name]\n",
" \n",
"if not found:\n",
" print('Creating a new compute target...')\n",
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_D2_V2\", # for GPU, use \"STANDARD_NC6\"\n",
" #vm_priority = 'lowpriority', # optional\n",
" max_nodes = 6)\n",
"\n",
" # Create the cluster.\n",
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
" \n",
" # Can poll for a minimum number of nodes and for a specific timeout.\n",
" # If no min_node_count is provided, it will use the scale settings for the cluster.\n",
" compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
" \n",
" # For a more detailed view of current AmlCompute status, use get_status()."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to AmlCompute\n",
"conda_run_config.target = compute_target\n",
"conda_run_config.environment.docker.enabled = True\n",
"conda_run_config.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"from sklearn import datasets\n",
"from scipy import sparse\n",
"import numpy as np\n",
"\n",
"def get_data():\n",
" \n",
" digits = datasets.load_digits()\n",
" X_train = digits.data\n",
" y_train = digits.target\n",
"\n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using AmlCompute, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 2,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 5,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder,\n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading executed runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment = experiment, run_id = 'AutoML_5db13491-c92a-4f1d-b622-8ab8d973a058')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration=iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,600 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution with DataStore**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"This sample accesses a data file on a remote DSVM through DataStore. Advantages of using data store are:\n",
"1. DataStore secures the access details.\n",
"2. DataStore supports read, write to blob and file store\n",
"3. AutoML natively supports copying data from DataStore to DSVM\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you would see\n",
"1. Storing data in DataStore.\n",
"2. get_data returning data from DataStore."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created a <b>Workspace</b>. For AutoML you would need to create an <b>Experiment</b>. An <b>Experiment</b> is a named object in a <b>Workspace</b>, which is used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.compute import DsvmCompute\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for experiment\n",
"experiment_name = 'automl-remote-datastore-file'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-remote-datastore-file'\n",
"\n",
"experiment=Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"Note: If creation fails with a message about Marketplace purchase eligibilty, go to portal.azure.com, start creating DSVM there, and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled it, you can exit without actually creating VM.\n",
"\n",
"**Note**: By default SSH runs on port 22 and you don't need to specify it. But if for security reasons you can switch to a different port (such as 5022), you can append the port number to the address. [Read more](https://render.githubusercontent.com/documentation/sdk/ssh-issue.md) on this."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"compute_target_name = 'mydsvmc'\n",
"\n",
"try:\n",
" while ws.compute_targets[compute_target_name].provisioning_state == 'Creating':\n",
" time.sleep(1)\n",
" \n",
" dsvm_compute = DsvmCompute(workspace=ws, name=compute_target_name)\n",
" print('found existing:', dsvm_compute.name)\n",
"except:\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size=\"Standard_D2_v2\")\n",
" dsvm_compute = DsvmCompute.create(ws, name=compute_target_name, provisioning_configuration=dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output=True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(60) # Wait for ssh to be accessible"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"\n",
"### Copy data file to local\n",
"\n",
"Download the data file.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.isdir('data'):\n",
" os.mkdir('data') "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"import csv\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
" ]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
" \n",
"pd.DataFrame(data_train.data).to_csv(\"data/X_train.tsv\", index=False, header=False, quoting=csv.QUOTE_ALL, sep=\"\\t\")\n",
"pd.DataFrame(data_train.target).to_csv(\"data/y_train.tsv\", index=False, header=False, sep=\"\\t\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Upload data to the cloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be accessed for remote training. The datastore is a convenient construct associated with your workspace for you to upload/download data, and interact with it from your remote compute targets. It is backed by Azure blob storage account.\n",
"\n",
"The data.tsv files are uploaded into a directory named data at the root of the datastore."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#blob_datastore = Datastore(ws, blob_datastore_name)\n",
"ds = ws.get_default_datastore()\n",
"print(ds.datastore_type, ds.account_name, ds.container_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# ds.upload_files(\"data.tsv\")\n",
"ds.upload(src_dir='./data', target_path='data', overwrite=True, show_progress=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure & Run\n",
"\n",
"First let's create a DataReferenceConfigruation object to inform the system what data folder to download to the compute target.\n",
"The path_on_compute should be an absolute path to ensure that the data files are downloaded only once. The get_data method should use this same path to access the data files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import DataReferenceConfiguration\n",
"dr = DataReferenceConfiguration(datastore_name=ds.name, \n",
" path_on_datastore='data', \n",
" path_on_compute='/tmp/azureml_runs',\n",
" mode='download', # download files from datastore to compute target\n",
" overwrite=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"# set the data reference of the run coonfiguration\n",
"conda_run_config.data_references = {ds.name: dr}\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Get Data File\n",
"For remote executions you should author a get_data.py file containing a get_data() function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"\n",
"The *get_data()* function returns a [dictionary](README.md#getdata).\n",
"\n",
"The read_csv uses the path_on_compute value specified in the DataReferenceConfiguration call plus the path_on_datastore folder and then the actual file name."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"import pandas as pd\n",
"\n",
"def get_data():\n",
" X_train = pd.read_csv(\"/tmp/azureml_runs/data/X_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
" y_train = pd.read_csv(\"/tmp/azureml_runs/data/y_train.tsv\", delimiter=\"\\t\", header=None, quotechar='\"')\n",
"\n",
" return { \"X\" : X_train.values, \"y\" : y_train[0].values }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify automl_settings as **kwargs** as well. Also note that you can use the get_data() symantic for local excutions too. \n",
"\n",
"<i>Note: For Remote DSVM and Batch AI you cannot pass Numpy arrays directly to AutoMLConfig.</i>\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration|\n",
"|**iterations**|Number of iterations. In each iteration Auto ML trains a specific pipeline with the data|\n",
"|**n_cross_validations**|Number of cross validation splits|\n",
"|**max_concurrent_iterations**|Max number of iterations that would be executed in parallel. This should be less than the number of cores on the DSVM\n",
"|**preprocess**| *True/False* <br>Setting this to *True* enables Auto ML to perform preprocessing <br>on the input to handle *missing data*, and perform some common *feature extraction*|\n",
"|**enable_cache**|Setting this to *True* enables preprocess done once and reuse the same preprocessed data for all the iterations. Default value is True.|\n",
"|**max_cores_per_iteration**| Indicates how many cores on the compute target would be used to train a single pipeline.<br> Default is *1*, you can set it to *-1* to use all cores|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 60,\n",
" \"iterations\": 4,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": True,\n",
" \"max_cores_per_iteration\": 1,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path=project_folder,\n",
" run_configuration=conda_run_config,\n",
" #compute_target = dsvm_compute,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets/models even when the experiment is running to retreive the best model up to that point. Once you are satisfied with the model you can cancel a particular iteration or the whole run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"#### Widget for monitoring runs\n",
"\n",
"The widget will sit on \"loading\" until the first iteration completed, then you will see an auto-updating graph and table show up. It refreshed once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under /tmp/azureml_run/{iterationid}/azureml-logs\n",
"\n",
"NOTE: The widget displays a link at the bottom. This links to a web-ui to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use sdk methods to fetch all the child runs and see individual metrics that we log. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Canceling Runs\n",
"You can cancel ongoing remote runs using the *cancel()* and *cancel_iteration()* functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pre-process cache cleanup\n",
"The preprocess data gets cache at user default file store. When the run is completed the cache can be cleaned by running below cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run.clean_preprocessor_cache()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The *get_output* method returns the best run and the fitted model. There are overloads on *get_output* that allow you to retrieve the best run and fitted model for *any* logged metric or a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model based on any other metric"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = remote_run.get_output(metric=lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a specific iteration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 1\n",
"# best_run, fitted_model = remote_run.get_output(iteration=iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = np.array(data_test.data).reshape((len(data_test.data),1))\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,525 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Remote Execution using DSVM (Ubuntu)**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you wiil learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Attach an existing DSVM to a workspace.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using the DSVM.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition, this notebook showcases the following features:\n",
"- **Parallel** executions for iterations\n",
"- **Asynchronous** tracking of progress\n",
"- **Cancellation** of individual iterations or the entire run\n",
"- Retrieving models for any iteration or logged metric\n",
"- Specifying AutoML settings as `**kwargs`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import time\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose a name for the run history container in the workspace.\n",
"experiment_name = 'automl-remote-dsvm'\n",
"project_folder = './sample_projects/automl-remote-dsvm'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a Remote Linux DSVM\n",
"**Note:** If creation fails with a message about Marketplace purchase eligibilty, start creation of a DSVM through the [Azure portal](https://portal.azure.com), and select \"Want to create programmatically\" to enable programmatic creation. Once you've enabled this setting, you can exit the portal without actually creating the DSVM, and creation of the DSVM through the notebook should work.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import DsvmCompute\n",
"\n",
"dsvm_name = 'mydsvma'\n",
"try:\n",
" dsvm_compute = DsvmCompute(ws, dsvm_name)\n",
" print('Found an existing DSVM.')\n",
"except:\n",
" print('Creating a new DSVM.')\n",
" dsvm_config = DsvmCompute.provisioning_configuration(vm_size = \"Standard_D2s_v3\")\n",
" dsvm_compute = DsvmCompute.create(ws, name = dsvm_name, provisioning_configuration = dsvm_config)\n",
" dsvm_compute.wait_for_completion(show_output = True)\n",
" print(\"Waiting one minute for ssh to be accessible\")\n",
" time.sleep(90) # Wait for ssh to be accessible"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.runconfig import RunConfiguration\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"# create a new RunConfig object\n",
"conda_run_config = RunConfiguration(framework=\"python\")\n",
"\n",
"# Set compute target to the Linux DSVM\n",
"conda_run_config.target = dsvm_compute\n",
"\n",
"cd = CondaDependencies.create(pip_packages=['azureml-sdk[automl]'], conda_packages=['numpy'])\n",
"conda_run_config.environment.python.conda_dependencies = cd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data\n",
"For remote executions you should author a `get_data.py` file containing a `get_data()` function. This file should be in the root directory of the project. You can encapsulate code to read data either from a blob storage or local disk in this file.\n",
"In this example, the `get_data()` function returns data using scikit-learn's [load_digits](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) method."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if not os.path.exists(project_folder):\n",
" os.makedirs(project_folder)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile $project_folder/get_data.py\n",
"\n",
"from sklearn import datasets\n",
"from scipy import sparse\n",
"import numpy as np\n",
"\n",
"def get_data():\n",
" \n",
" digits = datasets.load_digits()\n",
" X_train = digits.data[100:,:]\n",
" y_train = digits.target[100:]\n",
"\n",
" return { \"X\" : X_train, \"y\" : y_train }"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"You can specify `automl_settings` as `**kwargs` as well. Also note that you can use a `get_data()` function for local excutions too.\n",
"\n",
"**Note:** When using Remote DSVM, you can't pass Numpy arrays directly to the fit method.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be less than the number of cores on the DSVM.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"iterations\": 20,\n",
" \"n_cross_validations\": 5,\n",
" \"primary_metric\": 'AUC_weighted',\n",
" \"preprocess\": False,\n",
" \"max_concurrent_iterations\": 2,\n",
" \"verbosity\": logging.INFO\n",
"}\n",
"\n",
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" path = project_folder, \n",
" run_configuration=conda_run_config,\n",
" data_script = project_folder + \"/get_data.py\",\n",
" **automl_settings\n",
" )\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note:** The first run on a new DSVM may take several minutes to prepare the environment."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. For remote runs the execution is asynchronous, so you will see the iterations get populated as they complete. You can interact with the widgets and models even when the experiment is running to retrieve the best model up to that point. Once you are satisfied with the model, you can cancel a particular iteration or the whole run.\n",
"\n",
"In this example, we specify `show_output = False` to suppress console output while the run is in progress."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run = experiment.submit(automl_config, show_output = False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"remote_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results\n",
"\n",
"#### Loading Executed Runs\n",
"In case you need to load a previously executed run, enable the cell below and replace the `run_id` value."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"remote_run = AutoMLRun(experiment=experiment, run_id = 'AutoML_480d3ed6-fc94-44aa-8f4e-0b945db9d3ef')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"You can click on a pipeline to see run properties and output logs. Logs are also available on the DSVM under `/tmp/azureml_run/{iterationid}/azureml-logs`\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(remote_run).show() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Wait until the run finishes.\n",
"remote_run.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(remote_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cancelling Runs\n",
"\n",
"You can cancel ongoing remote runs using the `cancel` and `cancel_iteration` functions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cancel the ongoing experiment and stop scheduling new iterations.\n",
"# remote_run.cancel()\n",
"\n",
"# Cancel iteration 1 and move onto iteration 2.\n",
"# remote_run.cancel_iteration(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = remote_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = remote_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iteration = 3\n",
"third_run, third_model = remote_run.get_output(iteration = iteration)\n",
"print(third_run)\n",
"print(third_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test Our Best Fitted Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,257 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Sample Weight**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Train](#Train)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use sample weight with AutoML. Sample weight is used where some sample values are more important than others.\n",
"\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to configure AutoML to use `sample_weight` and you will see the difference sample weight makes to the test results."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from matplotlib import pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn import datasets\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# Choose names for the regular and the sample weight experiments.\n",
"experiment_name = 'non_sample_weight_experiment'\n",
"sample_weight_experiment_name = 'sample_weight_experiment'\n",
"\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"sample_weight_experiment=Experiment(ws, sample_weight_experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate two `AutoMLConfig` objects. One will be used with `sample_weight` and one without."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_train = digits.data[100:,:]\n",
"y_train = digits.target[100:]\n",
"\n",
"# The example makes the sample weight 0.9 for the digit 4 and 0.1 for all other digits.\n",
"# This makes the model more likely to classify as 4 if the image it not clear.\n",
"sample_weight = np.array([(0.9 if x == 4 else 0.01) for x in y_train])\n",
"\n",
"automl_classifier = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)\n",
"\n",
"automl_sample_weight = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 10,\n",
" n_cross_validations = 2,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" sample_weight = sample_weight,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment objects and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_classifier, show_output = True)\n",
"sample_weight_run = sample_weight_experiment.submit(automl_sample_weight, show_output = True)\n",
"\n",
"best_run, fitted_model = local_run.get_output()\n",
"best_run_sample_weight, fitted_model_sample_weight = sample_weight_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test\n",
"\n",
"#### Load Test Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"digits = datasets.load_digits()\n",
"X_test = digits.data[:100, :]\n",
"y_test = digits.target[:100]\n",
"images = digits.images[:100]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Compare the Models\n",
"The prediction from the sample weight model is more likely to correctly predict 4's. However, it is also more likely to predict 4 for some images that are not labelled as 4."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in range(0,len(y_test)):\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" predicted_sample_weight = fitted_model_sample_weight.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" if predicted == 4 or predicted_sample_weight == 4 or label == 4:\n",
" title = \"Label value = %d Predicted value = %d Prediced with sample weight = %d\" % (label, predicted, predicted_sample_weight)\n",
" fig = plt.figure(1, figsize=(3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" plt.show()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,397 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated Machine Learning\n",
"_**Train Test Split and Handling Sparse Data**_\n",
"\n",
"## Contents\n",
"1. [Introduction](#Introduction)\n",
"1. [Setup](#Setup)\n",
"1. [Data](#Data)\n",
"1. [Train](#Train)\n",
"1. [Results](#Results)\n",
"1. [Test](#Test)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"In this example we use the scikit-learn's [20newsgroup](http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html) to showcase how you can use AutoML for handling sparse data and how to specify custom cross validations splits.\n",
"Make sure you have executed the [configuration](../../../configuration.ipynb) before running this notebook.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create an `Experiment` in an existing `Workspace`.\n",
"2. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"In addition this notebook showcases the following features\n",
"- Explicit train test splits \n",
"- Handling **sparse data** in the input"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"\n",
"# choose a name for the experiment\n",
"experiment_name = 'automl-local-missing-data'\n",
"# project folder\n",
"project_folder = './sample_projects/automl-local-missing-data'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"outputDf = pd.DataFrame(data = output, index = [''])\n",
"outputDf.T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"from sklearn.feature_extraction.text import HashingVectorizer\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"remove = ('headers', 'footers', 'quotes')\n",
"categories = [\n",
" 'alt.atheism',\n",
" 'talk.religion.misc',\n",
" 'comp.graphics',\n",
" 'sci.space',\n",
"]\n",
"data_train = fetch_20newsgroups(subset = 'train', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_train, X_valid, y_train, y_valid = train_test_split(data_train.data, data_train.target, test_size = 0.33, random_state = 42)\n",
"\n",
"\n",
"vectorizer = HashingVectorizer(stop_words = 'english', alternate_sign = False,\n",
" n_features = 2**16)\n",
"X_train = vectorizer.transform(X_train)\n",
"X_valid = vectorizer.transform(X_valid)\n",
"\n",
"summary_df = pd.DataFrame(index = ['No of Samples', 'No of Features'])\n",
"summary_df['Train Set'] = [X_train.shape[0], X_train.shape[1]]\n",
"summary_df['Validation Set'] = [X_valid.shape[0], X_valid.shape[1]]\n",
"summary_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**preprocess**|Setting this to *True* enables AutoML to perform preprocessing on the input to handle *missing data*, and to perform some common *feature extraction*.<br>**Note:** If input data is sparse, you cannot use *True*.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**X_valid**|(sparse) array-like, shape = [n_samples, n_features] for the custom validation set.|\n",
"|**y_valid**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification for the custom validation set.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 60,\n",
" iterations = 5,\n",
" preprocess = False,\n",
" verbosity = logging.INFO,\n",
" X = X_train, \n",
" y = y_train,\n",
" X_valid = X_valid, \n",
" y_valid = y_valid, \n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Widget for Monitoring Runs\n",
"\n",
"The widget will first report a \"loading\" status while running the first iteration. After completing the first iteration, an auto-updating graph and table will be shown. The widget will refresh once per minute, so you should see the graph update as child runs complete.\n",
"\n",
"**Note:** The widget displays a link at the bottom. Use this link to open a web interface to explore the individual run details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.widgets import RunDetails\n",
"RunDetails(local_run).show() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### Retrieve All Child Runs\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)}\n",
" metricslist[int(properties['iteration'])] = metrics\n",
" \n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model\n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric\n",
"Show the run and the model which has the smallest `accuracy` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# lookup_metric = \"accuracy\"\n",
"# best_run, fitted_model = local_run.get_output(metric = lookup_metric)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Model from a Specific Iteration\n",
"Show the run and the model from the third iteration:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# iteration = 3\n",
"# best_run, fitted_model = local_run.get_output(iteration = iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load test data.\n",
"from pandas_ml import ConfusionMatrix\n",
"\n",
"data_test = fetch_20newsgroups(subset = 'test', categories = categories,\n",
" shuffle = True, random_state = 42,\n",
" remove = remove)\n",
"\n",
"X_test = vectorizer.transform(data_test.data)\n",
"y_test = data_test.target\n",
"\n",
"# Test our best pipeline.\n",
"\n",
"y_pred = fitted_model.predict(X_test)\n",
"y_pred_strings = [data_test.target_names[i] for i in y_pred]\n",
"y_test_strings = [data_test.target_names[i] for i in y_test]\n",
"\n",
"cm = ConfusionMatrix(y_test_strings, y_pred_strings)\n",
"print(cm)\n",
"cm.plot()"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,26 +0,0 @@
Azure Databricks is a managed Spark offering on Azure and customers already use it for advanced analytics. It provides a collaborative Notebook based environment with CPU or GPU based compute cluster.
In this section, you will find sample notebooks on how to use Azure Machine Learning SDK with Azure Databricks. You can train a model using Spark MLlib and then deploy the model to ACI/AKS from within Azure Databricks. You can also use Automated ML capability (**public preview**) of Azure ML SDK with Azure Databricks.
- Customers who use Azure Databricks for advanced analytics can now use the same cluster to run experiments with or without automated machine learning.
- You can keep the data within the same cluster.
- You can leverage the local worker nodes with autoscale and auto termination capabilities.
- You can use multiple cores of your Azure Databricks cluster to perform simultenous training.
- You can further tune the model generated by automated machine learning if you chose to.
- Every run (including the best run) is available as a pipeline, which you can tune further if needed.
- The model trained using Azure Databricks can be registered in Azure ML SDK workspace and then deployed to Azure managed compute (ACI or AKS) using the Azure Machine learning SDK.
Please follow our [Azure doc](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-configure-environment#azure-databricks) to install the sdk in your Azure Databricks cluster before trying any of the sample notebooks.
**Single file** -
The following archive contains all the sample notebooks. You can the run notebooks after importing [DBC](Databricks_AMLSDK_1-4_6.dbc) in your Databricks workspace instead of downloading individually.
Notebooks 1-4 have to be run sequentially & are related to Income prediction experiment based on this [dataset](https://archive.ics.uci.edu/ml/datasets/adult) and demonstrate how to data prep, train and operationalize a Spark ML model with Azure ML Python SDK from within Azure Databricks.
Notebook 6 is an Automated ML sample notebook for Classification.
Learn more about [how to use Azure Databricks as a development environment](https://docs.microsoft.com/azure/machine-learning/service/how-to-configure-environment#azure-databricks) for Azure Machine Learning service.
For more on SDK concepts, please refer to [notebooks](https://github.com/Azure/MachineLearningNotebooks).
**Please let us know your feedback.**

View File

@@ -1,380 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image2.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Building"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pprint\n",
"import numpy as np\n",
"\n",
"from pyspark.ml import Pipeline, PipelineModel\n",
"from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler\n",
"from pyspark.ml.classification import LogisticRegression\n",
"from pyspark.ml.evaluation import BinaryClassificationEvaluator\n",
"from pyspark.ml.tuning import CrossValidator, ParamGridBuilder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#get the train and test datasets\n",
"train_data_path = \"AdultCensusIncomeTrain\"\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"\n",
"train = spark.read.parquet(train_data_path)\n",
"test = spark.read.parquet(test_data_path)\n",
"\n",
"print(\"train: ({}, {})\".format(train.count(), len(train.columns)))\n",
"print(\"test: ({}, {})\".format(test.count(), len(test.columns)))\n",
"\n",
"train.printSchema()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Define Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"label = \"income\"\n",
"dtypes = dict(train.dtypes)\n",
"dtypes.pop(label)\n",
"\n",
"si_xvars = []\n",
"ohe_xvars = []\n",
"featureCols = []\n",
"for idx,key in enumerate(dtypes):\n",
" if dtypes[key] == \"string\":\n",
" featureCol = \"-\".join([key, \"encoded\"])\n",
" featureCols.append(featureCol)\n",
" \n",
" tmpCol = \"-\".join([key, \"tmp\"])\n",
" # string-index and one-hot encode the string column\n",
" #https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/ml/feature/StringIndexer.html\n",
" #handleInvalid: Param for how to handle invalid data (unseen labels or NULL values). \n",
" #Options are 'skip' (filter out rows with invalid data), 'error' (throw an error), \n",
" #or 'keep' (put invalid data in a special additional bucket, at index numLabels). Default: \"error\"\n",
" si_xvars.append(StringIndexer(inputCol=key, outputCol=tmpCol, handleInvalid=\"skip\"))\n",
" ohe_xvars.append(OneHotEncoder(inputCol=tmpCol, outputCol=featureCol))\n",
" else:\n",
" featureCols.append(key)\n",
"\n",
"# string-index the label column into a column named \"label\"\n",
"si_label = StringIndexer(inputCol=label, outputCol='label')\n",
"\n",
"# assemble the encoded feature columns in to a column named \"features\"\n",
"assembler = VectorAssembler(inputCols=featureCols, outputCol=\"features\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.run import Run\n",
"from azureml.core.experiment import Experiment\n",
"import numpy as np\n",
"import os\n",
"import shutil\n",
"\n",
"model_name = \"AdultCensus_runHistory.mml\"\n",
"model_dbfs = os.path.join(\"/dbfs\", model_name)\n",
"run_history_name = 'spark-ml-notebook'\n",
"\n",
"# start a training run by defining an experiment\n",
"myexperiment = Experiment(ws, \"Ignite_AI_Talk\")\n",
"root_run = myexperiment.start_logging()\n",
"\n",
"# Regularization Rates - \n",
"regs = [0.0001, 0.001, 0.01, 0.1]\n",
" \n",
"# try a bunch of regularization rate in a Logistic Regression model\n",
"for reg in regs:\n",
" print(\"Regularization rate: {}\".format(reg))\n",
" # create a bunch of child runs\n",
" with root_run.child_run(\"reg-\" + str(reg)) as run:\n",
" # create a new Logistic Regression model.\n",
" lr = LogisticRegression(regParam=reg)\n",
" \n",
" # put together the pipeline\n",
" pipe = Pipeline(stages=[*si_xvars, *ohe_xvars, si_label, assembler, lr])\n",
"\n",
" # train the model\n",
" model_p = pipe.fit(train)\n",
" \n",
" # make prediction\n",
" pred = model_p.transform(test)\n",
" \n",
" # evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
" bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
" au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
" au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
"\n",
" print(\"Area under ROC: {}\".format(au_roc))\n",
" print(\"Area Under PR: {}\".format(au_prc))\n",
" \n",
" # log reg, au_roc, au_prc and feature names in run history\n",
" run.log(\"reg\", reg)\n",
" run.log(\"au_roc\", au_roc)\n",
" run.log(\"au_prc\", au_prc)\n",
" run.log_list(\"columns\", train.columns)\n",
"\n",
" # save model\n",
" model_p.write().overwrite().save(model_name)\n",
" \n",
" # upload the serialized model into run history record\n",
" mdl, ext = model_name.split(\".\")\n",
" model_zip = mdl + \".zip\"\n",
" shutil.make_archive(mdl, 'zip', model_dbfs)\n",
" run.upload_file(\"outputs/\" + model_name, model_zip) \n",
" #run.upload_file(\"outputs/\" + model_name, path_or_stream = model_dbfs) #cannot deal with folders\n",
"\n",
" # now delete the serialized model from local folder since it is already uploaded to run history \n",
" shutil.rmtree(model_dbfs)\n",
" os.remove(model_zip)\n",
" \n",
"# Declare run completed\n",
"root_run.complete()\n",
"root_run_id = root_run.id\n",
"print (\"run id:\", root_run.id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"metrics = root_run.get_metrics(recursive=True)\n",
"best_run_id = max(metrics, key = lambda k: metrics[k]['au_roc'])\n",
"print(best_run_id, metrics[best_run_id]['au_roc'], metrics[best_run_id]['reg'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Get the best run\n",
"child_runs = {}\n",
"\n",
"for r in root_run.get_children():\n",
" child_runs[r.id] = r\n",
" \n",
"best_run = child_runs[best_run_id]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Download the model from the best run to a local folder\n",
"best_model_file_name = \"best_model.zip\"\n",
"best_run.download_file(name = 'outputs/' + model_name, output_file_path = best_model_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Evaluation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##unzip the model to dbfs (as load() seems to require that) and load it.\n",
"if os.path.isfile(model_dbfs) or os.path.isdir(model_dbfs):\n",
" shutil.rmtree(model_dbfs)\n",
"shutil.unpack_archive(best_model_file_name, model_dbfs)\n",
"\n",
"model_p_best = PipelineModel.load(model_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# make prediction\n",
"pred = model_p_best.transform(test)\n",
"output = pred[['hours_per_week','age','workclass','marital_status','income','prediction']]\n",
"display(output.limit(5))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# evaluate. note only 2 metrics are supported out of the box by Spark ML.\n",
"bce = BinaryClassificationEvaluator(rawPredictionCol='rawPrediction')\n",
"au_roc = bce.setMetricName('areaUnderROC').evaluate(pred)\n",
"au_prc = bce.setMetricName('areaUnderPR').evaluate(pred)\n",
"\n",
"print(\"Area under ROC: {}\".format(au_roc))\n",
"print(\"Area Under PR: {}\".format(au_prc))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Model Persistence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##NOTE: by default the model is saved to and loaded from /dbfs/ instead of cwd!\n",
"model_p_best.write().overwrite().save(model_name)\n",
"print(\"saved model to {}\".format(model_dbfs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%sh\n",
"\n",
"ls -la /dbfs/AdultCensus_runHistory.mml/*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dbutils.notebook.exit(\"success\")"
]
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "03.Build_model_runHistory",
"notebookId": 3836944406456339
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,338 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please ensure you have run all previous notebooks in sequence before running this.\n",
"\n",
"Please Register Azure Container Instance(ACI) using Azure Portal: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services#portal in your subscription before using the SDK to deploy your ML model to ACI."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image3.JPG)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"#'''\n",
"ws = Workspace.from_config(auth = auth)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"#'''"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"import azureml.core\n",
"\n",
"# Check core SDK version number\n",
"print(\"SDK version:\", azureml.core.VERSION)\n",
"\n",
"#'''\n",
"ws = Workspace.from_config()\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')\n",
"#'''"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##NOTE: service deployment always gets the model from the current working dir.\n",
"import os\n",
"\n",
"model_name = \"AdultCensus_runHistory.mml\" # \n",
"model_name_dbfs = os.path.join(\"/dbfs\", model_name)\n",
"\n",
"print(\"copy model from dbfs to local\")\n",
"model_local = \"file:\" + os.getcwd() + \"/\" + model_name\n",
"dbutils.fs.cp(model_name, model_local, True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"mymodel = Model.register(model_path = model_name, # this points to a local file\n",
" model_name = model_name, # this is the name the model is registered as, am using same name for both path and name. \n",
" description = \"ADB trained model by Parashar\",\n",
" workspace = ws)\n",
"\n",
"print(mymodel.name, mymodel.description, mymodel.version)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#%%writefile score_sparkml.py\n",
"score_sparkml = \"\"\"\n",
" \n",
"import json\n",
" \n",
"def init():\n",
" # One-time initialization of PySpark and predictive model\n",
" import pyspark\n",
" from azureml.core.model import Model\n",
" from pyspark.ml import PipelineModel\n",
" \n",
" global trainedModel\n",
" global spark\n",
" \n",
" spark = pyspark.sql.SparkSession.builder.appName(\"ADB and AML notebook by Parashar\").getOrCreate()\n",
" model_name = \"{model_name}\" #interpolated\n",
" model_path = Model.get_model_path(model_name)\n",
" trainedModel = PipelineModel.load(model_path)\n",
" \n",
"def run(input_json):\n",
" if isinstance(trainedModel, Exception):\n",
" return json.dumps({{\"trainedModel\":str(trainedModel)}})\n",
" \n",
" try:\n",
" sc = spark.sparkContext\n",
" input_list = json.loads(input_json)\n",
" input_rdd = sc.parallelize(input_list)\n",
" input_df = spark.read.json(input_rdd)\n",
" \n",
" # Compute prediction\n",
" prediction = trainedModel.transform(input_df)\n",
" #result = prediction.first().prediction\n",
" predictions = prediction.collect()\n",
" \n",
" #Get each scored result\n",
" preds = [str(x['prediction']) for x in predictions]\n",
" result = \",\".join(preds)\n",
" # you can return any data type as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" result = str(e)\n",
" return result\n",
" \n",
"\"\"\".format(model_name=model_name)\n",
" \n",
"exec(score_sparkml)\n",
" \n",
"with open(\"score_sparkml.py\", \"w\") as file:\n",
" file.write(score_sparkml)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myacienv = CondaDependencies.create(conda_packages=['scikit-learn','numpy','pandas']) #showing how to add libs as an eg. - not needed for this model.\n",
"\n",
"with open(\"mydeployenv.yml\",\"w\") as f:\n",
" f.write(myacienv.serialize_to_string())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#deploy to ACI\n",
"from azureml.core.webservice import AciWebservice, Webservice\n",
"\n",
"myaci_config = AciWebservice.deploy_configuration(\n",
" cpu_cores = 2, \n",
" memory_gb = 2, \n",
" tags = {'name':'Databricks Azure ML ACI'}, \n",
" description = 'This is for ADB and AML example. Azure Databricks & Azure ML SDK demo with ACI by Parashar.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this will take 10-15 minutes to finish\n",
"\n",
"service_name = \"aciws\"\n",
"runtime = \"spark-py\" \n",
"driver_file = \"score_sparkml.py\"\n",
"my_conda_file = \"mydeployenv.yml\"\n",
"\n",
"# image creation\n",
"from azureml.core.image import ContainerImage\n",
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
" runtime = runtime, \n",
" conda_file = my_conda_file)\n",
"\n",
"# Webservice creation\n",
"myservice = Webservice.deploy_from_model(\n",
" workspace=ws, \n",
" name=service_name,\n",
" deployment_config = myaci_config,\n",
" models = [mymodel],\n",
" image_config = myimage_config\n",
" )\n",
"\n",
"myservice.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(Webservice)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# List images by ws\n",
"\n",
"for i in ContainerImage.list(workspace = ws):\n",
" print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#for using the Web HTTP API \n",
"print(myservice.scoring_uri)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"#get the some sample data\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"test = spark.read.parquet(test_data_path).limit(5)\n",
"\n",
"test_json = json.dumps(test.toJSON().collect())\n",
"\n",
"print(test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#using data defined above predict if income is >50K (1) or <=50K (0)\n",
"myservice.run(input_data=test_json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#comment to not delete the web service\n",
"#myservice.delete()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "04.DeploytoACI",
"notebookId": 3836944406456376
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,182 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image1.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Ingestion"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download AdultCensusIncome.csv from Azure CDN. This file has 32,561 rows.\n",
"basedataurl = \"https://amldockerdatasets.azureedge.net\"\n",
"datafile = \"AdultCensusIncome.csv\"\n",
"datafile_dbfs = os.path.join(\"/dbfs\", datafile)\n",
"\n",
"if os.path.isfile(datafile_dbfs):\n",
" print(\"found {} at {}\".format(datafile, datafile_dbfs))\n",
"else:\n",
" print(\"downloading {} to {}\".format(datafile, datafile_dbfs))\n",
" urllib.request.urlretrieve(os.path.join(basedataurl, datafile), datafile_dbfs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a Spark dataframe out of the csv file.\n",
"data_all = sqlContext.read.format('csv').options(header='true', inferSchema='true', ignoreLeadingWhiteSpace='true', ignoreTrailingWhiteSpace='true').load(datafile)\n",
"print(\"({}, {})\".format(data_all.count(), len(data_all.columns)))\n",
"data_all.printSchema()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#renaming columns\n",
"columns_new = [col.replace(\"-\", \"_\") for col in data_all.columns]\n",
"data_all = data_all.toDF(*columns_new)\n",
"data_all.printSchema()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(data_all.limit(5))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Preparation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose feature columns and the label column.\n",
"label = \"income\"\n",
"xvars = set(data_all.columns) - {label}\n",
"\n",
"print(\"label = {}\".format(label))\n",
"print(\"features = {}\".format(xvars))\n",
"\n",
"data = data_all.select([*xvars, label])\n",
"\n",
"# Split data into train and test.\n",
"train, test = data.randomSplit([0.75, 0.25], seed=123)\n",
"\n",
"print(\"train ({}, {})\".format(train.count(), len(train.columns)))\n",
"print(\"test ({}, {})\".format(test.count(), len(test.columns)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#Data Persistence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Write the train and test data sets to intermediate storage\n",
"train_data_path = \"AdultCensusIncomeTrain\"\n",
"test_data_path = \"AdultCensusIncomeTest\"\n",
"\n",
"train_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTrain\")\n",
"test_data_path_dbfs = os.path.join(\"/dbfs\", \"AdultCensusIncomeTest\")\n",
"\n",
"train.write.mode('overwrite').parquet(train_data_path)\n",
"test.write.mode('overwrite').parquet(test_data_path)\n",
"print(\"train and test datasets saved to {} and {}\".format(train_data_path_dbfs, test_data_path_dbfs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "02.Ingest_data",
"notebookId": 3836944406456362
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,179 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Azure ML & Azure Databricks notebooks by Parashar Shah.\n",
"\n",
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"\n",
"**install azureml-sdk**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[databricks]`\n",
"* Select Install Library"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number - based on build number of preview/master.\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![04ACI](files/tables/image2b.JPG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Please specify the Azure subscription Id, resource group name, workspace name, and the region in which you want to create the Azure Machine Learning Workspace.\n",
"\n",
"You can get the value of your Azure subscription ID from the Azure Portal, and then selecting Subscriptions from the menu on the left.\n",
"\n",
"For the resource_group, use the name of the resource group that contains your Azure Databricks Workspace.\n",
"\n",
"NOTE: If you provide a resource group name that does not exist, the resource group will be automatically created. This may or may not succeed in your environment, depending on the permissions you have on your Azure Subscription."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# subscription_id = \"<your-subscription-id>\"\n",
"# resource_group = \"<your-existing-resource-group>\"\n",
"# workspace_name = \"<a-new-or-existing-workspace; it is unrelated to Databricks workspace>\"\n",
"# workspace_region = \"<your-resource group-region>\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"# exist_ok checks if workspace exists or not.\n",
"\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#get workspace details\n",
"ws.get_details()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group)\n",
"\n",
"# persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()\n",
"##if you need to give a different path/filename please use this\n",
"##write_config(path=\"/databricks/driver/aml_config/\",file_name=<alias_conf.cfg>)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"help(Workspace)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import the Workspace class and check the azureml SDK version\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"#ws = Workspace.from_config(<full path>)\n",
"print('Workspace name: ' + ws.name, \n",
" 'Azure region: ' + ws.location, \n",
" 'Subscription id: ' + ws.subscription_id, \n",
" 'Resource group: ' + ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "pasha"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "01.Installation_and_Configuration",
"notebookId": 3836944406456490
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,559 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automated ML on Azure Databricks\n",
"\n",
"In this example we use the scikit-learn's <a href=\"http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset\" target=\"_blank\">digit dataset</a> to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
"2. Create an `Experiment` in an existing `Workspace`.\n",
"3. Configure Automated ML using `AutoMLConfig`.\n",
"4. Train the model using Azure Databricks.\n",
"5. Explore the results.\n",
"6. Test the best fitted model.\n",
"\n",
"Before running this notebook, please follow the <a href=\"https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks\" target=\"_blank\">readme for using Automated ML on Azure Databricks</a> for installing necessary libraries to your cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK with Automated ML as library from GUI. When attaching a library follow <a href=\"https://docs.databricks.com/user-guide/libraries.html\" target=\"_blank\">this link</a> and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"\n",
"**azureml-sdk with automated ml**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl_databricks]`\n",
"* Select Install Library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check the Azure ML Core SDK Version to Validate Your Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"SDK Version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize an Azure ML Workspace\n",
"### What is an Azure ML Workspace and Why Do I Need One?\n",
"\n",
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
"\n",
"\n",
"### What do I Need?\n",
"\n",
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
"* A name for your workspace. You can choose one.\n",
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = \"<Your SubscriptionId>\" #you should be owner or contributor\n",
"resource_group = \"<Resource group - new or existing>\" #you should be owner or contributor\n",
"workspace_name = \"<workspace to be created>\" #your workspace name\n",
"workspace_region = \"<azureregion>\" #your region"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a Workspace\n",
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
"\n",
"This will fail when:\n",
"1. The workspace already exists.\n",
"2. You do not have permission to create a workspace in the resource group.\n",
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
"\n",
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
"\n",
"**Note:** Creation of a new workspace can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import the Workspace class and check the Azure ML SDK version.\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region, \n",
" exist_ok=True)\n",
"ws.get_details()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuring Your Local Environment\n",
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group)\n",
"\n",
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Folder to Host Sample Projects\n",
"Finally, create a folder where all the sample projects will be hosted."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sample_projects_folder = './sample_projects'\n",
"\n",
"if not os.path.isdir(sample_projects_folder):\n",
" os.mkdir(sample_projects_folder)\n",
" \n",
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Experiment\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For Automated ML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import random\n",
"import time\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Training Data Using DataPrep"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Automated ML requires a dataflow, which is different from dataframe.\n",
"#If your data is in a dataframe, please use read_pandas_dataframe to convert a dataframe to dataflow before usind dprep.\n",
"\n",
"import azureml.dataprep as dprep\n",
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X_train = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y_train = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Review the Data Preparation Result\n",
"You can peek the result of a Dataflow at any range using skip(i) and head(j). Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure AutoML\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**spark_context**|Spark Context object. for Databricks, use spark_context=sc|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure Databricks cluster.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 30,\n",
" n_cross_validations = 10,\n",
" max_concurrent_iterations = 2, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #databricks/spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train the Models\n",
"\n",
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True) # for higher runs please use show_output=False and use the below"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore the Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Portal URL for Monitoring Runs\n",
"\n",
"The following will provide a link to the web interface to explore individual run details and status. In the future we might support output displayed in the notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"displayHTML(\"<a href={} target='_blank'>Your experiment in Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following will show the child runs and waits for the parent run to complete."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model after the above run is complete \n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"#### Load Test Data - you can split the dataset beforehand & pass Train dataset to AutoML and use Test dataset to evaluate the best model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict digits and see how our model works. This is just an example to show you."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When deploying an automated ML trained model, please specify _pippackages=['azureml-sdk[automl]']_ in your CondaDependencies.\n",
"\n",
"Please refer to only the **Deploy** section in this notebook - <a href=\"https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment\" target=\"_blank\">Deployment of Automated ML trained model</a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"authors": [
{
"name": "savitam"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 817220787969977
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -1,704 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We support installing AML SDK as library from GUI. When attaching a library follow this https://docs.databricks.com/user-guide/libraries.html and add the below string as your PyPi package. You can select the option to attach the library to all clusters or just one cluster.\n",
"\n",
"**install azureml-sdk with Automated ML**\n",
"* Source: Upload Python Egg or PyPi\n",
"* PyPi Name: `azureml-sdk[automl_databricks]`\n",
"* Select Install Library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# AutoML : Classification with Local Compute on Azure DataBricks with deployment to ACI\n",
"\n",
"In this example we use the scikit-learn's [digit dataset](http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset) to showcase how you can use AutoML for a simple classification problem.\n",
"\n",
"In this notebook you will learn how to:\n",
"1. Create Azure Machine Learning Workspace object and initialize your notebook directory to easily reload this object from a configuration file.\n",
"2. Create an `Experiment` in an existing `Workspace`.\n",
"3. Configure AutoML using `AutoMLConfig`.\n",
"4. Train the model using AzureDataBricks.\n",
"5. Explore the results.\n",
"6. Register the model.\n",
"7. Deploy the model.\n",
"8. Test the best fitted model.\n",
"\n",
"Prerequisites:\n",
"Before running this notebook, please follow the readme for installing necessary libraries to your cluster."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Machine Learning Services Resource Provider\n",
"Microsoft.MachineLearningServices only needs to be registed once in the subscription. To register it:\n",
"Start the Azure portal.\n",
"Select your All services and then Subscription.\n",
"Select the subscription that you want to use.\n",
"Click on Resource providers\n",
"Click the Register link next to Microsoft.MachineLearningServices"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check the Azure ML Core SDK Version to Validate Your Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"print(\"SDK Version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize an Azure ML Workspace\n",
"### What is an Azure ML Workspace and Why Do I Need One?\n",
"\n",
"An Azure ML workspace is an Azure resource that organizes and coordinates the actions of many other Azure resources to assist in executing and sharing machine learning workflows. In particular, an Azure ML workspace coordinates storage, databases, and compute resources providing added functionality for machine learning experimentation, operationalization, and the monitoring of operationalized models.\n",
"\n",
"\n",
"### What do I Need?\n",
"\n",
"To create or access an Azure ML workspace, you will need to import the Azure ML library and specify following information:\n",
"* A name for your workspace. You can choose one.\n",
"* Your subscription id. Use the `id` value from the `az account show` command output above.\n",
"* The resource group name. The resource group organizes Azure resources and provides a default region for the resources in the group. The resource group will be created if it doesn't exist. Resource groups can be created and viewed in the [Azure portal](https://portal.azure.com)\n",
"* Supported regions include `eastus2`, `eastus`,`westcentralus`, `southeastasia`, `westeurope`, `australiaeast`, `westus2`, `southcentralus`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"subscription_id = \"<Your SubscriptionId>\"\n",
"resource_group = \"<Resource group - new or existing>\"\n",
"workspace_name = \"<workspace to be created>\"\n",
"workspace_region = \"<azureregion>\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a Workspace\n",
"If you already have access to an Azure ML workspace you want to use, you can skip this cell. Otherwise, this cell will create an Azure ML workspace for you in the specified subscription, provided you have the correct permissions for the given `subscription_id`.\n",
"\n",
"This will fail when:\n",
"1. The workspace already exists.\n",
"2. You do not have permission to create a workspace in the resource group.\n",
"3. You are not a subscription owner or contributor and no Azure ML workspaces have ever been created in this subscription.\n",
"\n",
"If workspace creation fails for any reason other than already existing, please work with your IT administrator to provide you with the appropriate permissions or to provision the required resources.\n",
"\n",
"**Note:** Creation of a new workspace can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import the Workspace class and check the Azure ML SDK version.\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.create(name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group, \n",
" location = workspace_region,\n",
" exist_ok=True)\n",
"ws.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configuring Your Local Environment\n",
"You can validate that you have access to the specified workspace and write a configuration file to the default configuration location, `./aml_config/config.json`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace(workspace_name = workspace_name,\n",
" subscription_id = subscription_id,\n",
" resource_group = resource_group)\n",
"\n",
"# Persist the subscription id, resource group name, and workspace name in aml_config/config.json.\n",
"ws.write_config()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Folder to Host Sample Projects\n",
"Finally, create a folder where all the sample projects will be hosted."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"sample_projects_folder = './sample_projects'\n",
"\n",
"if not os.path.isdir(sample_projects_folder):\n",
" os.mkdir(sample_projects_folder)\n",
" \n",
"print('Sample projects will be created in {}.'.format(sample_projects_folder))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Experiment\n",
"\n",
"As part of the setup you have already created an Azure ML `Workspace` object. For AutoML you will need to create an `Experiment` object, which is a named object in a `Workspace` used to run experiments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import os\n",
"import random\n",
"import time\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib.pyplot import imshow\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import azureml.core\n",
"from azureml.core.experiment import Experiment\n",
"from azureml.core.workspace import Workspace\n",
"from azureml.train.automl import AutoMLConfig\n",
"from azureml.train.automl.run import AutoMLRun"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Choose a name for the experiment and specify the project folder.\n",
"experiment_name = 'automl-local-classification'\n",
"project_folder = './sample_projects/automl-local-classification'\n",
"\n",
"experiment = Experiment(ws, experiment_name)\n",
"\n",
"output = {}\n",
"output['SDK version'] = azureml.core.VERSION\n",
"output['Subscription ID'] = ws.subscription_id\n",
"output['Workspace Name'] = ws.name\n",
"output['Resource Group'] = ws.resource_group\n",
"output['Location'] = ws.location\n",
"output['Project Directory'] = project_folder\n",
"output['Experiment Name'] = experiment.name\n",
"pd.set_option('display.max_colwidth', -1)\n",
"pd.DataFrame(data = output, index = ['']).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diagnostics\n",
"\n",
"Opt-in diagnostics for better experience, quality, and security of future releases."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.telemetry import set_diagnostics_collection\n",
"set_diagnostics_collection(send_diagnostics = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Training Data Using DataPrep"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.dataprep as dprep\n",
"# You can use `auto_read_file` which intelligently figures out delimiters and datatypes of a file.\n",
"# The data referenced here was pulled from `sklearn.datasets.load_digits()`.\n",
"simple_example_data_root = 'https://dprepdata.blob.core.windows.net/automl-notebook-data/'\n",
"X_train = dprep.auto_read_file(simple_example_data_root + 'X.csv').skip(1) # Remove the header row.\n",
"\n",
"# You can also use `read_csv` and `to_*` transformations to read (with overridable delimiter)\n",
"# and convert column types manually.\n",
"# Here we read a comma delimited file and convert all columns to integers.\n",
"y_train = dprep.read_csv(simple_example_data_root + 'y.csv').to_long(dprep.ColumnSelector(term='.*', use_regex = True))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Review the Data Preparation Result\n",
"You can peek the result of a Dataflow at any range using skip(i) and head(j). Doing so evaluates only j records for all the steps in the Dataflow, which makes it fast even against large datasets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train.skip(1).head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configure AutoML\n",
"\n",
"Instantiate an `AutoMLConfig` object to specify the settings and data used to run the experiment.\n",
"\n",
"|Property|Description|\n",
"|-|-|\n",
"|**task**|classification or regression|\n",
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
"|**iterations**|Number of iterations. In each iteration AutoML trains a specific pipeline with the data.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
"|**spark_context**|Spark Context object. for Databricks, use spark_context=sc|\n",
"|**max_concurrent_iterations**|Maximum number of iterations to execute in parallel. This should be <= number of worker nodes in your Azure Databricks cluster.|\n",
"|**X**|(sparse) array-like, shape = [n_samples, n_features]|\n",
"|**y**|(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]<br>Multi-class targets. An indicator matrix turns on multilabel classification. This should be an array of integers.|\n",
"|**path**|Relative path to the project folder. AutoML stores configuration files for the experiment under this folder. You can specify a new empty folder.|\n",
"|**preprocess**|set this to True to enable pre-processing of data eg. string to numeric using one-hot encoding|\n",
"|**exit_score**|Target score for experiment. It is associated with the metric. eg. exit_score=0.995 will exit experiment after that|"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"automl_config = AutoMLConfig(task = 'classification',\n",
" debug_log = 'automl_errors.log',\n",
" primary_metric = 'AUC_weighted',\n",
" iteration_timeout_minutes = 10,\n",
" iterations = 5,\n",
" n_cross_validations = 2,\n",
" max_concurrent_iterations = 4, #change it based on number of worker nodes\n",
" verbosity = logging.INFO,\n",
" spark_context=sc, #databricks/spark related\n",
" X = X_train, \n",
" y = y_train,\n",
" enable_cache=False,\n",
" path = project_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train the Models\n",
"\n",
"Call the `submit` method on the experiment object and pass the run configuration. Execution of local runs is synchronous. Depending on the data and the number of iterations this can run for a while.\n",
"In this example, we specify `show_output = True` to print currently running iterations to the console."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_run = experiment.submit(automl_config, show_output = True) # for higher runs please use show_output=False and use the below"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Explore the Results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Portal URL for Monitoring Runs\n",
"\n",
"The following will provide a link to the web interface to explore individual run details and status. In the future we might support output displayed in the notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"displayHTML(\"<a href={} target='_blank'>Azure Portal: {}</a>\".format(local_run.get_portal_url(), local_run.id))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following will show the child runs and waits for the parent run to complete."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Retrieve All Child Runs after the experiment is completed (in portal)\n",
"You can also use SDK methods to fetch all the child runs and see individual metrics that we log."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"children = list(local_run.get_children())\n",
"metricslist = {}\n",
"for run in children:\n",
" properties = run.get_properties()\n",
" metrics = {k: v for k, v in run.get_metrics().items() if isinstance(v, float)} \n",
" metricslist[int(properties['iteration'])] = metrics\n",
"\n",
"rundata = pd.DataFrame(metricslist).sort_index(1)\n",
"rundata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Retrieve the Best Model after the above run is complete \n",
"\n",
"Below we select the best pipeline from our iterations. The `get_output` method returns the best run and the fitted model. The Model includes the pipeline and any pre-processing. Overloads on `get_output` allow you to retrieve the best run and fitted model for *any* logged metric or for a particular *iteration*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_run, fitted_model = local_run.get_output()\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Best Model Based on Any Other Metric after the above run is complete based on the child run\n",
"Show the run and the model that has the smallest `log_loss` value:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lookup_metric = \"log_loss\"\n",
"best_run, fitted_model = local_run.get_output(metric = lookup_metric)\n",
"print(best_run)\n",
"print(fitted_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register the Fitted Model for Deployment\n",
"If neither metric nor iteration are specified in the register_model call, the iteration with the best primary metric is registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"description = 'AutoML Model'\n",
"tags = None\n",
"model = local_run.register_model(description = description, tags = tags)\n",
"local_run.model_id # This will be written to the scoring script file later in the notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Scoring Script\n",
"Replace model_id with name of model from output of above register cell"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"import azureml.train.automl\n",
"from sklearn.externals import joblib\n",
"from azureml.core.model import Model\n",
"\n",
"\n",
"def init():\n",
" global model\n",
" model_path = Model.get_model_path(model_name = '<<modelid>>') # this name is model.id of model that we want to deploy\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"def run(rawdata):\n",
" try:\n",
" data = json.loads(rawdata)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" except Exception as e:\n",
" result = str(e)\n",
" return json.dumps({\"error\": result})\n",
" return json.dumps({\"result\":result.tolist()})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create a YAML File for the Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'], pip_packages=['azureml-sdk[automl]'])\n",
"\n",
"conda_env_file_name = 'mydeployenv.yml'\n",
"myenv.save_to_file('.', conda_env_file_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create ACI config"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#deploy to ACI\n",
"from azureml.core.webservice import AciWebservice, Webservice\n",
"\n",
"myaci_config = AciWebservice.deploy_configuration(\n",
" cpu_cores = 2, \n",
" memory_gb = 2, \n",
" tags = {'name':'Databricks Azure ML ACI'}, \n",
" description = 'This is for ADB and AutoML example.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy the Image as a Web Service on Azure Container Instance\n",
"Replace servicename with any meaningful name of service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# this will take 10-15 minutes to finish\n",
"\n",
"service_name = \"<<servicename>>\"\n",
"runtime = \"spark-py\" \n",
"driver_file = \"score.py\"\n",
"my_conda_file = \"mydeployenv.yml\"\n",
"\n",
"# image creation\n",
"from azureml.core.image import ContainerImage\n",
"myimage_config = ContainerImage.image_configuration(execution_script = driver_file, \n",
" runtime = runtime, \n",
" conda_file = 'mydeployenv.yml')\n",
"\n",
"# Webservice creation\n",
"myservice = Webservice.deploy_from_model(\n",
" workspace=ws, \n",
" name=service_name,\n",
" deployment_config = myaci_config,\n",
" models = [model],\n",
" image_config = myimage_config\n",
" )\n",
"\n",
"myservice.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#for using the Web HTTP API \n",
"print(myservice.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test the Best Fitted Model\n",
"\n",
"#### Load Test Data - you can split the dataset beforehand & pass Train dataset to AutoML and use Test dataset to evaluate the best model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import datasets\n",
"digits = datasets.load_digits()\n",
"X_test = digits.data[:10, :]\n",
"y_test = digits.target[:10]\n",
"images = digits.images[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Testing Our Best Fitted Model\n",
"We will try to predict digits and see how our model works. This is just an example to show you."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Randomly select digits and test.\n",
"for index in np.random.choice(len(y_test), 2, replace = False):\n",
" print(index)\n",
" predicted = fitted_model.predict(X_test[index:index + 1])[0]\n",
" label = y_test[index]\n",
" title = \"Label value = %d Predicted value = %d \" % (label, predicted)\n",
" fig = plt.figure(1, figsize = (3,3))\n",
" ax1 = fig.add_axes((0,0,.8,.8))\n",
" ax1.set_title(title)\n",
" plt.imshow(images[index], cmap = plt.cm.gray_r, interpolation = 'nearest')\n",
" display(fig)"
]
}
],
"metadata": {
"authors": [
{
"name": "savitam"
},
{
"name": "wamartin"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"name": "auto-ml-classification-local-adb",
"notebookId": 3888835968049288
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,217 @@
NOTICES AND INFORMATION
Do Not Translate or Localize
This Azure Machine Learning service example notebooks repository includes material from the projects listed below.
1. SSD-Tensorflow (https://github.com/balancap/ssd-tensorflow)
%% SSD-Tensorflow NOTICES AND INFORMATION BEGIN HERE
=========================================
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
=========================================
END OF SSD-Tensorflow NOTICES AND INFORMATION

View File

@@ -0,0 +1,104 @@
# Notebooks for Microsoft Azure Machine Learning Hardware Accelerated Models SDK
Easily create and train a model using various deep neural networks (DNNs) as a featurizer for deployment to Azure or a Data Box Edge device for ultra-low latency inferencing using FPGA's. These models are currently available:
* ResNet 50
* ResNet 152
* DenseNet-121
* VGG-16
* SSD-VGG
To learn more about the azureml-accel-model classes, see the section [Model Classes](#model-classes) below or the [Azure ML Accel Models SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel?view=azure-ml-py).
### Step 1: Create an Azure ML workspace
Follow [these instructions](https://docs.microsoft.com/en-us/azure/machine-learning/service/setup-create-workspace) to install the Azure ML SDK on your local machine, create an Azure ML workspace, and set up your notebook environment, which is required for the next step.
### Step 2: Check your FPGA quota
Use the Azure CLI to check whether you have quota.
```shell
az vm list-usage --location "eastus" -o table
```
The other locations are ``southeastasia``, ``westeurope``, and ``westus2``.
Under the "Name" column, look for "Standard PBS Family vCPUs" and ensure you have at least 6 vCPUs under "CurrentValue."
If you do not have quota, then submit a request form [here](https://aka.ms/accelerateAI).
### Step 3: Install the Azure ML Accelerated Models SDK
Once you have set up your environment, install the Azure ML Accel Models SDK. This package requires tensorflow >= 1.6,<2.0 to be installed.
If you already have tensorflow >= 1.6,<2.0 installed in your development environment, you can install the SDK package using:
```
pip install azureml-accel-models
```
If you do not have tensorflow >= 1.6,<2.0 and are using a CPU-only development environment, our SDK with tensorflow can be installed using:
```
pip install azureml-accel-models[cpu]
```
If your machine supports GPU (for example, on an [Azure DSVM](https://docs.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/overview)), then you can leverage the tensorflow-gpu functionality using:
```
pip install azureml-accel-models[gpu]
```
### Step 4: Follow our notebooks
We provide notebooks to walk through the following scenarios, linked below:
* [Quickstart](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-quickstart.ipynb), deploy and inference a ResNet50 model trained on ImageNet
* [Object Detection](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-object-detection.ipynb), deploy and inference an SSD-VGG model that can do object detection
* [Training models](https://github.com/Azure/MachineLearningNotebooks/blob/33d6def8c30d3dd3a5bfbea50b9c727788185faf/how-to-use-azureml/deployment/accelerated-models/accelerated-models-training.ipynb), train one of our accelerated models on the Kaggle Cats and Dogs dataset to see how to improve accuracy on custom datasets
**Note**: the above notebooks work only for tensorflow >= 1.6,<2.0.
<a name="model-classes"></a>
## Model Classes
As stated above, we support 5 Accelerated Models. Here's more information on their input and output tensors.
**Available models and output tensors**
The available models and the corresponding default classifier output tensors are below. This is the value that you would use during inferencing if you used the default classifier.
* Resnet50, QuantizedResnet50
``
output_tensors = "classifier_1/resnet_v1_50/predictions/Softmax:0"
``
* Resnet152, QuantizedResnet152
``
output_tensors = "classifier/resnet_v1_152/predictions/Softmax:0"
``
* Densenet121, QuantizedDensenet121
``
output_tensors = "classifier/densenet121/predictions/Softmax:0"
``
* Vgg16, QuantizedVgg16
``
output_tensors = "classifier/vgg_16/fc8/squeezed:0"
``
* SsdVgg, QuantizedSsdVgg
``
output_tensors = ['ssd_300_vgg/block4_box/Reshape_1:0', 'ssd_300_vgg/block7_box/Reshape_1:0', 'ssd_300_vgg/block8_box/Reshape_1:0', 'ssd_300_vgg/block9_box/Reshape_1:0', 'ssd_300_vgg/block10_box/Reshape_1:0', 'ssd_300_vgg/block11_box/Reshape_1:0', 'ssd_300_vgg/block4_box/Reshape:0', 'ssd_300_vgg/block7_box/Reshape:0', 'ssd_300_vgg/block8_box/Reshape:0', 'ssd_300_vgg/block9_box/Reshape:0', 'ssd_300_vgg/block10_box/Reshape:0', 'ssd_300_vgg/block11_box/Reshape:0']
``
For more information, please reference the azureml.accel.models package in the [Azure ML Python SDK documentation](https://docs.microsoft.com/en-us/python/api/azureml-accel-models/azureml.accel.models?view=azure-ml-py).
**Input tensors**
The input_tensors value defaults to "Placeholder:0" and is created in the [Image Preprocessing](#construct-model) step in the line:
``
in_images = tf.placeholder(tf.string)
``
You can change the input_tensors name by doing this:
``
in_images = tf.placeholder(tf.string, name="images")
``
## Resources
* [Read more about FPGAs](https://docs.microsoft.com/en-us/azure/machine-learning/service/concept-accelerate-with-fpgas)

View File

@@ -0,0 +1,14 @@
# Model Deployment with Azure ML service
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization).
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
## Get Started
To begin, you will need an ML workspace.
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
## Deploy to the cloud
You can deploy to the cloud using the Azure ML CLI or the Azure ML SDK.
- CLI example: https://aka.ms/azmlcli
- Notebook example: [model-register-and-deploy](./model-register-and-deploy.ipynb).
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-multi-model/README.png)

View File

@@ -0,0 +1,395 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-multi-model/multi-model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy Multiple Models as Webservice\n",
"\n",
"This example shows how to deploy a Webservice with multiple models in step-by-step fashion:\n",
"\n",
" 1. Register Models\n",
" 2. Deploy Models as Webservice"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example, we will be using and registering two models. \n",
"\n",
"First we will train two simple models on the [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset) included with scikit-learn, serializing them to files in the current directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"import sklearn\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import BayesianRidge, Ridge\n",
"\n",
"x, y = load_diabetes(return_X_y=True)\n",
"\n",
"first_model = Ridge().fit(x, y)\n",
"second_model = BayesianRidge().fit(x, y)\n",
"\n",
"joblib.dump(first_model, \"first_model.pkl\")\n",
"joblib.dump(second_model, \"second_model.pkl\")\n",
"\n",
"print(\"Trained models using scikit-learn {}.\".format(sklearn.__version__))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have our trained models locally, we will register them as Models with the names `my_first_model` and `my_second_model` in the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"my_model_1 = Model.register(model_path=\"first_model.pkl\",\n",
" model_name=\"my_first_model\",\n",
" workspace=ws)\n",
"\n",
"my_model_2 = Model.register(model_path=\"second_model.pkl\",\n",
" model_name=\"my_second_model\",\n",
" workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Write the Entry Script\n",
"Write the script that will be used to predict on your models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model.get_model_path()\n",
"\n",
"To get the paths of your models, use `Model.get_model_path(model_name, version=None, _workspace=None)` method. This method will find the path to a model using the name of the model registered under the workspace.\n",
"\n",
"In this example, we do not use the optional arguments `version` and `_workspace`.\n",
"\n",
"#### Using environment variable AZUREML_MODEL_DIR\n",
"\n",
"In other [examples](../deploy-to-cloud/score.py) with a single model deployment, we use the environment variable `AZUREML_MODEL_DIR` and model file name to get the model path. \n",
"\n",
"For single model deployments, this environment variable is the path to the model folder (`./azureml-models/$MODEL_NAME/$VERSION`). When we deploy multiple models, the environment variable is set to the folder containing all models (./azureml-models).\n",
"\n",
"If you're using multiple models and you know the versions of the models you deploy, you can use this method to get the model path:\n",
"\n",
"```python\n",
"# Construct the model path using the registered model name, version, and model file name\n",
"model_1_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'my_first_model', '1', 'first_model.pkl')\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model_1, model_2\n",
" # Here \"my_first_model\" is the name of the model registered under the workspace.\n",
" # This call will return the path to the .pkl file on the local disk.\n",
" model_1_path = Model.get_model_path(model_name='my_first_model')\n",
" model_2_path = Model.get_model_path(model_name='my_second_model')\n",
" \n",
" # Deserialize the model files back into scikit-learn models.\n",
" model_1 = joblib.load(model_1_path)\n",
" model_2 = joblib.load(model_2_path)\n",
"\n",
"# Note you can pass in multiple rows for scoring.\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = np.array(data)\n",
" \n",
" # Call predict() on each model\n",
" result_1 = model_1.predict(data)\n",
" result_2 = model_2.predict(data)\n",
"\n",
" # You can return any JSON-serializable value.\n",
" return {\"prediction1\": result_1.tolist(), \"prediction2\": result_2.tolist()}\n",
" except Exception as e:\n",
" result = str(e)\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can now create and/or use an Environment object when deploying a Webservice. The Environment can have been previously registered with your Workspace, or it will be registered with it as a part of the Webservice deployment. Please note that your environment must include azureml-defaults with verion >= 1.0.45 as a pip dependency, because it contains the functionality needed to host the model as a web service.\n",
"\n",
"More information can be found in our [using environments notebook](../training/using-environments/using-environments.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"\n",
"env = Environment(\"deploytocloudenv\")\n",
"env.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"env.python.conda_dependencies.add_pip_package(\"numpy\")\n",
"env.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration\n",
"\n",
"There is now support for a source directory, you can upload an entire folder from your local machine as dependencies for the Webservice.\n",
"Note: in that case, environments's entry_script and file_path are relative paths to the source_directory path; myenv.docker.base_dockerfile is a string containing extra docker steps or contents of the docker file.\n",
"\n",
"Sample code for using a source directory:\n",
"\n",
"```python\n",
"from azureml.core.environment import Environment\n",
"from azureml.core.model import InferenceConfig\n",
"\n",
"myenv = Environment.from_conda_specification(name='myenv', file_path='env/myenv.yml')\n",
"\n",
"# explicitly set base_image to None when setting base_dockerfile\n",
"myenv.docker.base_image = None\n",
"# add extra docker commends to execute\n",
"myenv.docker.base_dockerfile = \"FROM ubuntu\\n RUN echo \\\"hello\\\"\"\n",
"\n",
"inference_config = InferenceConfig(source_directory=\"C:/abc\",\n",
" entry_script=\"x/y/score.py\",\n",
" environment=myenv)\n",
"```\n",
"\n",
" - file_path: input parameter to Environment constructor. Manages conda and python package dependencies.\n",
" - env.docker.base_dockerfile: any extra steps you want to inject into docker file\n",
" - source_directory: holds source path as string, this entire folder gets added in image so its really easy to access any files within this folder or subfolder\n",
" - entry_script: contains logic specific to initializing your model and running predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create image"
]
},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=env)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy Model as Webservice on Azure Container Instance\n",
"\n",
"Note that the service creation can take few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"azuremlexception-remarks-sample"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aci_service_name = \"aciservice-multimodel\"\n",
"\n",
"deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"\n",
"service = Model.deploy(ws, aci_service_name, [my_model_1, my_model_2], inference_config, deployment_config, overwrite=True)\n",
"service.wait_for_deployment(True)\n",
"\n",
"print(service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Test web service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"test_sample = json.dumps({'data': x[0:2].tolist()})\n",
"\n",
"prediction = service.run(test_sample)\n",
"\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Delete ACI to clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "jenns"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,6 @@
name: multi-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -0,0 +1,12 @@
# Model Deployment with Azure ML service
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization).
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
## Get Started
To begin, you will need an ML workspace.
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
## Deploy to the cloud
You can deploy to the cloud using the Azure ML CLI or the Azure ML SDK.
- CLI example: https://aka.ms/azmlcli
- Notebook example: [model-register-and-deploy](./model-register-and-deploy.ipynb).

View File

@@ -0,0 +1,593 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-to-cloud/model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register model and deploy as webservice in ACI\n",
"\n",
"Following this notebook, you will:\n",
"\n",
" - Learn how to register a model in your Azure Machine Learning Workspace.\n",
" - Deploy your model as a web service in an Azure Container Instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and create a workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"\n",
"# Check core SDK version number.\n",
"print('SDK version:', azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Create a [Workspace](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py) object from your persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/index.html#diabetes-dataset). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(model, 'sklearn_regression_model.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register input and output datasets\n",
"\n",
"Here, you will register the data used to create the model in your workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from azureml.core import Dataset\n",
"\n",
"\n",
"np.savetxt('features.csv', dataset_x, delimiter=',')\n",
"np.savetxt('labels.csv', dataset_y, delimiter=',')\n",
"\n",
"datastore = ws.get_default_datastore()\n",
"datastore.upload_files(files=['./features.csv', './labels.csv'],\n",
" target_path='sklearn_regression/',\n",
" overwrite=True)\n",
"\n",
"input_dataset = Dataset.Tabular.from_delimited_files(path=[(datastore, 'sklearn_regression/features.csv')])\n",
"output_dataset = Dataset.Tabular.from_delimited_files(path=[(datastore, 'sklearn_regression/labels.csv')])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register model\n",
"\n",
"Register a file or folder as a model by calling [Model.register()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none-).\n",
"\n",
"In addition to the content of the model file itself, your registered model will also store model metadata -- model description, tags, and framework information -- that will be useful when managing and deploying models in your workspace. Using tags, for instance, you can categorize your models and apply filters when listing models in your workspace. Also, marking this model with the scikit-learn framework will simplify deploying it as a web service, as we'll see later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file",
"sample-model-register"
]
},
"outputs": [],
"source": [
"import sklearn\n",
"\n",
"from azureml.core import Model\n",
"from azureml.core.resource_configuration import ResourceConfiguration\n",
"\n",
"\n",
"model = Model.register(workspace=ws,\n",
" model_name='my-sklearn-model', # Name of the registered model in your workspace.\n",
" model_path='./sklearn_regression_model.pkl', # Local file to upload and register as a model.\n",
" model_framework=Model.Framework.SCIKITLEARN, # Framework used to create the model.\n",
" model_framework_version=sklearn.__version__, # Version of scikit-learn used to create the model.\n",
" sample_input_dataset=input_dataset,\n",
" sample_output_dataset=output_dataset,\n",
" resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),\n",
" description='Ridge regression model to predict diabetes progression.',\n",
" tags={'area': 'diabetes', 'type': 'regression'})\n",
"\n",
"print('Name:', model.name)\n",
"print('Version:', model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model\n",
"\n",
"Deploy your model as a web service using [Model.deploy()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config--deployment-config-none--deployment-target-none-). Web services take one or more models, load them in an environment, and run them on one of several supported deployment targets. For more information on all your options when deploying models, see the [next steps](#Next-steps) section at the end of this notebook.\n",
"\n",
"For this example, we will deploy your scikit-learn model to an Azure Container Instance (ACI)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use a default environment (for supported models)\n",
"\n",
"The Azure Machine Learning service provides a default environment for supported model frameworks, including scikit-learn, based on the metadata you provided when registering your model. This is the easiest way to deploy your model.\n",
"\n",
"Even when you deploy your model to ACI with a default environment you can still customize the deploy configuration (i.e. the number of cores and amount of memory made available for the deployment) using the [AciWebservice.deploy_configuration()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciwebservice#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--). Look at the \"Use a custom environment\" section of this notebook for more information on deploy configuration.\n",
"\n",
"**Note**: This step can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service_name = 'my-sklearn-service'\n",
"\n",
"service = Model.deploy(ws, service_name, [model], overwrite=True)\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After your model is deployed, perform a call to the web service using [service.run()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#run-input-)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"input_payload = json.dumps({\n",
" 'data': dataset_x[0:2].tolist(),\n",
" 'method': 'predict' # If you have a classification model, you can get probabilities by changing this to 'predict_proba'.\n",
"})\n",
"\n",
"output = service.run(input_payload)\n",
"\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are finished testing your service, clean up the deployment with [service.delete()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#delete--)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use a custom environment\n",
"\n",
"If you want more control over how your model is run, if it uses another framework, or if it has special runtime requirements, you can instead specify your own environment and scoring method. Custom environments can be used for any model you want to deploy.\n",
"\n",
"Specify the model's runtime environment by creating an [Environment](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment%28class%29?view=azure-ml-py) object and providing the [CondaDependencies](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py) needed by your model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"\n",
"environment = Environment('my-sklearn-environment')\n",
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn=={}'.format(sklearn.__version__)\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using a custom environment, you must also provide Python code for initializing and running your model. An example script is included with this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('score.py') as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Deploy your model in the custom environment by providing an [InferenceConfig](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py) object to [Model.deploy()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config--deployment-config-none--deployment-target-none-). In this case we are also using the [AciWebservice.deploy_configuration()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciwebservice#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--) method to generate a custom deploy configuration.\n",
"\n",
"**Note**: This step can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"azuremlexception-remarks-sample",
"sample-aciwebservice-deploy-config"
]
},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AciWebservice\n",
"\n",
"\n",
"service_name = 'my-custom-env-service'\n",
"\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"aci_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)\n",
"\n",
"service = Model.deploy(workspace=ws,\n",
" name=service_name,\n",
" models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=aci_config,\n",
" overwrite=True)\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After your model is deployed, make a call to the web service using [service.run()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#run-input-)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_payload = json.dumps({\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"output = service.run(input_payload)\n",
"\n",
"print(output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are finished testing your service, clean up the deployment with [service.delete()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#delete--)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Profiling\n",
"\n",
"Profile your model to understand how much CPU and memory the service, created as a result of its deployment, will need. Profiling returns information such as CPU usage, memory usage, and response latency. It also provides a CPU and memory recommendation based on the resource usage. You can profile your model (or more precisely the service built based on your model) on any CPU and/or memory combination where 0.1 <= CPU <= 3.5 and 0.1GB <= memory <= 15GB. If you do not provide a CPU and/or memory requirement, we will test it on the default configuration of 3.5 CPU and 15GB memory.\n",
"\n",
"In order to profile your model you will need:\n",
"- a registered model\n",
"- an entry script\n",
"- an inference configuration\n",
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
"\n",
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
"\n",
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
"\n",
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You may want to register datasets using the register() method to your workspace so they can be shared with others, reused and referred to by name in your script.\n",
"You can try get the dataset first to see if it's already registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Datastore\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.data import dataset_type_definitions\n",
"\n",
"dataset_name='diabetes_sample_request_data'\n",
"\n",
"dataset_registered = False\n",
"try:\n",
" sample_request_data = Dataset.get_by_name(workspace = ws, name = dataset_name)\n",
" dataset_registered = True\n",
"except:\n",
" print(\"The dataset {} is not registered in workspace yet.\".format(dataset_name))\n",
"\n",
"if not dataset_registered:\n",
" # create a string that can be utf-8 encoded and\n",
" # put in the body of the request\n",
" serialized_input_json = json.dumps({\n",
" 'data': [\n",
" [ 0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235,\n",
" -0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613]\n",
" ]\n",
" })\n",
" dataset_content = []\n",
" for i in range(100):\n",
" dataset_content.append(serialized_input_json)\n",
" dataset_content = '\\n'.join(dataset_content)\n",
" file_name = \"{}.txt\".format(dataset_name)\n",
" f = open(file_name, 'w')\n",
" f.write(dataset_content)\n",
" f.close()\n",
"\n",
" # upload the txt file created above to the Datastore and create a dataset from it\n",
" data_store = Datastore.get_default(ws)\n",
" data_store.upload_files(['./' + file_name], target_path='sample_request_data')\n",
" datastore_path = [(data_store, 'sample_request_data' +'/' + file_name)]\n",
" sample_request_data = Dataset.Tabular.from_delimited_files(\n",
" datastore_path,\n",
" separator='\\n',\n",
" infer_column_types=True,\n",
" header=dataset_type_definitions.PromoteHeadersBehavior.NO_HEADERS)\n",
" sample_request_data = sample_request_data.register(workspace=ws,\n",
" name=dataset_name,\n",
" create_new_version=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have an input dataset we are ready to go ahead with profiling. In this case we are testing the previously introduced sklearn regression model on 1 CPU and 0.5 GB memory. The memory usage and recommendation presented in the result is measured in Gigabytes. The CPU usage and recommendation is measured in CPU cores."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"\n",
"environment = Environment('my-sklearn-environment')\n",
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn=={}'.format(sklearn.__version__)\n",
"])\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"# if cpu and memory_in_gb parameters are not provided\n",
"# the model will be profiled on default configuration of\n",
"# 3.5CPU and 15GB memory\n",
"profile = Model.profile(ws,\n",
" 'rgrsn-%s' % datetime.now().strftime('%m%d%Y-%H%M%S'),\n",
" [model],\n",
" inference_config,\n",
" input_dataset=sample_request_data,\n",
" cpu=1.0,\n",
" memory_in_gb=0.5)\n",
"\n",
"# profiling is a long running operation and may take up to 25 min\n",
"profile.wait_for_completion(True)\n",
"details = profile.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model packaging\n",
"\n",
"If you want to build a Docker image that encapsulates your model and its dependencies, you can use the model packaging option. The output image will be pushed to your workspace's ACR.\n",
"\n",
"You must include an Environment object in your inference configuration to use `Model.package()`.\n",
"\n",
"```python\n",
"package = Model.package(ws, [model], inference_config)\n",
"package.wait_for_creation(show_output=True) # Or show_output=False to hide the Docker build logs.\n",
"package.pull()\n",
"```\n",
"\n",
"Instead of a fully-built image, you can also generate a Dockerfile and download all the assets needed to build an image on top of your Environment.\n",
"\n",
"```python\n",
"package = Model.package(ws, [model], inference_config, generate_dockerfile=True)\n",
"package.wait_for_creation(show_output=True)\n",
"package.save(\"./local_context_dir\")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
" - To run a production-ready web service, see the [notebook on deployment to Azure Kubernetes Service](../production-deploy-to-aks/production-deploy-to-aks.ipynb).\n",
" - To run a local web service, see the [notebook on deployment to a local Docker container](../deploy-to-local/register-model-deploy-local.ipynb).\n",
" - For more information on datasets, see the [notebook on training with datasets](../../work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb).\n",
" - For more information on environments, see the [notebook on using environments](../../training/using-environments/using-environments.ipynb).\n",
" - For information on all the available deployment targets, see [&ldquo;How and where to deploy models&rdquo;](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where#choose-a-compute-target)."
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"category": "deployment",
"compute": [
"None"
],
"datasets": [
"Diabetes"
],
"deployment": [
"Azure Container Instance"
],
"exclude_from_index": false,
"framework": [
"Scikit-learn"
],
"friendly_name": "Register model and deploy as webservice",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"star_tag": [
"featured"
],
"tags": [
"None"
],
"task": "Deploy a model with Azure Machine Learning"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,6 @@
name: model-register-and-deploy
dependencies:
- pip:
- azureml-sdk
- numpy
- scikit-learn

View File

@@ -0,0 +1,38 @@
import joblib
import numpy as np
import os
from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
# The init() method is called once, when the web service starts up.
#
# Typically you would deserialize the model file, as shown here using joblib,
# and store it in a global variable so your run() method can access it later.
def init():
global model
# The AZUREML_MODEL_DIR environment variable indicates
# a directory containing the model file you registered.
model_filename = 'sklearn_regression_model.pkl'
model_path = os.path.join(os.environ['AZUREML_MODEL_DIR'], model_filename)
model = joblib.load(model_path)
# The run() method is called each time a request is made to the scoring API.
#
# Shown here are the optional input_schema and output_schema decorators
# from the inference-schema pip package. Using these decorators on your
# run() method parses and validates the incoming payload against
# the example input you provide here. This will also generate a Swagger
# API document for your web service.
@input_schema('data', NumpyParameterType(np.array([[0.1, 1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0]])))
@output_schema(NumpyParameterType(np.array([4429.929236457418])))
def run(data):
# Use the model object loaded by init().
result = model.predict(data)
# You can return any JSON-serializable object.
return result.tolist()

View File

@@ -0,0 +1,12 @@
# Model Deployment with Azure ML service
You can use Azure Machine Learning to package, debug, validate and deploy inference containers to a variety of compute targets. This process is known as "MLOps" (ML operationalization).
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-deploy-and-where
## Get Started
To begin, you will need an ML workspace.
For more information please check out this article: https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-manage-workspace
## Deploy locally
You can deploy a model locally for testing & debugging using the Azure ML CLI or the Azure ML SDK.
- CLI example: https://aka.ms/azmlcli
- Notebook example: [register-model-deploy-local](./register-model-deploy-local.ipynb).

View File

@@ -0,0 +1 @@
RUN echo "this is test"

View File

@@ -0,0 +1,495 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local-advanced.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register model and deploy locally with advanced usages\n",
"\n",
"This example shows how to deploy a web service in step-by-step fashion:\n",
"\n",
" 1. Register model\n",
" 2. Deploy the image as a web service in a local Docker container.\n",
" 3. Quickly test changes to your entry script by reloading the local service.\n",
" 4. Optionally, you can also make changes to model, conda or extra_docker_file_steps and update local service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"sk_model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(sk_model, \"sklearn_regression_model.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. we are using `sklearn_regression_model.pkl` file in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file",
"sample-model-register"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
" model_name=\"sklearn_regression_model\",\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Ridge regression model to predict diabetes\",\n",
" workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Manage your dependencies in a folder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"source_directory = \"source_directory\"\n",
"\n",
"os.makedirs(source_directory, exist_ok=True)\n",
"os.makedirs(os.path.join(source_directory, \"x/y\"), exist_ok=True)\n",
"os.makedirs(os.path.join(source_directory, \"env\"), exist_ok=True)\n",
"os.makedirs(os.path.join(source_directory, \"dockerstep\"), exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show `score.py`. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile source_directory/x/y/score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment. Join this path with the filename of the model file.\n",
" # It holds the path to the directory that contains the deployed model (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # If there are multiple models, this value is the path to the directory containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
" global name\n",
" # Note here, the entire source directory from inference config gets added into image.\n",
" # Below is an example of how you can use any extra files in image.\n",
" with open('./source_directory/extradata.json') as json_file:\n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
"\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # You can return any JSON-serializable object.\n",
" return \"Hello \" + name + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile source_directory/extradata.json\n",
"{\n",
" \"people\": [\n",
" {\n",
" \"website\": \"microsoft.com\", \n",
" \"from\": \"Seattle\", \n",
" \"name\": \"Mrudula\"\n",
" }\n",
" ]\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration\n",
"\n",
" - file_path: input parameter to Environment constructor. Manages conda and python package dependencies.\n",
" - env.docker.base_dockerfile: any extra steps you want to inject into docker file\n",
" - source_directory: holds source path as string, this entire folder gets added in image so its really easy to access any files within this folder or subfolder\n",
" - entry_script: contains logic specific to initializing your model and running predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sklearn\n",
"\n",
"from azureml.core.environment import Environment\n",
"from azureml.core.model import InferenceConfig\n",
"\n",
"\n",
"myenv = Environment('myenv')\n",
"myenv.python.conda_dependencies.add_pip_package(\"inference-schema[numpy-support]\")\n",
"myenv.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"myenv.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))\n",
"\n",
"# explicitly set base_image to None when setting base_dockerfile\n",
"myenv.docker.base_image = None\n",
"myenv.docker.base_dockerfile = \"FROM mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04\\nRUN echo \\\"this is test\\\"\"\n",
"myenv.inferencing_stack_version = \"latest\"\n",
"\n",
"inference_config = InferenceConfig(source_directory=source_directory,\n",
" entry_script=\"x/y/score.py\",\n",
" environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Model as a Local Docker Web Service\n",
"\n",
"*Make sure you have Docker installed and running.*\n",
"\n",
"Note that the service creation can take few minutes.\n",
"\n",
"NOTE:\n",
"\n",
"The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:\n",
"\n",
" # PowerShell command to switch to Linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import LocalWebservice\n",
"\n",
"# This is optional, if not provided Docker will choose a random unused port.\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
"\n",
"local_service.wait_for_deployment()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Local service port: {}'.format(local_service.port))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Check Status and Get Container Logs\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(local_service.get_logs())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Web Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the web service with some input data to get a prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"print(local_service.run(sample_input))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reload Service\n",
"\n",
"You can update your score.py file and then call `reload()` to quickly restart the service. This will only reload your execution script and dependency files, it will not rebuild the underlying Docker image. As a result, `reload()` is fast, but if you do need to rebuild the image -- to add a new Conda or pip package, for instance -- you will have to call `update()`, instead (see below)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile source_directory/x/y/score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
" global name, from_location\n",
" # Note here, the entire source directory from inference config gets added into image.\n",
" # Below is an example of how you can use any extra files in image.\n",
" with open('source_directory/extradata.json') as json_file: \n",
" data = json.load(json_file)\n",
" name = data[\"people\"][0][\"name\"]\n",
" from_location = data[\"people\"][0][\"from\"]\n",
"\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # You can return any JSON-serializable object.\n",
" return \"Hello \" + name + \" from \" + from_location + \" here is your result = \" + str(result)\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# After calling reload(), run() will return the updated message.\n",
"local_service.run(sample_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update Service\n",
"\n",
"If you want to change your model(s), Conda dependencies, or deployment configuration, call `update()` to rebuild the Docker image.\n",
"\n",
"```python\n",
"\n",
"local_service.update(models=[SomeOtherModelObject],\n",
" deployment_config=local_config,\n",
" inference_config=inference_config)\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Delete Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "keriehm"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,556 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register model and deploy locally\n",
"\n",
"This example shows how to deploy a web service in step-by-step fashion:\n",
"\n",
" 1. Register model\n",
" 2. Deploy the image as a web service in a local Docker container.\n",
" 3. Quickly test changes to your entry script by reloading the local service.\n",
" 4. Optionally, you can also make changes to model, conda or extra_docker_file_steps and update local service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create trained model\n",
"\n",
"For this example, we will train a small model on scikit-learn's [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import joblib\n",
"\n",
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"dataset_x, dataset_y = load_diabetes(return_X_y=True)\n",
"\n",
"sk_model = Ridge().fit(dataset_x, dataset_y)\n",
"\n",
"joblib.dump(sk_model, \"sklearn_regression_model.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we are registering the serialized file `sklearn_regression_model.pkl` in the current directory as a model with the name `sklearn_regression_model` in the workspace.\n",
"\n",
"You can add tags and descriptions to your models. Using tags, you can track useful information such as the name and version of the machine learning library used to train the model, framework, category, target customer etc. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path=\"sklearn_regression_model.pkl\",\n",
" model_name=\"sklearn_regression_model\",\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Ridge regression model to predict diabetes\",\n",
" workspace=ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sklearn\n",
"\n",
"from azureml.core.environment import Environment\n",
"\n",
"environment = Environment(\"LocalDeploy\")\n",
"environment.python.conda_dependencies.add_pip_package(\"inference-schema[numpy-support]\")\n",
"environment.python.conda_dependencies.add_pip_package(\"joblib\")\n",
"environment.python.conda_dependencies.add_pip_package(\"scikit-learn=={}\".format(sklearn.__version__))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Provide the Scoring Script\n",
"\n",
"This Python script handles the model execution inside the service container. The `init()` method loads the model file, and `run(data)` is called for every input to the service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # You can return any JSON-serializable object.\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Inference Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(entry_script=\"score.py\",\n",
" environment=environment)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Model as a Local Docker Web Service\n",
"\n",
"*Make sure you have Docker installed and running.*\n",
"\n",
"Note that the service creation can take few minutes.\n",
"\n",
"NOTE:\n",
"\n",
"The Docker image runs as a Linux container. If you are running Docker for Windows, you need to ensure the Linux Engine is running:\n",
"\n",
" # PowerShell command to switch to Linux engine\n",
" & 'C:\\Program Files\\Docker\\Docker\\DockerCli.exe' -SwitchLinuxEngine"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sample-localwebservice-deploy"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import LocalWebservice\n",
"\n",
"# This is optional, if not provided Docker will choose a random unused port.\n",
"deployment_config = LocalWebservice.deploy_configuration(port=6789)\n",
"\n",
"local_service = Model.deploy(ws, \"test\", [model], inference_config, deployment_config)\n",
"\n",
"local_service.wait_for_deployment()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Local service port: {}'.format(local_service.port))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Check Status and Get Container Logs\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(local_service.get_logs())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Web Service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the web service with some input data to get a prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"local_service.run(sample_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reload Service\n",
"\n",
"You can update your score.py file and then call `reload()` to quickly restart the service. This will only reload your execution script and dependency files, it will not rebuild the underlying Docker image. As a result, `reload()` is fast, but if you do need to rebuild the image -- to add a new Conda or pip package, for instance -- you will have to call `update()`, instead (see below)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import joblib\n",
"import json\n",
"import numpy as np\n",
"import os\n",
"\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # Deserialize the model file back into a sklearn model.\n",
" model = joblib.load(model_path)\n",
"\n",
"input_sample = np.array([[10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n",
"output_sample = np.array([3726.995])\n",
"\n",
"@input_schema('data', NumpyParameterType(input_sample))\n",
"@output_schema(NumpyParameterType(output_sample))\n",
"def run(data):\n",
" try:\n",
" result = model.predict(data)\n",
" # You can return any JSON-serializable object.\n",
" return 'Hello from the updated score.py: ' + str(result.tolist())\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.reload()\n",
"print(\"--------------------------------------------------------------\")\n",
"\n",
"# After calling reload(), run() will return the updated message.\n",
"local_service.run(sample_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update Service\n",
"\n",
"If you want to change your model(s), Conda dependencies or deployment configuration, call `update()` to rebuild the Docker image.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.update(models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=deployment_config)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model to AKS cluster based on the LocalWebservice's configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This is a one time setup for AKS Cluster. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your AKS cluster\n",
"aks_name = 'my-aks-9' \n",
"\n",
"# Verify the cluster does not exist already\n",
"try:\n",
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" # Use the default configuration (can also provide parameters to customize)\n",
" prov_config = AksCompute.provisioning_configuration()\n",
"\n",
" # Create the cluster\n",
" aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)\n",
"\n",
"if aks_target.get_status() != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AksWebservice\n",
"# Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"# # Enable token auth and disable (key) auth on the webservice\n",
"# aks_config = AksWebservice.deploy_configuration(token_auth_enabled=True, auth_enabled=False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='aks-service-1'\n",
"\n",
"aks_service = local_service.deploy_to_cloud(name=aks_service_name,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test aks service\n",
"\n",
"sample_input = json.dumps({\n",
" 'data': dataset_x[0:2].tolist()\n",
"})\n",
"\n",
"aks_service.run(sample_input)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Delete the service if not needed.\n",
"aks_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Delete Service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"local_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "keriehm"
}
],
"category": "tutorial",
"compute": [
"Local"
],
"datasets": [
"None"
],
"deployment": [
"Local"
],
"exclude_from_index": false,
"framework": [
"None"
],
"friendly_name": "Register a model and deploy locally",
"index_order": 1,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
},
"star_tag": [],
"tags": [
"None"
],
"task": "Deployment"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,371 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy models to Azure Kubernetes Service (AKS) using controlled roll out\n",
"This notebook will show you how to deploy mulitple AKS webservices with the same scoring endpoint and how to roll out your models in a controlled manner by configuring % of scoring traffic going to each webservice. If you are using a Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and create an Azure ML Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check for latest version\n",
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"Create a [Workspace](https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py) object from your persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register the model\n",
"Register a file or folder as a model by calling [Model.register()](https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none-).\n",
"In addition to the content of the model file itself, your registered model will also store model metadata -- model description, tags, and framework information -- that will be useful when managing and deploying models in your workspace. Using tags, for instance, you can categorize your models and apply filters when listing models in your workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Model\n",
"\n",
"model = Model.register(workspace=ws,\n",
" model_name='sklearn_regression_model.pkl', # Name of the registered model in your workspace.\n",
" model_path='./sklearn_regression_model.pkl', # Local file to upload and register as a model.\n",
" model_framework=Model.Framework.SCIKITLEARN, # Framework used to create the model.\n",
" model_framework_version='0.19.1', # Version of scikit-learn used to create the model.\n",
" description='Ridge regression model to predict diabetes progression.',\n",
" tags={'area': 'diabetes', 'type': 'regression'})\n",
"\n",
"print('Name:', model.name)\n",
"print('Version:', model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register an environment (for all models)\n",
"\n",
"If you control over how your model is run, or if it has special runtime requirements, you can specify your own environment and scoring method.\n",
"\n",
"Specify the model's runtime environment by creating an [Environment](https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment%28class%29?view=azure-ml-py) object and providing the [CondaDependencies](https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py) needed by your model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"environment=Environment('my-sklearn-environment')\n",
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'numpy',\n",
" 'scikit-learn==0.19.1',\n",
" 'scipy'\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using a custom environment, you must also provide Python code for initializing and running your model. An example script is included with this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('score.py') as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the InferenceConfig\n",
"Create the inference configuration to reference your environment and entry script during deployment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inference_config = InferenceConfig(entry_script='score.py', \n",
" source_directory='.',\n",
" environment=environment)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Provision the AKS Cluster\n",
"If you already have an AKS cluster attached to this workspace, skip the step below and provide the name of the cluster.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import AksCompute\n",
"from azureml.core.compute import ComputeTarget\n",
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"aks_name = 'my-aks' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config) \n",
"aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create an Endpoint and add a version (AKS service)\n",
"This creates a new endpoint and adds a version behind it. By default the first version added is the default version. You can specify the traffic percentile a version takes behind an endpoint. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# deploying the model and create a new endpoint\n",
"from azureml.core.webservice import AksEndpoint\n",
"# from azureml.core.compute import ComputeTarget\n",
"\n",
"#select a created compute\n",
"compute = ComputeTarget(ws, 'my-aks')\n",
"namespace_name=\"endpointnamespace\"\n",
"# define the endpoint name\n",
"endpoint_name = \"myendpoint1\"\n",
"# define the service name\n",
"version_name= \"versiona\"\n",
"\n",
"endpoint_deployment_config = AksEndpoint.deploy_configuration(tags = {'modelVersion':'firstversion', 'department':'finance'}, \n",
" description = \"my first version\", namespace = namespace_name, \n",
" version_name = version_name, traffic_percentile = 40)\n",
"\n",
"endpoint = Model.deploy(ws, endpoint_name, [model], inference_config, endpoint_deployment_config, compute)\n",
"endpoint.wait_for_deployment(True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"endpoint.get_logs()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add another version of the service to an existing endpoint\n",
"This adds another version behind an existing endpoint. You can specify the traffic percentile the new version takes. If no traffic_percentile is specified then it defaults to 0. All the unspecified traffic percentile (in this example 50) across all versions goes to default version."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Adding a new version to an existing Endpoint.\n",
"version_name_add=\"versionb\" \n",
"\n",
"endpoint.create_version(version_name = version_name_add, inference_config=inference_config, models=[model], tags = {'modelVersion':'secondversion', 'department':'finance'}, \n",
" description = \"my second version\", traffic_percentile = 10)\n",
"endpoint.wait_for_deployment(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Update an existing version in an endpoint\n",
"There are two types of versions: control and treatment. An endpoint contains one or more treatment versions but only one control version. This categorization helps compare the different versions against the defined control version."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"endpoint.update_version(version_name=endpoint.versions[version_name_add].name, description=\"my second version update\", traffic_percentile=40, is_default=True, is_control_version_type=True)\n",
"endpoint.wait_for_deployment(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test the web service using run method\n",
"Test the web sevice by passing in data. Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scoring on endpoint\n",
"import json\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"\n",
"test_sample_encoded = bytes(test_sample, encoding='utf8')\n",
"prediction = endpoint.run(input_data=test_sample_encoded)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Delete Resources"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# deleting a version in an endpoint\n",
"endpoint.delete_version(version_name=version_name)\n",
"endpoint.wait_for_deployment(True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# deleting an endpoint, this will delete all versions in the endpoint and the endpoint itself\n",
"endpoint.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "shipatel"
}
],
"category": "deployment",
"compute": [
"None"
],
"datasets": [
"Diabetes"
],
"deployment": [
"Azure Kubernetes Service"
],
"exclude_from_index": false,
"framework": [
"Scikit-learn"
],
"friendly_name": "Deploy models to AKS using controlled roll out",
"index_order": 3,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
},
"star_tag": [
"featured"
],
"tags": [
"None"
],
"task": "Deploy a model with Azure Machine Learning"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: deploy-aks-with-controlled-rollout
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,6 +1,6 @@
import pickle
import json
import numpy as np
import numpy
from sklearn.externals import joblib
from sklearn.linear_model import Ridge
from azureml.core.model import Model
@@ -8,9 +8,9 @@ from azureml.core.model import Model
def init():
global model
# note here "best_model" is the name of the model registered under the workspace
# this call should return the path to the model.pkl file on the local disk.
model_path = Model.get_model_path(model_name='best_model')
# note here "sklearn_regression_model.pkl" is the name of the model registered under
# this is a different behavior than before when the code is run locally, even though the code is the same.
model_path = Model.get_model_path('sklearn_regression_model.pkl')
# deserialize the model file back into a sklearn model
model = joblib.load(model_path)
@@ -19,11 +19,10 @@ def init():
def run(raw_data):
try:
data = json.loads(raw_data)['data']
data = np.array(data)
data = numpy.array(data)
result = model.predict(data)
# you can return any data type as long as it is JSON-serializable
return result.tolist()
except Exception as e:
result = str(e)
return result
error = str(e)
return error

View File

@@ -1,491 +1,498 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enabling App Insights for Services in Production\n",
"With this notebook, you can learn how to enable App Insights for standard service monitoring, plus, we provide examples for doing custom logging within a scoring files in a model. \n",
"\n",
"\n",
"## What does Application Insights monitor?\n",
"It monitors request rates, response times, failure rates, etc. For more information visit [App Insights docs.](https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview)\n",
"\n",
"\n",
"## What is different compared to standard production deployment process?\n",
"If you want to enable generic App Insights for a service run:\n",
"```python\n",
"aks_service= Webservice(ws, \"aks-w-dc2\")\n",
"aks_service.update(enable_app_insights=True)```\n",
"Where \"aks-w-dc2\" is your service name. You can also do this from the Azure Portal under your Workspace--> deployments--> Select deployment--> Edit--> Advanced Settings--> Select \"Enable AppInsights diagnostics\"\n",
"\n",
"If you want to log custom traces, you will follow the standard deplyment process for AKS and you will:\n",
"1. Update scoring file.\n",
"2. Update aks configuration.\n",
"3. Build new image and deploy it. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Import your dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import AksWebservice\n",
"import azureml.core\n",
"import json\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up your configuration and create a workspace\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Register Model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. *Update your scoring file with custom print statements*\n",
"Here is an example:\n",
"### a. In your init function add:\n",
"```python\n",
"print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))```\n",
"\n",
"### b. In your run function add:\n",
"```python\n",
"print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy \n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"import time\n",
"\n",
"def init():\n",
" global model\n",
" #Print statement for appinsights custom traces:\n",
" print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))\n",
" \n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under the workspace\n",
" # this call should return the path to the model.pkl file on the local disk.\n",
" model_path = Model.get_model_path(model_name = 'sklearn_regression_model.pkl')\n",
" \n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
" \n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" print (error + time.strftime(\"%H:%M:%S\"))\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. *Create myenv.yml file*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Create your new Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" description = \"Image with ridge regression model\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}\n",
" )\n",
"\n",
"image = ContainerImage.create(name = \"myimage1\",\n",
" # this is the model object\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy to ACI (Optional)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}, \n",
" description = 'Predict diabetes using regression model',\n",
" enable_app_insights = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'my-aci-service-4'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
" [101,9,8,37,6,45,4,3,2,41]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding='utf8')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state == \"Healthy\":\n",
" prediction = aci_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Deploy to AKS service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AKS compute if you haven't done so."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"aks_name = 'my-aks-test3' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you already have a cluster you can attach the service to it:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python \n",
"%%time\n",
"resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
"create_name= 'myaks4'\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace = ws, \n",
" name = create_name, \n",
" attach_configuration=attach_config)\n",
"## Wait for the operation to complete\n",
"aks_target.wait_for_provisioning(True)```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### a. *Activate App Insights through updating AKS Webservice configuration*\n",
"In order to enable App Insights in your service you will need to update your AKS configuration file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Set the web service configuration\n",
"aks_config = AksWebservice.deploy_configuration(enable_app_insights=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### b. Deploy your service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aks_target.provisioning_state== \"Succeeded\": \n",
" aks_service_name ='aks-w-dc5'\n",
" aks_service = Webservice.deploy_from_image(workspace = ws, \n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target\n",
" )\n",
" aks_service.wait_for_deployment(show_output = True)\n",
" print(aks_service.state)\n",
"else:\n",
" raise ValueError(\"AKS provisioning failed.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Test your service "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,28,13,45,54,6,57,8,8,10], \n",
" [101,9,8,37,6,45,4,3,2,41]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding='utf8')\n",
"\n",
"if aks_service.state == \"Healthy\":\n",
" prediction = aks_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9. See your service telemetry in App Insights\n",
"1. Go to the [Azure Portal](https://portal.azure.com/)\n",
"2. All resources--> Select the subscription/resource group where you created your Workspace--> Select the App Insights type\n",
"3. Click on the AppInsights resource. You'll see a highlevel dashboard with information on Requests, Server response time and availability.\n",
"4. Click on the top banner \"Analytics\"\n",
"5. In the \"Schema\" section select \"traces\" and run your query.\n",
"6. Voila! All your custom traces should be there."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Disable App Insights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.update(enable_app_insights=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"aci_service.delete()\n",
"image.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "jocier"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enabling App Insights for Services in Production\n",
"With this notebook, you can learn how to enable App Insights for standard service monitoring, plus, we provide examples for doing custom logging within a scoring files in a model.\n",
"\n",
"\n",
"## What does Application Insights monitor?\n",
"It monitors request rates, response times, failure rates, etc. For more information visit [App Insights docs.](https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview)\n",
"\n",
"\n",
"## What is different compared to standard production deployment process?\n",
"If you want to enable generic App Insights for a service run:\n",
"```python\n",
"aks_service= Webservice(ws, \"aks-w-dc2\")\n",
"aks_service.update(enable_app_insights=True)```\n",
"Where \"aks-w-dc2\" is your service name. You can also do this from the Azure Portal under your Workspace--> deployments--> Select deployment--> Edit--> Advanced Settings--> Select \"Enable AppInsights diagnostics\"\n",
"\n",
"If you want to log custom traces, you will follow the standard deplyment process for AKS and you will:\n",
"1. Update scoring file.\n",
"2. Update aks configuration.\n",
"3. Deploy the model with this new configuration. "
]
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Import your dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"import json\n",
"\n",
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import AksWebservice\n",
"\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up your configuration and create a workspace\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Register Model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Model\n",
"\n",
"model = Model.register(model_path=\"sklearn_regression_model.pkl\", # This points to a local file.\n",
" model_name=\"sklearn_regression_model.pkl\", # This is the name the model is registered as.\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Ridge regression model to predict diabetes\",\n",
" workspace=ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. *Update your scoring file with custom print statements*\n",
"Here is an example:\n",
"### a. In your init function add:\n",
"```python\n",
"print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))```\n",
"\n",
"### b. In your run function add:\n",
"```python\n",
"print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import os\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"import time\n",
"\n",
"def init():\n",
" global model\n",
" #Print statement for appinsights custom traces:\n",
" print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))\n",
"\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
"\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" print (\"Prediction created\" + time.strftime(\"%H:%M:%S\"))\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" print (error + time.strftime(\"%H:%M:%S\"))\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. *Create myenv.yml file*\n",
"Please note that you must indicate azureml-defaults with verion >= 1.0.45 as a pip dependency, because it contains the functionality needed to host the model as a web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies\n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn==0.20.3'],\n",
" pip_packages=['azureml-defaults'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Create Inference Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.environment import Environment\n",
"from azureml.core.model import InferenceConfig\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy to ACI (Optional)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aci_deployment_config = AciWebservice.deploy_configuration(cpu_cores=1,\n",
" memory_gb=1,\n",
" tags={'area': \"diabetes\", 'type': \"regression\"},\n",
" description=\"Predict diabetes using regression model\",\n",
" enable_app_insights=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aci_service_name = \"aci-service-appinsights\"\n",
"\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aci_deployment_config, overwrite=True)\n",
"aci_service.wait_for_deployment(show_output=True)\n",
"\n",
"print(aci_service.state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state == \"Healthy\":\n",
" test_sample = json.dumps({\n",
" \"data\": [\n",
" [1,28,13,45,54,6,57,8,8,10],\n",
" [101,9,8,37,6,45,4,3,2,41]\n",
" ]\n",
" })\n",
"\n",
" prediction = aci_service.run(test_sample)\n",
"\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service. Error: \", aci_service.error)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Deploy to AKS service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AKS compute if you haven't done so.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"aks_name = \"my-aks-insights\"\n",
"\n",
"creating_compute = False\n",
"try:\n",
" aks_target = ComputeTarget(ws, aks_name)\n",
" print(\"Using existing AKS compute target {}.\".format(aks_name))\n",
"except ComputeTargetException:\n",
" print(\"Creating a new AKS compute target {}.\".format(aks_name))\n",
"\n",
" # Use the default configuration (can also provide parameters to customize).\n",
" prov_config = AksCompute.provisioning_configuration()\n",
" aks_target = ComputeTarget.create(workspace=ws,\n",
" name=aks_name,\n",
" provisioning_configuration=prov_config)\n",
" creating_compute = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"if creating_compute and aks_target.provisioning_state != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you already have a cluster you can attach the service to it:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python\n",
"%%time\n",
"resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
"create_name= 'myaks4'\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace=ws,\n",
" name=create_name,\n",
" attach_configuration=attach_config)\n",
"## Wait for the operation to complete\n",
"aks_target.wait_for_provisioning(True)```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### a. *Activate App Insights through updating AKS Webservice configuration*\n",
"In order to enable App Insights in your service you will need to update your AKS configuration file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the web service configuration.\n",
"aks_deployment_config = AksWebservice.deploy_configuration(enable_app_insights=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### b. Deploy your service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aks_target.provisioning_state == \"Succeeded\":\n",
" aks_service_name = \"aks-service-appinsights\"\n",
" aks_service = Model.deploy(ws,\n",
" aks_service_name,\n",
" [model],\n",
" inference_config,\n",
" aks_deployment_config,\n",
" deployment_target=aks_target,\n",
" overwrite=True)\n",
" aks_service.wait_for_deployment(show_output=True)\n",
" print(aks_service.state)\n",
"else:\n",
" raise ValueError(\"AKS cluster provisioning failed. Error: \", aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Test your service "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"if aks_service.state == \"Healthy\":\n",
" test_sample = json.dumps({\n",
" \"data\": [\n",
" [1,28,13,45,54,6,57,8,8,10],\n",
" [101,9,8,37,6,45,4,3,2,41]\n",
" ]\n",
" })\n",
"\n",
" prediction = aks_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service. Error: \", aks_service.error)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9. See your service telemetry in App Insights\n",
"1. Go to the [Azure Portal](https://portal.azure.com/)\n",
"2. All resources--> Select the subscription/resource group where you created your Workspace--> Select the App Insights type\n",
"3. Click on the AppInsights resource. You'll see a highlevel dashboard with information on Requests, Server response time and availability.\n",
"4. Click on the top banner \"Analytics\"\n",
"5. In the \"Schema\" section select \"traces\" and run your query.\n",
"6. Voila! All your custom traces should be there."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Disable App Insights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.update(enable_app_insights=False)\n",
"aks_service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"aci_service.delete()\n",
"model.delete()\n",
"if creating_compute:\n",
" aks_target.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "gopalv"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: enable-app-insights-in-production-service
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,471 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enabling Data Collection for Models in Production\n",
"With this notebook, you can learn how to collect input model data from your Azure Machine Learning service in an Azure Blob storage. Once enabled, this data collected gives you the opportunity:\n",
"\n",
"* Monitor data drifts as production data enters your model\n",
"* Make better decisions on when to retrain or optimize your model\n",
"* Retrain your model with the data collected\n",
"\n",
"## What data is collected?\n",
"* Model input data (voice, images, and video are not supported) from services deployed in Azure Kubernetes Cluster (AKS)\n",
"* Model predictions using production input data.\n",
"\n",
"**Note:** pre-aggregation or pre-calculations on this data are done by user and not included in this version of the product.\n",
"\n",
"## What is different compared to standard production deployment process?\n",
"1. Update scoring file.\n",
"2. Update yml file with new dependency.\n",
"3. Update aks configuration.\n",
"4. Build new image and deploy it. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Import your dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up your configuration and create a workspace"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Register Model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. *Update your scoring file with Data Collection*\n",
"The file below, compared to the file used in notebook 11, has the following changes:\n",
"### a. Import the module\n",
"```python \n",
"from azureml.monitoring import ModelDataCollector```\n",
"### b. In your init function add:\n",
"```python \n",
"global inputs_dc, prediction_d\n",
"inputs_dc = ModelDataCollector(\"best_model\", identifier=\"inputs\", feature_names=[\"feat1\", \"feat2\", \"feat3\", \"feat4\", \"feat5\", \"Feat6\"])\n",
"prediction_dc = ModelDataCollector(\"best_model\", identifier=\"predictions\", feature_names=[\"prediction1\", \"prediction2\"])```\n",
" \n",
"* Identifier: Identifier is later used for building the folder structure in your Blob, it can be used to divide \"raw\" data versus \"processed\".\n",
"* CorrelationId: is an optional parameter, you do not need to set it up if your model doesn't require it. Having a correlationId in place does help you for easier mapping with other data. (Examples include: LoanNumber, CustomerId, etc.)\n",
"* Feature Names: These need to be set up in the order of your features in order for them to have column names when the .csv is created.\n",
"\n",
"### c. In your run function add:\n",
"```python\n",
"inputs_dc.collect(data)\n",
"prediction_dc.collect(result)```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy \n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"from azureml.monitoring import ModelDataCollector\n",
"import time\n",
"\n",
"def init():\n",
" global model\n",
" print (\"model initialized\" + time.strftime(\"%H:%M:%S\"))\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under the workspace\n",
" # this call should return the path to the model.pkl file on the local disk.\n",
" model_path = Model.get_model_path(model_name = 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
" global inputs_dc, prediction_dc\n",
" # this setup will help us save our inputs under the \"inputs\" path in our Azure Blob\n",
" inputs_dc = ModelDataCollector(model_name=\"sklearn_regression_model\", identifier=\"inputs\", feature_names=[\"feat1\", \"feat2\"]) \n",
" # this setup will help us save our ipredictions under the \"predictions\" path in our Azure Blob\n",
" prediction_dc = ModelDataCollector(\"sklearn_regression_model\", identifier=\"predictions\", feature_names=[\"prediction1\", \"prediction2\"]) \n",
" \n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" global inputs_dc, prediction_dc\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" print (\"saving input data\" + time.strftime(\"%H:%M:%S\"))\n",
" inputs_dc.collect(data) #this call is saving our input data into our blob\n",
" prediction_dc.collect(result)#this call is saving our prediction data into our blob\n",
" print (\"saving prediction data\" + time.strftime(\"%H:%M:%S\"))\n",
" # you can return any data type as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" print (error + time.strftime(\"%H:%M:%S\"))\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. *Update your myenv.yml file with the required module*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'])\n",
"myenv.add_pip_package(\"azureml-monitoring\")\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Create your new Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" description = \"Image with ridge regression model\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}\n",
" )\n",
"\n",
"image = ContainerImage.create(name = \"myimage1\",\n",
" # this is the model object\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Deploy to AKS service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create AKS compute if you haven't done so."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"aks_name = 'my-aks-test1' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you already have a cluster you can attach the service to it:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```python \n",
" %%time\n",
" resource_id = '/subscriptions/<subscriptionid>/resourcegroups/<resourcegroupname>/providers/Microsoft.ContainerService/managedClusters/<aksservername>'\n",
" create_name= 'myaks4'\n",
" attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
" aks_target = ComputeTarget.attach(workspace = ws, \n",
" name = create_name, \n",
" attach_configuration=attach_config)\n",
" ## Wait for the operation to complete\n",
" aks_target.wait_for_provisioning(True)```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### a. *Activate Data Collection and App Insights through updating AKS Webservice configuration*\n",
"In order to enable Data Collection and App Insights in your service you will need to update your AKS configuration file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Set the web service configuration\n",
"aks_config = AksWebservice.deploy_configuration(collect_model_data=True, enable_app_insights=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### b. Deploy your service"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aks_target.provisioning_state== \"Succeeded\": \n",
" aks_service_name ='aks-w-dc0'\n",
" aks_service = Webservice.deploy_from_image(workspace = ws, \n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target\n",
" )\n",
" aks_service.wait_for_deployment(show_output = True)\n",
" print(aks_service.state)\n",
"else: \n",
" raise ValueError(\"aks provisioning failed, can't deploy service\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Test your service and send some data\n",
"**Note**: It will take around 15 mins for your data to appear in your blob.\n",
"The data will appear in your Azure Blob following this format:\n",
"\n",
"/modeldata/subscriptionid/resourcegroupname/workspacename/webservicename/modelname/modelversion/identifier/year/month/day/data.csv "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,54,6,7,8,88,10], \n",
" [10,9,8,37,36,45,4,33,2,1]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"if aks_service.state == \"Healthy\":\n",
" prediction = aks_service.run(input_data=test_sample)\n",
" print(prediction)\n",
"else:\n",
" raise ValueError(\"Service deployment isn't healthy, can't call the service\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 9. Validate you data and analyze it\n",
"You can look into your data following this path format in your Azure Blob (it takes up to 15 minutes for the data to appear):\n",
"\n",
"/modeldata/**subscriptionid>**/**resourcegroupname>**/**workspacename>**/**webservicename>**/**modelname>**/**modelversion>>**/**identifier>**/*year/month/day*/data.csv \n",
"\n",
"For doing further analysis you have multiple options:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### a. Create DataBricks cluter and connect it to your blob\n",
"https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal or in your databricks workspace you can look for the template \"Azure Blob Storage Import Example Notebook\".\n",
"\n",
"\n",
"Here is an example for setting up the file location to extract the relevant data:\n",
"\n",
"<code> file_location = \"wasbs://mycontainer@storageaccountname.blob.core.windows.net/unknown/unknown/unknown-bigdataset-unknown/my_iterate_parking_inputs/2018/&deg;/&deg;/data.csv\" \n",
"file_type = \"csv\"</code>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### b. Connect Blob to Power Bi (Small Data only)\n",
"1. Download and Open PowerBi Desktop\n",
"2. Select \u201cGet Data\u201d and click on \u201cAzure Blob Storage\u201d >> Connect\n",
"3. Add your storage account and enter your storage key.\n",
"4. Select the container where your Data Collection is stored and click on Edit. \n",
"5. In the query editor, click under \u201cName\u201d column and add your Storage account Model path into the filter. Note: if you want to only look into files from a specific year or month, just expand the filter path. For example, just look into March data: /modeldata/subscriptionid>/resourcegroupname>/workspacename>/webservicename>/modelname>/modelversion>/identifier>/year>/3\n",
"6. Click on the double arrow aside the \u201cContent\u201d column to combine the files. \n",
"7. Click OK and the data will preload.\n",
"8. You can now click Close and Apply and start building your custom reports on your Model Input data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Disable Data Collection"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aks_service.update(collect_model_data=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"image.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "jocier"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,2 @@
RUN apt-get update
RUN apt-get install -y libgomp1

View File

@@ -4,17 +4,20 @@ These tutorials show how to create and deploy Open Neural Network eXchange ([ONN
## Tutorials
0. [Configure your Azure Machine Learning Workspace](../../../configuration.ipynb)
0. If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, [Configure your Azure Machine Learning Workspace](../../../configuration.ipynb)
#### Obtain models from the [ONNX Model Zoo](https://github.com/onnx/models) and deploy with ONNX Runtime Inference
1. [Handwritten Digit Classification (MNIST)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-mnist-deploy.ipynb)
2. [Facial Expression Recognition (Emotion FER+)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-inference-facial-expression-recognition-deploy.ipynb)
#### Obtain pretrained models from the [ONNX Model Zoo](https://github.com/onnx/models) and deploy with ONNX Runtime
1. [MNIST - Handwritten Digit Classification with ONNX Runtime](onnx-inference-mnist-deploy.ipynb)
2. [Emotion FER+ - Facial Expression Recognition with ONNX Runtime](onnx-inference-facial-expression-recognition-deploy.ipynb)
#### Train model on Azure ML, convert to ONNX, and deploy with ONNX Runtime
3. [MNIST - Train using PyTorch and deploy with ONNX Runtime](onnx-train-pytorch-aml-deploy-mnist.ipynb)
#### Demo Notebooks from Microsoft Ignite 2018
Note that the following notebooks do not have evaluation sections for the models since they were deployed as part of a live demo. You can find the respective pre-processing and post-processing code linked from the ONNX Model Zoo Github pages ([ResNet](https://github.com/onnx/models/tree/master/models/image_classification/resnet), [TinyYoloV2](https://github.com/onnx/models/tree/master/tiny_yolov2)), or experiment with the ONNX models by [running them in the browser](https://microsoft.github.io/onnxjs-demo/#/).
3. [Image Recognition (ResNet50)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.ipynb)
4. [Convert Core ML Model to ONNX and deploy - Real Time Object Detection (TinyYOLO)](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.ipynb)
4. [ResNet50 - Image Recognition with ONNX Runtime](onnx-modelzoo-aml-deploy-resnet50.ipynb)
5. [TinyYoloV2 - Convert from CoreML and deploy with ONNX Runtime](onnx-convert-aml-deploy-tinyyolo.ipynb)
## Documentation
- [ONNX Runtime Python API Documentation](http://aka.ms/onnxruntime-python)
@@ -22,7 +25,7 @@ Note that the following notebooks do not have evaluation sections for the models
## Related Articles
- [Building and Deploying ONNX Runtime Models](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-build-deploy-onnx)
- [Azure AI Making AI Real for Business](https://aka.ms/aml-blog-overview)
- [Azure AI Making AI Real for Business](https://aka.ms/aml-blog-overview)
- [Whats new in Azure Machine Learning](https://aka.ms/aml-blog-whats-new)
## License
@@ -31,3 +34,6 @@ Licensed under the MIT License.
## Acknowledgements
These tutorials were developed by Vinitra Swamy and Prasanth Pulavarthi of the Microsoft AI Frameworks team and adapted for presentation at Microsoft Ignite 2018.
![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/README.png)

Binary file not shown.

View File

@@ -0,0 +1,135 @@
# This is a modified version of https://github.com/pytorch/examples/blob/master/mnist/main.py which is
# licensed under BSD 3-Clause (https://github.com/pytorch/examples/blob/master/LICENSE)
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import os
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch, output_dir):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False, reduce=True).item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=5, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--output-dir', type=str, default='outputs')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# Use Azure Open Datasets for MNIST dataset
datasets.MNIST.resources = [
("https://azureopendatastorage.azurefd.net/mnist/train-images-idx3-ubyte.gz",
"f68b3c2dcbeaaa9fbdd348bbdeb94873"),
("https://azureopendatastorage.azurefd.net/mnist/train-labels-idx1-ubyte.gz",
"d53e105ee54ea40749a09fcbcd1e9432"),
("https://azureopendatastorage.azurefd.net/mnist/t10k-images-idx3-ubyte.gz",
"9fb629c4189551a2d022fa330f9573f3"),
("https://azureopendatastorage.azurefd.net/mnist/t10k-labels-idx1-ubyte.gz",
"ec29112dd5afa0611ce80d1b7f02629c")
]
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, output_dir)
test(args, model, device, test_loader)
# save model
dummy_input = torch.randn(1, 1, 28, 28, device=device)
model_path = os.path.join(output_dir, 'mnist.onnx')
torch.onnx.export(model, dummy_input, model_path)
if __name__ == '__main__':
main()

View File

@@ -1,435 +1,434 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# YOLO Real-time Object Detection using ONNX on AzureML\n",
"\n",
"This example shows how to convert the TinyYOLO model from CoreML to ONNX and operationalize it as a web service using Azure Machine Learning services and the ONNX Runtime.\n",
"\n",
"## What is ONNX\n",
"ONNX is an open format for representing machine learning and deep learning models. ONNX enables open and interoperable AI by enabling data scientists and developers to use the tools of their choice without worrying about lock-in and flexibility to deploy to a variety of platforms. ONNX is developed and supported by a community of partners including Microsoft, Facebook, and Amazon. For more information, explore the [ONNX website](http://onnx.ai).\n",
"\n",
"## YOLO Details\n",
"You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system. For more information about YOLO, please visit the [YOLO website](https://pjreddie.com/darknet/yolo/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* Go through the [configuration](../../../configuration.ipynb) notebook to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Install necessary packages\n",
"\n",
"You'll need to run the following commands to use this tutorial:\n",
"\n",
"```sh\n",
"pip install onnxmltools\n",
"pip install coremltools # use this on Linux and Mac\n",
"pip install git+https://github.com/apple/coremltools # use this on Windows\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert model to ONNX\n",
"\n",
"First we download the CoreML model. We use the CoreML model from [Matthijs Hollemans's tutorial](https://github.com/hollance/YOLO-CoreML-MPSNNGraph). This may take a few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"\n",
"coreml_model_url = \"https://github.com/hollance/YOLO-CoreML-MPSNNGraph/raw/master/TinyYOLO-CoreML/TinyYOLO-CoreML/TinyYOLO.mlmodel\"\n",
"urllib.request.urlretrieve(coreml_model_url, filename=\"TinyYOLO.mlmodel\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we use ONNXMLTools to convert the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import onnxmltools\n",
"import coremltools\n",
"\n",
"# Load a CoreML model\n",
"coreml_model = coremltools.utils.load_spec('TinyYOLO.mlmodel')\n",
"\n",
"# Convert from CoreML into ONNX\n",
"onnx_model = onnxmltools.convert_coreml(coreml_model, 'TinyYOLOv2')\n",
"\n",
"# Save ONNX model\n",
"onnxmltools.utils.save_model(onnx_model, 'tinyyolov2.onnx')\n",
"\n",
"import os\n",
"print(os.path.getsize('tinyyolov2.onnx'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploying as a web service with Azure ML\n",
"\n",
"### Load Azure ML workspace\n",
"\n",
"We begin by instantiating a workspace object from the existing workspace created earlier in the configuration notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.location, ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Registering your model with Azure ML\n",
"\n",
"Now we upload the model and register it in the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"tinyyolov2.onnx\",\n",
" model_name = \"tinyyolov2\",\n",
" tags = {\"onnx\": \"demo\"},\n",
" description = \"TinyYOLO\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Displaying your registered models\n",
"\n",
"You can optionally list out all the models that you have registered in this workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"models = ws.models\n",
"for name, m in models.items():\n",
" print(\"Name:\", name,\"\\tVersion:\", m.version, \"\\tDescription:\", m.description, m.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Write scoring file\n",
"\n",
"We are now going to deploy our ONNX model on Azure ML using the ONNX Runtime. We begin by writing a score.py file that will be invoked by the web service call. The `init()` function is called once when the container is started so we load the model using the ONNX Runtime into a global session object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import json\n",
"import time\n",
"import sys\n",
"import os\n",
"from azureml.core.model import Model\n",
"import numpy as np # we're going to use numpy to process input and output data\n",
"import onnxruntime # to inference ONNX models, we use the ONNX Runtime\n",
"\n",
"def init():\n",
" global session\n",
" model = Model.get_model_path(model_name = 'tinyyolov2')\n",
" session = onnxruntime.InferenceSession(model)\n",
"\n",
"def preprocess(input_data_json):\n",
" # convert the JSON data into the tensor input\n",
" return np.array(json.loads(input_data_json)['data']).astype('float32')\n",
"\n",
"def postprocess(result):\n",
" return np.array(result).tolist()\n",
"\n",
"def run(input_data_json):\n",
" try:\n",
" start = time.time() # start timer\n",
" input_data = preprocess(input_data_json)\n",
" input_name = session.get_inputs()[0].name # get the id of the first input of the model \n",
" result = session.run([], {input_name: input_data})\n",
" end = time.time() # stop timer\n",
" return {\"result\": postprocess(result),\n",
" \"time\": end - start}\n",
" except Exception as e:\n",
" result = str(e)\n",
" return {\"error\": result}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create container image\n",
"First we create a YAML file that specifies which dependencies we would like to see in our container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\",\"onnxruntime\",\"azureml-core\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we have Azure ML create the container. This step will likely take a few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" description = \"TinyYOLO ONNX Demo\",\n",
" tags = {\"demo\": \"onnx\"}\n",
" )\n",
"\n",
"\n",
"image = ContainerImage.create(name = \"onnxyolo\",\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case you need to debug your code, the next line of code accesses the log file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We're all set! Let's get our model chugging.\n",
"\n",
"### Deploy the container image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'demo': 'onnx'}, \n",
" description = 'web service for TinyYOLO ONNX model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following cell will likely take a few minutes to run as well."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from random import randint\n",
"\n",
"aci_service_name = 'onnx-tinyyolo'+str(randint(0,100))\n",
"print(\"Service\", aci_service_name)\n",
"\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case the deployment fails, you can check the logs. Make sure to delete your aci_service before trying again."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state != 'Healthy':\n",
" # run this command for debugging.\n",
" print(aci_service.get_logs())\n",
" aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Success!\n",
"\n",
"If you've made it this far, you've deployed a working web service that does object detection using an ONNX model. You can get the URL for the webservice with the code below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aci_service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are eventually done using the web service, remember to delete it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "viswamy"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-convert-aml-deploy-tinyyolo.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# YOLO Real-time Object Detection using ONNX on AzureML\n",
"\n",
"This example shows how to convert the TinyYOLO model from CoreML to ONNX and operationalize it as a web service using Azure Machine Learning services and the ONNX Runtime.\n",
"\n",
"## What is ONNX\n",
"ONNX is an open format for representing machine learning and deep learning models. ONNX enables open and interoperable AI by enabling data scientists and developers to use the tools of their choice without worrying about lock-in and flexibility to deploy to a variety of platforms. ONNX is developed and supported by a community of partners including Microsoft, Facebook, and Amazon. For more information, explore the [ONNX website](http://onnx.ai).\n",
"\n",
"## YOLO Details\n",
"You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system. For more information about YOLO, please visit the [YOLO website](https://pjreddie.com/darknet/yolo/)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration](../../../configuration.ipynb) notebook to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Install necessary packages\n",
"\n",
"You'll need to run the following commands to use this tutorial:\n",
"\n",
"```sh\n",
"pip install onnxmltools\n",
"pip install coremltools # use this on Linux and Mac\n",
"pip install git+https://github.com/apple/coremltools # use this on Windows\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert model to ONNX\n",
"\n",
"First we download the CoreML model. We use the CoreML model from [Matthijs Hollemans's tutorial](https://github.com/hollance/YOLO-CoreML-MPSNNGraph). This may take a few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"\n",
"coreml_model_url = \"https://github.com/hollance/YOLO-CoreML-MPSNNGraph/raw/master/TinyYOLO-CoreML/TinyYOLO-CoreML/TinyYOLO.mlmodel\"\n",
"urllib.request.urlretrieve(coreml_model_url, filename=\"TinyYOLO.mlmodel\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we use ONNXMLTools to convert the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import onnxmltools\n",
"import coremltools\n",
"\n",
"# Load a CoreML model\n",
"coreml_model = coremltools.utils.load_spec('TinyYOLO.mlmodel')\n",
"\n",
"# Convert from CoreML into ONNX\n",
"onnx_model = onnxmltools.convert_coreml(coreml_model, 'TinyYOLOv2')\n",
"\n",
"# Fix the preprocessor bias in the ImageScaler\n",
"for init in onnx_model.graph.initializer:\n",
" if init.name == 'scalerPreprocessor_bias':\n",
" init.dims[1] = 1\n",
"\n",
"# Save ONNX model\n",
"onnxmltools.utils.save_model(onnx_model, 'tinyyolov2.onnx')\n",
"\n",
"import os\n",
"print(os.path.getsize('tinyyolov2.onnx'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploying as a web service with Azure ML\n",
"\n",
"### Load Azure ML workspace\n",
"\n",
"We begin by instantiating a workspace object from the existing workspace created earlier in the configuration notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.location, ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Registering your model with Azure ML\n",
"\n",
"Now we upload the model and register it in the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"tinyyolov2.onnx\",\n",
" model_name = \"tinyyolov2\",\n",
" tags = {\"onnx\": \"demo\"},\n",
" description = \"TinyYOLO\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Displaying your registered models\n",
"\n",
"You can optionally list out all the models that you have registered in this workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"models = ws.models\n",
"for name, m in models.items():\n",
" print(\"Name:\", name,\"\\tVersion:\", m.version, \"\\tDescription:\", m.description, m.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Write scoring file\n",
"\n",
"We are now going to deploy our ONNX model on Azure ML using the ONNX Runtime. We begin by writing a score.py file that will be invoked by the web service call. The `init()` function is called once when the container is started so we load the model using the ONNX Runtime into a global session object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import json\n",
"import time\n",
"import sys\n",
"import os\n",
"from azureml.core.model import Model\n",
"import numpy as np # we're going to use numpy to process input and output data\n",
"import onnxruntime # to inference ONNX models, we use the ONNX Runtime\n",
"\n",
"def init():\n",
" global session\n",
" model = Model.get_model_path(model_name = 'tinyyolov2')\n",
" session = onnxruntime.InferenceSession(model)\n",
"\n",
"def preprocess(input_data_json):\n",
" # convert the JSON data into the tensor input\n",
" return np.array(json.loads(input_data_json)['data']).astype('float32')\n",
"\n",
"def postprocess(result):\n",
" return np.array(result).tolist()\n",
"\n",
"def run(input_data_json):\n",
" try:\n",
" start = time.time() # start timer\n",
" input_data = preprocess(input_data_json)\n",
" input_name = session.get_inputs()[0].name # get the id of the first input of the model \n",
" result = session.run([], {input_name: input_data})\n",
" end = time.time() # stop timer\n",
" return {\"result\": postprocess(result),\n",
" \"time\": end - start}\n",
" except Exception as e:\n",
" result = str(e)\n",
" return {\"error\": result}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Setting up inference configuration\n",
"First we create a YAML file that specifies which dependencies we would like to see in our container. Please note that you must include azureml-defaults with verion >= 1.0.45 as a pip dependency, because it contains the functionality needed to host the model as a web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime\", \"azureml-core\", \"azureml-defaults\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we create the inference configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.environment import Environment\n",
"\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'demo': 'onnx'}, \n",
" description = 'web service for TinyYOLO ONNX model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following cell will take a few minutes to run as the model gets packaged up and deployed to ACI."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aci_service_name = 'my-aci-service-tiny-yolo'\n",
"print(\"Service\", aci_service_name)\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case the deployment fails, you can check the logs. Make sure to delete your aci_service before trying again."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state != 'Healthy':\n",
" # run this command for debugging.\n",
" print(aci_service.get_logs())\n",
" aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Success!\n",
"\n",
"If you've made it this far, you've deployed a working web service that does object detection using an ONNX model. You can get the URL for the webservice with the code below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aci_service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are eventually done using the web service, remember to delete it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aci_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "viswamy"
}
],
"category": "deployment",
"compute": [
"local"
],
"datasets": [
"PASCAL VOC"
],
"deployment": [
"Azure Container Instance"
],
"exclude_from_index": false,
"framework": [
"ONNX"
],
"friendly_name": "Convert and deploy TinyYolo with ONNX Runtime",
"index_order": 5,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"star_tag": [
"featured"
],
"tags": [
"ONNX Converter"
],
"task": "Object Detection"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: onnx-convert-aml-deploy-tinyyolo
dependencies:
- pip:
- azureml-sdk
- numpy
- git+https://github.com/apple/coremltools@v2.1
- onnx<1.7.0
- onnxmltools

View File

@@ -0,0 +1,9 @@
name: onnx-inference-facial-expression-recognition-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx<1.7.0
- opencv-python-headless

View File

@@ -0,0 +1,9 @@
name: onnx-inference-mnist-deploy
dependencies:
- pip:
- azureml-sdk
- azureml-widgets
- matplotlib
- numpy
- onnx<1.7.0
- opencv-python-headless

View File

@@ -0,0 +1 @@
{"inputs": {"Input3": {"dims": ["1", "1", "28", "28"], "dataType": 1, "rawData": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAQEAAAAAAAAAAAAAAgEAAAABAAAAAAAAAMEEAAAAAAAAAAAAAYEEAAIA/AAAAAAAAmEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEEAAAAAAAAAAAAA4EAAAAAAAACAPwAAIEEAAAAAAAAAQAAAAEAAAIBBAAAAAAAAQEAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4EAAAABBAAAAAAAAAEEAAAAAAAAAAAAAAEEAAAAAAAAAAAAAmEEAAAAAAAAAAAAAgD8AAKhBAAAAAAAAgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEEAAAAAAAAAAAAAIEEAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQQQAAAAAAAHBBAAAgQQAA0EEAAAhCAACIQQAAmkIAADVDAAAyQwAADEIAAIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWQwAAfkMAAHpDAAB7QwAAc0MAAHxDAAB8QwAAf0MAADRCAADAQAAAAAAAAKBAAAAAAAAAEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBAAACQQgAATUMAAH9DAABuQwAAc0MAAH9DAAB+QwAAe0MAAHhDAABJQwAARkMAAGRCAAAAAAAAmEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWkMAAH9DAABxQwAAf0MAAHlDAAB6QwAAe0MAAHpDAAB/QwAAf0MAAHJDAABgQwAAREIAAAAAAABAQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAABAAABAQAAAAEAAAABAAACAPwAAAAAAAIJCAABkQwAAf0MAAH5DAAB0QwAA7kIAAAhCAAAkQgAA3EIAAHpDAAB/QwAAeEMAAPhCAACgQQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBBAAAAAAAAeEIAAM5CAADiQgAA6kIAAAhCAAAAAAAAAAAAAAAAAABIQwAAdEMAAH9DAAB/QwAAAAAAAEBBAAAAAAAAAAAAAAAAAAAAAAAAAEAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAgD8AAABAAAAAAAAAAAAAAABAAACAQAAAAAAAADBBAAAAAAAA4EAAAMBAAAAAAAAAlkIAAHRDAAB/QwAAf0MAAIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAQAAAQEAAAIBAAACAQAAAAAAAAGBBAAAAAAAAAAAAAAAAAAAQQQAAAAAAAABAAAAAAAAAAAAAAAhCAAB/QwAAf0MAAH1DAAAgQQAAIEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAQAAAQEAAAABAAAAAAAAAAAAAAEBAAAAAQAAAAAAAAFBBAAAwQQAAAAAAAAAAAAAAAAAAwEAAAEBBAADGQgAAf0MAAH5DAAB4QwAAcEEAAEBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AACAPwAAgD8AAAAAAAAAAAAAAAAAAAAAAACAPwAAgD8AAAAAAAAAAAAAoEAAAMBAAAAwQQAAAAAAAAAAAACIQQAAOEMAAHdDAAB/QwAAc0MAAFBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAACAQAAAgEAAAAAAAAAwQQAAAAAAAExCAAC8QgAAqkIAAKBAAACgQAAAyEEAAHZDAAB2QwAAf0MAAFBDAAAAAAAAEEEAAAAAAAAAAAAAAAAAAAAAAACAQAAAgD8AAAAAAAAAAAAAgD8AAOBAAABwQQAAmEEAAMZCAADOQgAANkMAAD1DAABtQwAAfUMAAHxDAAA/QwAAPkMAAGNDAABzQwAAfEMAAFJDAACQQQAA4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBAAAAAAAAAAAAAAABCAADaQgAAOUMAAHdDAAB/QwAAckMAAH9DAAB0QwAAf0MAAH9DAAByQwAAe0MAAH9DAABwQwAAf0MAAH9DAABaQwAA+EIAABBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAD+QgAAf0MAAGtDAAB/QwAAf0MAAHdDAABlQwAAVEMAAHJDAAB6QwAAf0MAAH9DAAB4QwAAf0MAAH1DAAB5QwAAf0MAAHNDAAAqQwAAQEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEEAAAAAAAAQQQAAfUMAAH9DAAB/QwAAaUMAAEpDAACqQgAAAAAAAFRCAABEQwAAbkMAAH9DAABjQwAAbkMAAA5DAADaQgAAQUMAAH9DAABwQwAAf0MAADRDAAAAAAAAAAAAAAAAAAAAAAAAwEAAAAAAAACwQQAAgD8AAHVDAABzQwAAfkMAAH9DAABZQwAAa0MAAGJDAABVQwAAdEMAAHtDAAB/QwAAb0MAAJpCAAAAAAAAAAAAAKBBAAA2QwAAd0MAAG9DAABzQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBAAAAlQwAAe0MAAH9DAAB1QwAAf0MAAHJDAAB9QwAAekMAAH9DAABFQwAA1kIAAGxCAAAAAAAAkEEAAABAAADAQAAAAAAAAFhCAAB/QwAAHkMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEEAAAAAAAAAAAAAwEAAAAhCAAAnQwAAQkMAADBDAAA3QwAAJEMAADBCAAAAQAAAIEEAAMBAAADAQAAAAAAAAAAAAACgQAAAAAAAAIA/AAAAAAAAYEEAAABAAAAAAAAAAAAAAAAAAAAAAAAAIEEAAAAAAABgQQAAAAAAAEBBAAAAAAAAoEAAAAAAAACAPwAAAAAAAMBAAAAAAAAA4EAAAAAAAAAAAAAAAAAAAABBAAAAAAAAIEEAAAAAAACgQAAAAAAAAAAAAAAgQQAAAAAAAAAAAAAAAAAAAAAAAAAAAABgQQAAAAAAAIBAAAAAAAAAAAAAAMhBAAAAAAAAAAAAABBBAAAAAAAAAAAAABBBAAAAAAAAMEEAAAAAAACAPwAAAAAAAAAAAAAAQAAAAAAAAAAAAADgQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=="}}, "outputFilter": ["Plus214_Output_0"]}

View File

@@ -0,0 +1,228 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-model-register-and-deploy.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register ONNX model and deploy as webservice\n",
"\n",
"Following this notebook, you will:\n",
"\n",
" - Learn how to register an ONNX in your Azure Machine Learning Workspace.\n",
" - Deploy your model as a web service in an Azure Container Instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) to install the Azure Machine Learning Python SDK and create a workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"\n",
"# Check core SDK version number.\n",
"print('SDK version:', azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize workspace\n",
"\n",
"Create a [Workspace](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py) object from your persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register model\n",
"\n",
"Register a file or folder as a model by calling [Model.register()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none-). For this example, we have provided a trained ONNX MNIST model(`mnist-model.onnx` in the notebook's directory).\n",
"\n",
"In addition to the content of the model file itself, your registered model will also store model metadata -- model description, tags, and framework information -- that will be useful when managing and deploying models in your workspace. Using tags, for instance, you can categorize your models and apply filters when listing models in your workspace. Also, marking this model with the scikit-learn framework will simplify deploying it as a web service, as we'll see later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core import Model\n",
"\n",
"model = Model.register(workspace=ws,\n",
" model_name='mnist-sample', # Name of the registered model in your workspace.\n",
" model_path='mnist-model.onnx', # Local ONNX model to upload and register as a model.\n",
" model_framework=Model.Framework.ONNX , # Framework used to create the model.\n",
" model_framework_version='1.3', # Version of ONNX used to create the model.\n",
" description='Onnx MNIST model')\n",
"\n",
"print('Name:', model.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy model\n",
"\n",
"Deploy your model as a web service using [Model.deploy()](https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config--deployment-config-none--deployment-target-none-). Web services take one or more models, load them in an environment, and run them on one of several supported deployment targets.\n",
"\n",
"For this example, we will deploy the ONNX model to an Azure Container Instance (ACI)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Use a default environment (for supported models)\n",
"\n",
"The Azure Machine Learning service provides a default environment for supported model frameworks, including ONNX, based on the metadata you provided when registering your model. This is the easiest way to deploy your model.\n",
"\n",
"**Note**: This step can take several minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Webservice\n",
"from azureml.exceptions import WebserviceException\n",
"\n",
"service_name = 'onnx-mnist-service'\n",
"\n",
"# Remove any existing service under the same name.\n",
"try:\n",
" Webservice(ws, service_name).delete()\n",
"except WebserviceException:\n",
" pass\n",
"\n",
"service = Model.deploy(ws, service_name, [model])\n",
"service.wait_for_deployment(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After your model is deployed, perform a call to the web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"headers = {'Content-Type': 'application/json', 'Accept': 'application/json'}\n",
"\n",
"if service.auth_enabled:\n",
" headers['Authorization'] = 'Bearer '+ service.get_keys()[0]\n",
"elif service.token_auth_enabled:\n",
" headers['Authorization'] = 'Bearer '+ service.get_token()[0]\n",
"\n",
"scoring_uri = service.scoring_uri\n",
"print(scoring_uri)\n",
"with open('onnx-mnist-predict-input.json', 'rb') as data_file:\n",
" response = requests.post(\n",
" scoring_uri, data=data_file, headers=headers)\n",
"print(response.status_code)\n",
"print(response.elapsed)\n",
"print(response.json())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are finished testing your service, clean up the deployment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: onnx-model-register-and-deploy
dependencies:
- pip:
- azureml-sdk

View File

@@ -1,419 +1,416 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ResNet50 Image Classification using ONNX and AzureML\n",
"\n",
"This example shows how to deploy the ResNet50 ONNX model as a web service using Azure Machine Learning services and the ONNX Runtime.\n",
"\n",
"## What is ONNX\n",
"ONNX is an open format for representing machine learning and deep learning models. ONNX enables open and interoperable AI by enabling data scientists and developers to use the tools of their choice without worrying about lock-in and flexibility to deploy to a variety of platforms. ONNX is developed and supported by a community of partners including Microsoft, Facebook, and Amazon. For more information, explore the [ONNX website](http://onnx.ai).\n",
"\n",
"## ResNet50 Details\n",
"ResNet classifies the major object in an input image into a set of 1000 pre-defined classes. For more information about the ResNet50 model and how it was created can be found on the [ONNX Model Zoo github](https://github.com/onnx/models/tree/master/models/image_classification/resnet). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* Go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download pre-trained ONNX model from ONNX Model Zoo.\n",
"\n",
"Download the [ResNet50v2 model and test data](https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz) and extract it in the same folder as this tutorial notebook.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"\n",
"onnx_model_url = \"https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz\"\n",
"urllib.request.urlretrieve(onnx_model_url, filename=\"resnet50v2.tar.gz\")\n",
"\n",
"!tar xvzf resnet50v2.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploying as a web service with Azure ML"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load your Azure ML workspace\n",
"\n",
"We begin by instantiating a workspace object from the existing workspace created earlier in the configuration notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.location, ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register your model with Azure ML\n",
"\n",
"Now we upload the model and register it in the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"resnet50v2/resnet50v2.onnx\",\n",
" model_name = \"resnet50v2\",\n",
" tags = {\"onnx\": \"demo\"},\n",
" description = \"ResNet50v2 from ONNX Model Zoo\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Displaying your registered models\n",
"\n",
"You can optionally list out all the models that you have registered in this workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"models = ws.models\n",
"for name, m in models.items():\n",
" print(\"Name:\", name,\"\\tVersion:\", m.version, \"\\tDescription:\", m.description, m.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Write scoring file\n",
"\n",
"We are now going to deploy our ONNX model on Azure ML using the ONNX Runtime. We begin by writing a score.py file that will be invoked by the web service call. The `init()` function is called once when the container is started so we load the model using the ONNX Runtime into a global session object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import json\n",
"import time\n",
"import sys\n",
"import os\n",
"from azureml.core.model import Model\n",
"import numpy as np # we're going to use numpy to process input and output data\n",
"import onnxruntime # to inference ONNX models, we use the ONNX Runtime\n",
"\n",
"def softmax(x):\n",
" x = x.reshape(-1)\n",
" e_x = np.exp(x - np.max(x))\n",
" return e_x / e_x.sum(axis=0)\n",
"\n",
"def init():\n",
" global session\n",
" model = Model.get_model_path(model_name = 'resnet50v2')\n",
" session = onnxruntime.InferenceSession(model, None)\n",
"\n",
"def preprocess(input_data_json):\n",
" # convert the JSON data into the tensor input\n",
" img_data = np.array(json.loads(input_data_json)['data']).astype('float32')\n",
" \n",
" #normalize\n",
" mean_vec = np.array([0.485, 0.456, 0.406])\n",
" stddev_vec = np.array([0.229, 0.224, 0.225])\n",
" norm_img_data = np.zeros(img_data.shape).astype('float32')\n",
" for i in range(img_data.shape[0]):\n",
" norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]\n",
"\n",
" return norm_img_data\n",
"\n",
"def postprocess(result):\n",
" return softmax(np.array(result)).tolist()\n",
"\n",
"def run(input_data_json):\n",
" try:\n",
" start = time.time()\n",
" # load in our data which is expected as NCHW 224x224 image\n",
" input_data = preprocess(input_data_json)\n",
" input_name = session.get_inputs()[0].name # get the id of the first input of the model \n",
" result = session.run([], {input_name: input_data})\n",
" end = time.time() # stop timer\n",
" return {\"result\": postprocess(result),\n",
" \"time\": end - start}\n",
" except Exception as e:\n",
" result = str(e)\n",
" return {\"error\": result}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create container image"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we create a YAML file that specifies which dependencies we would like to see in our container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\",\"onnxruntime\",\"azureml-core\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we have Azure ML create the container. This step will likely take a few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" description = \"ONNX ResNet50 Demo\",\n",
" tags = {\"demo\": \"onnx\"}\n",
" )\n",
"\n",
"\n",
"image = ContainerImage.create(name = \"onnxresnet50v2\",\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case you need to debug your code, the next line of code accesses the log file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(image.image_build_log_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We're all set! Let's get our model chugging.\n",
"\n",
"### Deploy the container image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'demo': 'onnx'}, \n",
" description = 'web service for ResNet50 ONNX model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following cell will likely take a few minutes to run as well."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"from random import randint\n",
"\n",
"aci_service_name = 'onnx-demo-resnet50'+str(randint(0,100))\n",
"print(\"Service\", aci_service_name)\n",
"\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case the deployment fails, you can check the logs. Make sure to delete your aci_service before trying again."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state != 'Healthy':\n",
" # run this command for debugging.\n",
" print(aci_service.get_logs())\n",
" aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Success!\n",
"\n",
"If you've made it this far, you've deployed a working web service that does image classification using an ONNX model. You can get the URL for the webservice with the code below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aci_service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are eventually done using the web service, remember to delete it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#aci_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "viswamy"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License."
]
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/onnx/onnx-modelzoo-aml-deploy-resnet50.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ResNet50 Image Classification using ONNX and AzureML\n",
"\n",
"This example shows how to deploy the ResNet50 ONNX model as a web service using Azure Machine Learning services and the ONNX Runtime.\n",
"\n",
"## What is ONNX\n",
"ONNX is an open format for representing machine learning and deep learning models. ONNX enables open and interoperable AI by enabling data scientists and developers to use the tools of their choice without worrying about lock-in and flexibility to deploy to a variety of platforms. ONNX is developed and supported by a community of partners including Microsoft, Facebook, and Amazon. For more information, explore the [ONNX website](http://onnx.ai).\n",
"\n",
"## ResNet50 Details\n",
"ResNet classifies the major object in an input image into a set of 1000 pre-defined classes. For more information about the ResNet50 model and how it was created can be found on the [ONNX Model Zoo github](https://github.com/onnx/models/tree/master/vision/classification/resnet). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"To make the best use of your time, make sure you have done the following:\n",
"\n",
"* Understand the [architecture and terms](https://docs.microsoft.com/azure/machine-learning/service/concept-azure-machine-learning-architecture) introduced by Azure Machine Learning\n",
"* If you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, go through the [configuration notebook](../../../configuration.ipynb) to:\n",
" * install the AML SDK\n",
" * create a workspace and its configuration file (config.json)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download pre-trained ONNX model from ONNX Model Zoo.\n",
"\n",
"Download the [ResNet50v2 model and test data](https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz) and extract it in the same folder as this tutorial notebook.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"\n",
"onnx_model_url = \"https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.tar.gz\"\n",
"urllib.request.urlretrieve(onnx_model_url, filename=\"resnet50v2.tar.gz\")\n",
"\n",
"!tar xvzf resnet50v2.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploying as a web service with Azure ML"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load your Azure ML workspace\n",
"\n",
"We begin by instantiating a workspace object from the existing workspace created earlier in the configuration notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.location, ws.resource_group, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register your model with Azure ML\n",
"\n",
"Now we upload the model and register it in the workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path = \"resnet50v2/resnet50v2.onnx\",\n",
" model_name = \"resnet50v2\",\n",
" tags = {\"onnx\": \"demo\"},\n",
" description = \"ResNet50v2 from ONNX Model Zoo\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Displaying your registered models\n",
"\n",
"You can optionally list out all the models that you have registered in this workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"models = ws.models\n",
"for name, m in models.items():\n",
" print(\"Name:\", name,\"\\tVersion:\", m.version, \"\\tDescription:\", m.description, m.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Write scoring file\n",
"\n",
"We are now going to deploy our ONNX model on Azure ML using the ONNX Runtime. We begin by writing a score.py file that will be invoked by the web service call. The `init()` function is called once when the container is started so we load the model using the ONNX Runtime into a global session object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import json\n",
"import time\n",
"import sys\n",
"import os\n",
"import numpy as np # we're going to use numpy to process input and output data\n",
"import onnxruntime # to inference ONNX models, we use the ONNX Runtime\n",
"\n",
"def softmax(x):\n",
" x = x.reshape(-1)\n",
" e_x = np.exp(x - np.max(x))\n",
" return e_x / e_x.sum(axis=0)\n",
"\n",
"def init():\n",
" global session\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'resnet50v2.onnx')\n",
" session = onnxruntime.InferenceSession(model, None)\n",
"\n",
"def preprocess(input_data_json):\n",
" # convert the JSON data into the tensor input\n",
" img_data = np.array(json.loads(input_data_json)['data']).astype('float32')\n",
" \n",
" #normalize\n",
" mean_vec = np.array([0.485, 0.456, 0.406])\n",
" stddev_vec = np.array([0.229, 0.224, 0.225])\n",
" norm_img_data = np.zeros(img_data.shape).astype('float32')\n",
" for i in range(img_data.shape[0]):\n",
" norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]\n",
"\n",
" return norm_img_data\n",
"\n",
"def postprocess(result):\n",
" return softmax(np.array(result)).tolist()\n",
"\n",
"def run(input_data_json):\n",
" try:\n",
" start = time.time()\n",
" # load in our data which is expected as NCHW 224x224 image\n",
" input_data = preprocess(input_data_json)\n",
" input_name = session.get_inputs()[0].name # get the id of the first input of the model \n",
" result = session.run([], {input_name: input_data})\n",
" end = time.time() # stop timer\n",
" return {\"result\": postprocess(result),\n",
" \"time\": end - start}\n",
" except Exception as e:\n",
" result = str(e)\n",
" return {\"error\": result}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create inference configuration"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we create a YAML file that specifies which dependencies we would like to see in our container."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"\n",
"myenv = CondaDependencies.create(pip_packages=[\"numpy\", \"onnxruntime\", \"azureml-core\", \"azureml-defaults\"])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create the inference configuration object. Please note that you must indicate azureml-defaults with verion >= 1.0.45 as a pip dependency, because it contains the functionality needed to host the model as a web service."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.environment import Environment\n",
"\n",
"\n",
"myenv = Environment.from_conda_specification(name=\"myenv\", file_path=\"myenv.yml\")\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'demo': 'onnx'}, \n",
" description = 'web service for ResNet50 ONNX model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following cell will likely take a few minutes to run as well."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from random import randint\n",
"\n",
"aci_service_name = 'onnx-demo-resnet50'+str(randint(0,100))\n",
"print(\"Service\", aci_service_name)\n",
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In case the deployment fails, you can check the logs. Make sure to delete your aci_service before trying again."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if aci_service.state != 'Healthy':\n",
" # run this command for debugging.\n",
" print(aci_service.get_logs())\n",
" aci_service.delete()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Success!\n",
"\n",
"If you've made it this far, you've deployed a working web service that does image classification using an ONNX model. You can get the URL for the webservice with the code below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(aci_service.scoring_uri)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are eventually done using the web service, remember to delete it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aci_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "viswamy"
}
],
"category": "deployment",
"compute": [
"Local"
],
"datasets": [
"ImageNet"
],
"deployment": [
"Azure Container Instance"
],
"exclude_from_index": false,
"framework": [
"ONNX"
],
"friendly_name": "Deploy ResNet50 with ONNX Runtime",
"index_order": 4,
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
},
"star_tag": [],
"tags": [
"ONNX Model Zoo"
],
"task": "Image Classification"
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,4 @@
name: onnx-modelzoo-aml-deploy-resnet50
dependencies:
- pip:
- azureml-sdk

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,5 @@
name: onnx-train-pytorch-aml-deploy-mnist
dependencies:
- pip:
- azureml-sdk
- azureml-widgets

View File

@@ -0,0 +1,350 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/automated-machine-learning/production-deploy-to-aks-gpu/production-deploy-to-aks-gpu.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Download the model\n",
"\n",
"Prior to registering the model, you should have a TensorFlow [Saved Model](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md) in the `resnet50` directory. This cell will download a [pretrained resnet50](http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v1_fp32_savedmodel_NCHW_jpg.tar.gz) and unpack it to that directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"import shutil\n",
"import tarfile\n",
"import tempfile\n",
"\n",
"from io import BytesIO\n",
"\n",
"model_url = \"http://download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v1_fp32_savedmodel_NCHW_jpg.tar.gz\"\n",
"\n",
"archive_prefix = \"./resnet_v1_fp32_savedmodel_NCHW_jpg/1538686758/\"\n",
"target_folder = \"resnet50\"\n",
"\n",
"if not os.path.exists(target_folder):\n",
" response = requests.get(model_url)\n",
" archive = tarfile.open(fileobj=BytesIO(response.content))\n",
" with tempfile.TemporaryDirectory() as temp_folder:\n",
" archive.extractall(temp_folder)\n",
" shutil.copytree(os.path.join(temp_folder, archive_prefix), target_folder)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add description and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"\n",
"model = Model.register(model_path=\"resnet50\", # This points to the local directory to upload.\n",
" model_name=\"resnet50\", # This is the name the model is registered as.\n",
" tags={'area': \"Image classification\", 'type': \"classification\"},\n",
" description=\"Image classification trained on Imagenet Dataset\",\n",
" workspace=ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget, AksCompute\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your GPU cluster\n",
"gpu_cluster_name = \"aks-gpu-cluster\"\n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" gpu_cluster = ComputeTarget(workspace=ws, name=gpu_cluster_name)\n",
" print(\"Found existing gpu cluster\")\n",
"except ComputeTargetException:\n",
" print(\"Creating new gpu-cluster\")\n",
" \n",
" # Specify the configuration for the new cluster\n",
" compute_config = AksCompute.provisioning_configuration(cluster_purpose=AksCompute.ClusterPurpose.DEV_TEST,\n",
" agent_count=1,\n",
" vm_size=\"Standard_NV6\")\n",
" # Create the cluster with the specified name and configuration\n",
" gpu_cluster = ComputeTarget.create(ws, gpu_cluster_name, compute_config)\n",
"\n",
" # Wait for the cluster to complete, show the output log\n",
" gpu_cluster.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy the model as a web service to AKS\n",
"\n",
"First create a scoring script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import tensorflow as tf\n",
"import numpy as np\n",
"import json\n",
"import os\n",
"from azureml.contrib.services.aml_request import AMLRequest, rawhttp\n",
"from azureml.contrib.services.aml_response import AMLResponse\n",
"\n",
"def init():\n",
" global session\n",
" global input_name\n",
" global output_name\n",
" \n",
" session = tf.Session()\n",
"\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'resnet50')\n",
" model = tf.saved_model.loader.load(session, ['serve'], model_path)\n",
" if len(model.signature_def['serving_default'].inputs) > 1:\n",
" raise ValueError(\"This score.py only supports one input\")\n",
" input_name = [tensor.name for tensor in model.signature_def['serving_default'].inputs.values()][0]\n",
" output_name = [tensor.name for tensor in model.signature_def['serving_default'].outputs.values()]\n",
" \n",
"\n",
"@rawhttp\n",
"def run(request):\n",
" if request.method == 'POST':\n",
" reqBody = request.get_data(False)\n",
" resp = score(reqBody)\n",
" return AMLResponse(resp, 200)\n",
" if request.method == 'GET':\n",
" respBody = str.encode(\"GET is not supported\")\n",
" return AMLResponse(respBody, 405)\n",
" return AMLResponse(\"bad request\", 500)\n",
"\n",
"def score(data):\n",
" result = session.run(output_name, {input_name: [data]})\n",
" return json.dumps(result[1].tolist())\n",
"\n",
"if __name__ == \"__main__\":\n",
" init()\n",
" with open(\"test_image.jpg\", 'rb') as f:\n",
" content = f.read()\n",
" print(score(content))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now create the deployment configuration objects and deploy the model as a webservice."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set the web service configuration (using default here)\n",
"from azureml.core.model import InferenceConfig\n",
"from azureml.core.webservice import AksWebservice\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.environment import Environment, DEFAULT_GPU_IMAGE\n",
"\n",
"env = Environment('deploytocloudenv')\n",
"# Please see [Azure ML Containers repository](https://github.com/Azure/AzureML-Containers#featured-tags)\n",
"# for open-sourced GPU base images.\n",
"env.docker.base_image = DEFAULT_GPU_IMAGE\n",
"env.python.conda_dependencies = CondaDependencies.create(conda_packages=['tensorflow-gpu==1.12.0','numpy'],\n",
" pip_packages=['azureml-contrib-services', 'azureml-defaults'])\n",
"\n",
"inference_config = InferenceConfig(entry_script=\"score.py\", environment=env)\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"# # Enable token auth and disable (key) auth on the webservice\n",
"# aks_config = AksWebservice.deploy_configuration(token_auth_enabled=True, auth_enabled=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='gpu-rn50'\n",
"\n",
"aks_service = Model.deploy(workspace=ws,\n",
" name=aks_service_name,\n",
" models=[model],\n",
" inference_config=inference_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=gpu_cluster)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service\n",
"We test the web sevice by passing the test images content."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import requests\n",
"\n",
"# if (key) auth is enabled, fetch keys and include in the request\n",
"key1, key2 = aks_service.get_keys()\n",
"\n",
"headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"\n",
"# # if token auth is enabled, fetch token and include in the request\n",
"# access_token, fetch_after = aks_service.get_token()\n",
"# headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + access_token}\n",
"\n",
"test_sample = open('snowleopardgaze.jpg', 'rb').read()\n",
"resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image, model and compute target"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"model.delete()\n",
"gpu_cluster.delete()\n"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,5 @@
name: production-deploy-to-aks-gpu
dependencies:
- pip:
- azureml-sdk
- tensorflow

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@@ -0,0 +1,356 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, provisioning a cluster with ssl (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.model import Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_model\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the Environment\n",
"Create an environment that the model will be deployed with"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"conda_deps = CondaDependencies.create(conda_packages=['numpy', 'scikit-learn==0.19.1', 'scipy'], pip_packages=['azureml-defaults', 'inference-schema'])\n",
"myenv = Environment(name='myenv')\n",
"myenv.python.conda_dependencies = conda_deps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use a custom Docker image\n",
"\n",
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
"\n",
"Only supported with `python` runtime.\n",
"```python\n",
"# use an image available in public Container Registry without authentication\n",
"myenv.docker.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
"\n",
"# or, use an image available in a private Container Registry\n",
"myenv.docker.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
"myenv.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
"myenv.docker.base_image_registry.username = \"username\"\n",
"myenv.docker.base_image_registry.password = \"password\"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Write the Entry Script\n",
"Write the script that will be used to predict on your model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score_ssl.py\n",
"import os\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from inference_schema.schema_decorators import input_schema, output_schema\n",
"from inference_schema.parameter_types.standard_py_parameter_type import StandardPythonParameterType\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"\n",
"standard_sample_input = {'a': 10, 'b': 9, 'c': 8, 'd': 7, 'e': 6, 'f': 5, 'g': 4, 'h': 3, 'i': 2, 'j': 1 }\n",
"standard_sample_output = {'outcome': 1}\n",
"\n",
"@input_schema('param', StandardPythonParameterType(standard_sample_input))\n",
"@output_schema(StandardPythonParameterType(standard_sample_output))\n",
"def run(param):\n",
" try:\n",
" raw_data = [param['a'], param['b'], param['c'], param['d'], param['e'], param['f'], param['g'], param['h'], param['i'], param['j']]\n",
" data = numpy.array([raw_data])\n",
" result = model.predict(data)\n",
" return { 'outcome' : result[0] }\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the InferenceConfig\n",
"Create the inference config that will be used when deploying the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inf_config = InferenceConfig(entry_script='score_ssl.py', environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster with SSL\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist.\n",
"\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"\n",
"provisioning_config = AksCompute.provisioning_configuration()\n",
"# Leaf domain label generates a name using the formula\n",
"# \"<leaf-domain-label>######.<azure-region>.cloudapp.azure.net\"\n",
"# where \"######\" is a random series of characters\n",
"provisioning_config.enable_ssl(leaf_domain_label = \"contoso\", overwrite_existing_domain = True)\n",
"\n",
"aks_name = 'my-aks-ssl-1' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = provisioning_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sample-deploy-to-aks"
]
},
"outputs": [],
"source": [
"%%time\n",
"\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"aks_service_name ='aks-service-ssl-1'\n",
"\n",
"aks_service = Model.deploy(workspace=ws,\n",
" name=aks_service_name,\n",
" models=[model],\n",
" inference_config=inf_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target,\n",
" overwrite=True)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service using run method\n",
"We test the web sevice by passing data.\n",
"Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"standard_sample_input = json.dumps({'param': {'a': 10, 'b': 9, 'c': 8, 'd': 7, 'e': 6, 'f': 5, 'g': 4, 'h': 3, 'i': 2, 'j': 1 }})\n",
"\n",
"aks_service.run(input_data=standard_sample_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks-ssl
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -1,343 +1,623 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.image import Image\n",
"from azureml.core.model import Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create an image\n",
"Create an image using the registered model the script that will load and run the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under\n",
" # this is a different behavior than before when the code is run locally, even though the code is the same.\n",
" model_path = Model.get_model_path('sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" # you can return any data type as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.image import ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(execution_script = \"score.py\",\n",
" runtime = \"python\",\n",
" conda_file = \"myenv.yml\",\n",
" description = \"Image with ridge regression model\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}\n",
" )\n",
"\n",
"image = ContainerImage.create(name = \"myimage1\",\n",
" # this is the model object\n",
" models = [model],\n",
" image_config = image_config,\n",
" workspace = ws)\n",
"\n",
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use the default configuration (can also provide parameters to customize)\n",
"prov_config = AksCompute.provisioning_configuration()\n",
"\n",
"aks_name = 'my-aks-9' \n",
"# Create the cluster\n",
"aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optional step: Attach existing AKS cluster\n",
"\n",
"If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"'''\n",
"# Use the default configuration (can also provide parameters to customize)\n",
"resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01'\n",
"\n",
"create_name='my-existing-aks' \n",
"# Create the cluster\n",
"attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n",
"# Wait for the operation to complete\n",
"aks_target.wait_for_completion(True)\n",
"'''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='aks-service-1'\n",
"\n",
"aks_service = Webservice.deploy_from_image(workspace = ws, \n",
" name = aks_service_name,\n",
" image = image,\n",
" deployment_config = aks_config,\n",
" deployment_target = aks_target)\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service\n",
"We test the web sevice by passing data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"prediction = aks_service.run(input_data = test_sample)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"image.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "raymondl"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/deployment/production-deploy-to-aks/production-deploy-to-aks.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploying a web service to Azure Kubernetes Service (AKS)\n",
"This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. \n",
"We then test and delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"from azureml.core.compute import AksCompute, ComputeTarget\n",
"from azureml.core.webservice import Webservice, AksWebservice\n",
"from azureml.core.model import Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import azureml.core\n",
"print(azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get workspace\n",
"Load existing workspace from the config file info."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.workspace import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Register the model\n",
"Register an existing trained model, add descirption and tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Register the model\n",
"from azureml.core.model import Model\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\", # this points to a local file\n",
" model_name = \"sklearn_regression_model.pkl\", # this is the name the model is registered as\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)\n",
"\n",
"print(model.name, model.description, model.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the Environment\n",
"Create an environment that the model will be deployed with"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"conda_deps = CondaDependencies.create(conda_packages=['numpy','scikit-learn==0.19.1','scipy'], pip_packages=['azureml-defaults', 'inference-schema'])\n",
"myenv = Environment(name='myenv')\n",
"myenv.python.conda_dependencies = conda_deps"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Use a custom Docker image\n",
"\n",
"You can also specify a custom Docker image to be used as base image if you don't want to use the default base image provided by Azure ML. Please make sure the custom Docker image has Ubuntu >= 16.04, Conda >= 4.5.\\* and Python(3.5.\\* or 3.6.\\*).\n",
"\n",
"Only supported with `python` runtime.\n",
"```python\n",
"# use an image available in public Container Registry without authentication\n",
"myenv.docker.base_image = \"mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda\"\n",
"\n",
"# or, use an image available in a private Container Registry\n",
"myenv.docker.base_image = \"myregistry.azurecr.io/mycustomimage:1.0\"\n",
"myenv.docker.base_image_registry.address = \"myregistry.azurecr.io\"\n",
"myenv.docker.base_image_registry.username = \"username\"\n",
"myenv.docker.base_image_registry.password = \"password\"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Write the Entry Script\n",
"Write the script that will be used to predict on your model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import os\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"\n",
"def init():\n",
" global model\n",
" # AZUREML_MODEL_DIR is an environment variable created during deployment.\n",
" # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)\n",
" # For multiple models, it points to the folder containing all deployed models (./azureml-models)\n",
" model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" # you can return any data type as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create the InferenceConfig\n",
"Create the inference config that will be used when deploying the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.model import InferenceConfig\n",
"\n",
"inf_config = InferenceConfig(entry_script='score.py', environment=myenv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model Profiling\n",
"\n",
"Profile your model to understand how much CPU and memory the service, created as a result of its deployment, will need. Profiling returns information such as CPU usage, memory usage, and response latency. It also provides a CPU and memory recommendation based on the resource usage. You can profile your model (or more precisely the service built based on your model) on any CPU and/or memory combination where 0.1 <= CPU <= 3.5 and 0.1GB <= memory <= 15GB. If you do not provide a CPU and/or memory requirement, we will test it on the default configuration of 3.5 CPU and 15GB memory.\n",
"\n",
"In order to profile your model you will need:\n",
"- a registered model\n",
"- an entry script\n",
"- an inference configuration\n",
"- a single column tabular dataset, where each row contains a string representing sample request data sent to the service.\n",
"\n",
"Please, note that profiling is a long running operation and can take up to 25 minutes depending on the size of the dataset.\n",
"\n",
"At this point we only support profiling of services that expect their request data to be a string, for example: string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put into the body of the HTTP request and sent to the service encapsulating the model for scoring.\n",
"\n",
"Below is an example of how you can construct an input dataset to profile a service which expects its incoming requests to contain serialized json. In this case we created a dataset based one hundred instances of the same request data. In real world scenarios however, we suggest that you use larger datasets with various inputs, especially if your model resource usage/behavior is input dependent."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You may want to register datasets using the register() method to your workspace so they can be shared with others, reused and referred to by name in your script.\n",
"You can try get the dataset first to see if it's already registered."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from azureml.core import Datastore\n",
"from azureml.core.dataset import Dataset\n",
"from azureml.data import dataset_type_definitions\n",
"\n",
"dataset_name='sample_request_data'\n",
"\n",
"dataset_registered = False\n",
"try:\n",
" sample_request_data = Dataset.get_by_name(workspace = ws, name = dataset_name)\n",
" dataset_registered = True\n",
"except:\n",
" print(\"The dataset {} is not registered in workspace yet.\".format(dataset_name))\n",
"\n",
"if not dataset_registered:\n",
" input_json = {'data': [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]}\n",
" # create a string that can be put in the body of the request\n",
" serialized_input_json = json.dumps(input_json)\n",
" dataset_content = []\n",
" for i in range(100):\n",
" dataset_content.append(serialized_input_json)\n",
" sample_request_data = '\\n'.join(dataset_content)\n",
" file_name = \"{}.txt\".format(dataset_name)\n",
" f = open(file_name, 'w')\n",
" f.write(sample_request_data)\n",
" f.close()\n",
"\n",
" # upload the txt file created above to the Datastore and create a dataset from it\n",
" data_store = Datastore.get_default(ws)\n",
" data_store.upload_files(['./' + file_name], target_path='sample_request_data')\n",
" datastore_path = [(data_store, 'sample_request_data' +'/' + file_name)]\n",
" sample_request_data = Dataset.Tabular.from_delimited_files(\n",
" datastore_path,\n",
" separator='\\n',\n",
" infer_column_types=True,\n",
" header=dataset_type_definitions.PromoteHeadersBehavior.NO_HEADERS)\n",
" sample_request_data = sample_request_data.register(workspace=ws,\n",
" name=dataset_name,\n",
" create_new_version=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have an input dataset we are ready to go ahead with profiling. In this case we are testing the previously introduced sklearn regression model on 1 CPU and 0.5 GB memory. The memory usage and recommendation presented in the result is measured in Gigabytes. The CPU usage and recommendation is measured in CPU cores."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from azureml.core import Environment\n",
"from azureml.core.conda_dependencies import CondaDependencies\n",
"from azureml.core.model import Model, InferenceConfig\n",
"\n",
"\n",
"environment = Environment('my-sklearn-environment')\n",
"environment.python.conda_dependencies = CondaDependencies.create(pip_packages=[\n",
" 'azureml-defaults',\n",
" 'inference-schema[numpy-support]',\n",
" 'joblib',\n",
" 'numpy',\n",
" 'scikit-learn==0.19.1',\n",
" 'scipy'\n",
"])\n",
"inference_config = InferenceConfig(entry_script='score.py', environment=environment)\n",
"# if cpu and memory_in_gb parameters are not provided\n",
"# the model will be profiled on default configuration of\n",
"# 3.5CPU and 15GB memory\n",
"profile = Model.profile(ws,\n",
" 'sklearn-%s' % datetime.now().strftime('%m%d%Y-%H%M%S'),\n",
" [model],\n",
" inference_config,\n",
" input_dataset=sample_request_data,\n",
" cpu=1.0,\n",
" memory_in_gb=0.5)\n",
"\n",
"# profiling is a long running operation and may take up to 25 min\n",
"profile.wait_for_completion(True)\n",
"details = profile.get_details()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Provision the AKS Cluster\n",
"This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it.\n",
"\n",
"> Note that if you have an AzureML Data Scientist role, you will not have permission to create compute resources. Talk to your workspace or IT admin to create the compute targets described in this section, if they do not already exist."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.compute import ComputeTarget\n",
"from azureml.core.compute_target import ComputeTargetException\n",
"\n",
"# Choose a name for your AKS cluster\n",
"aks_name = 'my-aks-9' \n",
"\n",
"# Verify that cluster does not exist already\n",
"try:\n",
" aks_target = ComputeTarget(workspace=ws, name=aks_name)\n",
" print('Found existing cluster, use it.')\n",
"except ComputeTargetException:\n",
" # Use the default configuration (can also provide parameters to customize)\n",
" prov_config = AksCompute.provisioning_configuration()\n",
"\n",
" # Create the cluster\n",
" aks_target = ComputeTarget.create(workspace = ws, \n",
" name = aks_name, \n",
" provisioning_configuration = prov_config)\n",
"\n",
"if aks_target.get_status() != \"Succeeded\":\n",
" aks_target.wait_for_completion(show_output=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create AKS Cluster in an existing virtual network (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-enable-virtual-network#use-azure-kubernetes-service) for more details."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from azureml.core.compute import ComputeTarget, AksCompute\n",
"\n",
"# # Create the compute configuration and set virtual network information\n",
"# config = AksCompute.provisioning_configuration(location=\"eastus2\")\n",
"# config.vnet_resourcegroup_name = \"mygroup\"\n",
"# config.vnet_name = \"mynetwork\"\n",
"# config.subnet_name = \"default\"\n",
"# config.service_cidr = \"10.0.0.0/16\"\n",
"# config.dns_service_ip = \"10.0.0.10\"\n",
"# config.docker_bridge_cidr = \"172.17.0.1/16\"\n",
"\n",
"# # Create the compute target\n",
"# aks_target = ComputeTarget.create(workspace = ws,\n",
"# name = \"myaks\",\n",
"# provisioning_configuration = config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Enable SSL on the AKS Cluster (optional)\n",
"See code snippet below. Check the documentation [here](https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-secure-web-service) for more details"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# provisioning_config = AksCompute.provisioning_configuration(ssl_cert_pem_file=\"cert.pem\", ssl_key_pem_file=\"key.pem\", ssl_cname=\"www.contoso.com\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_target.wait_for_completion(show_output = True)\n",
"print(aks_target.provisioning_state)\n",
"print(aks_target.provisioning_errors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Optional step: Attach existing AKS cluster\n",
"\n",
"If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # Use the default configuration (can also provide parameters to customize)\n",
"# resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01'\n",
"\n",
"# create_name='my-existing-aks' \n",
"# # Create the cluster\n",
"# attach_config = AksCompute.attach_configuration(resource_id=resource_id)\n",
"# aks_target = ComputeTarget.attach(workspace=ws, name=create_name, attach_configuration=attach_config)\n",
"# # Wait for the operation to complete\n",
"# aks_target.wait_for_completion(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy web service to AKS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sample-deploy-to-aks"
]
},
"outputs": [],
"source": [
"# Set the web service configuration (using default here)\n",
"aks_config = AksWebservice.deploy_configuration()\n",
"\n",
"# # Enable token auth and disable (key) auth on the webservice\n",
"# aks_config = AksWebservice.deploy_configuration(token_auth_enabled=True, auth_enabled=False)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"sample-deploy-to-aks"
]
},
"outputs": [],
"source": [
"%%time\n",
"aks_service_name ='aks-service-1'\n",
"\n",
"aks_service = Model.deploy(workspace=ws,\n",
" name=aks_service_name,\n",
" models=[model],\n",
" inference_config=inf_config,\n",
" deployment_config=aks_config,\n",
" deployment_target=aks_target)\n",
"\n",
"aks_service.wait_for_deployment(show_output = True)\n",
"print(aks_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service using run method\n",
"We test the web sevice by passing data.\n",
"Run() method retrieves API keys behind the scenes to make sure that call is authenticated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"prediction = aks_service.run(input_data = test_sample)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test the web service using raw HTTP request (optional)\n",
"Alternatively you can construct a raw HTTP request and send it to the service. In this case you need to explicitly pass the HTTP header. This process is shown in the next 2 cells."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # if (key) auth is enabled, retrieve the API keys. AML generates two keys.\n",
"# key1, Key2 = aks_service.get_keys()\n",
"# print(key1)\n",
"\n",
"# # if token auth is enabled, retrieve the token.\n",
"# access_token, refresh_after = aks_service.get_token()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# construct raw HTTP request and send to the service\n",
"# %%time\n",
"\n",
"# import requests\n",
"\n",
"# import json\n",
"\n",
"# test_sample = json.dumps({'data': [\n",
"# [1,2,3,4,5,6,7,8,9,10], \n",
"# [10,9,8,7,6,5,4,3,2,1]\n",
"# ]})\n",
"# test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"# # If (key) auth is enabled, don't forget to add key to the HTTP header.\n",
"# headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + key1}\n",
"\n",
"# # If token auth is enabled, don't forget to add token to the HTTP header.\n",
"# headers = {'Content-Type':'application/json', 'Authorization': 'Bearer ' + access_token}\n",
"\n",
"# resp = requests.post(aks_service.scoring_uri, test_sample, headers=headers)\n",
"\n",
"\n",
"# print(\"prediction:\", resp.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Clean up\n",
"Delete the service, image and model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"aks_service.delete()\n",
"model.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "vaidyas"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1,8 @@
name: production-deploy-to-aks
dependencies:
- pip:
- azureml-sdk
- matplotlib
- tqdm
- scipy
- sklearn

View File

@@ -1,421 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Register Model, Create Image and Deploy Service\n",
"\n",
"This example shows how to deploy a web service in step-by-step fashion:\n",
"\n",
" 1. Register model\n",
" 2. Query versions of models and select one to deploy\n",
" 3. Create Docker image\n",
" 4. Query versions of images\n",
" 5. Deploy the image as web service\n",
" \n",
"**IMPORTANT**:\n",
" * This notebook requires you to first complete [train-within-notebook](../../training/train-within-notebook/train-within-notebook.ipynb) example\n",
" \n",
"The train-within-notebook example taught you how to deploy a web service directly from model in one step. This Notebook shows a more advanced approach that gives you more control over model versions and Docker image versions. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prerequisites\n",
"Make sure you go through the [configuration](../../../configuration.ipynb) Notebook first if you haven't."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check core SDK version number\n",
"import azureml.core\n",
"\n",
"print(\"SDK version:\", azureml.core.VERSION)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize Workspace\n",
"\n",
"Initialize a workspace object from persisted configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create workspace"
]
},
"outputs": [],
"source": [
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Register Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can add tags and descriptions to your models. Note you need to have a `sklearn_linreg_model.pkl` file in the current directory. This file is generated by the 01 notebook. The below call registers that file as a model with the same name `sklearn_linreg_model.pkl` in the workspace.\n",
"\n",
"Using tags, you can track useful information such as the name and version of the machine learning library used to train the model. Note that tags must be alphanumeric."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"from azureml.core.model import Model\n",
"import sklearn\n",
"\n",
"library_version = \"sklearn\"+sklearn.__version__.replace(\".\",\"x\")\n",
"\n",
"model = Model.register(model_path = \"sklearn_regression_model.pkl\",\n",
" model_name = \"sklearn_regression_model.pkl\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\", 'version': library_version},\n",
" description = \"Ridge regression model to predict diabetes\",\n",
" workspace = ws)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can explore the registered models within your workspace and query by tag. Models are versioned. If you call the register_model command many times with same model name, you will get multiple versions of the model with increasing version numbers."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"register model from file"
]
},
"outputs": [],
"source": [
"regression_models = Model.list(workspace=ws, tags=['area'])\n",
"for m in regression_models:\n",
" print(\"Name:\", m.name,\"\\tVersion:\", m.version, \"\\tDescription:\", m.description, m.tags)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can pick a specific model to deploy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(model.name, model.description, model.version, sep = '\\t')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Docker Image"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Show `score.py`. Note that the `sklearn_regression_model.pkl` in the `get_model_path` call is referring to a model named `sklearn_linreg_model.pkl` registered under the workspace. It is NOT referenceing the local file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile score.py\n",
"import pickle\n",
"import json\n",
"import numpy\n",
"from sklearn.externals import joblib\n",
"from sklearn.linear_model import Ridge\n",
"from azureml.core.model import Model\n",
"\n",
"def init():\n",
" global model\n",
" # note here \"sklearn_regression_model.pkl\" is the name of the model registered under\n",
" # this is a different behavior than before when the code is run locally, even though the code is the same.\n",
" model_path = Model.get_model_path('sklearn_regression_model.pkl')\n",
" # deserialize the model file back into a sklearn model\n",
" model = joblib.load(model_path)\n",
"\n",
"# note you can pass in multiple rows for scoring\n",
"def run(raw_data):\n",
" try:\n",
" data = json.loads(raw_data)['data']\n",
" data = numpy.array(data)\n",
" result = model.predict(data)\n",
" # you can return any datatype as long as it is JSON-serializable\n",
" return result.tolist()\n",
" except Exception as e:\n",
" error = str(e)\n",
" return error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from azureml.core.conda_dependencies import CondaDependencies \n",
"\n",
"myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn'])\n",
"\n",
"with open(\"myenv.yml\",\"w\") as f:\n",
" f.write(myenv.serialize_to_string())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that following command can take few minutes. \n",
"\n",
"You can add tags and descriptions to images. Also, an image can contain multiple models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create image"
]
},
"outputs": [],
"source": [
"from azureml.core.image import Image, ContainerImage\n",
"\n",
"image_config = ContainerImage.image_configuration(runtime= \"python\",\n",
" execution_script=\"score.py\",\n",
" conda_file=\"myenv.yml\",\n",
" tags = {'area': \"diabetes\", 'type': \"regression\"},\n",
" description = \"Image with ridge regression model\")\n",
"\n",
"image = Image.create(name = \"myimage1\",\n",
" # this is the model object. note you can pass in 0-n models via this list-type parameter\n",
" # in case you need to reference multiple models, or none at all, in your scoring script.\n",
" models = [model],\n",
" image_config = image_config, \n",
" workspace = ws)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create image"
]
},
"outputs": [],
"source": [
"image.wait_for_creation(show_output = True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"List images by tag and find out the detailed build log for debugging."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"create image"
]
},
"outputs": [],
"source": [
"for i in Image.list(workspace = ws,tags = [\"area\"]):\n",
" print('{}(v.{} [{}]) stored at {} with build log {}'.format(i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy image as web service on Azure Container Instance\n",
"\n",
"Note that the service creation can take few minutes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import AciWebservice\n",
"\n",
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1, \n",
" memory_gb = 1, \n",
" tags = {'area': \"diabetes\", 'type': \"regression\"}, \n",
" description = 'Predict diabetes using regression model')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"from azureml.core.webservice import Webservice\n",
"\n",
"aci_service_name = 'my-aci-service-2'\n",
"print(aci_service_name)\n",
"aci_service = Webservice.deploy_from_image(deployment_config = aciconfig,\n",
" image = image,\n",
" name = aci_service_name,\n",
" workspace = ws)\n",
"aci_service.wait_for_deployment(True)\n",
"print(aci_service.state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Test web service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the web service with some dummy input data to get a prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"import json\n",
"\n",
"test_sample = json.dumps({'data': [\n",
" [1,2,3,4,5,6,7,8,9,10], \n",
" [10,9,8,7,6,5,4,3,2,1]\n",
"]})\n",
"test_sample = bytes(test_sample,encoding = 'utf8')\n",
"\n",
"prediction = aci_service.run(input_data=test_sample)\n",
"print(prediction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Delete ACI to clean up"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"deploy service",
"aci"
]
},
"outputs": [],
"source": [
"aci_service.delete()"
]
}
],
"metadata": {
"authors": [
{
"name": "raymondl"
}
],
"kernelspec": {
"display_name": "Python 3.6",
"language": "python",
"name": "python36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -0,0 +1 @@
{"class":"org.apache.spark.ml.classification.LogisticRegressionModel","timestamp":1570147252329,"sparkVersion":"2.4.0","uid":"LogisticRegression_5df3978caaf3","paramMap":{"regParam":0.01},"defaultParamMap":{"aggregationDepth":2,"threshold":0.5,"rawPredictionCol":"rawPrediction","featuresCol":"features","labelCol":"label","predictionCol":"prediction","family":"auto","regParam":0.0,"tol":1.0E-6,"probabilityCol":"probability","standardization":true,"elasticNetParam":0.0,"maxIter":100,"fitIntercept":true}}

Some files were not shown because too many files have changed in this diff Show More